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known as the Jordan–Moore–Gibson–Thompson equation (of Westervelt type, i.e.,
containing no gradient nonlinearities), where

(1.3) b = δ + τc2 .

In nonlinear acoustics, excitation is commonly achieved by an array of piezoelectric
transducers; see [16]. We thus employ inhomogeneous Neumann conditions

∂ψ

∂n
= g

on some surface Γ. The wave equations will be considered in a bounded C1,1 domain
Ω, with Γ ⊆ ∂Ω, motivated from the point of view of applications by the need
to restrict attention (as well as numerical computations) to a certain domain of
interest even though wave propagation in reality occurs in free space. Working on
a bounded domain is also crucial from an analysis point of view since it enables the
use of certain embedding results that would not be valid on unbounded domains.

This reasoning necessitates the use of appropriate boundary conditions to avoid
spurious reflections of the outgoing waves on the boundary of the domain of interest
Ω, which we here do by imposing linear absorbing boundary conditions on the rest
of the boundary

∂ψ

∂n
= −βψt on Σ = ∂Ω \ Γ ,

where β > 0 is a fixed positive coefficient; see [25] and the references therein. More-
over, we confine ourselves to the setting of homogeneous initial conditions, which
is practically relevant in applications such as lithotripsy [30]. The results can be
extended to nonhomogeneous initial conditions in a straightforward manner.

Some of the first steps into well-posedness and long-time behavior of the West-
ervelt equation have been made in a joint paper [10] by Irena Lasiecka and one of
the authors of this paper. One of her key observations that enabled this analysis
was the fact that (1.1) can be formulated as a second-order strongly damped wave
equation

(1.4) (1− 2kψt)ψtt − c2∆ψ − δ∆ψt = 0 in Ω× (0, T )

with a nonlinear coefficient (1− 2kψt) of the second time derivative. The positivity
and non-degeneracy of this factor is crucial for the mathematical analysis as well as
for the physical validity of the model.

The strong damping term −δ∆ψt allows to estimate the L∞(0, T ;H2(Ω)) norm
of ψt and therewith, by virtue of the embedding H2(Ω) → L∞(Ω), to guarantee
nondegeneracy of (1.4) for small initial and boundary data. As a downside, this
term renders the equation parabolic – its linearization gives rise to an analytic
semigroup [10] and to maximal parabolic regularity [24] – and thus leads to the
infinite speed of propagation. An analogous reformulation can be done for the
JMGT equation

(1.5) τψttt + (1− 2kψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

where additional challenges arise due to the appearance of a third order in time
derivative. As desired from a physical point of view, this term counteracts the
strong damping and mathematically leads to a loss of analyticity of the semigroup
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as well as maximal parabolic regularity; see [12, Remark 1.3], [23, Subsection 6.2.1],
and [21].

1.1.1. A relaxed JMGT equation. As an alternative to enforcing non-degeneracy
by means of higher order estimates, we also introduce a relaxation of the JMGT
equation for which we will prove existence of a less regular solution:

(1.6) τψttt + h(ψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

where the function h ∈ C0(R) is assumed to be bounded:

α ≤ h(s) ≤ α, ∀s ∈ R.(1.7)

Such an approach to modeling is often taken, e.g., in the analysis of predictive tumor
models to control the triple product terms while having H1 regular solutions; see [6].
In practice, we might choose the function h as

h(s) = 1−min{−1, max{1, 2ks}}
since h(ψt) = 1− 2kψt a.e. if 2k∥ψt∥L∞(Ω×(0,T )) < 1.

1.1.2. Linearized JMGT equation. To establish well-posedness of (1.5) and (1.6),
we also study the following linearization of these equations:

(1.8) τψttt + α(x, t)ψtt − c2∆ψ − b∆ψt = f(x, t) in Ω× (0, T ),

which is sometimes called the Stokes–Moore–Gibson–Thompson (SMGT) equa-
tion [1].

We note that this paper is a follow-up to [14], where we have studied the JMGT
equation and its singular limit as τ → 0 in the simpler setting of homogeneous
Dirichlet boundary conditions. The purpose of the present paper is to treat the
practically relevant situation of Neumann and absorbing boundary conditions, which
indeed turns out to require different energy estimates, as well as additional consid-
erations concerning higher spatial regularity of solutions ψt(t) ∈ Hs(Ω) for s > 3

2
with the possibly mixed boundary conditions. The latter is crucial for avoiding
degeneracy, i.e., guaranteeing positivity of the coefficient 1− 2kψt in (1.5), via the
embedding Hs(Ω) → L∞(Ω). As an alternative to the high spatial regularity en-
forced for this purpose in previous publications on (1.4), (1.5), and other models of
nonlinear acoustics, we also consider the relaxed version (1.6), for which we estab-
lish well-posedness with weaker spatial regularity.

The remainder of this paper is organized as follows. We first investigate the
pure Neumann-case setting Γ = ∂Ω. To this end, in Section 2, we analyze the
linearized equation (1.8) on three different levels of assumptions and regularity
results. Firstly, assuming α ∈ L∞ without any sign condition and f ∈ L2, which
gives well-posedness with H1 regularity in space and a τ -dependent energy bound.
Secondly, assuming additionally α to be positive and bounded away from zero,
which renders the energy bound τ -independent. The third case includes additional
stronger regularity assumptions on f and α, which yields H2 regularity in space, as
needed to guarantee non-degeneracy, with a τ -independent energy bound.

For the nonlinear models under consideration here, we correspondingly show well-
posedness of the relaxed JMGT equation (1.6) in a low regularity regime without
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sign condition on h (Section 3) and of the original JMGT equation (1.5) in a higher
regularity setting with a strictly positive coefficient (1 − 2kψt) (Section 4). The
latter goes with a τ -independent bound, which allows us to pass to the limit as
τ → 0 in Section 5 and recover the classical Westervelt equation (1.4) as a singular
limit of JMGT. The final Section 6 deals with the situation of absorbing boundary
conditions, i.e., the case when meas(∂Ω \ Γ) > 0.

1.1.3. Notation. The time interval and the spatial domain are often omitted for
notational simplicity when writing norms; for example, ∥ · ∥LpLq denotes the norm
on Lp(0, T ;Lq(Ω)). We denote the L2(Ω) inner product by (·, ·)L2 and the L2(Ω)
norm as well as the absolute value by | · |.

2. Analysis of the linearized JMGT equation

We next focus on the analysis of the linearized JMGT equation (1.8) comple-
mented with inhomogeneous Neumann data and zero initial conditions.

2.1. H1 regularity with a τ-dependent bound. We begin by proving existence
of an H1 regular solution of (1.8). Note that here we do not impose any restrictions
on the sign of the coefficient α. However, as a downside, the bounds we will derive
on the solution will not be uniform with respect to τ .

Theorem 2.1. Let c2, b, τ > 0, and let T > 0. Assume that

• α ∈ L∞(0, T ;L∞(Ω)),

• f ∈ L2(0, T ;L2(Ω)),

• g ∈ H2(0, T ;H−1/2(Γ)),

• (g, gt)|t=0 = (0, 0) (compatibility with inital data).

Then there exists a unique weak solution ψ of the problem

(2.1)


τψttt + α(x, t)ψtt − c2∆ψ − b∆ψt = f(x, t) in Ω× (0, T ),

∂ψ

∂n
= g on Γ× (0, T ),

(ψ,ψt, ψtt) = (0, 0, 0) in Ω× {0},

in the weak (H1)⋆ sense that satisfies

ψ ∈ W 1,∞(0;T ;H1(Ω)) ∩W 2,∞(0, T ;L2(Ω)) ∩H3(0, T ;H1(Ω)∗).

Furthermore, the solution fullfils the estimate

(2.2)
τ2∥ψttt∥2L2(H1)⋆ + τ∥ψtt∥2L∞L2 + ∥ψt∥2L∞H1

≤C(α, τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 + ∥f∥2L2L2).

The constant above is given by

(2.3)

C(α, τ, T )

= C1

(
1
τ2
∥α∥2L∞L∞ + T 2 + 1

)
× exp

(
C2(

1
τ + 1

τ ∥α∥L∞L∞ + 1 + T )T
)
(1 + τ)

where C1, C2 > 0 do not depend on τ, T , or α.
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Proof. We conduct the proof by employing Galerkin approximations in space and
compactness arguments; cf. [3, 27].

Existence of a solution. Let {wi}i∈N denote the eigenfunctions of the Neumann-
Laplacian operator −∆:

(2.4)

−∆w =λw in Ω,

∂w

∂n
=0 on Γ.

Then {wi}i∈N can be normalized to form an orthogonal basis of H1(Ω) and to be
orthonormal with respect to the L2(Ω) scalar product.

We fix n ∈ N and introduce Vn = span{w1, . . . , wn}. Our approximate solution
is given by

(2.5) ψn(x, t) =
n∑
i=1

ξi(t)wi(x),

where ξi : (0, T ) → R, i ∈ {1, . . . , n}. We then consider the following approximation
of the original problem

(2.6)


(τψnttt + αψntt, ϕ)L2 + (c2∇ψn + b∇ψnt ,∇ϕ)L2

= (f, ϕ)L2 + (c2g + bgt, ϕ)L2(Γ),

for every ϕ ∈ Vn pointwise a.e. in (0, T ),

(ψn(0), ψnt (0), ψ
n
tt(0)) = (0, 0, 0).

Let In = [Iij ], M
n = [Mij ], K

n = [Kij ], C
n = [Cij ], and F

n = [Fi], where

(2.7)

Inij = (wi, wj)L2 = δij , M
n
ij(t) = (αwi, wj)L2 ,

Kn
ij = (∇wi,∇wj)L2 ,

Fni = (f, wi)L2 + (c2g + bgt, wi)L2(Γ),

and δij denotes the Kronecker delta. By introducing ξn = [ξ1 . . . ξn]
T , problem (2.6)

can be rewritten as a system of ordinary differential equations:

(2.8)

{
τInξnttt +Mnξntt + bKnξnt + c2Knξn = Fn(t),

(ξn(0), ξnt (0), ξ
n
tt(0)) = (0, 0, 0).

Existence of a solution ξn ∈ H3(0, Tn) of (2.8) can be then obtained from standard
theory of ODEs; cf. [27, Chapter 1]. Therefore, problem (2.6) has a solution ψn ∈
H3(0, Tn;Vn).

Energy estimate. We next want to derive a bound for ψn that is uniform with
respect to n. To this end, we add the term (ψnt , ϕ) to both sides of (2.6), test the
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problem with ϕ = ψntt, and integrate over (0, t) to obtain

(2.9)

τ
2 |ψ

n
tt(t)|2L2 + b

2 |∇ψ
n
t (t)|2L2 + |ψnt (t)|2L2

≤ c2
∣∣∣∣∫ t

0

∫
Ω
∇ψn · ∇ψntt dxds

∣∣∣∣+ ∥α∥L∞L∞∥ψtt∥2L2
tL

2

+ ∥ψnt ∥L2
tL

2∥ψntt∥L2
tL

2 + ∥f∥L2L2∥ψntt∥L2
tL

2

+

∫
Γ
(c2g + bgt)ψ

n
tt dxds,

since ψnt (0) = ψntt(0) = 0. To simplify the notation, we have omitted the argument
(s) under the time integral and employed the abbreviation L2

tL
2 for L2(0, t;L2(Ω)).

We can further estimate the terms on the right-hand side in (2.9) as follows

c2
∣∣∣∣∫ t

0

∫
Ω
∇ψn · ∇ψntt dxds

∣∣∣∣ = c2
∣∣∣∣∫

Ω
∇ψn(t) · ∇ψnt (t) dx− ∥∇ψnt ∥2L2L2

∣∣∣∣
≤ c2|∇ψn(t)|L2 |∇ψnt (t)|L2 + c2∥∇ψnt ∥2L2L2 .

We estimate the boundary integral by first integrating by parts with respect to time
and then employing Hölder’s inequality and the trace theorem:∫ t

0

∫
Γ
(c2g + bgt)ψ

n
tt dxds

=

∫
Γ
(c2g(t) + bgt(t))ψ

n
t (t) dx−

∫ t

0

∫
Γ
(c2gt + bgtt)ψ

n
t dxds

≤ |c2g(t) + bgt(t)|H−1/2Ctr|ψnt (t)|H1 + ∥c2gt + bgtt∥L2H−1/2Ctr∥ψnt ∥L2
tH

1 .

We note that the regularity assumption on gtt is introduced since we do not want
to involve the H1 norm of ψntt in the estimates. After employing these bounds in
(2.9) as well as Young’s ε-inequality with ε ∈ {b/8, 1/2, 1/4}, we arrive at

(2.10)

τ
2 |ψ

n
tt(t)|2L2 + b

2 |∇ψ
n
t (t)|2L2 + |ψnt (t)|2L2

≤ 2c4

b |∇ψn(t)|2L2 + b
8 |∇ψ

n
t (t)|2L2 + b

c4
|∇ψn(t)|2 + 1

2∥ψ
n
t ∥2L2

tL
2

+ (1 + ∥α∥L∞L∞)∥ψntt∥2L2
tL

2 +
1
2∥f∥

2
L2L2

+ C2
tr|c2g(t) + bgt(t)|2H−1/2 +

1
4 |ψ

n
t (t)|2L2

+ C2
tr

2
b |c

2g(t) + bgt(t)|2H−1/2 +
b
8 |∇ψ

n
t (t)|2L2

+ 1
2(Ctr)

2∥c2gt + bgtt∥2L2H−1/2 +
1
2∥ψ

n
t ∥2L2

tH
1 .

Since ψn(0) = 0, we can further estimate the first term on the right-hand side as

|∇ψn(t)|L2 ≤
√
T∥∇ψnt ∥L2L2 ,

a.e. in time. Then an application of Gronwall’s inequality to (2.10) and taking a
supremum over (0, Tn) leads to

(2.11)
τ∥ψntt∥2L∞L2 + ∥∇ψnt ∥2L∞L2 + ∥ψnt ∥2L∞L2

≤C(α, τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 + ∥f∥2L2L2),
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where the constant is given by

C(α, τ, T ) = C1 exp(C2(
1
τ + 1

τ ∥α∥L∞L∞ + 1 + T )T )(1 + τ),(2.12)

and C1, C2 > 0 do not depend on τ or n. Since the right-hand side of (2.11) does
not depend on Tn, we are allowed to extend the existence interval to (0, T ).

Note that the (weak) τ dependence of the constant (2.12) via the factor 1 + τ
results from the τ dependence of b according to (1.3), while the left hand side of
the equation is not affected by this due to the fact that b ≥ δ holds for all τ ≥ 0.

Morover, we can obtain a bound on the third time derivative of ψn by noting
that

(2.13)

∣∣∣∣∫ t

0

∫
Ω
τψntttξ dxds

∣∣∣∣
≤
(
∥α∥L∞L∞∥ψntt∥L2L2 + c2∥∇ψn∥L2L2 + b∥∇ψnt ∥L2L2

+ ∥f∥L2L2 + ∥c2g + bgt∥L2H−1/2

)
∥ξ∥L2H1 ,

for all ξ ∈ L2(0, T ;H1(Ω)). By also taking into account (2.11), it follows that

(2.14)
τ∥ψnttt∥L2(H1)⋆

≤C(α, τ, T )(∥g∥W 1,∞H−1/2 + ∥gt∥H1H−1/2 + ∥f∥L2L2),

where the constant is given by

C(α, τ, T ) =C1

(
1
τ ∥α∥L∞L∞ + T + 1

)
× exp(C2(

1
τ + 1

τ ∥α∥L∞L∞ + 1 + T )T )(1 + τ).

We can then combine estimates (2.14) and (2.11) to get

(2.15)
τ2∥ψnttt∥2L2(H1)⋆ + τ∥ψntt∥2L∞L2 + ∥∇ψnt ∥2L∞L2 + ∥ψnt ∥2L∞L2

≤C(α, τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 + ∥f∥2L2L2),

where the constant is given by (2.3) and C1, C2 > 0 do not depend on τ or n.
Since the right-hand side of (2.15) is independent of n, we can find a subsequence,

denoted again by {ψn}n∈N, and a function ψ such that

ψnttt −⇀ ψttt weakly in L2(0, T ; (H1(Ω))⋆),

ψntt −⇀ ψtt weakly-⋆ in L∞(0, T ;L2(Ω)),

ψnt −⇀ ψt weakly-⋆ in L∞(0, T ;H1(Ω)).

It is then straightforward to show that ψ solves (2.1) and fulfills the estimate (2.2);
cf. [14]. □

2.2. H1 regularity with a τ-independent bound. We next prove a modification
of the previous result on H1 regularity with a bound on the solution that is uniform
with respect to τ in a bounded interval (0, τ ].

Theorem 2.2. Let the assumption of Theorem 2.2 hold and assume additionally
that for some fixed τ > 0, τ ∈ (0, τ ], as well as that

∃α > 0 : α(t) ≥ α a.e. in Ω× (0, T ).(2.16)
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Then the solution of (2.21) satisfies the estimate

(2.17)
τ2∥ψttt∥2L2(H1)∗ + τ∥ψtt∥2L∞L2 + ∥ψtt∥2L2L2 + ∥ψt∥2L∞H1

≤C(T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 + ∥f∥2L2L2),

where the constant is given by

C(T ) = C3 (1 + T 2)exp(C4(1 + T )T )(1 + τ),

and C3, C4 > 0 do not depend on τ, T , or α.

Proof. The proof follows analogously to the proof of Theorem 2.1. However, in case
the condition (2.16) holds, estimate (2.9) can be replaced by

(2.18)

τ |ψntt(t)|2L2 + α∥ψntt∥2L2L2 + b
2 |∇ψ

n
t (t)|2L2 + |ψnt (t)|2L2

≤ c2
∣∣∣∣∫ t

0

∫
Ω
∇ψn · ∇ψntt dxds

∣∣∣∣
+ ∥ψnt ∥L2L2∥ψntt∥L2L2 + ∥f∥L2L2∥ψntt∥L2L2

+

∫
Γ
(c2g + bgt)ψ

n
tt dxds,

from which we can derive (2.17) after some standard manipulations, first in a dis-
crete setting before passing to the limit. □

2.3. H2 regularity with τ−independent bound. To be able to later show well-
posedness for the JMGT equation (1.5), we need H2 regularity of the solution to the
linearized equation (1.8). We therefore also prove a higher-order regularity result
with an energy estimate that has a τ -independent right-hand side. To this end, we
first define an appropriate extension of the Neumann boundary data to the interior.

Extension of the inhomogeneous boundary data. Following [1, 11], for h ∈
Hs(Γ), we introduce the harmonic extension operator N : h 7→ v, where v solves

(2.19)

−∆v + v = 0 in Ω,
∂v

∂n
= h on Γ = ∂Ω,

which for negative s we interpret in the variational sense

⟨∇v,∇ϕ⟩+ ⟨v, ϕ⟩ = ⟨h, ϕ⟩ for every ϕ ∈ H1(Ω).

It is known that the operator N is a linear bounded mapping

N : Hs(∂Ω) → Hs+3/2(Ω),(2.20)

for s ∈ R; see [11, 18]. In the upcoming proof, we will employ the particular
cases s = −1/2 and s = 1/2 and denote the norm of N in both cases by CN .
Furthermore, since we extend time-dependent Neumann data g to the interior, we
apply the mapping N pointwise a.e. in time and denote the resulting operator by
N again, i.e., (Ng)(t) := Ng(t). We note that due to the linearity of N , it holds
that ∂t(Ng)(t) = (Ngt)(t).
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We study the following initial-boundary value problem for ψ̄ = ψ − Ng with
homogeneous boundary data:

(2.21)



τψ̄ttt + αψ̄tt − c2∆ψ̄ − b∆ψ̄t

= f − τNgttt − αNgtt + c2∆Ng + b∆Ngt in Ω× (0, T ),

∂ψ̄

∂n
= 0 on Γ× (0, T ),

(ψ̄, ψ̄t, ψ̄tt) = (0, 0, 0) in Ω× {0},

provided that the compatibility conditions between the function g and initial data
stated below hold.

Theorem 2.3. Let c2, b > 0, τ ∈ (0, τ), for some τ > 0, and let T > 0. Assume
that

• α ∈ XW
α := L∞(0, T ;W 1,3(Ω) ∩ L∞(Ω)) ,

• ∃α > 0 : α(t) ≥ α a.e. in Ω× (0, T ),

• f ∈ H1(0, T ;L2(Ω)),

• ∥∇α∥L∞L3 < α/
(
6CH1,L6

)
,

• g ∈ H3(0, T ;H−1/2(Γ)) ∩W 1,∞(0, T ;H1/2(Γ)),

(g, gt, gtt)|t=0 = (0, 0, 0).

Then there exists a unique weak solution ψ of the problem (2.1) such that

ψ ∈ XW := W 1,∞(0, T ;H2(Ω)) ∩W 2,∞(0;T ;H1(Ω))

∩H3(0, T ;L2(Ω)).

Moreover, the solution fullfils the estimate

(2.22)

τ2∥ψttt∥L2L2 + τ∥ψtt∥2L∞H1

+ ∥ψtt∥2L2H1 + ∥ −∆ψt∥2L∞L2

≤C(α, T ) (τ2∥gttt∥2L2H−1/2 + τ∥gtt∥2L∞H−1/2 + ∥g∥2
H2H−1/2

+ ∥gt∥2L∞H1/2 + ∥f∥2H1L2).

The constant above is given by

C(α, T ) = C5 (∥α∥2L∞L∞ + ∥∇α∥2L∞L3 + 1)

× exp
(
C6

(
∥α∥2L∞L∞ + ∥∇α∥2L∞L3 + 1 + T + T 2

)
T
)
(1 + τ),

where C5, C6 > 0 do not depend on n or τ .

Proof. The proof follows along the lines of [14, Theorem 4.1] by employing Galerkin
approximations in space of the solution ψ̄ to (2.21) and compactness arguments,
but with a modification of energy estimates due to the new terms related to the
extension operator. The solution of the original problem (2.1) is obtained afterwards
as ψ = ψ̄ +Ng.

We use the eigenfunctions {wi}i∈N of the homogeneous Neumann-Laplacian as
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the basis of H2
N(Ω) := {v ∈ H2(Ω) | ∂v

∂n = 0 on Γ} and an orthonormal basis of

L2(Ω); cf. [5]. The Galerkin approximation ψ̄n of ψ̄ is defined by

(2.23)
(τψ̄nttt + αψ̄ntt, ϕ)L2 + (c2∇ψ̄n + b∇ψ̄nt ,∇ϕ)L2

=(f − τNgttt − αNgtt + c2∆Ng + b∆Ngt, ϕ)L2 ,

for every ϕ ∈ Vn pointwise a.e. in (0, T ), with (ψ̄n(0), ψ̄nt (0), ψ̄
n
tt(0)) = (0, 0, 0). As

before, the existence of a solution ψ̄n ∈ H3(0, T ;Vn) for the semi-discretization of
the problem in Vn = span{w1, . . . , wn} follows from the standard ODE existence
theory; see, for example, [27, Chapter 1]. We focus our attention on deriving the
crucial energy estimate.

Energy estimate. We note that ϕ = −∆ψ̄ntt belongs to Vn since ψ̄ntt is a linear
combination of eigenfunctions of the Laplacian. Testing the semi-discrete problem
with ϕ = −∆ψ̄ntt and integrating over (0, t), where t ≤ T , yields the energy identity

(2.24)

τ
2 |∇ψ̄

n
tt(t)|2 + ∥

√
α∇ψ̄ntt∥2L2

tL
2 +

b
2 | −∆ψ̄nt (t)|2

= −
∫ t

0
(ψ̄ntt∇α,∇ψ̄ntt)L2ds

+

∫ t

0

(
−τNgttt − αNgtt + c2∆Ng + b∆Ngt,−∆ψ̄ntt

)
L2 ds

− c2
(
−∆ψ̄n(t),−∆ψ̄nt (t)

)
L2 + c2

∫ t

0

(
−∆ψ̄nt ,−∆ψ̄nt

)
L2 ds

+
(
f(t),−∆ψ̄nt (t)

)
L2 −

∫ t

0

(
ft,−∆ψ̄nt

)
L2 ds.

Compared to the higher-regularity result with Dirichlet data [14, Theorem 4.1],
the main difference in deriving the energy estimates arises due to the appearance
of integrals involving the extension of the inhomogeneous boundary data. We can
estimate these terms in (2.24) as follows

∫ t

0

∫
Γ
(τNgttt + αNgtt)∆ψ̄

n
tt dxds

= −
∫ t

0

∫
Ω
(τ∇Ngttt + α∇Ngtt +Ngtt∇α) · ∇ψ̄ntt dxds

≤ τ∥∇Ngttt∥L2L2∥∇ψ̄ntt∥L2L2 + ∥α∥L∞L∞∥∇Ngtt∥L2L2∥∇ψ̄ntt∥L2L2

+ ∥Ngtt∥L2L6∥∇α∥L∞L3∥∇ψ̄ntt∥L2L2 .

We recall that we can employ the fact that N ∈ L(H−1/2(Γ);H1(Ω)) to further

estimate the N -terms. Since g(t), gt(t) ∈ H1/2(Ω), (2.19) holds in an L2(Ω) sense
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for Ng and Ngt. We therefore find that

−
∫ t

0

∫
Ω
(c2∆Ng + b∆Ngt)∆ψ̄

n
tt dxds

=−
∫ t

0

∫
Ω
(c2Ng + bNgt)∆ψ̄

n
tt dxds

≤
(
c2∥∇Ng∥L2L2 + b∥∇Ngt∥L2L2

)
∥∇ψ̄ntt∥L2L2 .

By applying Hölder’s inequality to treat the rest of the terms in (2.24) and the
properties of the mapping N , we arrive at the estimate

τ
2 |∇ψ̄

n
tt(t)|2 + α∥∇ψ̄ntt∥2L2

tL
2 +

b
2 | −∆ψ̄nt (t)|2

≤∥∇α∥L∞L3∥ψ̄ntt∥L2L6∥∇ψ̄ntt∥L2
tL

2 + c2| −∆ψ̄n(t)|L2 | −∆ψ̄nt (t)|L2

+ c2∥ −∆ψ̄nt ∥L2
tL

2 + ∥f∥L∞L2 | −∆ψ̄nt (t)|L2 + ∥ft∥L2
tL

2∥ −∆ψ̄nt ∥L2
tL

2

+ τCN∥gttt∥L2H−1/2∥∇ψ̄ntt∥L2L2 + ∥α∥L∞L∞CN∥gtt∥L2H−1/2∥∇ψ̄ntt∥L2
tL

2

+ CH1,L6CN∥gtt∥L2H−1/2∥∇α∥L∞L3∥∇ψ̄ntt∥L2
tL

2

+ CN (c
2∥g∥L2H−1/2 + b∥gt∥L2H−1/2)∥∇ψ̄ntt∥L2

tL
2 .

We further estimate the right-hand side with the help of Young’s ε-inequality for
ε ∈ {b/8, 1/2, ε0} and the standard embedding results to obtain

τ
2 |∇ψ̄

n
tt(t)|2 + b

2 | −∆ψ̄nt (t)|2 + α∥∇ψ̄ntt∥2L2
tL

2

≤CH1,L6∥∇α∥L∞L3∥ψ̄ntt∥2L2
tH

1

+ 2c4

b | −∆ψ̄n(t)|2L2 + b
8 | −∆ψ̄nt (t)|2L2 + c2∥ −∆ψ̄nt ∥L2

tL
2

+ 2
b∥f∥

2
L∞L2 + b

8 | −∆ψ̄nt (t)|2L2 + 1
2∥ft∥

2
L2L2 + 1

2∥ −∆ψ̄nt ∥2L2
tL

2

+ 5ε0∥∇ψ̄ntt∥2L2
tL

2 +
1

4ε0
C2
N

(
τ2∥gttt∥2L2H−1/2 + ∥α∥2L∞L∞∥gtt∥2L2H−1/2

)
+ 1

4ε0
C2
N

(
C2
H1,L6∥gtt∥2L2H−1/2∥∇α∥2L∞L3 + c4∥g∥2

L2H−1/2 + b2∥gt∥2L2H−1/2

)
.

The term ∥ −∆ψ̄n(t)∥L2 can be bounded as follows

∥ −∆ψ̄n∥L∞
t L2 ≤

√
t∥ −∆ψ̄nt ∥L2

tL
2 ,(2.25)

since ψ̄n(0) = 0. Altogether, we get

(2.26)

τ
2 |∇ψ̄

n
tt(t)|2L2 + (α− 5ε0)∥∇ψ̄ntt∥2L2

tL
2 +

b
4 | −∆ψ̄nt (t)|2L2

≤CH1,L6∥∇α∥L∞L3∥ψ̄ntt∥2L2
tH

1

+ 2c4

b T∥ −∆ψ̄nt ∥2L2
tL

2 + c2∥ −∆ψ̄nt ∥L2
tL

2

+ 2
b∥f∥

2
L∞L2 +

1

2
∥ft∥2L2L2 +

1

2
∥ −∆ψ̄nt ∥2L2

tL
2

+ 1
4ε0
C2
N

(
τ2∥gttt∥2L2H−1/2 + ∥α∥2L∞L∞∥gtt∥2L2H−1/2

)
+ 1

4ε0
(CH1,L6CN )

2∥gtt∥2L2H−1/2∥∇α∥2L∞L3

+ 1
4ε0
C2
N

(
c4∥g∥2

L2H−1/2 + b2∥gt∥2L2H−1/2

)
.
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Note that we need a ψ̄tt term in the L2 spatial norm on the left-hand side in (2.26)
to be able to employ Gronwall’s inequality. We thus also have to test our problem
with ψ̄ntt and use an estimate analogous to (2.18):

(2.27)

τ |ψ̄ntt(t)|2L2 + α∥ψ̄ntt∥2L2L2 + b
2 |∇ψ̄

n
t (t)|2L2 + |ψ̄nt (t)|2L2

≤ c2
∣∣∣∣∫ t

0

∫
Ω
∇ψ̄n · ∇ψ̄ntt dxds

∣∣∣∣
+ ∥ψ̄nt ∥L2L2∥ψ̄ntt∥L2L2 + ∥f̃∥L2L2∥ψ̄ntt∥L2L2 ,

where f̃ = f − τNgttt − αNgtt + c2Ng + bNgt. Moreover, we have the bound on
ψ̄nttt:

τ∥ψ̄nttt∥L2
tL

2

≤∥αψ̄ntt∥L2
tL

2 + c2∥ −∆ψ̄n∥L2
tL

2 + b∥ −∆ψ̄nt ∥L2
tL

2 + ∥f̃∥L2L2 ,

from which, after also employing (2.25), we infer that

(2.28)
τ2∥ψ̄nttt∥2L2

tL
2

≤ 2∥α∥2L∞L∞∥ψ̄ntt∥2L2
tL

2 + 2(c2T + b)2∥ −∆ψ̄nt ∥2L2
tL

2 + 2∥f̃∥2L2L2 .

We choose ε0 = α/6, add (2.26) and (2.28) to (2.27), apply Gronwall’s inequality
to the resulting estimate, and then take the supremum over t ∈ (0, Tn), to get the
estimate

(2.29)

τ2∥ψ̄nttt∥2L2L2 + τ∥ψ̄ntt∥2L∞L2 + τ∥∇ψ̄ntt∥2L∞L2

+ ∥ψ̄ntt∥2L2H1 + ∥ −∆ψ̄nt ∥2L∞L2

≤C(α, T ) (τ2∥gttt∥2L2H−1/2 + ∥g∥2
H2H−1/2 + ∥f∥2H1L2).

The constant above is given by

C(α, T ) = C5 (∥α∥2L∞L∞ + ∥∇α∥2L∞L3 + 1)

× exp
(
C6

(
∥α∥2L∞L∞ + ∥∇α∥2L∞L3 + 1 + T + T 2

)
T
)
(1 + τ̄),

where C5, C6 > 0 do not depend on n or τ . Note that the factor 1+τ̄ in the constant
above comes from the τ dependence of b according to (1.3). Since the right-hand
side of (2.29) does not depend on Tn, we are allowed to extend the existence interval
to (0, T ).

Thanks to the derived estimate (2.29), there exists a subsequence, denoted again
by {ψ̄n}n∈N, and a function ψ̄ such that

ψ̄nttt −⇀ ψ̄ttt weakly in L2(0, T ;L2(Ω)),

ψ̄ntt −⇀ ψ̄tt weakly-⋆ in L∞(0, T ;H1(Ω)),

ψ̄nt −⇀ ψ̄t weakly-⋆ in L∞(0, T ;H2(Ω)).

It can be shown analogously to [14, Theorem 4.1] that ψ̄ ∈ XW solves (2.21) and
that estimate (2.29) holds with ψ̄n replaced by ψ̄.

We then obtain ψ = ψ̄ + Ng as the solution to (2.1) that satisfies (2.22). Note
that we can conclude that ψ = ψ̄+Ng ∈W 1,∞(0, T ;H2(Ω)) since we assumed that

g ∈W 1,∞(0, T ;H1/2(Γ)). □
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3. Existence of solutions for the relaxed JMGT equation

We next show existence of solutions for the relaxed JMGT equation (1.6) with
τ > 0 by relying on Schauder’s fixed-point theorem.

Theorem 3.1. Let c2, b, k, τ > 0, and let T > 0. Assume that the function
h ∈ C0(R) satisfies

α ≤ h(s) ≤ α, ∀s ∈ R,(1.7)

and that g ∈ H2(0, T ;H−1/2(Γ)) with (g, gt)|t=0 = (0, 0). Moreover, let

∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 ≤ ϱ.

Then for sufficiently small ϱ, there exists a solution ψ of the problem

(3.1)


τψttt + h(ψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

∂ψ

∂n
= g on Γ× (0, T ),

(ψ,ψt, ψtt) = (0, 0, 0) in Ω× {0},

in the weak (H1)⋆ sense such that

ψ ∈ X =W 1,∞(0;T ;H1(Ω)) ∩W 2,∞(0, T ;L2(Ω)) ∩H3(0, T ;H1(Ω)⋆),

and the following estimate holds

(3.2)
τ2∥ψttt∥2L2(H1)∗ + τ∥ψtt∥2L∞L2 + ∥ψt∥2L∞H1

≤C(τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2).

Proof. We introduce the mapping F : v 7→ ψ, where v ∈ B
B = {v ∈ X : τ2∥vttt∥2L2(H1)⋆ + τ∥vtt∥2L∞L2 + ∥vt∥2L∞H1 ≤M

(v, vt, vttt)|t=0 = (0, 0, 0)},
and ψ solves

(3.3) τψttt + h(v)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

in the weak sense with inhomogeneous Neumann conditions and zero initial condi-
tions. We note that the set B is non-empty, weakly−⋆ compact, and convex, and
that the mapping F is well-defined thanks to Theorem 2.1.

We can achieve that F(B) ⊂ B for sufficiently small ϱ. Indeed, let v ∈ B. Then,
on account of Theorem 2.1 and estimate (2.2) for f = 0, we know that

τ2∥ψttt∥2L2(H1)⋆ + τ∥ψtt∥2L∞L2 + ∥ψt∥2L∞H1

≤C(τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2).

From here it follows that ψ ∈ B when ϱ is sufficiently small so that C(τ, T )ϱ ≤ M
holds.

Weak⋆ continuity. We want to show that F : B → B is weak⋆ continuous. Let
{vn}n∈N ⊂ B be a sequence that weakly⋆ converges to v in X. Denote ψn = F(vn) ∈
B and ψ = F(v) ∈ B. Thanks to the uniform bound provided by Theorem 2.1 and
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standard compactness results, there exists a subsequence, that we do not relabel,
and a function φ ∈ B such that

ψnttt −⇀ φttt weakly in L2(0, T ; (H1(Ω))⋆),

ψntt −⇀ φtt weakly-⋆ in L∞(0, T ;L2(Ω)),

ψnt −⇀ φt weakly-⋆ in L∞(0, T ;H1(Ω)).

Note that by continuity of h, we have h(vn) → h(v) a.e. in Ω × (0, T ). It is then
straightforward to check that φ solves (3.3), from which it follows that φ = ψ since
ψ is the unique solution. We then conclude by a subsequence-subsequence argument
that {F(vn)}n∈N converges weakly−⋆ to ψ.

The statement now follows by employing Schauder’s fixed-point theorem; cf. [4].
□

Remark 3.2. Let v(1), v(2) ∈ B and ψ(1) = F(v(1)), ψ(2) = F(v(2)) ∈ B. The

difference ψ = ψ(1) − ψ(2) then solves

(3.4) τψttt + h(v
(1)
t )ψtt − c2∆ψ − b∆ψt = −(h(v

(1)
t )− h(v

(2)
t ))ψ

(2)
tt

in the weak sense with zero boundary and initial data. To show contractivity of
the mapping F , we would need higher regularity of solutions that would – together
with Lipschitz continuity of h with constant L – allow for the right hand side of
(3.4) to be estimated as

(3.5) ∥(h(v(1)t )− h(v
(2)
t ))ψ

(2)
tt ∥L2L2 ≤ L∥v(1)t − v

(2)
t ∥L∞L4∥ψ(2)

tt ∥L2L4 .

This is not possible with the lower order energy estimate from Theorem 2.2, but
will be enabled by Theorem 2.3 in the next section.

Remark 3.3. In case the condition (1.7) is replaced by a non-degeneracy condition:

0 < α ≤ h(s) ≤ α, ∀s ∈ R,(3.6)

it can be shown by relying on Theorem 2.2 that the bound (2.2) is uniform with
respect to τ .

4. Well-posedness of the JMGT equation

Based on the higher-order regularity result of Theorem 2.3, we can now use
a contraction principle to prove well-posedness of the JMGT equation (1.5) with
τ > 0, as well as an energy bound that is uniform in τ .

Theorem 4.1. Let c2, b, τ > 0, and let T > 0, k ∈ R. Assume that g ∈
H3(0, T ;H−1/2(Γ)) ∩W 1,∞(0, T ;H1/2(Γ)) with (g, gt, gtt)|t=0 = (0, 0, 0), and that

∥g∥2
W 1,∞H1/2 + ∥g∥2

H2H−1/2 + τ∥gtt∥2L∞H−1/2 + τ2∥gttt∥2L2H−1/2 ≤ ϱ.

Then for sufficiently small ϱ, there exists a unique solution ψ of the problem

(4.1)


τψttt + (1− 2kψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

∂ψ

∂n
= g on Γ× (0, T ),

(ψ,ψt, ψtt) = (0, 0, 0) in Ω× {0},
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in the strong L2 sense that satisfies

ψ ∈ X =W 1,∞(0;T ;H2(Ω)) ∩W 2,∞(0, T ;H1(Ω)) ∩H3(0, T ;L2(Ω))

and the estimate

(4.2)

τ2∥ψttt∥L2L2 + τ∥ψtt∥2L∞H1 + ∥ψtt∥2L2H1 + ∥ −∆ψt∥2L∞L2

≤C(T ) (∥gt∥2L∞H1/2 + ∥g∥2
H2H−1/2 + τ∥gtt∥2L∞H−1/2

+ τ2∥gttt∥2L2H−1/2).

Proof. The proof goes along the lines of the proof of Theorem 3.1, with the obvious
modifications of topologies according to the stronger energies enabled by Theorem
2.3, as well as a contraction argument in place of Schauder’s fixed-point theorem.

We again use the fixed-point operator F from the proof of Theorem 3.1 with the
particular choice h(z) = 1− 2kz and show that it is a self-mapping on the set

(4.3)

B = {v ∈ X : τ2∥vttt∥2L2L2 + τ∥vtt∥2L∞H1

+ ∥vtt∥2L2H1 + ∥ −∆vt∥2L∞L2 ≤M,

(v, vt, vttt)|t=0 = (0, 0, 0)},

with M chosen appropriately, provided that ϱ is sufficiently small.

F is a self-mapping. For proving that F is a self-mapping, we use Theorem 2.3
in place of Theorem 2.1, where we choose α = 1− 2kvt for v ∈ B. This additionally
requires to prove smallness of ∥1 − α∥L∞L∞ in order to establish non-degeneracy
with a uniform constant α and of ∥∇α∥L∞L3 . We first note that

∥vt∥L∞H2 ≤ ∥(−∆+ id)−1∥L2→H2

(√
T∥vtt∥L2H1 + ∥ −∆vt∥L∞L2

)
≤ C(T,Ω)

√
∥vtt∥2L2H1 + ∥ −∆vt∥2L∞L2 ,

where (−∆+ id) is equipped with homogeneous Neumann boundary conditions on
Γ. In other words, for v ∈ L2(Ω), z = (−∆+ id)−1v solves

−∆z + z = v in Ω,

∂z

∂n
=0 on Γ .

Therefore, it holds that

∥1− α∥L∞L∞ = 2|k| ∥vt∥L∞L∞ ≤ 2|k|CH2,L∞C(T,Ω)
√
M ,

∥∇α∥L∞L3 = 2|k| ∥∇vt∥L∞L3 ≤ 2|k|CH1,L3C(T,Ω)
√
M.

Using energy estimate (2.22) for the linearized JMGT equation with f = 0 and
choosing ϱ and M sufficiently small yields F(v) ∈ B.
F is contractive. For proving contractivity, we can directly make use of estimate
(3.5) in Remark 3.2 with L = 2|k|, and the result on H1 regularity with τ inde-
pendent energy bound Theorem 2.2, as well as the fact that by the already shown
self-mapping property of F , we have that ψ(2) = F(v(2)) ∈ B. This provides us
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with the bound ∥ψ(2)
tt ∥L2L4 ≤ CΩ

H1,L4

√
M , which by possibly decreasing M yields

contractivity of F in the norm induced by the energy of Theorem 2.2:

|||v||| :=
√
τ2∥vttt∥2L2(H1)∗

+ τ∥vtt∥2L∞L2 + ∥vtt∥2L2L2 + ∥vt∥2L∞H1 .

B is closed. Closedness of B with respect to this norm can be seen as follows. For
any sequence (ψk)k ∈ N ⊆ B converging with respect to ||| · ||| with limit ψ, we have

||||ψk||||2 := τ2∥vttt∥2L2L2 + τ∥vtt∥2L∞H1 + ∥vtt∥2L2H1 + ∥ −∆vt∥2L∞L2 ≤M.

Indeed, due to the imposed homogeneous initial conditions, |||| · |||| defines

a norm equivalent to the norm on X̃ := H3(0, T ;L2(Ω)) ∩ W 2,∞(0, T ;H1(Ω)) ∩
W 1,∞(0, T ;H2(Ω)), which is the dual of a separable space. Hence (ψk)k ∈ N has a

subsequence that converges in the weak* topology of X̃ to some ψ̄ that by weak*
semicontinuity of the norm lies in B. By uniqueness of limits ψ has to coincide with
ψ̄ and therefore lies in B.

Altogether, this yields unique existence of a fixed point of F , i.e., of a solution
to (4.1) in B. □
Remark 4.2. Compared to [13], where a pressure formulation of the JMGT

τpttt + ptt − c2∆p− b∆pt = k̃(p)2tt,

along with homogeneous Dirichlet boundary conditions is considered, and also re-
sults on global existence and exponential decay are provided, we here focus on
local in time well-posedness only, but extend the setting to inhomogeneous Neu-
mann and absorbing boundary conditions. Due to the differences in formulation
(pressure versus velocity potential) and energy estimates also the outcome of the
local results in [13] and Theorem 4.1 here slightly differ. [13, Theorem 1.4] states
p ∈ W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)) for suffi-

ciently small initial data (p(0), pt(0), ptt(0)) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)× L2(Ω).

5. Singular limit for vanishing relaxation time

We now study the limiting behavior of solutions ψτ to the JMGT equation (1.5)
as the relexation time τ tends to zero. Our goal is to prove convergence in a certain
sense to a solution ψ̄ of the Westervelt equation (1.4).

A crucial prerequisite for this purpose is the fact that the energy estimate in
Theorem (4.1) holds uniformly with respect to τ and that the bound ρ on the data
can be chosen independently of τ ∈ (0, τ̄ ] for any fixed τ̄ > 0. This will provide us
with a uniform bound for the τ -independent part of the energy. In other words, we
will derive a uniform bound on ∥ψτ∥X̄W , where

X̄W = {v ∈ H2(0, T ;H1(Ω)) ∩W 1,∞(0, T ;H2(Ω)) : v(0) = 0, vt(0) = 0}.
Note that the initial conditions imposed in the definition of X̄W are well-defined
in an H2(Ω) and H1(Ω) sense, respectively, since X̄W embeds continuously into
C(0, T ;H2(Ω))∩C1(0, T ;H1(Ω)). Therewith, the τ -independent part of the energy
defines a norm on X̄W

∥v∥X̄W =
√

∥vtt∥2L2H1 + ∥ −∆vt∥2L∞L2 .



JORDAN–MOORE–GIBSON–THOMPSON EQUATION 17

Theorem 5.1. Let c2, b, T > 0, τ̄ > 0, and k ∈ R. Then there exists ϱ > 0 such that
for all g ∈ H3(0, T ;H−1/2(Γ)) ∩W 1,∞(0, T ;H1/2(Γ)) that satisfy (g, gt, gtt)|t=0 =
(0, 0, 0) and

∥g∥2
W 1,∞H1/2 + ∥g∥2

H2H−1/2 + τ̄∥gtt∥2L∞H−1/2 + τ̄2∥gttt∥2L2H−1/2 ≤ ϱ,

the family (ψτ )τ∈(0,τ̄) of solutions to (4.1) according to Theorem 4.1 converges

weakly-⋆ in X̄W to a solution ψ̄ ∈ X̄W of (1.4) with homogeneous initial condi-

tions ψ̄(0) = 0, ψ̄t(0) = 0, and Neumann boundary conditions ∂ψ̄
∂n |Γ = g.

Proof. The proof is similar to the one of [14, Theorem 7.1], but based on different
energy estimates.

Uniform boundedness of ∥ψτ∥X̄W according to Theorem 4.1 implies existence of
a sequence τℓ ↘ 0, and an element ψ̄ ∈ X̄W such that ψℓ := ψτℓ satisfies

ψℓtt −⇀ ψ̄tt weakly in L2(0, T ; (H1(Ω))),

ψℓt −⇀ ψ̄tt weakly-⋆ in L∞(0, T ;H2(Ω)),

ψℓt −→ ψ̄t strongly in L∞(0, T ;L4(Ω)),

∂ψℓ

∂n

∣∣∣
Γ
−⇀ ∂ψ̄

∂n

∣∣∣
Γ
weakly-⋆ in L2(0, T ; (H−1/2(Γ))) ∩ L∞(0, T ;H1/2(Γ)).

Therewith, ∂ψ̄∂n |Γ = g, and using the fact that ψℓ solves (1.5), we get, for ψ̂ℓ := ψ̄−ψℓ
and any v ∈ C∞

0 (0, T ;C∞
0 (Ω))∫ T

0

∫
Ω

(
ψ̄tt − c2∆ψ̄ − δ∆ψ̄t − k(ψ̄t)

2
t

)
v dxdt

=

∫ T

0

∫
Ω

(
ψ̂ℓ tt − c2∆ψ̂ℓ − δ∆ψ̂ℓ t − τℓψ

ℓ
ttt − τℓc

2∆ψℓ t

)
v dxdt

+ k

∫ T

0

∫
Ω
(ψ̄t + ψℓt )ψ̂ℓ tvt dxdt

→ 0 as ℓ→ ∞,

due to the above limits and uniform boundedness of ψℓ in X̄W .
A subsequence-subsequence argument, together with uniqueness of the solution

to (1.4) according to results in, e.g., [10, 24] yields convergence of the whole family
(ψτ )τ∈(0,τ̄). □

6. Absorbing boundary conditions

In this section, we consider extension of our results to the problem with absorbing
boundary conditions

(6.1)



τψttt + (1− 2kψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

∂ψ

∂n
= g on Γ× (0, T ),

∂ψ

∂n
= −βψt on Σ× (0, T ),

(ψ,ψt, ψtt) = (0, 0, 0) in Ω× {0},
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where β > 0. We will comment on all the changes and additions that have to be
made and state the corresponding mixed Neumann–absorbing boundary condition
versions of the results obtained so far for pure Neumann boundary conditions.

In the proof of well-posedness of the linearized equation with H1 spatial regular-
ity, the corresponding semidiscrete initial-boundary value problem becomes

(6.2)



(τψnttt + αψntt, ϕ)L2 + (c2∇ψn + b∇ψnt ,∇ϕ)L2

+(c2βψnt + bβψntt, ϕ)L2(Σ)

= (f, ϕ)L2 + (c2g + bgt, ϕ)L2(Γ),

for every ϕ ∈ Vn pointwise a.e. in (0, T ),

(ψn(0), ψnt (0), ψ
n
tt(0)) = (0, 0, 0),

where the choice of the basis functions wi is again determined by (2.4); i.e., with
homogeneous Neumann conditions only on part of the boundary and no conditions
on the rest. This still allows for an orthonormal basis of L2(Ω), which is a – not
necessarily orthogonal, but this is not needed – basis of H1(Ω) such that their
Dirichlet traces trΣwi form a basis of L2(Σ); cf. [25].

As a consequence of the fact that absorbing boundary conditions extract energy
through the boundary in order to avoid spurious reflections, we get additional energy
terms on the left hand side of the energy estimates. More precisely, the terms

+c2β

∫ t

0
|trΣψntt|2L2(Σ) ds+ bβ|trΣψnt (t)|2L2(Σ)

arise in (2.9), (2.10), (2.18),

+c2β∥trΣψntt∥2L2L2(Σ) + bβ∥trΣψnt ∥2L∞L2(Σ)

in (2.11), (2.15), and

+c2β∥trΣψtt∥2L2L2(Σ) + bβ∥trΣψt∥2L∞L2(Σ)

in (2.2), (2.17), (2.22), (3.2), (4.2), while the higher order energy identity (2.24)
remains unchanged.

Therewith, Theorems 2.1, 2.2, and 3.1 immediately carry over as follows.

Theorem 6.1. Let c2, b, β, τ > 0, and let T > 0. Assume that

• α ∈ L∞(0, T ;L∞(Ω)),

• f ∈ L2(0, T ;L2(Ω)),

• g ∈ H2(0, T ;H−1/2(Γ)), (g, gt)|t=0 = (0, 0).

Then there exists a unique weak solution ψ of the problem

(6.3)



τψttt + α(x, t)ψtt − c2∆ψ − b∆ψt = f(x, t) in Ω× (0, T ),

∂ψ

∂n
= g on Γ× (0, T ),

∂ψ

∂n
= −βψt on Σ× (0, T ),

(ψ,ψt, ψtt) = (0, 0, 0) in Ω× {0},
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in the weak (H1)⋆ sense that satisfies

ψ ∈ W 1,∞(0;T ;H1(Ω)) ∩W 2,∞(0, T ;L2(Ω)) ∩H3(0, T ;H1(Ω)⋆).

Furthermore, the solution fullfils the estimate

τ2∥ψttt∥2L2(H1)⋆ + τ∥ψtt∥2L∞L2 + ∥ψt∥2L∞H1

+ c2β∥trψtt∥2L2L2(Σ) + bβ∥trψt∥2L∞L2(Σ)

≤C(α, τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 + ∥f∥2L2L2).

The constant above is given by

C(α, τ, T )

=C1

(
1
τ2
∥α∥2L∞L∞ + T 2 + 1

)
exp(C2(

1
τ + 1

τ ∥α∥L∞L∞ + 1 + T )T )(1 + τ),

where C1, C2 > 0 do not depend on τ, T , or α.

Theorem 6.2. Let the assumption of Theorem 2.2 hold and assume additionally
that for some fixed τ > 0, τ ∈ (0, τ ],

∃α > 0 : α(t) ≥ α a.e. in Ω× (0, T ).(6.4)

Then the solution of (6.3) satisfies the estimate

τ2∥ψttt∥2L2(H1)∗ + τ∥ψtt∥2L∞L2 + ∥ψtt∥2L2L2 + ∥ψt∥2L∞H1

+ c2β∥trψtt∥2L2L2(Σ) + bβ∥trψt∥2L∞L2(Σ)

≤C(α, τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 + ∥f∥2L2L2),

where the constant is given by

C(α, τ, T ) = C3 (1 + T 2)exp(C4(1 + T )T )(1 + τ),

and C3, C4 > 0 do not depend on τ, T , or α.

Theorem 6.3. Let c2, b, β, τ > 0, k ∈ R, and let T > 0. Assume that the function
h ∈ C0(R) satisfies (1.7), and that g ∈ H2(0, T ;H−1/2(Γ)) with (g, gt)|t=0 = (0, 0).
Moreover, let

∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2 ≤ ϱ.

Then for sufficiently small ϱ, there exists a solution ψ of the problem

τψttt + h(ψt)ψtt − c2∆ψ − b∆ψt = 0 in Ω× (0, T ),

∂ψ

∂n
= g on Γ× (0, T ),

∂ψ

∂n
= −βψt on Σ× (0, T ),

(ψ,ψt, ψtt) = (0, 0, 0) in Ω× {0},

in the weak (H1)⋆ sense that satisfies

ψ ∈ W 1,∞(0;T ;H1(Ω)) ∩W 2,∞(0, T ;L2(Ω)) ∩H3(0, T ;H1(Ω)⋆),
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and the estimate

τ2∥ψttt∥2L2(H1)∗ + τ∥ψtt∥2L∞L2 + ∥ψt∥2L∞H1

+ c2β∥trψtt∥2L2L2(Σ) + bβ∥trψt∥2L∞L2(Σ)

≤C(τ, T )(∥g∥2
W 1,∞H−1/2 + ∥gt∥2H1H−1/2).

Extension of the boundary data. To extend the higher-regularity results of
Theorems 2.3, 4.1, and 5.1, we impose the additional compatibility condition g|∂Γ =
0 on the interface between the two boundary parts Γ and Σ; in other words, we

assume that g ∈ H
1/2
0 (Γ). We redefine the extension operator N as Nh = v, where

v solves

−∆v + v = 0 in Ω,

∂v

∂n
= h̃ =

{
h on Γ

0 on ∂Ω \ Γ ,

with h̃ ∈ Hs(∂Ω) for all s ∈ [0, 12), provided that h ∈ H
1/2
0 (Γ); cf. [7, Corollary

1.4.4.5.]. Thus we still have boundedness of N as an operator H−1/2(Γ) → H1(Ω)

and as H1/2(Γ) → H3/2+s(Ω) for s ∈ [0, 12).

On the other hand, we will also need an L2(Ω) estimate on Ngtttt. Therefore, we

define v = Nh by duality for h ∈ H−3/2, i.e.,

(v,−∆ϕ+ ϕ) = −⟨h, ϕ⟩H−3/2(Γ),H3/2(Γ),

for every ϕ ∈ H2(Ω), ∂ϕ
∂n |∂Ω = 0, which yields boundedness of N : H−3/2(Γ) →

L2(Ω).
A crucial point in the analysis is the fact that in a mixed Neumann–absorbing

boundary condition setting, we cannot conclude anymore H2 regularity in space of
some function v from L2 boundedness of −∆v + v. Nevertheless, we can achieve
sufficient regularity of ψt to obtain an embedding into L∞(Ω), as required for guar-
anteeing non-degeneracy, along the lines of the proof of [15, Theorem 1].

Theorem 6.4. Let c2, b > 0, τ ∈ (0, τ), and let T > 0. Assume that

• α ∈ XW
α := L∞(0, T ;W 1,3(Ω) ∩ L∞(Ω)) ∩W 1,∞(0, T ;L3(Ω)) ,

• ∃α > 0 : α(t) ≥ α a.e. in Ω× (0, T ),

• f ∈ H1(0, T ;L2(Ω)),

• ∥∇α∥L∞L3 < α/
(
6CH1,L6

)
,

• g ∈ H4(0, T ;H−3/2(Γ)) ∩H3(0, T ;H−1/2(Γ)) ∩H2(0, T ;H
1/2
0 (Γ)),

• (g, gt, gtt)|t=0 = (0, 0, 0).

Then there exists a unique weak solution ψ of the problem (6.3) that satisfies

ψ ∈ W 1,∞(0, T ;H3/2+s(Ω)) ∩W 2,∞(0, T ;H1(Ω)) ∩H3(0, T ;L2(Ω))
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for any s ∈ [0, 12). Moreover, the solution fulfills the estimate

τ2∥ψttt∥L2L2 + τ∥ψtt∥2L∞H1

+ ∥ψtt∥2L2H1 + ∥ −∆ψt∥2L∞L2

+ c2β∥trψtt∥2L2L2(Σ) + bβ∥trψt∥2L∞L2(Σ)

≤C(α, T ) (∥gt∥2H1H1/2 + ∥g∥2
H3H−1/2 + τ2∥gttt∥2H1H−1/2

+ τ2∥gtttt∥2L2H−3/2 + ∥f∥2H1L2).

The constant above is given by

C(α, T ) =C5 (∥α∥2L∞L∞ + ∥∇α∥2L∞L3 + 1)

× exp
(
C6

(
∥α∥2L∞L∞ + ∥∇α∥2L∞L3 + 1 + T + T 2

)
T
)
(1 + τ),

where C5, C6 > 0 do not depend on n or τ .

Proof. We highlight here the main differences to the proof of Theorem 2.3, which
consist in obtaining an energy estimate that provides us with enough regularity of
trΣψtt. We choose {wi}i∈N again as eigenfunctions of the homogeneous Neumann-
Laplacian (2.4) and consider Galerkin approximations in Vn = span{w1, . . . wn} of
the difference ψ̄ = ψ −Ng. We thus obtain the semi-discrete problem

(6.5)



(τψ̄nttt + αψ̄ntt, ϕ)L2 + (c2∇ψ̄n + b∇ψ̄nt ,∇ϕ)L2

+(c2βψ̄nt + bβψ̄ntt, ϕ)L2(Σ)

= (f̃ , ϕ)L2 − (c2βNgt + bβNgtt, ϕ)L2(Σ),

for every ϕ ∈ Vn pointwise a.e. in (0, T ),

(ψ̄n(0), ψ̄nt (0), ψ̄
n
tt(0)) = (0, 0, 0),

where f̃ = f − τNgttt − αNgtt + c2∆Ng + b∆Ngt.

Higher-order estimate. Due to the regularity assumptions on g, f and α, we can
conclude that problem (6.5) has a solution ψ̄n ∈ H4(0, T ;Vn). We are thus allowed
to differentiate (6.5) with respect to time and also consider the following problem

(6.6)


(τψ̄ntttt + αψ̄nttt, ϕ)L2 + (c2∇ψ̄nt + b∇ψ̄ntt + αtψ̄

n
tt,∇ϕ)L2

+(c2βψ̄ntt + bβψ̄nttt, ϕ)L2(Σ)

= (f̃t, ϕ)L2 − (c2βNgtt + bβNgttt, ϕ)L2(Σ),

for every ϕ ∈ Vn pointwise a.e. in (0, T ),

where f̃t = ft− τNgtttt−αNgttt−αtNgtt+ c2∆Ngt+ b∆Ngtt. Above we have used
the fact that ∂Ng

∂n vanishes on Σ. We note first that by testing (6.5) with −∆ψ̄ntt
and ψ̄ntt, we can derive the following estimate

(6.7)

τ2∥ψ̄nttt∥2L2L2 + τ∥ψ̄ntt∥2L∞L2 + τ∥∇ψ̄ntt∥2L∞L2 + ∥ψ̄ntt∥2L2H1

+ ∥ −∆ψ̄nt ∥2L∞L2 + τβ∥trΣψ̄nttt∥2L2
tL

2(Σ) + β|
√
αtrΣψtt(t)|2L2(Σ)

≤C(α, T ) (τ2∥gtttt∥2L2H−3/2 + τ2∥gttt∥2L2H−1/2 + ∥g∥2
H2H−1/2

+ ∥f∥2H1L2),
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where the additional terms on Σ arise due to integration by parts of the τ and α
term with respect to space.

We then test (6.6) with ψnttt. After integration by parts of the c2 term, which
also removes the c2βNgt term on Σ, as well as integration by parts with respect to
time of the remaining term on Σ, we obtain

τ
2 |ψ̄

n
ttt(t)|2L2 + b

2 |∇ψ̄
n
tt(t)|2L2 +

∫ t

0
|
√
αψ̄nttt(t)|2L2 ds+

bβ
2 |trΣψ̄

n
t (t)|2L2(Σ)

=

∫ t

0
(ψ̄nttt, f̃t − αtψ̄

n
tt − c2∆ψ̄nt )L2 ds−

∫ t

0
(bβNgtt, ψ̄

n
ttt)L2(Σ) ds

≤1
2

∫ t

0
|
√
αψ̄nttt(t)|2L2 ds+ 1

2α∥f̃t − αtψ̄
n
tt − c2∆ψ̄nt ∥2L2

tL
2

+ bβCtr

2

(
∥∇ψ̄ntt∥2L2

tL
2 + ∥ψ̄ntt∥2L2

tL
2

)
+ bβCtr

2 ∥trΣNgttt∥2L2H−1/2(Σ)

+ b
4

(
|∇ψ̄ntt(t)|2L2 + |ψ̄ntt(t)|2L2

)
+ bβ2C2

tr|trΣNgtt(t)|2H−1/2(Σ)
,

where the terms ∥trΣNgttt∥L2H−1/2(Σ) and |trΣNgtt(t)|H−1/2(Σ) can be further es-

timated by means of the mapping properties of N , continuity of the embedding
L2(Σ) → H−1/2(Σ), and the trace theorem. In the limit as n → ∞, we arrive at
the energy estimate

τ∥ψ̄ttt∥2L∞L2 + ∥∇ψ̄tt∥2L∞L2 + ∥ψ̄ttt∥2L2L2 + ∥trΣψ̄t∥2L∞L2(Σ)

≤C(T )
(
(1 + ∥αt∥2L∞L3)(∥ψ̄tt∥2L2H1 + ∥gtt∥2L2H−1/2) + ∥∆ψ̄t∥2L2L2

+ ∥ψ̄tt∥2L∞
t L2 + ∥f̃t∥2L2L2 + ∥gttt∥2L2H−1/2 + ∥gtt∥2L∞H−1/2

)
.

From here we obtain the estimate for ψ = ψ̄ +Ng:

(6.8)

τ∥ψttt∥2L∞L2 + ∥∇ψtt∥2L∞L2 + ∥ψttt∥2L2L2 + ∥trΣψt∥2L∞L2(Σ)

≤C(T )
(
(1 + ∥αt∥2L∞L3)(∥ψtt∥2L2H1 + ∥gtt∥2L2H−1/2)

+ ∥∆ψt∥2L2L2 + ∥ψtt∥2L∞
t L2 + ∥f̃t∥2L2L2

+ τ2∥gtttt∥2L2H−3/2 + ∥gttt∥2L2H−1/2 + ∥gtt∥2L∞H−1/2

)
.

The right-hand side can be further estimated by means of Gronwall’s inequalities
and the other energy estimates.

H3/2+s(Ω) regularity. Now we are ready to adopt the argument from the proof
of [15, Theorem 1] as follows. Since z := −∆ψ + ψ satisfies the ODE

zt(t) = − c2

b z(t) +
1
b (f(t)− τψttt(t)− αψtt(t) + bψt(t) + c2ψ(t))

in a pointwise almost every sense with respect to space, we can use the common
variation of constants formula to write

z(t) = 1
b

∫ t

0
e−

c2

b
(t−s)(f(s)− τψttt(s)− αψtt(s) + bψt(s) + c2ψ(s)) ds.
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Hence we have that

zt(t) =
1
b (f(t)− τψttt(t)− αψtt(t) + bψt(t) + c2ψ(t))

− c2

b

∫ t

0
e−

c2

b
(t−s)(f(s)− τψttt(s)− αψtt(s) + bψt(s) + c2ψ(s)) ds

=: f̃(t) ,

where f̃ ∈ L∞(0, T ;L2(Ω)), provided f ∈ L∞(0, T ;L2(Ω)). We now consider this

as a pointwise in time elliptic PDE for ψ̃ := ψt(t), equipped with the boundary
conditions resulting from (6.1),

(6.9)

−∆ψ̃ + ψ̃ = f̃(t) in Ω

∂ψ̃

∂n
= g̃(t) =

{
gt(t) on Γ

−βψtt(t) on Σ .

We note that the Neumann data g̃(t) in general is not an element ofH1/2(∂Ω) even

though the functions gt(t), ψtt(t) exhibit H
1/2 regularity on the respective boundary

parts, the latter due to the trace theorem and our energy estimate. Global H1/2

regularity of the Neumann data would require continuity over the interface between
Γ and Σ. Nevertheless, it can be shown (see the appendix of [15]), that g̃(t) lies in
Hs(∂Ω) for all 0 < s < 1

2 and that

|g̃(t)|Hs(∂Ω) ≤ C7

(
|gt(t)|Hs(Γ) + β|trΣψtt(t)|Hs(Σ)

)
holds; see [7, Corollary 1.4.4.5.] and [15, Appendix]. Hence, elliptic regularity for
the Neumann problem (6.9) yields

∥ψt∥L∞H3/2+s ≤C8∥g̃∥L∞Hs(∂Ω)

≤C7C8(∥gt∥L∞Hs(Γ) + β∥trΣψtt(t)∥L∞Hs(Σ))

≤C7C8(∥gt∥L∞Hs(Γ) + βCtr∥ψtt∥L∞H1)

which can be further estimated by the previous and the additional energy estimates.
□

By relying on the results of Theorem 6.2, Theorems 4.1 and 5.1 can be extended
in a straightforward manner. Note that we only need the case f = 0, α = 1− 2kψt
of estimate (6.8), since contractivity is already established in a weaker norm.

Theorem 6.5. Let c2, b, β, τ > 0, k ∈ R, and let T > 0. Assume that g ∈
H4(0, T ;H−3/2(Γ)) ∩H3(0, T ;H−1/2(Γ)) ∩H2(0, T ;H

1/2
0 (Γ)), with (g, gt, gtt)|t=0 =

(0, 0, 0), and that

∥gt∥2H1H1/2 + ∥g∥2
H3H−1/2 + τ2∥gttt∥2H1H−1/2 + τ2∥gtttt∥2L2H−3/2 ≤ ϱ.

Then for sufficiently small ϱ, there exists a unique solution ψ of (6.1) in the weak
(H1)⋆ sense that satisfies

ψ ∈ W 1,∞(0;T ;H3/2+s(Ω)) ∩W 2,∞(0, T ;H1(Ω)) ∩H3(0, T ;L2(Ω))
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for any s ∈ (0, 12), and the estimate

τ2∥ψttt∥2L2L2 + τ∥ψtt∥2L∞H1 + ∥ψtt∥2L2H1 + ∥ −∆ψt∥2L∞L2

+ c2β∥trψtt∥2L2L2(Σ) + bβ∥trψt∥2L∞L2(Σ)

≤C(T )
(
∥gt∥2L∞H1/2 + ∥g∥2

H2H−1/2 + τ∥gtt∥2L∞H−1/2

+τ2∥gttt∥2L2H−1/2 + τ2∥gtttt∥2L2H−3/2

)
.

Theorem 6.6. Let c2, b, β, T > 0, τ̄ > 0, and k ∈ R. Then there exist ϱ > 0 such

that for all g ∈ H4(0, T ;H−3/2(Γ)) ∩H3(0, T ;H−1/2(Γ)) ∩H2(0, T ;H
1/2
0 (Γ)), that

satisfy (g, gt, gtt)|t=0 = (0, 0, 0) and

∥gt∥2H1H1/2 + ∥g∥2
H3H−1/2 + τ̄2∥gttt∥2H1H−1/2 ≤ ϱ,

for any s ∈ (0, 12), the family (ψτ )τ∈(0,τ̄) of solutions to (6.1) according to Theorem
6.5 converges weakly-⋆ in

X̄W = {v ∈ H2(0, T ;H1(Ω)) ∩W 1,∞(0, T ;H3/2+s(Ω)) : v(0) = 0, vt(0) = 0}
to a solution ψ̄ ∈ X̄W of (1.4) with homogeneous initial conditions ψ̄(0) = 0, ψ̄t(0) =

0, and mixed Neumann – absorbing boundary conditions ∂ψ̄
∂n |Γ = g, ∂ψ̄

∂n |Σ = −βψ̄t.
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