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THE TWO-PHASE NAVIER-STOKES EQUATIONS WITH
SURFACE TENSION IN CYLINDRICAL DOMAINS

MATHIAS WILKE

ABSTRACT. This article is concerned with the well-posedness of a model for the
dynamics of two immiscible and incompressible fluids in cylindrical domains,
which are separated by a sharp interface, forming a contact angle with the solid
wall of the container. We prove that the nonlinear system has a unique strong
global solution in the L,-sense, provided that the initial data is small. To this
end, we show maximal L,-regularity of the linearized problem and apply the
contraction mapping principle in order to solve the nonlinear problem.

1. INTRODUCTION

In a wider sense, this article is concerned with the mathematical analysis of the
dynamics of fluids. To be more precise, the behavior of two fluids inside a bounded
container, separated by a sharp interface, is investigated.

Let uw = u(t,z) and m = 7 (¢, x) denote the velocity field and the pressure field of a
single incompressible fluid in a domain 2. By saying that the fluid is incompressible,
we mean that its density p > 0 is constant. Then the dynamics of the fluid is
described by the Navier-Stokes equations

1 Oh(pu) — pAu+ p(u-Viu+Vr =pf, t>0, z €,
(1.1) divu=0, t>0, x €,

where p > 0 represents the viscosity of the fluid and f is some external force
(e.g. gravity). The first equation reflects balance of momentum, while the second
equation states conservation of mass.

Let us consider a more comprehensive situation, where the domain €2 is occupied
by two incompressible and immiscible fluids, fluid 1 and fluid 2, which are separated
by a sharp interface I'(t) for each t > 0. We denote by €2;(t) the subset of {2 which is
filled with fluid j, j € {1,2} with p;,u; being the density and viscosity, respectively,
of fluid §. If w/ and 7/ are the velocity fields and the pressure fields of fluid j,
respectively, then, for ¢t > 0, one sets

et z), zeM(), 7t e), e M),
ult 2) = {u2(t, D), zey), ThYs {WQ(t,:L‘), v e Ot).
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Assuming that (u/,77) satisfies the Navier-Stokes equations in each of the phases
Q;(t), we may conclude that (u, ) satisfies (1.1) for all t > 0 and € Q\I'(¢), where
p and p are defined by

)P x € Ql(t), 7) = M1, S Ql(t),
p<$) o {pg, T € Qg(t), M( ) . {,ug, T € QQ(t).

Clearly one expects that the two fluids should affect each other in their dynamics.
Therefore, it is natural to ask for relations that describe the coupling of the two
fluids across the interface I'(t). If one neglects effects of phase transitions between
the phases Q;(¢) and Q2(¢) (e.g. the exchange of mass) then the motion of the moving
boundary I'(¢) is only caused by the velocity fields of the both fluids. Therefore it
is natural to propose that u2\p(t) = ul\p(t). Then the normal velocity Vr of T'(t) is
given by

(1.2) VF =u-rvr,

where v denotes the unit normal field on I'(¢) pointing from Q4 (¢) to Qa(t). We
call the quantity [u] := u2|p(t) - U1|1“(t) the jump of u across T'(t). Note that

(1.3) [u] =0

if and only if the velocity field u is continuous across the interface I'(t). Another
condition on I'(t) reads

(1.4) ~[1(Vu + Vu")]ur + [7]vr = oHror,

where o > 0 denotes the (constant) surface tension of I'(t) and Hr := — divp vy is
the mean curvature of I'(t) with divr being the surface divergence on I'(¢). Condition
(1.4) describes the balance of forces on the interface. To be precise, there is no
contribution to the rate of change of the momentum coming from the interface I'(¢).

If the fixed boundary 9 of € is not empty, then the system (1.1)-(1.4) with
[u] = 0 has to be equipped with appropriate boundary conditions on 92 as well
as some initial conditions on u(0) = ug and I'(0) = I'g. There is a vast literature
concerning the mathematical treatment of free boundary problems for the Navier-
Stokes equations with or without surface tension. To this end we can only give a
selection and refer the reader to [2, 5, 6, 7, 8, 9, 10, 11, 19, 23, 24, 25, 28, 29, 30,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. For a derivation of (1.1)-(1.4) we refer
to [18] or [27].

It is the main purpose of this article to extend the results on well-posedness
obtained in [26] to the framework of bounded cylindrical domains. To be precise,
we assume that Q = G x (Hy, Ha), where G € R"™!, n € {2,3} is a bounded
domain with smooth boundary and H; < 0 < Hs. Suppose furthermore that there
is a family of hypersurfaces {I'(¢)};>0 given as a graph of some height function h
over G, i.e.

It)={(,2,) € Q: 2, =h(t,2), 2 €G}, t>0,

such that for each ¢t > 0 the interface I'(¢) divides €2 into two subdomains Q4 (%)
and Q(t) which are filled with two fluids, respectively. Let us use the convention
that Q9(t) is the upper phase. Assuming that the equations (1.1)-(1.4) are be
satisfied, we are led in a natural way to the problem of finding suitable boundary
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conditions on the vertical part S; := 0G x (Hy, Hy) and the horizontal part So :=
(G x {H1})U (G x {Ha}) of the boundary 992 of Q. This turns out to be a delicate
question, since within the above setting we are on the one side concerned with two
parts S1 and Sy of the boundary such that 957 = 053. Therefore the boundary
conditions on S; and S2 have to be chosen in such a way that they are compatible
to each other. On the other side we have to deal with a contact angle problem, as
OI'(t) is a moving contact line on Sj. At this point we want to emphasize that the
choice of the periodic setting in [44] allows to circumvent the formation of a contact
angle.

Figure 1. Cylindrical domain

The theory of contact angle problems, in particular with a dynamic contact angle
which depends on ¢, is yet not well understood. In fact, there exist different points of
view about how to model such a problem. Some researchers argue that the dynamic
contact angle is determined by an additional equation, while others assume that the
contact angle will be determined by the dynamic equations for the interface and the
fluid, hence the equation for the contact angle should be redundant. We refer to [3]
& [31] and to the references given therein.

Therefore, in order to avoid this lack of clarity, we assume throughout this article
that the contact angle is constant and equal to 90 degrees. One can interpret this
ansatz as an idealization. It is possible to translate the condition on the contact
angle to a condition on the height function A from above. Indeed, if h is sufficiently
smooth, then the unit normal on I'(¢) with respect to Q;(¢) is given by

1 Vo, h
= ————— .
L T VahP? < 1 >

Since the outer unit normal on S is given by vs, = (rgg,0)T, the condition on
the contact angle reads vr - vg, = 0 or equivalently 0,,,h = 0 at the contact
line. Concerning S it is not possible to propose Dirichlet boundary conditions,
the so-called no-slip boundary conditions, since this leads to a paradoxon for the
moving contact line, see e.g. [28]. The next canonical choice are the so-called Navier

boundary conditions or partial-slip boundary conditions

u-vs, =0, Ps, (u(Vu+ Vu")rg,) + au =0,
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where Pgs, := I —vg, ® vg, denotes the projection to the tangent space on S;. The
parameter « > 0 has the physical meaning of a friction coefficient. However, it
turns out that for o > 0, these boundary conditions do not allow the interface to
move along S7 which is not very reasonable, as numerical simulations show. To see
this defect, consider for simplicity the case n = 2. The equation (1.2) in terms of h
then reads

(1.5) 8th = U — ulalh,
where u = (u1, uz). Observe that for n = 2 the partial slip conditions read as follows
up =0, w(Orug + Oauy) + aug = 0.

Therefore it holds that pudius + aus = 0, which is a Robin boundary condition for
ug on S;. Differentiating (1.5) with respect to z1, and taking into account that
O h =0 at S1 (by the contact angle condition) we obtain djus = 0, hence ug = 0 if
a > 0. Consequently it holds that 9;h = 0 at S; and therefore h(t) is constant with
respect to t.

In order to circumvent this problem, we will consider the case o = 0, the so-called
pure-slip boundary conditions. From a physical point of view this means that there
is no friction on the boundary S;. Having fixed the boundary conditions on S
we may choose suitable boundary conditions on S, having in mind that these
conditions have to match those on S;. It turns out that homogeneous Dirichlet
boundary conditions are a good choice, since they are compatible with the pure-
slip boundary conditions on S;. Note that the no-slip boundary conditions on S
do not cause any problems with the moving interface, since we will always have
I'(t)NSe =0 for all t > 0. We are thus led to the problem

O(pu) — pAu+ p(u - V)u+ V1 = —pygen, in Q\I'(1),
divu =0, in Q\I'(¢),
—[1(Vu+ Vu)]ur + [x]vr = oHrvr, on T(t),
[ul =0, onI(t),
Vr=w-vp, onlI(t),
(1.6) Ps, (,u(Vu + VuT)ugl) —0, on S\OT(t),
u-vg, =0, on S1\9I'(t),
u=0, on Sy,
vr-vs, =0, on JI'(¢),
u(0) = up, in Q\I'(0),
I'(0) = T,
where we denote by v, > 0 the acceleration constant due to gravity.
With this article, we present a rather complete analysis of (1.6) with respect
to the existence and uniqueness of strong Lj,-solutions. In Section 2 we will first
transform (1.6) to a fixed domain which does not vary in time. This will be done by

means of a height function h, assuming that I'(¢) is given as the graph of h over the
domain G. By means of local charts the transformed problem can be pulled back
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to certain model problems. As the analysis of two types of these model problems,
namely the Stokes equations in quarter-spaces and the two-phase Stokes equations
in half spaces is not known, we will provide a systematic treatment of these problems
subsequently. At this point we want to emphasize that the analysis of the latter
problems is more involved than the usual model problems in half spaces. This is
due to the fact that one has to deal with mixed boundary conditions meeting at
the contact line. However, our assumption on the contact angle enables us to use
reflection techniques in order to pull back the quarter space to a half space with
Dirichlet boundary conditions and the two-phase half space to a two-phase full space
with a flat interface.

In Section 3 we use the results from Section 2 combined with a localization pro-
cedure to prove existence and uniqueness of a solution of the principal linearization
having maximal regularity of type L,. To be precise, if v and 7 denote the (trans-
formed) velocity field and pressure field, respectively, we will show that (u, 7, [7], h)
enjoys the regularity

u € Hy(J; Lp(Q)") N Lp(J; HY(Q\E)"), 7 € Ly(J5 Hy (),

[x] € WL/27V2P(J; Ly()) N Ly(J; WP (%)),
and
h e W22(1; L()) 1 HA(T; W2VP(8)) A Ly(J; WE1/P(s)),

where J = [0, T] is some nonempty bounded interval. This optimal regularity result
in turn allows to apply the contraction mapping principle in Section 4 to obtain
a unique solution of the nonlinear problem having optimal regularity as well. In
particular, problem (1.6) generates a local semiflow in a natural phase space.

Finally, all technical results which are needed for the execution of the above
program are collected in an appendix. Several results concerning extension opera-
tors, auxiliary elliptic and parabolic problems in quarter spaces and two-phase half
spaces but also in bounded cylindrical domains are provided. In addition, we state
the divergence theorem for bounded Lipschitz domains.

Notation: The symbols Hj, W7, s > 0 refer to the Bessel potential spaces and
Sobolev-Slobodeckii spaces, respectively. If J = [0,7] is some interval and X a
suitable Banach space, then oW (J; X) denotes the subspace of W, (J; X) consisting
of all functions having a vanishing trace at t = 0, whenever it exists. We denote by
W]f(Q) = H]’;(Q) the homogeneous Sobolev space of order k£ € N, where 2 C R” is
some domain. The symbol (:|-) denotes the standard inner product in R™ and we
sometimes also make use of the notation u - v = (u|v) for u,v € R™.

2. PRELIMINARIES AND MODEL PROBLEMS

For the sake of readability we will assume throughout this article that the space
dimension n is equal to 3. This is the most important case from a viewpoint of
applications. Furthermore we will assume from now on that p > n+2 = 5. In
Section 4 about the well-posedness of the nonlinear model, this condition on p is a
result of some Sobolev embeddings which are needed for the proof.
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It is convenient to introduce the modified pressure T := 7+ py,x3 in (1.6), where
r3=1x-e3, x € R? and e3 = (0,0,1). Then we obtain the following problem.

O(pu) — pAu+ p(u-Viu+ Vi =0, in Q\I'(2),
divu =0, in Q\I'(¢),
—[(Vu + Vu)]ur + [#]lvr = oHrvr + [p]yazsvr,  on I(1),
[[u]] =0, on F(t)7
Vo =w-vp, onI(t),
(2.1) Ps, (,u(Vu + vuT)ysl) —0, on $\Ar(),
u-vsg, =0, on S1\0I'(?),
u=0, on Sy,
vr-vs, =0, on 9I'(t),
U(O) =wup, 1In Q\F(O)a
') =Ty.
Here Q = G x (H1, Hs), Hi < 0 < Ho, is a cylindrical domain where G C R? is an
open bounded domain with a smooth boundary dG. The compact free boundary
I'(t) divides Q into two unbounded disjoint phases ;(t), j = 1,2, so that Q =
Q1(t) UT(t) UQa(t). The convention is that a(t) is the upper phase while Q; ()
is the lower one with the unit normal vr at « € I'(t) pointing from Q(¢) to Qa(t).

We denote by vg, the outer unit normal at the fixed boundary S;. The operator
Pg, :=1 —vg, ® vg, stands for the projection to the tangential space on Sj.

2.1. Reduction to a flat interface. In this subsection we transform the time-
dependent domain Q\I'(¢) to a fixed domain. To this end, we assume that
[(t) ={x = (z1,22,23) € G x (Hy, Hy) : x3 = h(t,2'), ' = (z1,22) € G}

t > 0. Let p € C®(R;[0,1])) such that p(s) =1if |s|] < /2 and p(s) =0if |s| > 4,
where 6 < min{—H;, Hy}/2. Define a mapping

On(t,7) ==z + p(T3)h(t, 7' )es =: T + O,(t, T),

where e3 = (0,0,1),  := (', Z3) and for fixed ¢t > 0 set x = Oy (t,Z). An easy
computation shows

0 O 81h90
T =0 0 Oehy |,
0 0 hy
It follows that ©}, is invertible if ||Al|oo,00 < 1/(2]¢"|s0) and
1 1+ th/ 0 —81hg0
I\N=T my—1 /
=(I+46 = 0 1+h —0ah

(©}) (I+0y) 1+ hy! 0 +0<P iSD

Here || || co,00 denotes the Loo-norm in the time-space cylinder (0,a) x €2, a € (0, co].
In the sequel, let [|Alcoc0 < 1 with 0 < < 1/(2|¢|s) being sufficiently small.
Then the inverse @;1 : Q0 — Q is well defined and it transforms the free interface
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I'(t) to the flat and fixed interface ¥ := G x {0}. Now we define the transformed
quantities

u(t,z) == u(t,On(t, 7))
7(t,x) == 7(t,On(t, 7))
and compute v = (—Vh,1)T/y/1+ [Vuh]2,
Vi = Vit — My(h)V7
divu = diva — (Mp(h)V|a)
Au = A — My(h) : Vi — My(h)Va
(9tu = 6,511 — <p8th(1 + @/h)ilaggﬂ,
where Mo(h) == 0,7 (I +60;T)71,
Mi(h) : V% = [2sym(0T[I + 0,17 T) — [ + 6,]720,0T[ + 9;1]—@ . V24,
and
Ms(h)Va = ([A6; '] 0 04|V) a.

Furthermore it holds that Vp = (9;0p|vr) = Oih(eslvr) = Oth/+/1 + |V h|?. This
yields the following transformed problem for @ and 7 (for convenience we drop the
bars in the sequel).

O(pu) — pAu+ V7 = F(u,m,h), in Q\X,
divu = Fy(u,h), in Q\3,
—[udsv] = [uVayw] = Go(u, h), on X,
—2[pdsw] + [7] — o Aph — [plvah = Guw(u, k), on X,
[ul =0, on¥X,
Oh —w = Hi(u,h), on X,

(2.2) T
Ps, (,u(Vu + Vu )V51> = Hy(u,h), on S1\0%,
u-vg, =0, on S;\0%,
u=0, on Sy,
Ovseh =0, on 0%,
u(0) = ug, in Q\X
h(0) = hg, on X.
Here

F(u,p, h) := ppdsh(1 + ¢'h) 3u — p(My(h) : V2u + My (h)Vu) + My(h)Vr
Fy(u,h) := (Mo(h)V|u)
Go(u,h) := —[u(Vo + Vo ) [Vh + | VA2 [ud50]
+ (1 +|VA[*)[udsw] — (Vh|[pVw])) Vi
Guw(u,h) := —(Vh|[uVw]) — (Vh|[udsv]) + |Vh|* [udsw] + 0 G (h)
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Vh

Gu(h) :=div <W> —A

Hi(u,h) :=—(v|Vh)
HQ('LL, h) = Pg, (/L(Mo(h)vu + VUTMo(h)T)I/Sl>,

where we have set v := (u1,uz2), w := ug and Vw = Vyw, Vo = Vv, Vh =V h
for the sake of readability.

2.2. Linearization, regularity and compatibility conditions. We consider
first the principal linearization of (2.2), that is

O(pu) — pAu+ V= f, in Q\X,
divu = fg, in Q\X,
—[u03v] — [uVew] = go, on X,
—2[udsw] + 7] — oAph = gy, on 3,
[u] =us, on X,
Oth — mlw] = g, on X,
(2.3) -
Pg, (M(Vu + Vu )Vsl) = Pg,g1, on S1\0%,
u-vs, = g2, onS\0%,
u=g3, onJSy,
Ovoeh = ga, on 0%,
u(0) = up, in Q\X
h(0) = hy, on X,

where mfw] =

(wy 4+ w-)/2 is the arithmetic mean of the directional traces wy

of w to ¥ from 9 and ;. This arithmetic mean is introduced, since the jump
of w = ug across X is not necessarily zero. However, note that m[w] = w in case
[w] = 0. Note further, that we neglected the term [p]ysh in the jump of the stress
tensor, as it is of lower order compared to A h.

Let J = [0,T] with T € (0,00). We are looking for solutions (u, ) of the Stokes
equation with

u € Hy(J; Lp(Q)°) N Lp(J; Hy(Q\D)?), 7 € Lp(J; H, (),
and
[x] € WLV (J; Ly()) N Ly(J; Wy HP(8)).

Note that the latter regularity condition on [r] is determined by the regularity of
the Neumann trace of u on . For the height function A this yields

Agh € W27V J; Ly () N Ly(J; W, /P (2))

and
Och € Wy ™12 (J: Ly(2) 0 Ly(J; WP (),
hence the optimal regularity class for h is given by

h e W§—1/2P(J; L,(2))N H;(JS Wg_l/p(Z)) N Ly(J; Wg—l/p(z))'
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Let us discuss the necessary regularity and compatibility conditions on the data

(fa fdvg’uv.gw7ghaglv.927g3ag4auZaanhO)' If (U,Tr, [[ﬂ-]]ah) is a solution of (23) in
the regularity classes stated above, then it holds that f € L,(J;L,(Q)%), f4 €

Lyp(J; Hy(2\X))
(gus guw) € W2 V2P (J; Ly(2)%) N Ly(J; Wy P (2)?),
uy € Wg}_l/zp(tk Lp(z)g) N LP(J; Wﬁ_l/p(z)?’),
gn € Wy PP (J5 Ly(R)) 0 Lp(J; W HP(E)),
Ps, g1 € W27V (J; Ly($1)%) N Ly(J; Wi HP(S1\0%)?),
g2 € WEV2P(J; 1y (1)) 1 Ly(J; W2 7(51\0%)),
g5 € Wy V2P (J; Lp(52)*) N Ly(J; W~ V/P(S2)°),
g1 € WP (5 Ly(2)) 0 HA(J; WE2(2)) 0 Ly (7 W22/ (),
ug € W2THP(Q\D)?,  hg € WETHP(R).
Concerning compatibility conditions at ¢t = 0 we have divug = fg|=o,
goli=0 = —[pdsv0] — [V rwo],
[uo] = us|i=0, uo - Vs, = g2lt=0, w0 = g3/t=0, Ovyyho = ga|t=0 and
Ps, (u(Vuo + Vug vs,) = Ps, g1le=o.

Since 0% C S1 # () and 951 NSy # B, there are additional compatibility conditions
which have to be satisfied.
If (u,m, 7], h) is a solution of (2.3) with the above regularity, then the following
compatibility conditions at 9% and 0S5 have necessarily to be satisfied.
o [g2] =ux-vsy, [(91-€3)/1 — O392] = Dy, (ux: - €3), at O,
o Pyc[(D'vs)V'] = [Pacgi /1], 9rga — m(g1 - e3)/ 1 — 0392] = Oupe g, at %,
* (golvac) = —lg1 - es] at 9%, (gs|vs,) = g2 at 052,
o Poclu(D'gy)V'] = (Pacdy), 10us, (93 - €3) + pdsga = g1 - e3 at dSa.
Here we use the notation v/ = vy, Pyg =1 — 1V @ V', D'v := Vv + Vyou' and
g = Zizl(g - eg)er. These conditions follow easily by comparing the equations
(2.3)5 and (2.3)5_,, with each other.
There is another compatibility and regularity condition hidden in the system,
which stems from the divergence equation. Multiply divu = f3 by ¢ € H;,(Q),

p' = p/(p — 1) and integrate by parts (see Proposition 5.11) to the result

@) [ fuvdo~ [ gmolsdsi— [ (o vs)olsdset

Sa
: Y=— :
+/E(UE VE)¢|ECZ /Qu V¢d$,

where vg, (', Hy) = es, vs, (¢/, H1) = —e3 for 2/ € G and vy, = e3. It follows that the
functional [¢p — ((f4, 92,93, ux), )] defined by the left side of (2.4) is continuous
on H;,(Q) with respect to the semi-norm ||V - ||Lp/(Q). Since H;,(Q) is dense in

the homogeneous Sobolev space H;,(Q) (the constants are already factorized) with
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respect to ||V - || L, (e for all domains  which are considered in this article, it
follows that (f4, g2, g3, ux) determines a functional on H;, (Q), i.e. (fq,92,93,ux) €
ﬁ’l(Q) = (H;,(Q))* The norm of (fg, g2, 93, ux) in ﬁ;l(ﬂ) is then given by

p
a1 = sup{{(fa, 92,93, ux), 0) /| V9llL,, + 6 € Hyy(Q)}.

Moreover, if u € H;(J; L,(Q)3), then %(fd,gg,gg,uz) is well defined by the com-
putation above, hence

”(fd7927g37u2)

(fd,g2793,UE) S H;(J, .ﬁ;l(Q))

is another necessary compatibility and regularity condition on the data. In partic-
ular, if © is bounded, then we may choose ¢ =1 in (2.4) to obtain

/ fadx — / godS1 — / (g3 - vs,)dSa + / (uy - vy)d¥ = 0.
Q Sy S2 z

2.3. Model problems. The proof of existence and uniqueness of a solution
(u,m, 7], h) to (2.3) is based on a localization procedure. We will obtain six dif-
ferent types of charts, which yield six different types of model problems. These
are

e the full space Stokes equations (without any boundary- or interface condi-
tions)

e the two-phase Stokes equations with a flat interface and without any bound-
ary condition

e the Stokes equations with pure slip boundary conditions in a half-space and
no interface

e the Stokes equations with no-slip boundary conditions in a half-space and
no interface

e the Stokes equations in a quarter space with pure slip boundary conditions
on one part of the boundary and no-slip boundary conditions on the other
part

e the two-phase Stokes equations with pure slip boundary conditions in a
half-space, a flat interface and a contact angle of 90 degrees.

While the first four of these problems are well understood, there seem to be no
results on well-posedness of the last two problems.

2.3.1. The Stokes equations in quarter-spaces. Consider the problem
O(pu) — pAu+Vr=f, x1 €R, 29 >0, 3 >0,
divu=fg, x1€R, 29 >0, 3 >0,
(2.5) p[Oauy + Orug, Osug + 82U3]T =g1, w1 €R, 29 =0, 23>0,
ug =¢g2, T1 €R, 20 =0, 23>0,
u=gs, =1 €R, x0>0, z3=0,
u(0) =ug, x1 €R, 2 >0, x3>0.

For convenience, let Q := RxRy xRy, S; :=Rx {0} xRy and Sy := Rx Ry x {0}.
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In a first step we extend ug € WZ? —2/p (£2)? with respect to z2 via the reflection

uo(z1, T2, 23), if x5 >0,

Uo(x1, x2,23) = {

—uo(xl,—ng,xg) —|—2u0(x1,—x2/2,x3), if To < 0.

Then 49 € Wgﬂ/p(R x R x R,)3. Applying the same method to
g3 € Wy /2 (J; Ly(52)*) 0 Ly(J; Wy~ H/P(S2)?)
yields an extension
g3 € W2 (J; Ly(R x R)*) N Ly (J; W22 (R x R)?).
Furthermore it holds that g3|;—0 = @g|zs—0, since g3|i—o = ugls,. Then we solve the
half-space problem
Ot — At =0, (x1,72,23) € R* x R,
(2.6) Upg=0 = G3, (21,72) € R?, 23 =0,
'(NL(O) :ﬂ(]a ($17$27$3) ER2 XR+a
to obtain a unique solution
i€ BT Ly(R2)) N Ly(J: HARL)P).

If (u,7) is a solution of (2.5), then the (restricted) function (u — u,7) solves (2.5)
with up = g3 = 0 and some modified data (f,g1,g2) (not to be relabeled) in the
right regularity classes having a vanishing trace at ¢t = 0 whenever it exists.

In a next step we extend

g1 €Wy 2T (T3 Ly(S1)%) N Ly (J; W~ V/P(S1)?),
and
g2 €oW /2P (J5 Ly(S1)) N Ly (J; WEY/P(Sy)),
w.r.t. z3 to some functions
g1 €oW, PP (; Ly(R%)?) 1 Ly (J; W~ 1P (R?)?),
and
g2 €W, PP (T; Ly(R?)) N Ly (J; W~ /P(R)),
and solve the half-space problem
ou—Au=0, x1,23€R, 9 >0,
(27) (1[O2tiy + Oriia, D3tz + Ootiz]" = §1, 1,23 ER, 29 =0,
‘ 62:.627 1:171"3ER) $2:07
ﬂ(O) =0, x1,73€ R, 22> 0,

to obtain a unique solution

U €0Hy(J; Lp(R x Ry x R)?) N Ly(J; HY (R x Ry x R)?).
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If (u,7) is a solution of (2.5) it follows that the (restricted) function (v — @ — u, )
solves the problem

d(pu) — pAu+Vr = f, (21,22,23) € Q,
diVU:fd, (.Il,.IQ,.CL'g) EQ?
p[Ozur + Oruz, Dsug + Oaus]T =0, (w1,22,23) € 1,
uz =0, (x1,72,23) € 51,
u=gs, (1,72,73)€ Sy,
U(O) =0, (1‘1, x2,$3) € Q,
with some modified data (f, f4,g3) in the right regularity classes having a vanishing
trace at t = 0 whenever it exists. Note that g3 := u|z,—0 and the compatibility
conditions (g3)2 = 02(g3)1,3 = 0 hold if 1 € R, 22 = 0 and 3 = 0 (here we use the
abbreviation (g3); := g3 - €;, 7 € {1,2,3}). We will now extend (f1, f3, fa, (93)1,3)

by even reflection and (f2,(g3)2) by odd reflection to {z3 < 0}. Then we consider
the (reflected) half-space problem

O(pt) — pAG + V7

f r1,22 €ER, x3 >0,
fas

(2.9) Q:L:N r1, T2 €ER, 3 >0,
u=gs, x1,x2€R, xz3=0,
(0):0 r1,x2 € R, 23 >0,

which has a unique solution
i €oH)(J; Ly(RY)?) N Ly(J; HY (R3)?),

by [4, Theorem 6.1].

The (restricted) pair (u,n) := (@ + @ + 4, ) is the desired unique solution to
(2.5). We have thus proven the following
Theorem 2.1. Letn=3,p>5,T >0, p,u>0 and J =[0,T]. Then there exists
a unique solution

u € Hy(J; Ly(2)°) N Ly(J; Hy (2)°)
€ Ly(J; Hy(Q))

of (2.5) if and only if the data satisfy the following reqularity and compatibility
conditions.

(1) f € Ly(J; Ly(2)%);
(2) fa € Ly(J; H(Q));

(3) g1 € WJ” Vo p(51)%) 0 Ly(J; W, P (51)2);
(4) g2 € W VPP (J: Ly(S1)) 0 Ly (T Wy~ /P(81));

(5) g5 € Wl T Ly(82)°) N Ly Wi P(55)3);
(6)

(7) d

(8)

ivug = fd\t 0, 1[02(uo)1 + 01 (uo)2, D3(uo)2 + D2(u0)s]|,—o = g1li=o;

6
7
8) (u0)2]za=0 = 92|t=0, U0|z3=0 = 93|i=0;
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(9) (93)2]22=0 = g2les=0, 1[02(g3)1+D1(g3)2, B392]es—0+2(93)3]l1,—0 = g1les=0;

(10) (fa92,95) € Hy(J; H, ' ().
2.3.2. The Stokes equations in bent quarter-spaces. Let § € BC3(R) such that
Go = {(x1,22) €ER?: 25 > 0(x1)} and Qp = Gy x R,.

We assume furthermore that |§/|o < 7 and |§0)|o < M, j € {2,3}, where we may
choose 7 > 0 as small as we wish. Let S1p := 0Gy x Ry and Sy¢ := Gy x {0}.

Furthermore, let vg, , = (vg,,0)T with vg, = \/ﬁﬁ(e’(m), —1)T denote the
: o

outer unit normal to S1 ¢ at (z1,0(z1),23), (z1,23) € R x Ry and let Ps, , be the
tangential projection to Sig. Consider the problem

O(pu) — pAu+Vr = f, x € Qy,
divu = fg, x € Qy,
Ps, o[(Du)vg, ,] = Ps,g1, x € S,
(ulvs,4) = g2, = € Sy,
u=g3, xS
u(0) = ug, € Q.

(2.10)

Here p, u > 0 are given constants. Note that since vg, = (vsg,0)" it holds that

Pog,[1(D'v)vg,] )

(211) Psl,e[M(Du)V‘glﬂ] - <,LL83(U’VGQ) + ,ual/Gqu

where D' = D(, +,) and u = (v,w). Therefore, the given data (f, fa, 91,92, 93, u0)
is subject to the compatibility conditions (g3|vs, ,) = g2[s,,,

Pac, [1(D'g3)vs, ] = Pag,9h,

and 110392 + Oug, (93 - €3)) = g1 - €3 at the contact line {(z1,6(z1),0) : z1 € R},

where
2

g5 =Y (95 ex)er

k=1
for j € {1,3}. Furthermore, at t = 0 we have divug = fali=0, vols,, = g3li=0,
(wolvs,4) = g2li=o and Ps, o[u(Duo)vs, 5] = Ps, ,91le=0. Lastly, (fa,92,93) €
H, (J; Hy ' ().
For convenience we shall reduce (2.10) to the case ug = f = g3 = 0. To this end

we first extend up and f to some g € W572/p(R3)3 and f € L,(J; Ly(R3)3) and

solve the full-space problem
Ou(pit) — pAi = f, in R3,
@(0) = @, in R3,
to obtain a unique solution

i € Hy(J; Ly(R%)*) N Ly(J; Hy (R?)?).
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Let now g3 := g3 — u|s,. Then §3|;=0 = 0 by construction and we may extend gs to
some

g3 €W, 2P (J; Ly(R?)?) N Ly (J; W17 (R?)?).

With g3 at hand we solve the half-space problem

O (ptt) — pAia =0, inR3,
i =gs, onR?

~ . 3
w(0) =0, inR7,

to obtain a unique solution
i € HY(J; Ly(RS)®) 1 L (J; HE(RS)?).

If u is a solution of (2.10), it follows that the (restricted) function @ :=u —a — @
solves (2.10) with f = ug = g3 = 0 and some modified functions fy,g;, 7 € {1,2}
in the correct regularity classes satisfying the compatibility conditions §2|5279 =
0, Psc,gy = 0 and g; - e3 = 0372 at the contact line. Moreover, (f4,32,0) €
o, (J5 H, H(Q))-

Observe that by the identity (Ps, yw|vs, ,) = 0, w € R3, the second component
of Pg, yw is redundant (it can always be calculated from the first one). Therefore
we may replace the term Pg, ,[1(Du)vs, ,| by its first and last component, i.e. we
consider the two equations

PSI,Q[M(DU)VSLQ] T€j = Pslyggl © €4

for j € {1,3}. Observe also that Ps, ,g1 - e3 = g1 - e3, since the last component of
Vs, , is identically zero..

In what follows we will transform the domain Gy to G := R x R, the boundaries
S1,0 and Sz to St := 0G x Ry and Sy := G x {0}, respectively, and, hence, {0y to
Q := G x R;. To this end we introduce the new variables 1 = z1, T2 = x9 — 0(z1)
and T3 = x3 for v € Qg = Gy x Ry. Suppose that (u,7) is a solution of (2.10) and
define the new functions

() == u(Z1, T2 + 0(Z1), T3)
and
(%) = (%1, T2 + 0(Z1), T3),

where Z := (Z1,Z2,73). In the same way we transform the data (f4,g1,g2) to
(f4,31,92). It holds that 8]%11 = Olufor k € {2,3}, j € {1,2},

Ohu = 01u — 9’(:?1)8212

and

OPu = 0% — 20/ (%1)0,020 — 0" (Z1) Dot + 0'(71)%024.
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Therefore, the pair (u,7) solves the following problem

O(pu) — pAu+ Vi = My (0,u,7), T €,

div @ = My (6,a) + fq, T €Q,
p(Otig + Optiy) = M3(0,u) — WS[PSL@ -e1], T €95,
(2.12) (1(Dotis + O3ta) = My(0,%) — /14 02[gy - e3], 7 € S,
iy = M5(6,a) — /14 62gy, T€S5,
u=0, x€.9s,
u(0) =0, =z e,

where the functions M; are given by
My (0,0, 7) := 20 (21)01020 + 0" (%1) Dot — 0 (Z1)*030 + 0 (1) DoTey,
My(0,a) = 0'(z1)0q1,
M3(0,%) == pb'(%1)[2010y + 0'(%1) (0112 — Oatiy) — (1 + 6'(Z1)?)Dotia],
My(0,6) = pb' (21)(O1tiz — ' (z1)Oatiz + Osii1),
Ms(9,a) == 0'(Z1)u.
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Now we want to go back from (2.12) to (2.10). To this end we consider the functions
on the right hand side of (2.12) as given data in the right regularity classes. Our
aim is the to interpret (2.12) as a perturbation of (2.5), provided |¢'| < 7 and
n > 0 is sufficiently small. It is therefore reasonable to solve (2.12) by a Neumann

series argument. To this end let
oBu(T) == {u €oH,(J; Lp()*) N Lp(J; HZ(Q)?) : uls, = 0},
E.(T) = Ly(J H}(Q)),
0E(T) :=0Eu(T) x Ex(T),
F(T) == F(T) x F2(T) x°_3 oFF;(T),

where

Fi(T) = Ly(J; Lp()°),
Fo(T) := Ly(J; Hy (),
oFs(T) := oW,/ 2P (J; Ly(S1)) N Ly(J; Wy /P (1)),
oF4(T) :=oF3(T), and
oFs(T) :=oW, /2P (J; Ly(S1)) N Lyp(J; W2~ 1/P(S1)).
Finally, we set

oF(T) :=={(f1,-.., f5) € F(T) : (9) & (10) in Theorem 2.1 are satisfied}.
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Define an operator L : (E(T) — oF(T) by
O (p) — AT+ V7
divu
L(a,7) := | p(02u1 + O1u2)ls,
11(O3tiz + Daiz)|s,
ﬂ2|51
and note that L : ¢E(T) —oF(T) is an isomorphism by Theorem 2.1. Define
M(97 u, 7Tr) = (Ml (97 u, ’ﬁ-)a M2(67 ﬂ)> M3(07 ﬂ)a M4(03 ﬂ)a M5(07 a))T
and
F = (07 fZa fSa f4a fS)Ta
with fo := fa,

3
f3 ==V 1 +0/2 [PSngl . 61]7 f4 =V 1+ 0l2[§1 : 63]

and f5 := —V1+ 6"2g5. By the smoothness of 0, it follows that F € F(T) So it
remains to check that the compatibility conditions (9) & 10 in Theorem 2.1 are
satisfied. Since gals, = 0, Pyg,G1,0 = 0 and g1, = 0372 at the contact line, the
compatibility conditions in Theorem 2.1 (9) are easily verified. To verify (10) in
Theorem 2.1 we have to show that (fo, f5,0) EOHI%(J; lﬁlp_l(Q)) Note that for the
reduced data from above we have (fg, g2,0) EOH;(J; I:Ip_l(Qg)), hence for a.e. t € J
the functional W(¢) : H;,(Qg) — R defined by

(W(t), 6) = MW¢M—/ g2(0)8ls, » 46
Qg S1,0

as well as its derivative with respect to t are continuous with respect to the norm
|V - HLPI(QQ). Transforming €2y to the quarter space Q2 and S; ¢ to S; via the above

diffeomorphism ®(zy, 9, x3) = (z1, 22 — 6(x1), x3) yields
fat)o da — [ ga(®)dls,, dSa =
Qg S1,6
_ /Qfd(t)i) a — /S VIt 0@2g:(1)dls, dS,
1

where ¢(Z1,%2,%3) := ¢(x1,22 — O(21),23). This shows that for a.e. t € J the
functional W(¢) : H;,(Q) — R given by

<W&@:Aﬁ®%ﬁjé¢ﬂﬂ@ﬁﬁwa%

and its derivative with respect to ¢ are continuous with respect to the norm ||V -
Iz, , (0 hence (fa, f5,0) €oH)(J; Hy'(€)). This implies I €oF(T).

Concerning M (0, u,7), we observe that for u € gE,(T") we have u = 0 as well as
0;u =0 at Sy for j € {1,2} and therefore also at the line

0S1 = 059 :EQEIRX {0} X {0},
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by continuity of 4 and 9;u in Q. Therefore M3(0,u) = M5(0,a) = 0 at Sy N Sa.
Moreover,
My(0,u) = pb' (z1)0511
at S1 N S, hence pudsMs(0,u) = My(6, ). It remains to verify the condition
(Ma(0, @), ~M5(0,7),0) €0,y (J; Hy ' (2))
for u € gE,(T). We compute

/ My, )¢ di— / (—Ms(6,0))0]s, dS
Q S1

_ /Q 0 @) @m)6 di+ [ 0(@)mols, 4

= —/ 0’(@1)@182(]5 dz,
Q

for each ¢ € H;,(Q), where we integrated by parts with respect to the variable Zs.
This yields the claim.

It follows that M(6,u) € oF(T) for each (u,7) € ¢E(T') and therefore we may
rewrite (2.12) shortly as (u,7) = L~*M(0,4,7) + L~'F in (E(T). We intend to
show that for each € > 0 there exist Ty > 0 and 79 > 0 such that
(2.13) 1M (0, @, 7) ey < ell(@, 7)),

provided that T' € (0,7p) and n € (0,70).
The above computation for (Ma, M5, 0) readily yields that

||(M2(9>7j)’M5(975)70)||H;(J;ﬁp—1(9)) < ”QIHOOHEH]EM(T)-
Moreover, it holds that
1M2(8, @) .,y .13 () < N6 oo @l () + 107 ool 2,y (7,02 (2))
< ool ry + 2210 ool £y 1130
< (10'le + T22C10" o)l .
where the constant C' > 0 stems from the embeddings
0Hy (I3 Lp(0) N Ly(J; Hp () <=0 Hy/?(J; Hy (Q) < Loy (J; Hy (),

valid for each p > 1. Note that C' > 0 does not depend on T' > 0, since u|i—g = 0.
The estimate for Mj is very easy. Indeed, by Hélder’s inequality we obtain

M0, 5, @) 1, ;1,0 (0)) < C 110 oo (L +116]|0) +T1/2”||9”Hoo} (@, )l (7).

Again, C' > 0 does not depend on T' > 0. The estimates for M3, My are nearly the
same. So we just concentrate on My.

IM3(0, 8,y < 11Ma(0, ) M@,

”Wé/ 2V (T Ly (51 (S W, P (s1))

< C {10 loellallzury + IM0, 0,y yr-vimgs, ]
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To estimate last term, it suffices to consider a term of the form 6#'0;u in
Ly(J; Wpl_l/p(Sl)) for some j € {1,2,3}. Making use of the embedding
Ly(J; Hy () = Lyp(J; W, =P (1))
we obtain
1005w vrmsayy = CNO Oty myqon) <
< C [[10'lloo + T2 oo il ()
with C' > 0 being independent of 7' > 0. Finally, it remains to estimate Mj5 in
F5(T"). We employ the embedding
Ly(J5 Hy () = Lp(J; Wy~ H/2(81))
to the result
1075, a=imsyy < OBy imzc0)
< C[10'lloo + T22(10" oo + 116" loe) ] 1l -
Collecting everything together, we have shown that
1M(6, 2, ®)llery S (19100 + T22(10" oo + 18" 1o0) | 10, 7) lmcry.
Recall that ||0'||cc < 1. Therefore, choosing first > 0, then 7" > 0 small enough,

we obtain the desired estimate (2.13). A Neumann series argument in o(E(7") finally
implies that there exists a unique solution (u,7) €oE(T") of the equation L(u,7) =
M(0,u,7) + F or equivalently a solution (u,7) of (2.10), provided that the data
satisfy all relevant compatibility conditions at the contact line S; N Ss.

This in turn yields a solution operator Sgs : Fos — Eqgg for (2.10), where Egg
and Fgg are the solution space and data space, respectively, for the bent quarter-
space and the data in Fgg satisfy all relevant compatibility conditions at the contact
line {(x1,6(21),0) : 21 € R}.

2.3.3. The two-phase Stokes equations in half-spaces. Consider the problem
Olpu) — pAu+Vr = f, 1 €R, x>0, 23 € R,
divu=fy, z1€R, 22 >0, 253 € R,
—[uo3v] = [pVpus] = gv, x1 €R, 22 >0, 23 =0,
—2[pdzus] + [r] — oAph =gy, =1 €R, 2 >0, x3 =0,
[u] =ux, =1 €R, z9>0, z3=0,
(2.14) Oth —mlug] = gn, 21 €R, 22 >0, 23 =0,
(1[Oaus + Orug, Dguz + Doug)" = g1, w1 ER, 12 =0, 23 € R,
U2 = g2, :EleR,IL‘Q:O,SL'gER,
82h:g3, x1€R, o =0, z3 =0,
u(0) =ug, x1 €R, 29 >0, 23 € R,
h(O):hQ 1 €R, 29 >0, 23 =0.
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Here m[w] := (w4 + w_)/2, where wy denote the traces of w at 3 = 0 from above
and below, respectively. Note that m[w] = w|z,—0 if w is continuous at x3 = 0, that
is, if [w] = wy —w— = 0. Furthermore 2’ := (z1, z2).

For convenience we set Q :=R xRy xR, S1:=R x {0} xR, ¥ :=R xRy x {0}
and 0% := R x {0} x {0}. We will prove the following existence and uniqueness
result.

Theorem 2.2. Letn =3, p > 5T >0, pj,pu; >0, 5 =1,2,J =1[0,T]. The
problem (2.14) has a unique solution (u,w,h) with reqularity

u € Hy(J3Lp()°) N Ly(J; HR(Q\E)?), 7 € Lp(J; Hy (D)),
[7] € W, /2712 (J; Ly(£)) 0 Ly (J; W, ~VP(2)),

he W2V (] Ly(2)) N HY(J; W2TYP(2)) N Ly (J; WE—P(x)),
if and only if the data satisfy the following regularity and compatibility conditions.

gs € WP VP (T Ly(0%)) 1 HL(J: Wy~ 2/P(0%)) N Ly (J; Wy 2/ (9%2));
up = (vo, wo) € W2 2P(Q)3, hg € Wp 2/P(%)

divug = fali=o, [uo] = usli=o,

1[02(uo)1 + 91 (uo)2, 93(uo)2 + O2(uo)s)|T,—o = gili=o,

(10)2]22=0 = 92lt=0, O2h0|zo=0 = g3li=0, —[1O3v0] — [V (u0)3] = guli=o0,
(gv)2 + [(91)2] = 0, [(91)1/p] = O2(us)1 + O (us)2 at O%;

[(91)2/1 — O3g2] = O2(usx)s, [g2] = (ux)2 at 0%,

drgs — m[(g1)2/ 1 — 03g2] = Dagn at %,

Proof. In a first step we will show that without loss of generality we may assume
ug = 0 and hg = 0. We start with hg. For that purpose we extend hg and g, with

respect to  to some functions hg € W;iz/p(RQ) and
Gn € Wy 20(J; Ly(R)) 1 Ly(J; W~ P(R?)),

respectively. Furthermore, we extend ug with respect to xo to some function 4y €

W5_2/p(R2 x R)3, where R := R\{0}. The extensions for ug and g, can be achieved
by applying a higher order reflection method as in Subsection 2.3.1. In general,
for the extension of hg, one cannot apply the reflection technique from Subsection

2.3.1, since for large p one has W;’ 2P o2, However, the extension for kg exists
due to the results in [45, 46]. Let now

il(t) — [267(17Am/)1/2t . 672(17Am/)1/2t]i10+
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[e= IRt _ o= 20=80t) (1 — A" Hmlig - e3] + Gnli=o}, t>0,

where A,/ denotes the Laplace operator with respect to the variables 2’ = (x1,z2) €
R2. Since ho € Wi 2P(R2) and mlio - €3], Gnlimo € W2 *P(R2), it follows from
elementary semigroup theory that

he€ W= (J; Ly(R?)) 0 Hy (J; WP (R?) N Ly(J; W~ HP(R?))
with A(0) = ho and 8;h(0) = mlig - €3] + Gn|i=o.

Let us turn to ug. Consider the extension g € I/Vp2 2 (R? x R)? from above and
let 4 = Tg|zsz0 € WZ?_Q/p(R2 x R1)3. Extend %/ with respect to the variable z3
to ig € WI? —2/p (R3)3. Then we solve the full space problem

it —Aat =0, zeR?
at(0) =af, =eR?
to obtain a unique solution

@t e H)(J; Lp(R®)*) N Ly(J; HY(R?)?).

Extending u, with respect to x3 to some i, € szf2/p(R3)3 and solving the latter
full space problem with ftar being replaced by 1, yields a unique solution

at € H)(J; Lp(R®)*) N Ly(J; HY(R?)?).

Then we define

X utlo, x3>0,

U=

ﬂ,|Q, z3 < 0.
Then @ € H}(J; Ly(2)*) N Ly(J; H(Q\X)?) and @fi—o = ug in Q\X. If (u, m, [x], h)
is a solution of (2.14), then (u — @, [7], h — h) solves (2.14) with ug = 0, hg = 0
and some modified data
(fv fd7 9vs Gu, U, Gh; 91, 92, 93)

(not to be relabeled) in the right regularity classes, having vanishing traces at t = 0
and satisfying the compatibility conditions at 9% stated in Theorem 2.2. Note also
that by construction d;(h — h)|—o = 0.

By Proposition 5.2 we may also assume that g3 = 0. Indeed, there exists

hy €oW2TL2P(J: Ly(8)) NoHL(J; W2TYP(2)) N Ly(J; WE~1/P(3))

such that dahy|.,—0 = g3. Replacing h by h — h, it follows that Ja(h — hy)|z,—0 =
0. The functions g, and g, have to be replaced by gn, — Oth. and g, + 0 Ay hy,
respectively.

Next we extend

91 = Gilag>o € OW;}/Q_I/QP(JE Lp(Ri)Q) N Ly (J; Wpl_l/p(R%r)Q)
by even reflection and

9; 1= galas>0 € OWpl_l/Qp(JS LP(R?I—)) N Lp(J; WpQ_l/p(R?i-))
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by means of the reflection

g;(ta$1a$3), if T3 > 07
—gy (t,m1, —223) + 295 (t, 71, —73/2), if x3 < 0.

g;(t)xl)mi’)) - {

to functions
Gt € oWV (T L (R2)2) 1 Ly(J; Wi P (R2)?)
and
G € oWITV2(J Ly(R2) 1 Ly(J; W2 V/P(R2)).
Let u™ := p|z4>0 and solve the parabolic system
(2.15)
Oy — Auy, = 0, (z1,23) € R?, 29 > 0,
(02 (ue)1 + 01 (us)2, O3 (us)2 + Da(us)s] T g1, (z1,23) €R?, 29 =0,
(u*)z = g;_, (.21?1,.1‘3) S RQ, zo =0,
ue(0) = 0, (71,23) € R%, 29 > 0,

by [13], to obtain a solution
ux € oHy(J; Ly(RY x R))® N Ly(J; HY (R x R))®.

Then we repeat the same procedure for g; = Jjlzs<0 to obtain a function
U € oHp(J5 Ly(RE x R))? N Ly (J; H2 (R x R))?

as a solution of (2.15) with gj being replaced by the extensions 9; of 9; and pu™
being replaced by u~ := pi|z5<0-

Define
U, x3 > 0,
V=
Usese x3 < 0.
It follows that the function @ := u — v satisfies @|,—p = 0, [a] = ux — [v] =: k and
wlOoty + Orug, D3ug + Ootig) =0, 1y =0

at S1\X. In order to remove the jump of @, we note that by the compatibility
conditions it holds that ko = 0 and 0xk1 = Ooks = 0 on 0X. Therefore it is possible
to extend

ke oW, V(T Ly(RE))? N Ly(J; Wy~ /P (RY))?
to a function
k€ oW /2P (J; Ly(R?))* N Ly(J; W2TY/P(R?))3

by even reflection of ki, ks and odd reflection of k3. Then we solve the Dirichlet
problem

ow—Aw = 0, (w1,22) € R%) 23 >0,
(2.16) try,—ow =k, (w1,22) € R?, 23 =0,
w(0) = 0, (z1,22) € R?, 23 > 0,

to obtain a unique solution

w € oHy(J; Lp(RY)) N Lp(J; HY(RY)).
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Note that by symmetry the function

w1 <t7 xy1, —x2, 1'3),
w(t,x) = | —wa(t,r1, —T2,73),
w3 (t, x1, —T2,23)

is a solution of (2.16) too, hence w = w and therefore it holds that wy = 0 as well
as dowy + Oywe = O3wo + Gows = 0 at S1\X. Let 44 := @3>0 and define

N Ugy — w, if x3 > 0,
u =
U_, if z3 < 0.

Then [u*] = 0 and
p[Oauy + O1uy, Osuy + dhus] =0, u5 =0
on S1\¥. We arrive at the problem

O(pu) — pAu+Vr = f, € Q\X,
divu = fg, x€Q\%,
~[pdsv] = [WVpw] = gy, z €,
—2[udsus] + [7] — cAph = g, x€EX,
[u] =0, ze€X,
(2.17) Oth —ug = gn, ©€X,
[Oouy + Orug, Dsug 4+ dous]’ =0, x € $;\I%,
ug =0, x€S5\0%,
Ooh =0, z€dx,
u(0) =0, ze€Q\X,
h(0)=0 z€¥,

with modified data f € L,(J; L,(Q))3,

fa € Ly(J; Hy(Q\X)),

(90r 9w) € oW, 22 (T; Ly(2)%) N Ly(J; W, HP(2)?),
and
gn € oW, PP(J; Ly() N Ly (J; WP (5)),
satisfying the compatibility conditions (g,)2 = O2gn, = 0 at 0¥ and (f4,0,0) €
o, (J; H, H (Q)).

Therefore it is possible to extend (f1, f3, fa, (9v)1, 9w, gn) by even reflection to
{z2 < 0}. On the other side we may extend (f2, (g,)2) by odd reflection to {z2 < 0}.
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In a next step we consider the (reflected) problem
di(pt) — pAu+ Vi = f, (x1,29) € R?, 23 € R,
diva = fy, (z1,22) € R?, x3 € R,
—[1050] — [uVawis] = Go, (v1,72) € R?, 23 =0,

(2 18) —2[[/133’113]] + [[77(']] —o0Aph =gy, (x1,29) € RQ, 3 =0,
’ [[ﬁ]] = O, (.Tl,:EQ) c RQ, xr3 = 0,
Oh — i3 = gn, (w1,22) € R?, 23 =0,
a(0) =0, (x1,22) € R?, 23 €R,
B(O) =0, (z1,22) € Rz, x3 =0,
with given reflected data f € L,(J; L,(R? x R))3,
fa € Ly(J; H)(R? x R)),
(Gos ) € oW, P72 (T Ly(R?)P) N Ly(J; WP (R?)),
and

Gn € oWy (J; Ly(R?)) N Ly (J; W2TV/P(R?)),

where (f4,0) €oHL(J; Hy Y (R? x R)).
By [24, Theorem 5.1] there exists a unique solution (@, 7, [7], k) of (2.18) with
regularity

@ €0 Hy (J; Lp(R*))* N Ly (J; Hp (R?))?,
7€ Lp(J; Hy(R?)),
[7] €W, /2722 (J; Ly(R?)) N Ly(J; W, /P (R?)),
and
h €oW2 2 (J; Ly(R?) NoHL(J; W2TYP(R?)) N Ly (J; WP (R?)).

Note that by symmetry the function (a, 7, h) with 4;(z) := @;(z1, —2,23), j €
{1,3}, tz(x) := —ta(x1, —2, 3), T(x) := 7(21, —22,23) and h(z’) := h(z1, —x2) is
a solution of (2.18) too. Therefore, by uniqueness, it follows that

ﬂj(ajly —I2, 553) = ﬂj(l‘l’ X2, ‘753)’ j € {17 3}7
tg (71, v2, ¥3) = —Ua(w1, —2,23), 7(¥1,72,73) = (21, —T2,73)
and h(zy,z2) = h(z1, —x2). This necessarily yields
iy = (0211 + O11g) = (O3t + Oatiz) = 0,

as well as dph = 0 at S;\X. Hence the restriction (i, 7, [7], h)|q is the unique strong
solution of (2.17). O
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2.3.4. The two-phase Stokes equations in bent half-spaces. Let § € BC3(R) such
that
G@ = {(.%'1,.%2) S RQ 1 Xy > H(xl)} and Qg = Gg x R.

We assume furthermore that |6|c < 7 and [020]oc < M, j € {2,3}, where we

may choose 77 > 0 as small as we wish. Let 51 := 0Gg x R. Furthermore, let
3 R 1 .

Vs, s = (VG 0)T with vg, = W(G'(:ﬁ), —1)T denote the outer unit normal

to 19 at (w1,0(21),73), (z1,73) € R xR and let Pg, , be the tangential projection
to S19. Furthermore, let ¥y := Gy x {0} and 0%y := 0Gy x {0}.
Consider the problem

O(pu) — pAu+Vr = f, x € Qp\Xy,

divu = fg, x € Qp\Xg,
—[u03v] = [uVew] = go, x € Zy,
—2[udsw] + 7] — cAph = gw, x € g,
[u] =us, z€Xy,
(2.19) Oh —mw] = gn, x € Xy,

Ps, , <H(Vu + VUT)VSLG) = Ps,,91, T € S14\0%,
U-Vs . =ga, T € S19\0%0,

81/(;9}1 =g3, X € IXy

u(0) =ug, =€ Qp\y,
h(0) = hy, =z € Xy,

where v = (v,w) and v = (uy,u2), w = ug. Without loss of generality we may
consider ug = 0 and hg = 0 in (2.19). Literally, this can be seen as in Subsection
2.3.3, we will not go into the details. The remaining modified data (not to be
relabeled) belong to the right regularity classes and they have vanishing traces at
t=0.

Next, we will show that we may assume uy = 0. For that purpose, extend ux,
with respect to o to some function

i €W/ (J; L(R?)®) 1 L, (J; W2 /P (R2)%),
and solve the half space problem
Oy — Au, =0, € R? x Ry,
uy = iy, = €R*x {0},
u«(0) =0, 2z€R*xR,,
by [13] to obtain a unique solution
u, €0Hy(J; Ly(R* x Ry)®) N Ly(J; HA(R? x R4 )?).
If (u,m,[r],h) is a solution of (2.19) with up = 0 and hy = 0, and

Ug — U, if z3 > 0,
U** = _ .
U_, it z3 < 0.
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where u* := ulz,>0, then [u.] = 0. Again the remaining modified data have the

correct regularity and vanishing traces at t = 0. Note that in this case m[w| = Wix,
where Uy = Vi, Wik ).

Let us show that we may reduce (2.19) with ug = 0, hp = 0 and uy, = 0 to the
case gy = 0, gy = 0 and g, = 0. To this end we extend the data (gy, gw, gn) With
respect to xo to some functions

(Gos Gu) €W, 22 (J; Ly(R?)®) N Ly (J; W, /P (R?)?),
and
Gn €0W, V(T3 Ly(R)) N Ly(J; Wy~ P (R?)).
Then we consider the two-phase problem
ot —Au=0, zeR?>xR,
—[[Mag’aﬂ - [[va/ﬁ]ﬂ = gvv T e R2 X {O}a
—2[udsw] — oAph = G, =€ R%x {0},

(2.20) [i] =0, =z <€ R?x {0},
oh—w =gy xecR?x{0},

a@(0) =0, zeR?xR,
h(0) =0, zeR?x{0},

for the unknowns (, B) Interestingly, the equations for ¥ and @ decouple. There-
fore we study for the moment the problem

o —Aw =0, zeR?>xR,
—2[udsW] — cAph = G, € R?x {0},
[@] =0, z€R?x{0},

2.21
(2:21) n, € R?x {0},

for the unknowns (@, k). Assume that (i, h) are already known. Then, @ is explic-
itly given by

. 1 e L3 =g Ayh + Gy, if z3 > 0,
(2.22) W(w3) = s 8 ;o <71 I )N o
2(py +pu—) e LY oAph + Gu), if z3 <0,
where L := (9; — Ap)'/2. Therefore,
- 1 1 o
W|gg=0 = 77— L UAw’h+gw
s 2(p + p-) ( )
and it follows that we may reduce (2.21) to a single equation for h which reads
~ = 1
(2.23) Ah — o LA R = L YGw + Gn,

2(py + p-) 2(pt + 1)
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and which is subject to the initial condition A(0) = 0. Making use of the R-
boundedness of the operator A,/ in K (R?), K € {W, H}, the operator-valued H®°-

calculus for d; in o H}; (J; K5(R?)) and real interpolation one can show as in [24, Sec-
tion 5] that the operator 9; — sl LA,/ is invertible in oW, _1/2p(J L,(R*)N
Ly(J; ngl/p(]RQ)) with domain
oW2TY2 (T Ly(R?)) Mo HL(J; W2THP(R?)) N Ly (J; W3~ 1/P(R)).
Hence there exists a unique solution
h €oW2H2(J; Ly(R?) NoHL(J; W2TYP(R?)) N Ly (J; W2 P (R?))
of (2.23). Then w is given by (2.22) and, finally, ¢ is the unique solution of the
two-phase problem
ot —Av =0, zeR*xR,
—[ud30] = [[/N ]+ go, x€R*x {0},
[4] z € R? x {0},
0(0) zeR?xR.
In summary, we have shown that we may reduce (2.19) to the problem
O(pu) — pAu+Vr = f, x € Qg\Xy,
divu = fg, =€ Qp\Xp,
—[p0sv] — [uVpw] =0, =z € Xy,
—2[udsw] + 7] —cAph =0, x € Xy,
[u] =0, =€ Xy,
(2.24) Oh —w=0, ze,
Ps, , (,u(Vu + VuT)VSw) = Ps, ,91, = € S19\0%y,
u-vs , = g2, € S510\0%,
&,Ggh 3, T € 0%y
u(0) = 0, x € Qp\Xy,
h(0) =0, z€ Xy,

with given data (f, g1, g2, 93) having vanishing traces at ¢ = 0 and which satisfy the
compatibility conditions

[92] =0, [g1-e3] =0, [Ps, 91 e1/u] =0, [0392 — g1 - e3/u] =0,
and
Org3 + 0392 — g1 - e3/pu =0
at the contact line {(x1,6(z1),0) : 1 € R}. To see this, one can apply the represen-
tation (2.11) from Subsection 2.3.2. Note also that the second component of Pg, ,w

is redundant, as it can always be reproduced from the first component. Finally, it
holds that (fd? 0, 92) EoH]%(J, Hp_l(Qe))
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We will now transform €2y to 2 :=R xRy xR, S1 4 to 51 :=R x {0} xR, ¥y to
Y =R x R4 x {0} and 0%y to 0% := Ry x {0} x {0}. To this end we introduce
the new variables 1 = x1, T2 = 2 — 0(x1) and T3 = x3 for = € Qy. Suppose that
(u, 7, h) is a solution of (2.19) and define the new functions

u(z) == u(Zy, %2 + 0(Z1),Z3)
(z

7(Z) := 7(T1, T2 + 0(Z1), T3)
and B
h(Z') == h(Z1,Z2 + 0(Z1)),
where z’ := (Z1,Z2). In the same way we transform all of the data. Then, as in
Subsection 2.3.2, (4,7, h) satisfies the problem
(2.25)
O(pu) — pAu+ V7 =M (0,a,7)+ f, T€Q\X
divi = My (0,0) + fq, T€Q\X
—[n030] — [uVaw] = Ms3(0,u), z€X
*2[[#83@]] + [7] — O'Ai,/f_l = My(6, B), TEeEX,
[u] =0, zeX
Bth w = O S 2

E

1+ 0’2 [Ps, 41 - e1], @€ S51\0%,
\/m g1-es3], T € S51\0%,
\/Wg z € 51\0%,
Ooh = —V1+02g;, €05,

u(0) = 0, e Q\z
h(0)=0, z€X,
where @ = (0, 0). The functions M; are given by
My (0,0, 7) := 20 (21)01020 + 0" (Z1) Dot — 0 (Z1)*030 + 0 (71)DaTer,
Ms(0,u) := 6'(z1)0211,
M;(0, 1) = [0 (1) [pd2a], 0],
My(0,h) = o (=20 (21)0102h — 0" (Z1)Ooh + 0 (21)?05h) ,
M5(0, @) := pb' (21)[20111 + 0'(Z1)(O1ig — Ootiy) — (1 + 6'(Z1)%)Daia),
Mg(0, ) = pb'(21)(O1tiz — O (z1)Oatiz + Osi1),
M7(0,a) == 0'(z1)u.

N

5

(81uQ + 82U1)

[\

- = s
/-\/-\/-\A

>
\_/\/\/\/

6

)
S

p(02tig + O3tip) =

JQD

and

Mg(e, ]_I) = (9’(.@1) (61]_1 — 9’(92'1)6211) .
Let us define the function spaces
0Eu(T) := {u €0Hy(J; Lp(Q)*) N Ly(J; HY(AN\X)?) : [u] =0, on T},
Er(T) := Lyp(J; Hy(2\X)),
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0Bq(T) :=oW,/ 27122 (J; Ly(R)) N Ly(J; WL H/P(R)),
0ER(T) := W22 (J; Ly(2)) NoHL(J; W2TYP(£)) N Ly (J; WE—H/P(8))

oE(T) := {(u,m,q,h) €oEu(T) x Ex(T) xoEq(T) xoEn(T) :
q=[r], Oth —u-e3=0on X},
F(T) = ]Fl(T) X ]FQ(T) XJ823 OF]‘(T),

where

Fi(T) := Lp(J; Ly()?),
Fo(T) := Ly(J; Hy(2\X)),
0F5(T) =W,/ 2 V2 (J5 Ly (8)%) 0 L(J; W~ (8)?),
0Fu(T) :=oW, >~V (T, Ly(%)) N Ly(J; W, P (2)),
ofF5(T) : OWp1/2 YT Lp(S1)) N Ly(J; W, ~HP(51\05)),
oF6(T") :=oF5(T),
0F7(T) :=oW, /2P (J; Ly(S1)) N Ly (J; W2~ 1/P(S1)),
and
oFs(T) i= oW/ VP (J; L, (0%)) N HY(J; Wy 2/P(9%)) N Ly(J; W2/P(9%)).
Finally, we set
oF(T) := {(f1,..., fs) € F(T) : (13) & (16) in Theorem 2.2 are satisfied}.
Define an operator L : (E(T) — oF(T) by

[ 0y(pu) — pAG+ Vi |
divu
—[n0sv] — [uVzw]
—2[posw] + q— ocAzph
(02t + O1iz)|s,
11(Ostia + Datiz) s,
ﬂ2_|51
i dah|ox; |
and note that L : ¢E(T) —oF(T) is an isomorphism by Theorem 2.2. Define

M(Q, u, T, B) = (Mla M2> M3> M4> M5> M6> M77 M8)T(97 u, T, B)

and

) P = (1 £2,0.0, f5, fos fr. f8) T
with f1:= f, fo := f4,

3
fsi=—V1+62 [Ps, 401 - €1}, fo:= —V/1+602[g; - es],

7 = —V1+07g and fg := —V1+602g3. It can be readily checked that the
components of F' satisfy the compatibility conditions (13)-(16) in Theorem 2.2. In
fact, this can be seen as in Subsection 2.3.2. Since § € BC3(R) this implies that
F € (F(T). In the same way one can show that the components of M (,u,7,h)
satisfy the compatibility conditions (14)-(16) as well as the second compatibility
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condition in (13) in Theorem 2.2. Unfortunately the first condition in Theorem 2.2
(13) for Mg, which reads

[Me(0,a)] =0 on X,
is in general not satisfied. To circumvent this problem, we modify M3(6,u) as
follows

_ T
My (0,7) = 0/ (21) [[p0wa], — exts ([u(@4D - 6'(1)0 + )|, o] |
Here exty, is a suitable bounded and linear extension operator from
oW, 2P (T3 Ly (0%) 0 L(J: W,y =2/ (0%2))

to
oWV (15 Ly(8)) N Ly(J; WP (),

such that [exty 2]|gs = z for all 2 € ¢ W./>"VP(J; L, (0%)) N Ly(J; Wa~/P(9%)),
which exists due to Proposition 5.1. Note that if we have a solution (u,m,q,h) €
oE(T) of (2.25) with M3(6, @) replaced by Ms3(0,u), then, by the first component of
the third line in (2.25), we obtain that
[[M(alﬂ) — 0’(%1)82@ + 33ﬂ1)ﬂ =0
on ¥, hence M3(0,u) = M3(6,u) in this case.
Let us define
M(ev ﬂa ﬁv 77’) = (Ml) MQ) M3) M4) M5) M67 M77 MS)T(ev ﬂa ﬁv 77’)
Since the modification in M3 does not affect the other compatibility conditions in
Theorem 2.2, it follows readily that M (0, %, 7, h) € oF(T) for each (u,7,q,h) €
oE(T). Therefore, we may rewrite (2.25), with M3 replaced by M3, in the more
condensed form
(2.26) (a,7,G,h) = L~ M(0,a,7,h) + L7'F
in the space oE(T"). As in Subsection 2.3.2 we will apply a Neumann series argument
to show that (2.26) has a unique solution (4,7, q, h) € oE(T'). For that purpose we
need to show the following property for M. For each £ > 0 there exist Ty > 0 and
1o > 0 such that - - B
M0, u, 7, h)|[pr) < ell(a,7,q,h)|lm),
provided that 7' € (0,7p) and 7 € (0,70). Mimicking the estimates of Subsection
2.3.2 for the components of M and taking into account that the operator exty is
linear and bounded, one obtains an estimate of the form

HMWﬂﬁﬁWmuSCMW&+TWWWWm+W”MﬂWmiQMMm,

with a uniform constant C' > 0. Since ||¢/||cc < 7, we may first choose n > 0
sufficiently small and then 7' > 0 sufficiently small, to obtain the desired estimate
for the function M.

Then we may apply a Neumann series argument in ¢[E(7") to conclude that there
exists a unique solution (&, h, 7) €oE(T) of the equation

L(u,7,q,h) = M(,u,7,h) + F

or equivalently a unique solution (u,,q, h) of (2.19) as explained above.
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This in turn yields a solution operator Syg : Fgs — Egg for (2.10), where Egg
and Fyg are the solution space and data space, respectively, for the bent half-space
and the data in Fgg satisfy all relevant compatibility conditions at the contact line
0%.

3. GENERAL BOUNDED CYLINDRICAL DOMAINS

Let n = 3 and p > 5. In this section we will prove that system (2.3) admits
a unique solution. To this end we apply the method of localization. We want
to emphasize that this localization procedure cannot be simply carried over from
standard parabolic systems. This is due to the divergence equation and the presence
of the pressure in (2.3). Let

Eu(J) = Hy (J; Ly(Q)°) N Ly(J; Hy (D)%), Ex(J) := Ly(J; Hy(Q)),
Eq(J) = W22 (J Ly(2)) N Ly(J; W~ VP (S)).
Ep(J) := Wy~ 2P(J; Lp(2)) 0 Hy (J; WP (8)) 0 Ly (J; WP (5)),
and

E(J) :=={(u,m,q,h) € E,(J) X Ex(J) x Eq(J) X Ep(J) : ¢ = [n]}.

3.1. Regularity of the pressure. Let (u)q := u — ﬁ J udz denote the part of

u € L1 () with mean value zero. We start with an auxiliary lemma which provides
some additional regularity for the pressure, which is needed for the localization
procedure.

Lemma 3.1. Let (u, 7, [r],h) € E(J) be a solution of (2.3) with

(fa, 0, ho, g2, us: - Vs, g3 - Vo) = 0,
and f € WS (J; Ly()?) for some a € (0,1/2—1/2p). Then the following assertions
hold.
(1) If Q is bounded, then (mw)a €oWy'(J; Lp(€2)) and the estimate

I(Mallwg(z,) < € (lulls, + 17le, + 1/ lwgz,))

is valid, where C' > 0 does not depend on the length of the interval J.

(2) If Q is a full space, a (bent) quarter space or a (bent) half space, then
(Mk € oW (J; Lp(K)) for each bounded set K C Q. Furthermore there
exists a constant C' > 0 which does not depend on the length of the interval
J such that the estimate

(™) & lwe L,y < Cr (||U||Eu + 17 ]lle, + ||f||Wg(Lp)>
15 valid.
Proof. 1. Let g € Ly(£2) be given and solve the problem
A =g—(g/1) in O\Z,
[pv]=0 on =,
(3.1) O] =0 on %,
Ovo¥ =0 on 0Q\0X = (51\0%) U Sq,
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by Lemma 5.6 and define ¢ := pyp. Since ((m)q|l) = (u|V¢) = 0 we obtain by
integration by parts

((melg) = (m)al(9)e)

— (M2120) = [120, 0005 - (T iv0)

_ _/E[n]]a”;‘ﬁdx - <’;Au\wﬁ> ~(fIVe)

_ [ Pg, . o2 _ f10paq U 10ps u g0
_/vau.v odz /aQ : V¢da+/2{[[p Vol - [1]%22)as

— (fIVo).
Note that there exists a constant C' > 0 such that [|¢[ly2 < C||g[|z,,. Hence, taking
P

the supremum of the left hand side over all functions g € L,/(£2) with norm less or
equal to one, we obtain

I(ma®)llz, @) < C(HVU(t)HLp(Q) + 10vpqu(®)lz, 60)

11 Qv ) L L, s + MmOz, + ||f(t)HL,,(Q)),
for almost all ¢t € J. The same strategy yields the estimate

l(m)a(t) = (Ma(s)lL,@) < C(HV(U(t) = u(s) L) + [10voq (u(t) = u(s))llL, 00

+ 11 Ous (ult) = uls)) L M,y + O] = [r (&L, ) + 1) = f(S)HLp(Q))a

for almost all s,t € J.
By the mixed derivative theorem and trace theory it holds that Oyu; €

oHy* (75 Ly(9)),

(Okwr) 4 |5 €qWAA12P(J; Ly(8))
and

Orui|an €0Wpl/2_1/2p(J; L,(09)),

for k,1 € {1,2,3}. Moreover, [r] EOWI}/2_1/ZP(J; Ly(X¥)). Since H, — W,;=¢ for
each s > 0, € € (0, s), the claim follows.

2. The proof of the second assertion follows essentially the lines of the proof
of the first assertion. We fix a bounded set K C Q. Let g € L,(K) and define
(9K = g—ﬁ(g[l);{, where (ulv)g := [ uvdz. Extend (g9)x by zero to g € L,(Q).
Then § € WP_I(Q) N L,(?) and we may solve the elliptic problem (3.1) with g
as an inhomogeneity in the first equation by Lemma 5.6. This yields a solution
(RS HI}(Q\Z) N Hg(Q\E) satisfying the estimate

IVl @ + IVl < Cldl, @ < Ckllgllr,ix)-

We have ((m)kl9)x = (Mkl(9)x)x = (M)k|d)a = fQ(ﬂ)Kgdx. We are now in
a position to imitate the steps in the proof of the first assertion. This yields the
validity of the second assertion. 0
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3.2. Reduction of the data. It is convenient to reduce the data in (2.3) to the
special case
f=/fa=uo=ho=g2=us vs=gs vgao=0.
Extend hy € W;’Q/Z’(E) and gp|i=0, mlug - e3] € WpQ*g/p(Z) to some functions
ho € Wg —2/p (R?) and g9, € sz —3/p (R?), respectively, and define
il*(t) — [267(17Ax/)1/2t _ efQ(Ifo/)l/zt]BO_{_
[e—(I—Az/)t o 6—2(I—Az/)t](1 o Am’)_l (m() + gg) , t> 0.
Then
he € W=V (J5 Ly(R?) N H (J; Wy~ HP(R?)) 0 Ly (J; W~ VP(R?)

and it holds that h.(0) = hq as well as 8;h.(0) = g + 9. Defining h, := hals it
follows that h.(0) = ho and J¢h.(0) = m[ug] + gnlt=0. Setting hy := h — h, we have
hili=0 = O¢h1t=0 = 0.

Next, let ug = (vg,wo) and qo = 2[udswo] + cAzho + guwli=o0 € W;73/p(2).

Extend gp to some gy € Wpl_?’/p(RQ) and define G,(t) := e®+'*§y. Then

G € W22 ( T Ly(R)) N Ly (J; W, /P(R?)).
Setting g« := Gs|x it follows that
G € W22 (T3 Ly(8)) N Ly(J; W~ /P(8))
and g.|i=0 = qo. Given g, we solve the weak elliptic transmission problem
(V| Ve) =0, ¢ € Hy(9),
[7«] = q«, on X

to obtain a unique solution 7, € Ly (J; HI}(Q\E)) by Lemma 5.7.
Next we solve the parabolic transmission problem

O(pus) — pAu, = =Vme + pf, in Q\X,
[ds0.] — [Varw] = go on %,
—2[udswy] = gw — ¢« + oAy hy, on X,
[us] = us, on 3,
Ps, (,u(Vu* + VUI)Z/51> = Ps,q1, on S1\0%,
Us - Vs, = g2, on S1\0%,
Uy = g3, on So,
ux(0) = ug, in Q\X.

to obtain a solution u, € H;(J; L,(2)%) N Ly (J; Hg(Q\E):g) by Lemma 5.10. Note
that all relevant compatibility conditions of the data are satisfied by assumption.
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Setting u; = u — uy and m; = 7™ — m, we see that w.l.o.g. we may assume that
ug = hg = f = 0. To remove f; we solve the transmission problem

Ay = fg—divu, in Q\X,

[pv] =0 on X,
(3.3) [Oesv] = 0 on X,
8,,89@[) =0 on 69\82 = (51\82) U SS9,

by Lemma 5.8. We remark that [,(fq — divu,)dz = 0 by the compatibility condi-
tions on (f4, us, g2, 93) and

fa— divu, €oH)(J; Hy ' (Q)) N Ly(J; Hy (Q\D)).

Therefore we obtain a solution Vi) € ¢E,(J). Setting us := u; — Vb, my := m +
pOy — pAY and hs := h; we see that we may assume that f; = go = uy - e3 =
gs - e3 = 0. The time trace of all the remaining data at ¢ = 0 vanishes.

3.3. Localization procedure. Before we can state the main result of this subsec-
tion, we introduce some function spaces. Let

Fi(J) = Ly(J; Lp(Q)%),  Fo(J) := Ly(J; Hy(Q\X)).
F3(J) := W, /272 (J; Ly (5)%) N Ly(J; W, VP (S)?),
Fy(J) i= Wp/27V20(J5 Ly(£)) 0 Ly(J; W, VP(E))
F5(J) := W, 2P J; Ly(2)%) N Lp(J; W~ VP(2)?)
Fo(J) := W, /2P(J; Ly(2)) N Ly(J; W, P (S)),
F7(J) = W,/ 2712 (J; Ly(81)%) N Ly (J; W, ~/P(51\0%)?%),
Fs(J) = Wi~ /2P(J; Ly(S1)) N Ly(J; W22 (S1\0%)),
Fo(J) := W,y /2P(J; Lp(S2)) N Ly(J; Wy~ P(S2)),
Fio(J) := W27 (J; Ly(0%)) N Hy(J; WE—/P(9%)) N Ly (J; W22/P(9%)),
and F(J) := legle(J) as well as
F(J) == A{(f1,---, fi0) €F(JI) : (fa, f5, fs, fo) € HY(J; H ' ()}
Furthermore, we set X, := X, , x X, where X, := Wg_z/p(Q\E)?’ and X, j 1=

3-2
WEHr(m).
The main result of this subsection reads as follows.

I
I

Theorem 3.2. Let yj,pj, Hj,o > 0, n =3, p > 5 and let G € R"™1 be open
and bounded with G € C*. Define Q := G x (Hy, Hz) and let ¥ := G x {0}. Let
Sy :=0Gx(Hy, H2) and Sz := (Gx{H1})U(Gx{Ha}) be the vertical and horizontal
parts of the boundary of 2, respectively. Then there exists a unique solution

w € HY(J; Ly(Q)%) N Ly(J; HAQ\D)?), 7€ Lp(J; HEQ\X)),
[7] € W21 (J; Lp(S)) N Ly (J; Wy P (8))
h € W22 (J; Ly(S)) N HY(J; W2TYP(8)) N Ly (J; WEVP(5)),
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of (2.3) if and only if the data are subject to the following regularity and compatibility
conditions.

(1) (f7 fdagvagwyu27gh7917927g37g4) € ]F('])f

(2) (uo, ho) € X,
(3) divug = falt=0, —[uVerwo] — [#03v0] = gult=0, [uo] = usli=o,
(4) Ps, (1(Vuo + Vug)vs,) = Ps, gili=0, uo - Vs, = galt=0, uo = g3|e=o,
(5) Ovyho = gali=o,
(6) [[QQH =uyg Vs,
(7) [(g1-e3)/p — O392] = Oug, (ux - €3),
(8) Pocl(D'vs)v'] = [Pocgi/ul,
(9) Oegs — m[(g1 - €3)/ 1t — O392] = Oy, G,
(10) (gU‘VSH) = _[[91 ) 63]]7 <g3‘V51) = 92,
(11) Po[u(D'gs)v'] = (Pocgt),
(12) pdys, (93 - €3) + pO3g2 = g1 - €3,

where V' = vyq.

Proof. We will split the proof in two parts.
(I) Existence of a left inverse

Let (u,m, 7], h) be a solution of (2.3). By the results of the last subsection there
exists (@, 7, [7], h) such that

(a, 7, [7], fz) = (u,m, [x], h) — (4,7, [7], h)
solves the problem
O(pu) — pAG+ V7 =0, in Q\X,
diva =0, in Q\X,
—[1059] — [V ] = Go, on %,

E)Jz—m[~ =gp, onxy,
Ps, (u(va + Vi s, ) = Ps, g1, on S1\d,

u-vg, =0, on S1\0%,
71:‘&3, on 527

Dypsh = G1, on %,
w(0) =0, inQ\X
h(0) =0, onX,

and (gsles) = (axles) = 0. Choose open sets Uy = B,.(zy) with
hd 62 C U]]{:V:17 Uk’7
and choose r > 0 sufficiently small such that the corresponding solution operators

from Subsections 2.3.2 & 2.3.4 are well-defined. According to Proposition 5.3 there
exist open and connected sets
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Uoﬂz?éﬁ, Uoﬂ@Q:@;

U CQp, k=1,2;

U,NS1 #£0, U N (XU Sy)

Ue,NSy 0, U, N (XUSY)

and a family of functions {p}_, € C3(R?;[0,1]) such that Q C Un_ o Uk, supp ¢, C

U, Z/i;vzo o =1 and Jyg @k () = Oeypr(x) = 0 for z € Up N (02U 0S,), k > T.
Multiplying each equation in (3.4) by ¢ we obtain the following local problems

O(piiy) — plAiy, + Vi = Fiy(a,7), in QF\2F,
div iy, = Fyg(@), in QF\XF,
—[0stk] — [V o ®k] = Guk + Go(@), on 2F,
—2[pdswk] + [7k] — 0 Awhi = Guk + Gur(it, k), on ¥,

®7 3? 4)
0, k=56

) 9

[[ftk]] = ﬂgk, on Ek,

Ophy, — m[y) = Grg, on TF,

(35 Pgu (M(Vﬂk + Vﬂ;)vk) = Pgrgur + Gie(a), on SO,
iy - v =0, on SP\OXF,
iy, = Gk, on S,
Ovo b, = Gak, on O%F,
i (0) =0, in QF\X*
hi(0) =0, on ¥,
where
Fi(@,7) := [V, @x]7 — p[A, pr]t,
Fap () := 1 - Vg,
Gor(@) := (I — e3 @ e3)G (@i, h),
Guk(t, h) := Gp(t, h)es,
Gy (i, h) == [—u(Ver @ 4+ 0 ® Vei)]es — o]As, ol hes,
and

Gur(t) == (I —vp @ vg) (Voo ® 4+ 0 ® Vepp) )k
Furthermore we have set PS{Q =1 -1 ®vg.

For £k = 0 we obtain a pure two-phase problem with a flat interface in R™.
This case has been treated in [24]. If k € {1,2} then we are lead to one-phase
Stokes equations in R™. An analysis of these problems can be found in [4]. If
ke {7,...,Ni} and k € {N7 +1,...,N} then we rotate the coordinate system
(with respect to the x3 axis) and translate it to obtain two-phase Stokes equations in
bent half-spaces and one-phase Stokes equations in bent quarter-spaces, respectively.
These problems have been treated in Subsections 2.3.2 and 2.3.4. Hence, the solution
operators for the charts Uy, k > 7 are well defined by the results in 2.3.2 and 2.3.4.
Finally, if £ € {3,4} then we obtain the Stokes equations in bent half-spaces with
pure-slip conditions, while for £ € {5,6} we are lead to the Stokes equations in
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half-spaces with no-slip boundary condition, see e.g. [4] for the theory of the last
two type of problems. We denote the corresponding solution operators for each
chart Uy by Sy.

Note that all functions Fj, G; carry additional time regularity (take into account
Lemma 3.1) with exception of Fy;. To circumvent this problem we will reduce
(3.5) to the case Fyg = 0. For this purpose we apply Lemma 5.8 and solve the
transmission problem

Agy, = Fy(@) in QF\ZF,

[pdr] =0 on ¥F,
[[863¢k]] =0 on Zk?
Ov 0 =0 on 9NM\9xF,

This yields a solution

Vi €oHy(J; HY Q) 0 Ly, (J; HY(QN\SF)?) =102 ()
satisfying the estimate
(3.6) IVorll 2 < Cnllalle, -

The constant Cy > 0 depends on N but not on the length of J. We define 4y, :=
U — Vo and g 1= T + pOrdr — pAdr. With h = h we obtain the system

Ay (piig) — pAiy, + Vit = Fi(i,7), in QF\2F,
diviy, =0, in QF\XF,
—[10sik] — [V artin] = Gor + Guk(@), on BF,
—2[pdsiog] + [7k] — o Awhie = Gur, + Gur (@, h), on ¥,
[ax] = @sk — [Ver], on 2F,
Aehy, — mlivg] = Gur +m[Oagr], on XF,

(3.7) ) S i L -
Py (M(wk + Vuk)uk) = Pggi, + Gix(@), on SH\OS,
Gy -vp =0, on SP\OXF,
U = g3k — Vo, on Sy,

ay,jzk = G4, oON Sf Nk,

i, (0) =0, in QF\X*

hi,(0) =0, on XF,
where

Gk(ﬂ, iL) = Gk(ﬂ, il) + 2[[uv2(bk]]€3 — [[MAgf)k]]eg,
ka, ka defined as above and

élk(ﬁ) = le(ﬂ) — QM(I — UV X Uk)vqukljk.
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With the help of the solution operators S, we may rewrite (3.7) as

where Hj, stands for the set of given data and Hy(a,r, }NL) denotes the remaining
part on the right hand side of (3.7). Let {0}, C C°(Uy) such that O |supp o, =
1 and multiply (3.8) by 6x. By Lemma 3.1 it holds that (7xV70y), (7xV70:) €
oW (J; L,(Q)) for each j € {0,1,2} and k € {0,..., N}, since suppfy C Uy is
bounded. In addition, the estimate

171V Ok lwe Lty + 176V Ok llwo (s, 0))

< C (llills, () + Wllz, ) + 1 1))
is valid, where C' > 0 does not depend on T > 0. This implies
1(V701) (pOedr — 1A lwe (i, 0y = (V2 0) (G = T lweg (i, 04))
< C (Jalle, 7y + Ills, () + 1))

and since A¢y = Fyi(a) €9Ey(J), it follows that

H(vjek)at¢kHOWI?(J;LP(QIC)) <C (HQZHEU(J) + | Allg, () + ”ﬁHIF(J)>

for each j € {0,1,2} and k € {0,..., N}. Hence, by Holder’s inequality and Sobolev
embedding

1(V70r)0r k|| 1, (7.1, (20)) < T1/2p||(Vjek)atﬁbk||OW;(J;L,,(Qk))-

Next, we apply Holder’s inequality, Sobolev embeddings and the mixed derivative
theorem to obtain

10x0e Dkl L, (711 00)) < T1/2p||9k5t¢k||L2,,(J;H;(Qk))
< CT1/2p||9k3t¢kHW;/z—e(J;H;(Qk))
< CT |0k DBkl yosz—er2 g gz vy
< CTY2110k910k gz, 0L (3130
< CTl/QpHHkatﬁbkHW;,l(J;L,,(Qk))mLp(J;Hg(Qk))
for some a € (0,1/2 — 1/2p) and a sufficiently small ¢ > 0. Note that
1IN0kl 1, (7.1, 00y + IV20bkN 1y (5,2, ) < Cllilg, (),
by (3.6), hence
10x0e Pkl (7.3 0)) < cT/? <||ﬂ||IEu(J) + 2l ) + HFI”F(J)) -
In particular, this implies

10x0:V Okl L, (7.1, )) < 1060:Dk | 1, (.11 00)) + 1(VOR) 010k 1,y (1.1, 20
< TV (Jjills, () + Ihlleur) + 1 ) -
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Moreover, by Sobolev embedding and the mixed derivative theorem, we obtain
106V Okl L, (7.m2(00) < CTl/QpHVCf?k||OH;/2(J;H5(Q;€)) < CT1/2pHaH]Eu(J)-

Since all terms in Hy(a, T, ﬁ) carry additional time regularity, there exists some
~ > 0 such that } 3

[ Hy (@, 7, h)[lpesy < CT7 || (7, 7))
We may now replace Oyt by 0k (tx — Vo) and g7ty by Ok (7, + pOidr — pAdy) in
(3.8) to obtain the estimate

(39 10un T b)) < © (186l + 771 7 B )

with a constant C' > 0 being independent of T > 0. Here 4 := max{1/2p,~}. Since
O (g, T, hi) = (g, T, b)) we may take the sum over all charts to obtain

|2 sy < Co (11 ) + TG 7, B ) ) -
Therefore, choosing T' > 0 sufficiently small, we obtain the a priori estimate
(@, 7, h)llwery < OnllH]lw

for the solution of (3.4). A successive application of the above argument yields
the estimate on each finite interval J = [0,T]. It follows that the solution-to-data
operator L :ogE(J) — oF(J), defined by the left hand side of (3.4) is injective with
closed range. In particular, there exists a left inverse S for L, that is SLz = z for
all z €gE(J).

(IT) Existence of a right inverse

It remains to prove the existence of a right inverse for L. To this end, let the
data F := (f, fa, 9v, 9w, 91, 92, 93, 94, us;, gn) € F(J), (uo, ho) € X, subject to the
conditions in Theorem 3.2 be given. By the results in Subsection 3.2, we may
assume without loss of generality that ug = hg = 0. In particular this means that
the time traces of all inhomogeneities at ¢ = 0 vanish if they exist.

Let uy, Vi) €E,(J) denote the unique solutions of (3.2) and (3.3), respectively,
where now ¢, = m, = hy = 0. Set @ := uy, — V¢, T := puAp — pdyp and h = 0.
Defining

SF := (u, 7, [7],h)
it holds that
f
Ja
9o + Gu(¥)
Gw + Gu E?b;

& _ et 7 us + Gx (¢
LSF = L(a,7, 7], h) = Chlun ) |
g1+ G1(¥)

g2

g3 + G3(v)
0

where

Go(¥) = 2[u(I — e3 ® e3)(V?¢es)],
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Gu(¥) == 2[(V¢e3) - e3] + [uAY],
G () = —[V¥y], Gh(u*,w) —m[uy - e3 — 031,
) _2:U'( — Vg ® Vsl)(V%Vsl),

and G3(v¢) :== —Vd)\gz.
In a next step we consider the problems

di(piig) — pAiy, + Vi =0, in QF\XF
diviy, =0, in QF\2F,

—[pdst] — [uVeribr] = GE(v), on ¥,
[[uag’wk]] + [[71']@]] — oA /hk = ﬁ(i/)) on Ek,
[x] = G&(¥), on ¥F,
dhi — m[wg) = G¥ (us,¥) — g, on X,
(3.10) ) .
Pgr (1 ( (Vg + Vuk)uk) GT(v), on ST\0X",
iy v, =0, on Sf\@Ek,
i = G5(¢), on 83,
&,kitk = —glf, on az:k,
@(0) =0, in QF\X*
h(0) =0, on X,
where

G?(W = G](@Z’)@ka ] € {’anaza 173}7 Gﬁ(“*»ﬂ)) = Gh(u*,¢)@k,

and g, := gmpr, m € {h,4}. Let us check whether the right hand side in (3.10)
satisfies all relevant compatibility conditions at 9% and 855 , k> 7. Consider first
the case x € 955, k € {7,..., N1 }.

We have to show that the relations G% () - v = 0, ud,, (G5(¥) - e3) = G () - e3
and

Pocr[(D'GE (¥))vi] = — Py [(D'v)vi ] on

hold at 0S5, where
/ GE() -

The first condition is equivalent to ¢ (Ve- 1) = 0 at S%. Since vy, = vg, = (/,0)
on supp ¢y, the claim follows from the fact that 9,,¢ = V¢ - v, = Vo -/ =0 at
T € 0S5 Nsupp ¢k, by construction of 1. Next, we compute

D (GE() - e3) = =0y, (prD30) = —031b0, Pk — P10y, O3% = 0

since 0,, ¢, = 0 and
8Vk83¢ = 3u/33¢ = 6381/77/} =0
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at supp @ N 05, since ' does not depend on z3 and 0,9 (x3) = 0 for all x5 €
[H1, H2)\{0} by construction of ). Furthermore we have

Gy - e3 = 1101031 + 19020310 = 830, = 0

at supp @ N 0Sy. Therefore, the second compatibility condition holds. Concerning
the last compatibility condition, note that

D/GBI (w) = _D/((pkvx’d}) = _2§0kv2¢ - vx’(pk ® VM/J - Vx/%b & vm"pk‘

From this identity we obtain

(D'GE ()}, = =20k V>0, — Varody & — Vb, oy
= — Py [u(D"Y)v,

since v, = v/ on supp ¢ and therefore Oy ok = Oy = 0 at 952 N supp pi. I
follows that all compatibility conditions at 855 are satisfied.

The validity of the compatibility conditions at %%, k € {N; +1,..., N}, can be
checked in a very similar way, taking into account the properties of 1) and the fact
that 8ylfggok =0at OXNsuppp, k€ {N1+1,...,N}.

Therefore, for each k € {0,..., N}, there exists a unique solution (ﬂk,%k,fzk)
of (3.10). Let {0x}1_, C C(Uy) such that O|suppe, = 1. Note that the function
(VOi-1uy)|q is mean value free, since @y, is a divergence free vector field and [ay]-es3 =
0 on XNUyg, ay v, =0 at (S1\0X) NUy as well as @y -es = 0 at So N Ug. Therefore,
we may solve the problems

Ay = (VO -g)lo  in Q\Z,

=0 X,
(3.11) [pv] on
[[aeg/l;bk:]] =0 on E,
6,,6,Q¢k =0 on 89\62 = (51\82) U Sy,

by Lemma 5.8. This yields unique solutions
Vb, €oHy (J; Hy (Q\E)?) N Ly(J; HI(Q\X)?).
Finally, we define
N

SF := Z(9kfbk — Vb, Ok 7r, + pOithy, — pAy, Oxhy),
k=0
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and we observe that
—p[A, Oty + [V, Ox] 7,
0
OkGE() + (I — e3 © e3)G ik, hi) + G (1)
OxGE (1) + Gk, hi)es + Gu (V)
0:GE(Y) + Gx(vr)
O (G (us, V) — gr) + m[0s3¢) ’
OkGY(¥) + Py [u(VOx @ ty, + @ @ VOi)vg] + G1(r)
0
kG5 (1) + Ga(¢r)
hi, 0y, 0% — Ok gy

where

G(iig, hy) = [—p(VOy @ g + Gy @ VO;)]es — o[Ayr, Oxhges.
Since Ok |supp o, = 1 it follows that HkGf(@b) = Gf(w), Orgk, = gF and 0,GF (us,1p) =
G¥ (us, ) for j € {v,w, 3, 1,3}, m € {h,4}. Therefore we have

N
D 0GE() = G4(v)
k=0

as well as Zi\/:o Hkgfn = gm and Zgzo GkGﬁ(u*, 1) = Gp(ux, 1) since Zgzo o = 1.
Setting SF .= SF — SF, we obtain the identity

LSF=LSF - LSF =F — RF

where
—u[A, Oplag + [V, Ox] T
0
(I — e3 ® e3)G ik, hy,) + Go (¥

G(ﬂk, hk)eg + Gw(¢k)

RF — Z ngﬁk)

PS{“ (VO @y, + U @ VO)vg] + G1(¥k)
0
Gs(vr)
hi0,, 0%
If we can show that there exists a constant C' > 0 being independent of 7" > 0 such
that the estimate

|RF gy < CT||Flws

for some v > 0 holds, then, if 7" > 0 is sufficiently small, the operator (I — R) is
invertible and the right inverse S for L is given by S := S(I — R)™!.

We remark that all terms which involve 4y, and hy, are of lower order and therefore
these terms carry additional (time-) regularity. Furthermore the terms involving 1y
carry additional (time-) regularity as well, since Vi is regular enough. The only
difficulty that arises is the estimate of Y n [V, 0|7 in L,y(J; L,(2)?). However,
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by Lemma 3.1 we know that 7, €W (0, T’ Ly, i0c(2F)) for some a € (0,1/2—1/2p).
Since 03, has compact support, this yields the estimate

1V, 061w 1) < © (Islls, + Wells, + IVels, )

for some constant C' > 0 which does not depend on T" > 0. In particular this implies

N
| 309 0kl iz @) < ONT™ (el ) + 1V 0l )
k=0

+ llgnllzg() + lgallewo()) < CNTIFllz(a),
for some v > 0. O
We shall also prove a result on well-posedness for the linear system
O(pu) — pAu+ Vr = f,  in Q\X,
divu = fg, in Q\X,
—[ud3v] = [uVew] =gy, on X%,
—2[pdsw] + [7] — oAb — va[p]lh = gw, on X,
[u] = us, on 3,
Oth — m[w] = gp, on X,
Pg, (,u(Vu + VUT)I/Sl) = Pg,g1, on S1\0%,
u-vs, = g2, onS;\0%,

(3.12)

u=gs, onoSy,
Ovoch = g2, on 0%,
u(0) =up, in Q\X

h(0) = hy, on X.

Corollary 3.3. Let v, > 0. Under the assumptions of Theorem 3.2, there exists a
unique solution

we Hy(J; Ly(Q)*) N Ly(J; HA(Q\E)?), 7€ Ly(J; Hy(Q\X)),
[x] € W/~ 12P(J; Ly()) N Ly (J; W, M2 (S))

h e W2 V215 Ly(2)) 0 HY(J; W2 VP()) 0 Ly(J; WP (8)),

of (3.12) if and only if the data are subject to the conditions (1)-(12) in Theorem
3.2.

Proof. Necessity of the conditions follows from trace theory. To prove the sufficiency
part, let

E1(J) := H}(J; Ly(Q)*) N Ly(J; HYQ\E)?),  Ea(J) := Ly(J; HL(Q\D)),
E3(J) := W,/2 V2 (J; Ly(8)) N Ly(J; W, "7 (S))
Ey(J) := Wy V2P (T3 Ly(2) N Hy (J; W VP()) 0 Ly (J; W~ HP(),
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and E(J) := {(u,m,q,h) € x?zlEj(J) : ¢ = [r]}. We first solve (2.3) for the given
data, to obtain a unique solution (us,7«, g, hs) € E(J). Then we consider the
problem

O(pu) — pAu+ Vr =0, in Q\X,
divu =0, in Q\%,
~[nd3v] - [pVpw] =0, on X,
—2[udsw] + [7] — o Aph — va[plh = valplhs, on %,
[u] =0, onX,
Oth —m[w] =0, on X,
Ps, (M(Vu + VuT)l/Sl> =0, on 5\0%,
u-vg, =0, on S1\0%,
u=0, on Sy,
Ovyoeh =0, on 0%,
w(0) =0, inQ\Y
h(0) =0, on X.
Define L :ogE(J) — oF(J) by the left side of (3.13) and Lg :E(J) —(F(J) by the left
side of (2.3) without the initial conditions. We already know that Lg :oE(J) — oF(J)
is boundedly invertible, hence

L=1Lo+ (L~ Lo) = Lo(I + Ly (L — Ly)).
This in turn yields that L : ¢E(J) — oF(J) is boundedly invertible, provided that
(I+Lg*(L—Lo)) :0E(J) —oE(J) has this property. To this end it suffices to show

that the norm of Ly (L — Lo) in E(J) is less than one. For z €gE(.J) we obtain the
estimate

1L (L = Lo)zlle(ry < Mralpdlhllg sy <
< T*Myalplllhllg, ) < T*Malplll 2l
for some o > 0. Here M := ||L61”B(O]F(JO);O]E(‘]O)) and J = [0,7] C [0,Tp] =: Jo.
It follows that if T > 0 is sufficiently small, then L :(¢E(J) — oF(J) is boundedly

invertible. The result extends to all T" > 0 by a successive application of this
argument. O

(3.13)

4. THE NONLINEAR PROBLEM

It is the aim of this section to establish an existence and uniqueness result for
the nonlinear problem (2.2).

4.1. Function spaces and regularity. Before we go into details, a remark con-
cerning the nonlinearity

HQ(’LL, h) = P,5'1 (M(Mo(h)vu + VUTMo(h)T)l/Sl>
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in (2.2) is in order. One readily computes

@83U18,,8Gh + O hds(u - vg,)

@83U28,,8Gh + @82h83(u . I/Sl) ,
gof)guga,,wh + golhag(u : 1/51)

1

(Mo(h)Vu + V’U,TM()(h)T)l/Sl = 1+ he'

where vg, = (v1,12,0)7. Therefore, since u - vs, = 0 on S1\0% and 9,,,h = 0 on
0G, it follows that Ha(u,h) = 0 at S1\0X (note that the function h depends only
on ' = (x1,x2), wherefore it is constant with respect to x3).

Define the solution spaces

E(T) = {u € H}(J; Ly(Q)) N Ly(J; HAQ\S)) :
[u] =0, u-vs, =0, Ps,(u(Vu+Vu")vg,) =0, uls, =0},
Er(T) := Lyp(J; Hy(2\X)),
Ey(T) = W27 V2(J5 Ly(8)) 0 L (J; Wy~ P(2)),

Ep(T) :={h € Wy~ '/?(J; Ly(2)) 0V Hy (J; W, VP(2) N Ly (J; W HP(R)) :
Oyoh = 0},
and
E(T) := {(u,m,q,h) € Eu(T) x Ex(T) x Eq(T) x Ep(T) : ¢ = [x]}.
Moreover, we define the data spaces as follows.
Fi(T) := Ly(J; Lp(Q)),
Fa(T) = Hy(J; H, () N Ly(J; Hy (X)),
F5(T) = {f3 € Wy/2 "2 (J; Ly(£)%) N Ly (J; Wa VP (2)%) : Po(fs) - vs, = 0},
Fu(T) = {f1 € Wy (J; L,(2)) N Ly(J; WEYP(2)) 2 By f1 = 0},
and F(T) := x}_,F;(T).
Define an operator L = (L1, Lo, L3, Ly) on E(T) by
Li(u, ) := pOyu — pAu+ V7
Lo(u) :=divu
Ly(u, q,h) := [~p(Vu+ Vu')]es + qes — (Ayrh)es — valplhes
Li(u,h) := 0th — (ules)
and a nonlinear mapping N = (Ny, No, N3, Ny) on E(T') by
Ni(u,m, h) := F(u,m, h)

1
Mmm:amm—wéammm
Ni(u, h) := (Gy(u, h),0)" + Gy (u, h)es

N4(u, h) = H1 (u, h)

It follows from Corollary 3.3 that for each fixed T > 0 the mapping L : ¢E(T) —
oF(J) is an isomorphism, since all compatibility conditions at the contact line 9%
are satisfied by construction.
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Let Ur := {2 = (u,m,q,h) € E(T) : ||h| 1 (£..) < n}, where > 0 is sufficiently
small. Concerning the nonlinearity N(z) we have the following result

Proposition 4.1. Let p >n + 2. Then
(1) N € C?*(Ur;F(T)) and N(0) =0 as well as DN(0) = 0.
(2) DN (w) € B(Ur;F(T)) for each w € E(T).

Proof. We shall show that N(z) € F(T) for each z € Up. Let z = (u,m,q,h) € Ur.
Then it is easily seen that Nyi(z) = F(u, 7, h) € F1(T). Concerning Ny(z), we have

||N2(Z)HLP(H;) < C(HhHLw(Wgo)HUHLP(H;) + HhHLOO(WgO)HU”Lp(Hg)%

since Ey,(T) — BUC([0,T]; C%(X)) for p > n + 2. Furthermore, for ¢ € HI%(Q) we
obtain after integration by parts (h does not depend on z3)

(No(2)[6)2 = (Na(2)|¢ — @)z = — /

Q

{(u131h + u02h)03 ((¢ — ) 1 _:Oh(p/) +

+ u3hs ((¢ - ¢)#}w,)] dz,
where ¢ := ﬁ Jq ¢dx. Since E4(T) — BUC([0,T]; C* (%)) for p > n+2, it follows
from Poincaré’s inequality for functions with mean value zero that Ny(z) € Fo(T).

The desired regularity property of N3(z) can be readily checked. It remains to
show that
Py N3(2) - vs, = (Gyo(u, h),0)" -vg, =0.
Inserting the expression for Gy (u, h) yields

PEN?)(Z) Vs, = — ([[,LL(VQC/U + vx’UT)ﬂvx’h|V8G>
+ [Var bl [p0s (ulvs,)] + (1 + [Var b)) [udsw] — (Varhl [0V])) Dugeh,

where vs, = (rgg,0)T. The last term in this equation vanishes, since Oyoch = 0.
Moreover, since pu(u - vg, )(x3) = 0 for each x5 € (H1,0) U (0, H2), the second term
vanishes as well. Finally, since Ps, (u(Vu + Vu")vg,) = 0, it holds that

w(Vu + VuT g, = (,u(Vu + Vau')vg, ]1/51> Vs,
on S1\0%, hence also

(T + VuT)vs, = ([(Tu+ Vu s, |vs, ) vs,

at the contact line, since vg, does not depend on z3. Taking the inner product with
(Varh,0)7T yields

([(Vu + Vu ) vs, |(Varh, 0)T) = (u(Vu + VT s, |ysl) Byph = 0,

since d,,,h = 0. But by symmetry of the stress tensor we also have

(V-4 Vu )]s, (V. 0)7) = (o [( Vv + Vo)),
where u = (v, w), hence N3(z) € F3(T).
Finally, concerning N4(z), one has to observe that (u|vs,) = 0 and Ps, ((Vu +
VuT)vg,) = 0on $1\0X if u € E,(T). For vs, = (vgg,0)T, this implies in particular
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that (v|vag) = 0 and Pyg((Vev + Vv )vgg) = 0 on S1\0%. Since [v] = 0 on
3, by continuity of v, we clearly have [V,v] = 0 on ¥, since the jump acts into
the direction of x3 which is perpendicular to both e; and e;. In particular we
have (v|vgg) = 0 and Pyg((Vyv + Vv )rgg) = 0 at the contact line 9%. Since
in addition we know that J,,,h = 0 at 0%, it follows from Proposition 5.12 that
8V8G (v|Vrh) =0 at 0X.

The remaining assertions can be proved as in [24, Proposition 6.2]. O

4.2. Reduction to time trace zero. Let (ug, hy) € WZ?_Q/p(Q\E)3 X WS_Q/”(E)
such that
diV ug = Fd(uo, ho), —[[/Lagv()ﬂ — [[va/wo]] = GU (’Uo7 ho),

[uo] = 0 on X, ug - vs, = 0, Ps, (u(Vug + Vug )vs,) = 0 on S1\9%, uo|s, = 0 and
Ovyho = 0 on OX.
Let H := max{Hy, —H>} < 0 and ug := ugly,ep0,p,]- Define

~+(:L’) - {ug(xlaanx3)7 if zg € [O,HQ),

U =
0 —ug(ml, x9, —21’3) + 2u6r(331, x9, —163/2), if z3 € (H/Q, 0)
as well as
fba—(xl,l'g,.%g), if xr3 € [O,HQ),
ﬁa_(x) = aa_(fﬁl,l'Q,.%'g)w(l‘:;), if T3 € (H/2¢O)a
0, if z3 € (Hy,H/2],

where ¢ € C°(R;[0,1]) such that ¥(s) = 1 if |s| < —H/6 and ¥(s) = 0 if |s| >
—H/3. Tt follows by construction that aj € VVIDQ*Z/]D(Q)‘3 — CYQ)3, ifp>n+2.
We then solve the parabolic problem
O(u) —ptAut =0, inQ,
Pg, (M+(Vu+ + V(u+)T)VSI> =0, on S,
(4.1) ut-vg, =0, on S,
ut' =0, on So,
ut(0) =ad, inQ,
by Lemma 5.9, where p+ := ] zse(0,Hy) > 0 is constant.

Let us check whether ﬂar satisfies the relevant compatibility conditions at S7 and
Sy. It is easy to see that ﬂg = 0 at S5. Furthermore we have uar -vg, = 0 for all
x3 € (0, Hz) by the assumption on ug. From the definition of %/ we obtain that
ig - vg, = 0 for all x3 € (H/2,0), hence also @7 - vg, = 0 for z3 € (H1,0) by the

definition of 4§ . Since ug € C*(€2)3 we also have 4 -vs, = 0 for z3 = 0. It remains
to prove that

(4.2) Ps, (,ﬁ(vag + V(ag)T)ysl) ~0

on S1. Again, this is true for x5 € (0, H2), by the assumption on ug. Since the
first two components of this tangential projection do only contain derivatives with
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respect to the (z1, x2)-variables, it follows from the definition of @7 that
Ps, (;ﬁ(vag + V(ag)T)usl) e =0
for j € {1,2} and x3 € (H1,0). The third component of the projection is given by
8ysl (ﬂa' -e3) + 83(718' Us,).

Evidently, it holds that 9, (g - e3) = 0 by the same reasons as above, since the
last component of vg, vanishes. Furthermore, we have

P (ﬁ+ - ) _ 1#33(713 : VS1) +¢/(ﬁ3— ’ V5'1)7 if T3 € (H/270)7
3P0 T P51 0, if 23 € (Hy,H/2).

Since ug -vs, = 0 for all z3 € (0, Hz) it follows that d5(ug -vs,) = 0 for z3 € (0, Ha).
From the identity

ds(ag - vs,) = —0slug (z1, 29, —223) - v, | + 203[ug (z1, 22, —23/2) - vs,]

for z3 € (H/2,0), we readily obtain that ds(u - vs,) = 0 for 23 € (Hy,0). Finally,
since @i € C1(Q2)3, it follows that (4.2) holds on all of Sj.
Solving (4.1) by Lemma 5.9 yields a unique solution

ut € H)(J; Ly(Q)%) N Ly(J; HY (2)?)
satisfying the estimate
1 mry Ly)nz, 2) < M||a§||wp272/p,

where M > 0 does not depend on uar.

Applying the same procedure to uy = uo|z,e(m, 0] (With a suitable cut-off func-
tion ) yields a C''-extension @, of ug . Therefore, we obtain a unique solution

u” € Hy(J; Ly(2)*) N Ly(J; Hy (2)%)

of (4.1) with pu* and ﬁg replaced by ©~ and 1, , respectively, satisfying the estimate
™ g zpyn, 2y < Mg lly2-2re,

where M > 0 does not depend on u,. We then define

~ ut, if x3 € (0, Ha),
U=
u -, if zg € (Hl,O).

Note that in general w € Hy(J; Ly(€2)*) N Ly(J; HZ(Q\X)?), since [u] is not neces-
sarily zero.
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In a next step we solve the two phase problem
O(pt) — pAu =0, in Q\X,
[1030] + [V @] = [p030] + [uVyw], on X,
[10s0] = [pdsw], on X,
[a] =0, on X,
Ps, (M(V& +Va')rg, ) =0, on S1\0%,
u-vs, =0, on S1\0%,
=0, on Sy,
(0) = up, in Q\X,

by Lemma 5.10, where @ = (0,w) and @ = (v,w). The compatibility conditions at
t = 0 are satisfied, since @(0) = up. Let us check that the compatibility condition

[10s(ulvs, )] + [p0ys, w] = 0

holds at the contact line 93. Since by construction of # we have
Ps, (u(Va+VaT)vs, ) =0,

at S1\0%, the third component yields (E)Vslﬁ) + 03(u - V51)> =0 at S1\0%. This

in turn implies that [ud3(ulvs,)] + [u0ys, w] = 0. Note that for the third equation
in (4.3) there has no compatibility condition at 0¥ to be satisfied. Therefore we
obtain a unique solution @ € E, (7)) by Lemma 5.10.

Define fi := divii € Fo(T), g* = [—u(Vi + Vi')es] € F3(T) and g} =
e~ (voly - Vhg), with A := (I — Ay), where Ay is the Neumann-Laplacian
and e 4" denotes the Cy-semigroup, generated by —A in L,(¥). Then, since
(vols - Vho) € W2™*P(2)) with 8y, (vols - Vho) = 0 by Proposition 5.12 at 9%,
it follows that e~4tg, € F4(T). The fact that Px([—u(Vi + Vi )es]) - vs, = 0
holds by construction of .

By Corollary 3.3 there exists a unique solution z, = (U, T, G, hs) € E(T) of
the initial value problem Lz, = (0, f],9%,9;), (us, hs)li=0 = (uo, ho), since the
compatibility conditions at ¢ = 0 in the second and third component are satisfied
by construction. We remark that z, satisfies the estimate

llz«lle(ry < Coll(uo, ho)llx,,

and Cp > 0 does not depend on (ug, hop).

4.3. Nonlinear well-posedness. Define the mapping K(z) := N(z + z.) — Lz,
where z €(E(T). By Proposition 4.1 it holds that K(z) € (F(T) for each z € gE(T),
wherefore, we may consider the mapping K(z) := L™1K(z). We intend to show
that this mapping has a fixed point in oE(T).

The main result of this section reads as follows.

Theorem 4.2. Let n = 3, p > 5. For each given T > 0 there exists a number
n=n(T) > 0 such that for all initial values (ug, ho) € Wg_Q/p(Q\E)?’ X WS_Q/I’(Z)
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satisfying the compatibility conditions
divug = Fy(uo, ho), —[udsvo] — [uVrwo] = Gy(vo, ho),
[uo] = 0, ug - vs, = 0, Ps, (u(Vuo + Vul)vs,) = 0, ugls, = 0 and d,,.ho = 0 as
well as the smallness condition
ol -2y + Ioll -2 ) < 7
there exists a unique solution (u,m,q,h) € E(T) of (2.2).
Proof. For a given Banach space Z, let
Bz :={z€Z:|z||lz <1}

Based on Proposition 4.1, for each ¢ € (0, 1) there exists d(¢) > 0 such that

IDN(z + 2:) | ) Fr) < €

whenever (2 + 2:) € 6By C Ur. Let M := ||L71”B(OIF(T);01E(T)) >0 and C =

| Ll e (ryw(r)) > 0. We assume that ¢ > 0 from above is chosen sufficiently small,

such that ¢ € (0,1/(2M)). Suppose furthermore that z € %BOE(T) and (ug, ho) €
b —=Bx_ . This yields

IMCo(1+C)
2 4+ 2wy < 0/2+0/(AM(1+C)) <6
and therefore
1K) ey < MK (2)|leay < MIN(z + 2:)llery + 1 L2 lrer))

< Mle(||zllgery + 1z« lle(r)) + Cll2 g ()]
< M(el|z]lg(r) + Co(1 + C)||(uo, ho)l x,)

o 4
< Me=+-<4§/2
sMeg+gsd/
hence K : gBOE(T) — gBOE(T) is a self-mapping. Furthermore we obtain

1
1K (1) = K(z2)lleer) < Mellzr = z2llger) < Sllz1 = 22lleer),

valid for all 21,25 € §Bg(r) and all initial values (uo, ho) € grrereyBx, - The

contraction mapping principle yields a unique fixed point Z € gBOE(T) of K(z), i.e.
Z = K(2). Equivalently this means LZ = N(Z + z.) — Lz, hence z := Z + z,
solves Lz = N(Z). To show that z = (4,7, q, h) is a solution of (2.2), it remains
to prove that Fjy(@,h) is mean value free. Indeed, let ¢ € [0,7] be fixed and set
u(t,x) == u(t, @ﬁl(t, x)) it follows that @ € H}(Q) with (|vg,) = 0 at S1\OL'(t),
=0 at Sy and

diva = (diva — Fy(a, b)) 0 ©; .

The divergence theorem and the transformation formula yield

0= / diva dz
Q\I'()

= /Q\E (diva — Fy(u, h)) det ©F dz
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1 _
=—— Fy(u, h) d:p/ det ©; dz,
19| Joys o\
where 7 := @E_l(x). Since det ©} > 0, the claim follows. O

5. APPENDIX
5.1. Extension operators.

Proposition 5.1. Let p > 2. There exists a linear and bounded extension operator
ext from
oW, 2 THP(J5 Ly(R)) N Ly(J; W, */P(R))
to
WA, Ly (B x Ry) O Ly WP (R % Ry)

such that [ext v]|gy 0y = v, for all v EOWI}/2_1/Z)(J; L,(R)) N Ly(J; Wp1_2/p(R)).
Moreover, if

v = U(t,i[f,y) EOWpl/Q_l/Qp(J; LP(R X R+)) N LP(J7 Wpl_l/p(R X R+)) = X7

then
try—ov €W,/ 2 VP(J; Ly(R)) N Ly(J; Wy 2P(R)) =1 Y

and there ezists a constant C > 0 such that
[try=ovlly < Cllv]lx
for allv e X.
Proof. Let Xo = Ly(J; Lp(R)) and consider the operator (8;—9?2) in Xo with domain
oW, (J5 Lp(R)) N Ly(J; W (R)).

The operator —A := —(0; — 92)"/? generates an analytic semigroup {e~4¥},>¢ in
Xo with domain D(A) = [Xo, D(A?)]; 5. Since

Da(1 = 2/p.p) = (Xo. DA /pp = (Xo. DIAD) 12 1/
by [46, Theorem 1.15.2], we obtain
Da(l = 2/p.p) = oW/ VP(J; L (R)) 1 Ly (J5 W2/ (R)).
Hence, if v € D4(1 —2/p,p), then
ly — e~ 4] € Wy~ VP(Ry; Xo) N Ly(Ry; Da(l — 1/p,p))
by [14, Theorems 3 & 8], where Dy(1 —1/p,p) = (XO,D(Az))l/Q_l/prp, hence
Da(1 = 1/p,p) =oW,/* ?P(J; Ly(R)) N Ly (J; W, /P(R)).

Setting [ext v](y) = e~ yields the first claim, by the Fubini property of the spaces
Ws.

p

For the proof of the second assertion, we consider v(¢, x, y) as a function w(y) (¢, z),
ie. w(y)(t,x) := v(t,z,y). Then we have

w € W, VP(Ry; Xo) N Ly(Ry; Da(l = 1/p,p)),
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where Xy and A are defined as above. By [22, Lemma 4.1, (4.4)] witha=1—-1/p
and p = 1 it holds that tr |,— is a continuous mapping from

Wy VPR Xo) N Ly(Re; Da(1 — 1/p, p))
to Da(1 —1/2p,p) = Da2(1/2 = 1/p,p) = (Xo, D(A?))1/2-1/pp With
(X0, D)1 21/ = oW/>P(7: Ly (R)) O LT W27 (R).
The proof is complete. O
Proposition 5.2. Letp >2, J=[0,T],0<T < oo or J =R; and
g €oWP TP (T; Ly(R)) Mo H,y (J; W, */P(R)) N Ly(J; Wy~ /P(R)) =: V.
Then there ezists
h €oW2 2P (J; Ly(R)) Mo H Y (J; W2THP(RZ)) N Ly (J; WE/P(R2)) =: X,

such that Oyh = g at y = 0.
Moreover, the mapping (tr|y—o 0 0y) : X =Y is continuous.

Proof. (1) Consider the operator (9; — 02) in Xg := Ly(J; L,(R)) with domain
oW, (J: Lp(R)) N Ly(J; W (R).

Let A := (9; — 92)'/? with domain D(A) = [Xo, D(A?)]1 /2. Denote by e~ the
analytic Co-semigroup, generated by —A in X and set h(y) := —e~4YA~1g. Since
9,009, A7 g, A7 oyg €W, PP (T Ly(R)) N Ly(J; Wy~ /P(R))

it follows from Proposition 5.1 that
h, Oth, Ah, Adsh € WAY/P(Ry; Xo) N Ly(Ry; Da(l — 1/p, p)).

The operator A~! is an isomorphism from (X, D(AQ))l/Q_l/vap to (Xo, D(A2))1_1/2p7p
by [46, Theorem 1.15.2], hence h as well as 0;h belong to

OWplil/%(J? Lp(Ri)) N Lp(J§ ngl/p(Ri))

by the Fubini property. Furthermore 9; : oW, (J; X) —>0W;_1(J; X), s € [1,2) is
an isomorphism, hence

(5.1) h €Wy 2P(J; Ly(RY)) NoW, (J; Wi~ V/P(RE)).
(2) Next, we use the regularity
Ag €W, VP(J; Ly(R)) N Ly(J; W, /P (R)),
to conclude
(5.2) —0h = A’ WA g = e MW Ag € Wy THP(Ry; Xo)
by [14, Theorem 8], since
Ag € Da(1 = 2/p,p) =W, > 1/P(J; Ly(R)) 0 Ly (J; W, "*/P(R)).
In particular, this yields that
he W3 VPR, Ly(J; Ly(R))).
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(3) It remains to show that
he Ly(Ras Ly(J: W37 (R).

To this end we consider the semigroup {e=4%},>0 in Xg := L,(J; W;_l/p(R)). The
domain of the operator A2 := (9; — 0?) in Xj is given by
oWy (s W, " VP(R) N Ly (J; W P(R)).
Then we have
ly = e~ g] € Ly(R+; D(A)),
if
g9 € Da(1l—1/p,p) =oW,/>"?P(J; W, " VP(R)) N Ly (J; W, */P(R)).
Note that the assumption on g implies
g €oHy (J; Wy "2P(R)) N Ly(J; W= 2/P(R)) oW, /272 (J; W~ VP (R)),
which follows from [22, Proposition 3.2]. Replacing g by A~1g it follows that
[y — e A g € L,(Ry; D(A?%)),
hence
[y = e A g] € Ly(Ry; Ly(J; WEV/P(R))).
(4) For the proof of the second assertion, note first that 9, maps X continuously to
oW, 2TV (J; Ly(R)) Mo Hy (s W, ~HP(RE)) 1 Ly (J; WP (RY)),
since
oWy (J: Ly(RE)) Moy (J; W)~V (RY))
is continuously embedded into
oW,V (T Hy (RY)),
by [22, Proposition 3.2]. Then the assertion follows from similar arguments as in
the proof of Proposition 5.1. O

5.2. Partition of unity with vanishing Neumann trace.

Proposition 5.3. Let G C R? be a bounded domain with boundary 0G € C™*1,
Then for each finite open covering {Uk}{y:l of OG in R? there exists an open set
Uy C G with Uy N oG = 0, U,ZCV:O U O G and a subordinated partition of unity
{i Yy C C™(R?) such that suppy, C Uy, and 9,4, = 0 at 9G.

Proof. Let {Uj}évzl be a finite open cover of JG. Then there exist open sets V;
such that K; := Vj C Uj and Ui;vﬂ V; D 0G. Moreover, there exist functions ¢; €
C*(U;) with 0 < ¢; < 1 such that ¢j|Kj = 1. It is well-known that for sufficiently
small @ > 0, the mapping F : G x (—a,a) — R", defined by F(p,r) := p + rv(p),
is a C™-diffeomorphism onto its image U, := im F. The inverse mapping F~! may
be decomposed as F~1 = (II,d), where II € C™(U,; 0G) and d € C™(U,; (—a,a)).
Note that II(z) denotes the nearest point on G to = € U, and d(x) stands for the
signed distance from x € U, to dG. It can be shown that

U, = {z € R" : dist(x,0G) < a}.
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Choose a > 0 small enough such that U, C Ujvzl K; and define new functions
ggj(_:c) := ¢;(ll(x)) for x € U,. Tt follows that Vé,;(z) = DIIT (z)V¢;(II(x)), hence
O0ypj(x) = (Vo;(Il(x))|DIl(x)v(x)) = 0 for x € 0G, since DIl(x)v(z), x € OG. Let

< Jéi@e(dx), xel,
- O’ $¢Ua;

where ¢ € C2°(R;[0,1]) such that ¢(s) = 1if [s| < a/2 and ¢(s) = 0 if [s| > 3a/4.
Then we still have 9,¢(z) = 0 for z € dG. Define K; := K; N 0G. Then there
exists some § € (0,a/2) such that F; := F(Kj,[-0, 5]) is compact, F; C U; and

U] 1 F; D 0G. It follows that ¢J|K =1 and therefore d)ﬂp =1

Consider the set G := G\ U]: F};. Then G is a proper open subset of G. Choose
an open set Uy C G that covers G and a set Fo O G that is compactly contained in
Up. Define Fy := Fy. Then there exists a smooth function ¢y € C° (Uo; 0,1]) such
that ¢o|r, = 1. In particular it holds that U ~oF; O G and Z Y o ¢j(x) > 0 for

x € G. Finally, we set 9y, := gzﬁk/z 0@, k=0,...,N. Then Zk:owk =1 and

A alj.
81/1/% _ au¢k~ . ¢k 2]70 gi] —0,

Zév:o 2 (Z;‘V:O ;i )

for k € {0,...,N} at dG, since by construction also d,¢y = 0 at G. The proof is
complete. 0

It is possible to extend the previous result to cylindrical domains 2 := G x
(Hy, Hy). To this end let Sy := 0G x (Hy, Ha),

2
Sy = G x {H;},

j=1
and ¥ := G x {0}.

Proposition 5.4. Let G C R? be a bounded domain with boundary 0G € C™t!
and Q := G x (H1,Hsy), H1 <0 < Hs. Then for each finite open covering {Uk}fcv:l
of 0S5 U Y in R™ there exist open sets U; CR3, j € {N +1,...,N + 7} such that
Uny1 C G X (Hl,O), Uni2 C G x (0, Hy),

UntsNUn1 NS #0, UvisN(BUS:) =0,

UN+4QUN+2 NSy 75 @, UN+4ﬂ (EUSQ) = @,

UN+5 Ny 75 @, UN+5ﬂ (Sl USQ) = @,
Unis NUNn+1 N So # @, Unis N (Sl U Z) = @,
UnyrNUn2NS2 #0, Ungr N(S1UX) =10
Ui, o Q.

Furthermore, there exists a subordinated partition of unity {¢k}N+7 C C™(R3) such
that supp ¢, C Uy, and Oy, ¢k, = Oe,, @1 = 0 at 052 U 0X.

)

Proof. The idea of the proof is quite simple. Let {Uj}j.\f:ll be an open covering of
0% in R™ and define f]j =U;N{R" 1 x {0}}. Let V; := Uj, je{l,..., Ny}, where
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we identify V; with a set in R" . Then, of course, {V,};V:ll is an open covering
of 9% in R"~!. Now we are in a position to apply Proposition 5.3 to find an open
set Vo C ¥ such that Uj-V:lo Vi D 3. Furthermore, by Proposition 5.3, there exists
a subordinated partition of unity {wjz}j-v:lo C C™(R" 1) with supp wjz C V; and
Buoe 03 = 0 at O,

Now we define qb?(x’,xn) = wjz(:l:/)go(xn), where ¢ € C(R;[0,1]) such that
o(s) = 1if |s| < and p(s) = 0 if |s| > 20, where § > 0 is sufficiently small. It
follows that <Z>]2 € C"(R™) and, if 0 > 0 is sufficiently small, then supp <Z>]2 C Uj for
j € {1,..., N1}. Furthermore we still have d,,,¢; = 0 and, in addition, &;nd)jz =0
at 0%, since ¢ is constant in a neighborhood of s = 0.

The same procedure can be applied for the charts covering 0.55. The remaining

set which is a proper subset of Q\(S; UX) can be covered by finitely many open
charts. O

5.3. Auxiliary elliptic and parabolic problems.

5.3.1. Elliptic problems. The following result deals with the two-phase elliptic prob-
lem

Au—Au=f in Q\X,
[pul] =91 on X,
(5.3) [Ovsul = g2 on X,
Oy, u="h; on S1\0%,

Vsl
u=hy on Sy,

0,

1/52

where ) and ¥ satisfy one of the following conditions.

(a) € is either a full space, a (bent) half space or a (bent) quarter space and ¥ = (),

(b) € is either a full space or a (bent) half space with outer unit normal —e,,_; at
r=0and ¥ = {R*" ! x{0}}nQ,

(c) Q=G x (Hy,Ha), Hi <0< Ha, is a cylindrical domain where G is a bounded
domain with boundary 0G € C* and ¥ = G x {0}.

The sets S7 and Ss are the corresponding vertical and horizontal parts of the bound-

ary of €2, respectively.

Lemma 5.5. Let n = 2,3, p > 2 and assume that Q) and X are subject to one of
the conditions in (a)-(c) above. Then there exists Ao > 0 such that for each X > Ao,
problem (5.3) has a unique solution u € WZ?(Q\Z) if and only if the data satisfy the
following regularity and compatibility conditions.

(1) f e Ly(2),
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Proof. For convenience we restrict ourselves to the case n = 3. The arguments for
the case n = 2 are similar and even simpler.

(a) If Q@ and X are subject to the first two conditions in (a), i.e.  is a full space or
a half space, then the result is folklore. So let us consider the case where ¥ = () and
Q is a quarter space. To be precise, let Q := R x Ry x Ry with S; :=R x {0} x R
and S2 := R x R4 x {0}. Therefore we have to study the problem

Au—Au=f, x€q,
(5.4) Oou = hy, €5y,
O3u = ho, x € So.

Extend f and hy with respect to x5 (by even reflection) to some functions f €
Ly(R? x Ry) and hy € WI} i/ (R?) and solve the half space problem

MNo—Au=f, zeR?®xRy,,
D3t = hy, x € R?x {0},

to obtain a unique solution @ € I/Vp2 (R2xR. ) for each A > 0. Note that by symmetry,
the function [z — @(z1, —x9,x3)] is a solution of this problem too. Therefore, by
uniqueness, it holds that dat|s, = 0.

In a next step, we extend hy by even reflection and with respect to the x3 variable
to some hy € I/Vp1 —/p (R?) and solve the half space problem

M —A?=0, z€RXxR; xR,
Dol =hy, xR x{0} xR,

to obtain a unique solution o € W2(R x Ry x R) for each A > 0. As above,
by symmetry and uniqueness, it holds that d30|s, = 0. Therefore it follows that
u:= (@ + 0)|q is the unique solution of (5.4).

Finally, let 2 be a bent quarter space with Sy as above and

S10 = {(z1,22,23) € R3: 2y = 0(x1)},

where 6 € BC3(R) with [|0]|oc + |||l < 7 and 7 > 0 can be made as small as
we wish. Then the corresponding result follows from change of coordinates (set
ZTg = xo — 6(x1)) and perturbation theory for elliptic problems. We will give
a detailed proof for the case of a two-phase half space in part (b) below. The
technique carries over to this case. Indeed, things are easier in (a) as there are no
compatibility conditions, since ¥ = ().

(b) Let © = R and ¥ = R? x {0}. Then we have to solve the problem

A —Au=f, ze€Q\X,
(5.5) [pu]l = g1, z€X,
[Osu] = g2, = €X,

where p = p1Xz5<0 + pP2Xas>0 and p; > 0. Since f € L,(R3) we may first solve the
full space problem

Ni—Aii=f, zeRY
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to obtain a unique solution @ € I/Vp2 (R™) for each A > 0. Consider now the problem
AM—Au=0, ze€Q\X,
(5.6) [pu] = g1 — [pu] =2 g1, = €X,
[0su] = g2, x€X.

By semigroup theory, it is easy to see that the unique solution of (5.6) is explicitly
given by

u(rg) i = ——
() p1+ p2 e*L(*xS)a_, x3 <0,
where L := (A — Ay)'/? and
ay := g1+ paL  ga — (p1 + p2) L7 g2, a_ = —(g1 + p2L™)go.

Therefore the function u := @ + @ is the unique solution of (5.5) which exists for
each A > 0.

Let now Q = R x Ry x R and ¥ = {R? x {0}} N, i.e. we consider the case of a
two-phase half space. Now we have to solve the problem

AM—Au=f in Q\X,
[pu] =91 on X,
[0su] =g, on X,
dou=nhy on S;\0X%,
where S7 := Rx {0} xR. We will first reduce (5.7) to the case h; = 0. To this end we

first extend hy := hy|z5>0 With respect to the x3 variable to some i € Wpl_l/p(]RQ)
and solve the half space problem

Aut — Aut =0, 29 >0, dout = ﬁf, x9 = 0,

to obtain a unique solution u® € W;(R x Ry x R). Then we repeat the same

1 {e‘Lm3a+, x3 > 0,

(5.7)

procedure for hy := hy|s;<0 to obtain a unique solution u~ € WZ(R x Ry x R).
Define the function
— ’U,+, €3 > 07
=
U, z3 < 0,

and consider the problem

(5.8)

on S1\0%,

where f := f, g1 := g1 — [pt] and g2 := go — [03u]. Note that by the compatibility
condition on g; and hj at 9% it holds that 0297 = 0 at 0X. Therefore it is possible to
extend f, g; by even reflection in z2 to some functions fe L,(R3), g1 € W; —1/p (R2)
and go € Wl}fl/p(RQ). Solve (5.5) with (f, g;) replaced by (f, gj) to obtain a unique
solution @& € W7 (R? x R). Since the function [z — @(z1, —x2,23)] is a solution of
this problem too, it follows by uniqueness that 0ot = 0 at S1\0%, hence 4 := 1o
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is the unique solution of (5.8). Finally, u := @ + @ solves (5.7) for each A\ > 0 and
this solution is unique.

Consider now the case of a bent two-phase half space with outer unit normal —es
at x = 0. To be precise, let

Qg = {x € Rg 1 Xy > 9(1‘1)},

where § € BC3(R), with 0(0) = 6(0) = 0 and [|¢/||co+|0]|cc < 1, where 7 > 0 can be
made as small as we wish. Furthermore, let Sy g := Qg and 3g := {R? x {0}} N Q.
We have to investigate the following problem.

M—Au=f in Qp\Xy,
[pul =91 on %,
[Osu] = g2 on %,
&,azeu =h1 on Sip\0%.

(5.9)

First of all we extend f , g1 and go to some functions f € Ly(R?), g1 € VVp2 —l/p (R2)
and g2 € W,}_l/p(RQ), respectively. Then we solve (5.5) with (f, g1, 92) replaced by
(f, 41, §2) to obtain a unique solution @ € VVPQ(R2 x R). Let hy := hy — 8,,026a|51,9
and note that [phi1] = 0 at 9%y by the compatibility condition on (g1, h1) at 9%y.
We arrive at the problem

AM—Au=0 in Qp\Xy,
[pu] =0 on X,
[0sa] =0 on X,
8V8297j =h; on S1,0\0%.
Transforming €y, Si1p and Xy to @ = R xRy xR, Sy = R x {0} x R and ¥ =
{R? x {0}} N Q via the diffeomorphism
Q> (Z1,%2,73) = (Z1,Z2+ 0(Z1),73) € Qp

(5.10)

yields the transformed problem
Mo — At=M(0,4) in Q\X,
[pa] =0 on %,
[0su] =0 on X,
Ooit = My(0, 1) — /14 02h;  on S;\0%,
where 4(z) := w(Z1, T2 + 0(Z1), Z3), h1(Z1,Z3) := h(Z1,0(z1), Z3),
My (0,4) == —20'(%1)0,021 — 0" (T1) 0210 + 0'(Z1)? 031,

(5.11)

and
My (6,4) = 0'(21)01il] g,\ 05 — 0'(21)°0ail] 5\ 05

Observe that [phi] = 0 at 9.
Define the function spaces

E:={i € W(Q\X) : [pa] = [05a] = 0 on T},
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equipped with the equivalent norm ||4||g ) := A||a] L, + |\22||sz, A >0 and

F = {(f1.f2) € Lp(Q) x W, /2($1\0) : [pfo] = 0 at 9%}
Furthermore, let a linear operator L : E — F be defined by

. <)\ﬂ — Aﬁ)
Li = N .
YIRS

It follows from our previous arguments that L : E — F is an isomorphism, provided
A > 0. Furthermore, by the same strategy as in [21, Section 3.1.1], there exists
Ao > 0 and a constant C' > 0 such that for all A > Ag and (f1, f2) € F the estimate

(5.12) IL7 (f1, f2)lles < C (HleL,,(Q) + XM el ) + HVfQHLp(Q)) ,

is valid, where fy is an extension of fy to Wy (Q\X).

Let now F := (0, =1+ 0”2hy) and M (0, 4) := (M, M2)(6,4). Clearly, for each
@ € E, it holds that M (0,4) € F, since

[[p&’(fl)f)lﬂ]] = 9’(%1)81 [[pfb]] =0
at 0X. Furthermore it holds that
[0V 14 62h1] = V14 62[phi] =0

at Y as well, hence F' € F. Therefore, for & € E, the expressions L~1M (0, 1),
L7LF are well defined in E and we may rewrite (5.11) in the shorter form

(5.13) w=L'M@,a)+ L'F.
We will now apply (5.12) to the term L=1M (@, a). To this end, note that
My(0,4) := 0'(Z1)01it — 0 (%1)? 0ot
is a proper extension of Ms(6, 1) to WZ}(Q\E) By (5.12), this yields the estimate
IL= M (0, @)z <
<C (H@/HLOO(Q)Hﬂng(Q) + 10"l oo ) + >\1/2H9'HLDO(Q)]H@vapl(ﬂ)) .
Clearly, H'&/HWI?(Q) < ||t|lg,» and by complex interpolation we obtain furthermore

. . . .
lillws@ < Cllal i il g < sl

EA\-

Choosing first ||| sufficiently small and then A > 0 sufficiently large, it fol-
lows that for each € > 0 there exist numbers 779 > 0 and A; > 0 such that
|L7IM(0,4)||gx < ell@]lgr, whenever [|0/|oc < n € (0,m0) and A > A;. There-
fore, a Neumann series argument yields a unique solution of (5.13).

(c) The proof for this assertion uses the technique of localization. By Proposition
5.4 there exists a finite covering of € and a subordinated partition of unity {qﬁk},]y:l
such that 0,,,¢r = 0 at (0X U 0S2) N supp ¢

Multiplying each equation in (5.3) by ¢y, we obtain problems in local coordinates,
which correspond to perturbed versions of one of the problems which have been
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treated in (a) & (b). Assume that u is a solution of (5.3), ug := udw, g¥ = g1én
and h} := hi¢y, then [pui] = g and

s, uk = GrOus, 1+ udyg ¢ = Ppphy = hf,

since vg, = (vsg,0)". In particular, the commutator term in the Neumann bound-
ary condition is identically zero. By the same reason, one has

Ous, 91 = dxlpha] = [pht],

hence the local data (gf, h’f) satisfy the compatibility condition at 9% N supp ¢.
The remaining localization procedure follows along standard arguments. We
refrain from giving the details and refer the reader e.g. to [12]. O

We shall also prove some results on the solvability of (5.3) in case A = 0. If
A =0 and 2 is unbounded, one cannot expect to obtain u € L,(€). Instead, we are
looking for solutions u € Wpl(Q\E) N Wg(Q\E), or equivalently Vu € W, (Q\X).

If Vu € Wy(Q\X) is a solution of (5.3) with g = 0, then, by trace theory,
Fe L), g€ Wy VP(R), by € Wy VP(5,\0%) and hy € W /P(S,). There
is some hidden compatibility/regularity condition for the data (f, g2, h1). To see
this, let ¢ € C°(2). We multiply (5.3); by ¢ and integrate by parts, to obtain the
identity

(g2, 11, ha), 6) :=/Qf¢ dx+/s hio d51+/5 hao dSQ—/Egqu ds =

:/Vu-Vd)d:z:.
Q

It follows that the linear mapping [¢ — ((f, g2, h1, h2), ¢)] is continuous on C°(Q)
with respect to the norm ||V - HLp/(Q).

If Q is a full space, a (bent) half space or a (bent) quarter space, then it is well
known, that C2°(Q) (hence also W;’(Q)) is dense in Wpl,(Q) with respect to the
norm ||V ||z ,(e). Therefore, since each functional in

Wy H(Q) = (Wpl,(m)*,

is uniquely determined by its restriction to CZ°(Q2), it follows that (f,ge,h1,h2)
yields a well defined element of Wp_l(Q) with norm given by

1(f; g2, b1, ho)llyy -1 == sup{{(F; 92, ", h2), 9}/ V Ol|L,, = ¢ € CF(2)}

= sup{{(f, 2. h1, h2),0)/|V oL, : 6 € Wy(Q)}.

Note that if  is bounded, then the above representation formula for (f, g2, hi, h2)
holds for each ¢ € W]},(Q), since qu(Q) C W}(Q) if Q is bounded. This follows
for example from the Poincaré-Wirtinger inequality. However, if €2 is unbounded,
then the above representation for (f, ga, h1, ha) holds at least on the dense subspace
C>(9).

Furthermore, if S; = 0, j € {1,2} and/or ¥ = (), then we simply neglect h;
and/or go in (f, g2, h1, ha).
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We are now in a position to state the next auxiliary lemma concerning the solv-
ability of (5.3) with A = 0.

Lemma 5.6. Letn = 2,3, p > 2 and A\ = 0. Then the following assertions are
valid.

(1) If Q and ¥ satisfy one of the conditions in (a), (b) above, then there exists a
unique solution Vu € Wy (Q\X) of (5.3) with g1 = 0 if and only if f € Ly(%),
go € Wa P(2), hy € WaTHP(S1\0%), ho € Wia YP(S,), [pha] = 0 on 9%
and (f, g2, h1, ha) € W, H(Q).

(2) If Q and X are subject to the condition (c) above, then there exists a unique
solution w € W2 (Q\X) of (5.3) with g1 = h1 = hy = 0 if and only if

FeLl(Q):={f € Ly(Q): /Qfdx =0}.

Proof. 1. (a) If Q2 = R™, then we have to solve —Au = f for f in Wp_l(Q) N Ly(£2).
It is a folkloristic result that whenever f € L,(R™), then there is a unique solution
u € Wg(]R”) of the equation —Awu = f. Multiplying —Au = f by ¢ € C°(R") and
integrating by parts, we obtain

Vu-Vo¢ dr = — Aug dx = fo dx.
R Rn R
Let us show that there exists a constant C' > 0 such that the estimate
] fRn Vu-Ve¢ dx|
(5.14) IVull 1, rny < C'sup t ¢ e CP(R™)
r(E) Vel @

is valid. Indeed, it holds that

sup | fRn Vu-Ve¢ dx|
VoL, @n)

| Jan Vu - V¢ du|
||V3j<P||LP,(Rn)

1| [gn Oju- Ay da|

e [PANE PO )

o€ Cé"’(R”)} >
(5.15)

for all ¢ € C(R™), where we integrated by parts and applied the Caldéron-
Zygmund inequality HVZQOHLP, ®n) < CHA(pHLp,(Rn).

It is well-known that ACZ°(R™) is dense in L,y (R™) with respect to the L,-norm.
Taking the supremum on the right hand side of (5.15) over all functions ¢ € C°(R")
we obtain the desired inequality (5.14). Evidently, for the solution u € Wg(R”) of
—Au = f it follows that

| Jan fO dz|
IVl @)

hence, if f € L,(R") N Wp_l(R”), then

s 1 = su = 9 CPR" 00
||f||”17 i p{”vquLp/(Rn) ‘ ( )} - ’

IVullz,®n < CSUP{ S C?(Rn)} :
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and we obtain the estimate || Vul|,gn) < C”f”wp—l. This shows that u € I/Vp1 (R™)N
W]? (R™) is the unique solution.
Let Q = R? x R, be a half space and consider the problem
—Au=f, x€q,
Jsu=h, x€S§,

where S := 9Q = R? x {0}. By Lemma 5.5 there exists some \g > 0 such that the
shifted problem

(5.16)

(5'17) Osu=h, z€S8,

admits a unique solution u € Wg(ﬂ) satisfying the estimates
[allwzi) < CUIFllzy @) + hlly1-10 ),
and
allwy ) < ClIU )l )

To see the validity of the second estimate we use the notation from [1, Chapter V]
and let Ag := Ay — A with domain

Ey:=D(Ap) = {u € W}(Q): d3u =0 on S}
in Ep := Ly(Q2). Then Ap is a linear isomorphism from E; to Ep. Let E/p :=
[Eo, Erluys = Wy (@) and E_y jp i= (B} 5)" = (W (Q))*, since Af = (Ao—A)[,)-
Denote by A_j/; the E_j p-realization of Ag. By the results in [1, Chapter V] it

follows that A_; /o : Ey/5 — E_j/o is a linear isomorphism. Moreover, since Ej is
dense in Ej /9, it holds that

(A_1jou, @) = )\o/ﬂwb d:L‘+/QVu -Vo dx

for all ¢ € Wpl,(Q) and each u € W, (Q).
Multiply the first equation in (5.17) by ¢ € Wpll(Q) and integrate by parts to the

result
Ao/u¢dx+/Vu-V¢dx:/f¢dx—/h¢|gdS.
Q Q 9 s

By assumption, the right side of the last equation determines a functional (f, h) on
Wpl,(Q), hence also on Wpl,(Q). Therefore it follows from the considerations above
that

z f.h). ¢
lallwy) < CIE M Iy =€ sup [K(f. 1), 9)
Y 0£6EW, () ||¢HWZ§,(Q)

(4, h), &)

<C sup =C|(f, 1)l ir-1 0
0£GEW ), () ||V¢||Lp,(g) Wy ~(Q)
Therefore it suffices to study the problem

_Au* = f*7 x € Q,

(5.18) Ozux =0, x€b8,
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where f, := f 4+ Au. Observe that f. € L,(Q) N Wp_l(Q). We extend f, with
respect to x3 by even reflection to some f to obtain f € L,(R3) N WP_I(R3). Solve
the full space problem —A@ = f to obtain a unique solution @ € I/Vp1 (R3)N Wg (R3).
By uniqueness and symmetry, it follows that 4(x1,x2,x3) = @(x1, 2, —x3), hence
O3t =0 on S. Since

190yt < 192, @) < Il g
and Hf”W;l(RS) < 2||f*||W,71(Q) (f is the even extension of f,) it follows that
190l @) < Ol

The function u := u+1|q = @+wus is the desired unique solution of (5.19), satisfying
the estimates

||V2UHL,,(Q) < C(IfllL,) + HhHWZ}fl/p(S)),

and

IVl < CIS M1 )

Uniqueness follows by even reflection of the solution of (5.16) with f = h =0 at S
and the uniqueness result for the full space.
If @ =R x Ry x Ry is a quarter space, we have to solve

—Au=f, xz€q,
(5.19) Ou=hy, x€ 5y,
83’LL = hg, T € SQ,
where S7 = R x {0} x Ry and S = R x R4 x {0}. The data satisfy f € L,(2),
hy € Wy VP(8), 5= 1,2 and (f,h, ha) € W, H(92).
By Lemma 5.5 we first solve

Mu—Au=f, x€q,

(5.20) 0ot = hy, x € Sy,

O3t = he, x € Ss,

for some sufficiently large A\g > 0 to obtain a unique solution @ & sz(Q) Note that
4 satisfies the estimates

lllwz) < CUIfllL, @) + ||h1HW;fl/p(Sl) + Hh2HWpl71/p(S2))v

and
1@lwi) < CI, s h)llyi 1 o)-
We arrive at the problem
—Au, = fo, w€Q,
(5.21) Oots =0, z €S,
Dzus, =0, x €Sy,
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where f, = f+ Au € Wp_l(Q) N L,(§2), which follows from integration by parts.
Extend f, to the half space Ri by even reflection, i.e. we set

rs {f*(xlax2ax3)a Z2 207

f@) = fe(z1, —22,23), x2 < 0.

Then f € Wp_l(Ri’L) NLy(R3). Next we extend f by even reflection to the full space
R? by defining

fz) =

f($17$27 —$3), €3 < 0’

7 {f(xl,ﬂfz,fv?)), z3 > 0,

This yields that f € Wp_l(R3) N L,(R3). Solve the full space problem —Ad = f
to obtain a unique solution 4 € WI} (R3) N Wg(R?’). Since with @ also u(—x3) and
(—x2) are solutions of —Au = f, it follows from the uniqueness of the solution
that 4(z3) = 4(—x3) and 4(x2) = 4(—x2), hence d3t = 0 on Sy as well as ot = 0
on Sp. Since

IVl ey < IVl @) < CllFllg 1 gay:

and ||JE||WZ;1(R3) < CHf*HW,jl(Q) it follows that

19 lly) < Ol il 10y

The function u := u+14|q = 4+ u, is the desired unique solution of (5.19), satisfying
the estimates

IV2ull @) < CUIfIlL, @ + ||h1||W;fl/p(Sl) + ||h2HW;,1/,,(52)),

and
IVullz,@ < CIE R h2) i1 q)-

If Q is a bent quarter space, we will use change of coordinates and perturbation
theory to prove the assertion in this case. We will give a detailed proof for the case
of a bent two-phase half space below. The technique from this case carries over to
the bent quarter space case.

(b) Let © = R3 and ¥ = R? x {0}. Consider the problem

—Au=f in Q\%,
(5.22) [pu] =0 on %,
[0su] = g2 on X,

with f € Ly(Q), g2 € W, VP(£) and (£, g2) € W, ().
By Lemma 5.5 we may first solve the problem

Aot —Au=f in Q\X,
(5.23) [pu] =0 on %,
[[(93@]] =92 on E?
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where A\g > 0 is sufficiently large but fixed. This yields a unique solution u €
Wz(Q\E Next we consider the equation —A@ = f in R3, where f := f + A €

Wpfl(R:") N L,(R3), since

/ (f+Au)q§dx:—/gg¢)dZ+/ fgbdx—/ Vu -V dx.
R3 by R3 R3
by what we have already shown, this full space problem admits a unique solution
U € Wpl(Q) N W]?(Q) Finally we study the problem
—At=0 in Q\X,
(5.24) il =g on %,
[0su] =0 on X,

with g1 := —[pa] € V'Vpl*l/p(E) N W;il/p(E). The solution is given in terms of the
Poisson semigroup as follows.
X 1 e T3 gy, z3 > 0,
u(ws) = ~L(~z3)
p1+p2 | —e Yag1,  x3 <0,

where L := (=A,)Y2. By semigroup theory it follows that @ € Wpl(Q\Z) N
WPQ(Q\E) Here we use the fact that

L. dz 1/p
(5.25) ([7 st minte sty 0 %)
0

z

defines an equivalent norm in W;(E) fors>0and k> s (ifs=75—1/p, j € {1,2},
we choose k = j). The function v := @ + @ + @ is the unique solution of (5.22),
satisfying the estimates

1926l 2,0 < CUllzaien + 19211155
and
IVullL, @) < CI(F 92) Il gy

The uniqueness of the solution can be seen as follows. Let u € I/Vp1 (Q\X) ﬂWg(Q\E)
be a solution of (5.22) with f = g2 = 0. We want to show that Vu = 0 in Q\X. To
this end we define two functions

v(x1, T, T3) = pouy(x1, T2, T3) — pru— (1, T2, —x3), (T1,22) € R%, 23 >0,
and
w(zy, o, x3) = uy(x1, T2, x3) + u_ (1, T2, —23), (T1,22) € R?, 23 >0,
where u4 := u|z;>0. It follows that v and w solve the half space problems
Av=0, (z1,29) ER?, 23>0, v=0, (z1,22) € R? x3=0,

and
Aw =0, (x1,29) ER?, 23>0, Sw=0, (z1,72) € R?, 23 =0,
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respectively in VVp1 (R3) N Wg(Ri) Therefore Vw = Vv = 0 by even or uneven
reflection at {x3 = 0}. This yields
0= p2Vur + p1Vu_,
0=Vuy —Vu_,
wherefore Vu_ = Vuy =0, hence Vu = 0 in Q\X.
Let now © = R2 xR with ¥ = {R? x {0} } N€Q2. Here we have to solve the problem
—Au=f in Q\3,
[pu] =0 on X,
[0su] =g2 on X,
Oou=hy on S;\0X%,
with [phi] = 0 at 9X. For some large \g > 0, we first solve the problem
Aot —Au=f in Q\X,
[pu] =0 on X,
[03u] = g2 on %,
Oou=hy; on S;\0X,
by Lemma 5.5, to obtain a unique solution @ € W7 (Q\X). Let f, := f + Au and

note that f, € Wp_l(Q) N L,(Q2), which follows from integration by parts and from
the assumption on (f, g2, h1). We extend f, with respect to x5 by even reflection to
some function

(5.26)

(5.27)

f(l') — f*(xlax2a'r3)a To 2 07
f*(ﬂfl,—xQ,fﬁg), ro < 0.
Then f € WP_I(R3) N L,(R?) and we may solve the full space problem —A# = f to
obtain a unique solution @ & Wpl (R3) N WPQ(R?’) with the property @(z2) = u(—x2),
hence Ot = 0 at S1\0%. Consider next the problem
Au=0 in R™"\X,
(5.28) [pi] =g on %,
[Os5u] =0 on X,

where g := —[pu] € Wpl‘l/p(z) N sz_l/p(E). As in the previous case, the unique
solution @ of (5.28) is given in terms of the Poisson semigroup.

Finally, since t(x2) = a(—x2), it follows that g(ze) = g(—z2), hence 4(z2) =
G(—x2), by uniqueness, and therefore dott = 0 at S1\0X. The function u := u +
U|q + U|q is the unique solution of (5.26), satisfying the estimates

IV%ull, @) < CU Nz + 1Pallyyi-1m g\ o5) + 1920y 1-17m 53
and
I9ullz, @ < CIC s g2) 1 -
In a next step we consider the case of a bent two-phase half space. To be precise,

we assume that
Qg = {l’ € RS 1 Xy > (9($1)},
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where 6 € BC3(R) with [|0]|c + [|6/|lc <7, and 7 > 0 can be made as small as we
wish. Let furthermore Sy := {z € R®: 25 = 0(x1)} and Xy := {R? x {0}} N Q.
Consider the problem
—Au=f in Qp\Zy,
pul =0 on 3y,
(5.29) Lov] -
[Osu] = g2 on Xy,

Opps,, w=h1 on S1\0%,

Voxy

where [ € Ly(Qp), g2 € Wy (3p), 1 € Wy P(S15\0%) and (f,g2,h1) €
Wp_l(Qg). Moreover, the compatibility condition [ph;] = 0 at 93y holds.
By means of Lemma 5.5, we may solve the problem
Nofi—Ad=f in Q\Zo,
pu] =0 on Xy,
(5.30) [[ AH -
[030] = g2 on X,

0 U = hl on 8179\829,

Vo
where \g > 0 is large but fixed. This yields a unique solution 4 € WPQ(QQ\EQ). Let
f = f + A4 and consider

—Au=f in Q\Zg,
u| =0 on Xy,
(5.31) loa] ne
[[agu]] =0 on 29,
6%,29& =0 on 5179\829.

Observe that f € WP_I(QQ) N Ly(Qp). We will now transform Qp to Qg by means
of the coordinates Z; := x1, T := x9 — 0(z1) and T3 := x3. Assume that @ solves
(5.31) and define u(z) := u(Z1, T2+ 6(71),Z3). Then, the function « is a solution of
the problem

—Atu = f+ M (0,u) in Q\X,
[pu] =0 on %,

[0su] =0 on X,

—0ou = M3(0,u) on S;\0%,

(5.32)

where f is the transformation of f ,
My (9, 1_1,) = —29,(51)818217, — (9”(@1)82’& + 9’(92*1)28317,

and My (0, a) := —0'(Z1)011ls,\ o5 + 0 (Z1)*Dati] 5\ o5:-
Define the function spaces

E:={Vu € W, () : [pi] = [0su] = 0 on 2},

with the equivalent norm ||al|g := A|Val| L, + || V*a|/L,, A > 0, and let

F = {(f1, f2) € Lp(Q)x W, P(S1\0%) : [pf2] = 0at OX and (f1, f2) € W, 1(Q)}.
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Moreover, we define a linear operator L : E — F by

A
Lu = _ .
Y <32u!sl\az>

It follows from our previous considerations that L : E — F is an isomorphism. Let
F:=(f,0) and M(0,u) := (M1, M>)(0,u). It follows that F' € IF, since

[ Fodr= /Qf¢> iz,

with ¢(Z) := ¢(Z1,Z2—0(Z1),Z3) and ¢ € C°(Qy). Furthermore, for each u € E, we
have M(0,u) € F. Indeed, as in the proof of Lemma 5.5, it can be readily checked
that M (0,u) € Ly(2) x Wg’l/p(sl\az) and [pMa2(6,u)] = 0 at 0X. It remains to
verify the condition (M, M2)(0,u) € Wpfl(Q). To this end, we integrate by parts
to obtain the identity

/ Mi(0,0)6 de+ | Ma(0, )6 dS:
Q S1

N /g (' (21) 02001 ¢ + 0/ (21)D1udap — 0/ (21)*0gud2p) dix,

for each ¢ € C2°(2). This in turn yields the claim. We are now in a position to
write (5.32) in the shorter form

i=L"'M@,ua)+ L 'F.

We may now follow the lines of the proof of Lemma 5.5 to obtain a unique solution
of (5.29).
2. It follows from Lemma 5.5 that the operator Au := —Aw with domain

D(A)={ue sz(Q\Z) : [pu] = [Ousu] =0, &,Sju =0},

is closed. Since D(A) is compactly embedded in L,(£2), the spectrum o(A) consists
solely of isolated eigenvalues and A = 0 is a simple eigenvalue of A. Indeed, N(A) =
span1,, with

1
]lp = XQ1 + XQQ-
P2

Furthermore, N(A?) C N(A), since if u € N(A?), then v := Au € N(A). It follows
that v € L1(£2) and we may integrate Au = v over (2 to obtain

/vdx:—/Audx:O,
Q Q

hence v = 0, since 1, has a non-vanishing mean value.
In particular this yields L,(€2) = N(A) @ R(A) and it holds that R(A) = Léo)(Q).
This can be seen as follows. Obviously one has the inclusion

R(A) c LY(Q).
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So, let f € LI(;O)(Q). Then there exist unique f; € N(A) and fo € R(A) such that
f = fi+ fo. This in turn yields f; € L}(,O)(Q). Since f1 = al, for some o € R with

P1

]lp =X + —XQ2>

P2

it follows that
(D) =a (o] + Zia).
P2

hence av = 0 and therefore f = fo € R(A), hence L]S,O)(Q) C R(A). O

We will also need an existence and uniqueness result for the weak version of (5.3)
with A = 0. To be precise, we consider the problem

(VulVe)2 = (f, ), &€ Wy(),
[pu] =g, onX.

Then we have the following result.

(5.33)

Lemma 5.7. Let p; >0, n=2,3, p>2 and let 2 C R" satisfy condition (c) from
above. Then there exists a unique solution u € Wy (Q\X) of (5.33) if and only if

FeW, 1 Q) and g e W, VP ().

Proof. Let g € Wp1 i/ (¥). The Neumann Laplacian Ay in L,(3) with domain
D(AN) ={u€ Wg(E) : Oyyeu =0 on 0L}
generates an analytic semigroup. In particular, D(Ay) is dense in
WAYP(2) = (Ly(S), D(AN))1ja1/2p = Dy (1/2 = 1/2p,p).

Therefore, there exists (gn)nen C Wg_l/p(Z) such that 0,,,9, = 0 for each n € N

on 0¥ and g, — g asn — o0 in Wz}fl/p(E). Denote by u, € W2 (Q\X) the solution
of (5.3) with f =g = h1 = ha =0, g1 = g, and a fixed A > \y. Making use of
local coordinates one can show that the estimate

[un = wmllwi@ve) = Cllgn = gmllyi-1/ns,

is valid, with some constant C' > 0 which does not depend on n. Indeed, each of the
local charts yields a transformed problem which is subject to one of the conditions
in (a) and (b) above. We have already seen in the proof of Lemma 5.5 that the
two-phase half space and the quarter space can be pulled back to a two-phase full
space and an ordinary half space, respectively, by means of reflection techniques.
Making use of change of coordinates, perturbation theory and the results in [19,
Section 8] one obtains the desired estimate.

In particular, (u,) is a Cauchy sequence in W} (Q\X) and therefore it has a limit

point u € Wpl(Q\E) By trace theory it follows that u satisfies the weak problem
Mulg)2 + (VulVe)a =0, ¢ € Wy(9Q),

(5:34) [pu] =g, on¥,

for some fixed A > Ag.
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Next, let
a:{ueW,(Q\X): [pu] =0 on X} x Wpl,(Q) - R, a(u,¢):= / Vu - Vodz,
Q

and define an operator B : W, (Q2\X) — (Wpl,(Q))* with domain
D(B) ={ue WI}(Q\E) : [pu] =0 on £},

by means of (Bu, ¢) := a(u, ¢). It follows from integration by parts that the operator
A from the proof of the second assertion of Lemma 5.6 is the part of B in L,().
As in the proof of Lemma 5.6 one can show that A = 0 is a simple eigenvalue of B.
It follows that (WZ},(Q))* = N(B) & R(B) and W (Q\X) = N(B) @Y, where Y is
a closed subspace of W;(Q\E) Therefore there exists a unique solution v € Y of
the equation Bv = f if and only if f € R(B) or equivalently (f, 1) = 0. It follows
readily that R(B) = Wp_l(Q). Indeed, the inclusion Wp_l(Q) C R(B) is easy, since
(f,1) = 0 for each f € Wp_l(Q) and the restriction of f to WI},(Q) belongs to

(WI},(Q))* Let now f € R(B), i.e. f € (Wpl/(Q))* and (f,1) = 0. This yields
[(£,0) = 1{f:6 = d) < Cllé = Sllw, @) < CIVElL, @),

by the Poincaré-Wirtinger inequality and therefore [¢ — (f, ¢)] is continuous on

C2°(Q) with respect to the norm ||V - HLPI(Q).

Let u € W(Q\X) denote the unique solution of (5.34) and let v € Wpl(Q\Z)
denote the unique solution of

(Vo[Ve)s = (£,6) — (VulVé)a, ¢ € WH(Q),
[pv] =0, on 3.

It follows readily that the function w:=v+u € Wpl(Q\E) is the unique solution of
(5.33). O

A final result considers the system (5.3) with A = g1 = go = hy = ha = 0. We
assume that the function f depends on the spatial variable x and on some parameter
t,i.e. f = f(t,x). In this case the solution u = u(t,z) depends on ¢ as well. The
following result contains some information about the regularity of u with respect to
t and x.

Lemma 5.8. Letn=2,3,p>2, J=[0,T) or J=R; and A = g1 = go = h1 =
ho = 0. Then the following assertions are valid.

(1) If Q and X satisfy one of the conditions in (a), (b) above, then there exists
a unique solution

Vu €W, (J; W, (X)) N Ly (J; W (D))
of (5.3) if and only if
FeaWa(J; W, H(Q) N Ly(Q) N Ly(J; W2(Q\X)).

(2) If Q2 and X are subject to the condition (c) above, then there exists a unique
solution
u €W, (J; Wy (Q\)) N Ly(J; WS(Q\X))
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of (5.3) if and only if
f €Wy (J; W, H(92)) N Lyp(J; Wy (\5)).

Proof. (i) The regularity
Vu €W, (J; W, (Q\X))
in the first assertion and
u €W, (J; W, (2\X))
in the second assertion is a direct consequence of Lemma 5.6 and Lemma 5.7,
respectively.

(ii) Concerning the additional spatial regularity of u, one uses the fact that one
already knows the unique solution v of (5.3) with the regularity stated in Lemma
5.6 and Lemma 5.7. By means of local coordinates, one reduces each of the local
problems to one of the model probolems in (a) and (b) above. In particular, the two-
phase half space and the quarter space can be pulled back to a two-phase full space
and an ordinary half space, respectively, by reflection techniques. The mapping
behavior of the Laplacian and the Poisson semigroup in homogeneous Sobolev-
Slobodeckii spaces, see (5.25), yield the corresponding higher order estimates for
the solution operators of the model problems. Therefore, the proof of the additional
regularity of u with respect to x follows along the lines of [19, Proof of Theorem
8.6]. We will not repeat the arguments. O

5.3.2. Parabolic problems. The following auxiliary lemma is concerned with the par-

abolic one-phase problem
Ou — pAu = f, in Q,

Ps, (u(Vu + VUT)I/Sl) = Ps,q1, on Sy,
(5.35) u-vs, =gz, ondSy,
u=gs, on.Soy,
u(0) = up, in .
Again, we will concentrate on the case n = 3. The results in this subsection remain

true for the case n = 2.

Lemma 5.9. Letp>2,p#3, u>0,T >0 and J = [0,T]. Then there exists a
unique solution
u € Hy(J5 Ly(Q)%) N Ly(J; Hy(2)?)

of (5.35) if and only if the data are subject to the following reqularity and compati-
bility conditions

(1) f € Lp(J; Ly()?),
(2) g1 € Wy (T Ly (81)%) 1 Ly( s Wy~ P (S0)%),
(3) g2 € w1 Y2 (1. L,(S1)) N Ly(J; WP (Sy)),
(4) g5 € WV Ly(8)°) 1 L (W2 (52,
(5) w0 € W27,
( ) Pg, ( (VUO + VUO)Vsl) = PS1gl|t=O (p > 3);
(7) wols, - vs, = galt=0, uols, = g3li=o,
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(8) g3-vs, = g2 at OSa,
(9) Poc (1(Vargh + Var(95) " vas,) = Pacd; at 3Ss,
(10) p(Ous, (93 - €3) + O392) = g1 - €3 at DSy,

where g; := Zzzl(gj -eg)ex for j € {1,3}.
The result remains true for the case J = Ry if Oy is replaced by 0y +w, with some
sufficiently large w > 0.

Proof. 1. Extend ug to some function @y € Wg —2/p (R3)3 and solve the full space
problem

Oyt — pA% =0, in R3,

5.36
(5.36) @(0) = 7, in R3,

to obtain a unique solution
i € HY(J; L(R?) 0 Ly(J; HA(RY)?).

If w is a solution of (5.35), then u —@|q solves (5.35) with up = 0 and some modified
data (f,91,92,93) (not to be relabeled) having vanishing temporal trace at ¢t = 0,
whenever it exists. Therefore, we may w.l.o.g. assume that up = 0 in (5.35).
Suppose that u is a solution of (5.35) with ug = 0. We cover 9Sy by finitely
many open balls Uy := B,(x), zx € 0S2, k = 1,...,N. This way, we obtain
N bent quarter spaces with corresponding solution operators S, which are well-
defined, if » > 0 is sufficiently small. Furthermore, by the results in Subsection 5.2

there exist open sets Uy, j = 1,...,3 such that
[ ] UN+1 C Q,
e UniaNSy 75(2), Uni2NSe = (2)7
e Uni3NS1 =0, Untz NSy # 0,
« QC U U,

and a subordinated partition of unity {px}Y_, C C3(R3[0,1]) with O,, 0k =
O3pr = 0 at 059. Let ug := upr, fr := for and g;-“ = gjpr- Then wuy solves
the problem

Opuy — pAuy, = Fi(u) + fr, in Q,
Pay (1(Vur + Vu gy ) = Gi(u) + Pogaf. on ST,
(5.37) Up - Vgk = g’2“, on Sf,

up = g’3“, on S§,
up(0) =0, in Q,

where Fj(u) := —u[A, prlu and G (u) = P (u(chk Qu+u® Vgok)usf).

Here Qn41 = R3, Qyio reduces to bent half-spaces with pure-slip boundary
conditions, (2n3 is a half-space with Dirichlet boundary conditions and 2, k =
1,..., N are bent quarter-spaces with pure-slip boundary conditions on one part of
the boundary and Dirichlet boundary conditions on the other part. S;-“ denote the

corresponding parts of the boundary 90 and SJNH = S{VH = SéVH = (.
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Denoting by S the corresponding solution operators to each of the N + 3 prob-
lems, we obtain the representation

= S ((fus gt 95, 98) + (Fi(w), Gi(w), 0,0) ).

Let {¢y}_, C C°(R3;[0,1]) such that 15 = 1 on supp ey and suppey, C U.
Multiplying uj with ¢, and summing from k£ = 0 to N yields the identity

N
(5.38) w= 3" St (i gb. 95, 98) + (Fi(w), Gi(u).0,0))
k=0

Therefore, any solution to (5.35), with wy = 0, necessarily satisfies (5.38). The
converse however is in general not true. This pathology stems from the compatibility
conditions at 0S5 for the commutator term Gy, (u) in (5.37). Thanks to Proposition
5.1 there exists an appropriate extension operator ext,, . from

oW, /2P (J; Ly(055)) N Ly(J3 W, ~2/7(055))
to
oW, 272 (T; Ly(0S5 x Ry)) N Ly(J; W, ~/P(0S3 x Ry)),
such that [ext,, 1 v](0) = v. Replace G(u) by
Grolu, g3) = G(u) — extay ko (G(w)lag=t; — Gr(93)les=r;) = Gi(g3) + GE(u),

where G}.(g3) := exty, 1 Gi(93)|zs—m,. We note on the go that Gr(u, g3) = Gr(u),
if u is a solution of (5.35), since then u = g3 at 952 and gs3ls, - Vs, = g2|s, at 9S2
by assumption.

Therefore we will henceforth work with the identity

N
(5.39) u=> 1 (sk<fk, 9 + G1(93), 95, 95) + Sk(Fi(u), GF(w), 0, 0)) :
k=0

Let oE(T) :=0H, (J; Ly(Q)*) N Ly(J; Hp (2)?),
FL(T) = Ly(J x Q)°,
0Fa(T) :=o W,/ > V2 (J; Ly(S1)%) N Ly(J; W, ~ /P (1)
0F3(T) :=o W, /?(J; Ly(S1)) N Ly(J; Wy~ V/P(Sh))
oF4(T) =Wy (J; Ly(S2)*) N Lyp(J; W2THP(S3)%)

%),

)

and
oF(T) :={(f,91,92,93) € Fl(T)x§:2{on(T)} : (8)—(10) in Lemma 5.9 are satisfied}.
Since the terms involving u on the right side of (5.39) are of lower order, it follows

that there exists v > 0 such that the a priori estimate

luller) < M (I(f, 91,92, 98)lzry + T |ullger)) |
holds for any solution u of (5.39). Therefore, if T' > 0 is sufficiently small, it follows
that the operator L : gE(T) — oF(T") defined by the left side of (5.35) without the
initial condition is injective and has closed range. This in turn implies that L has
a left-inverse.
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Applying a Neumann series argument, we see that for each given set of data
(f, 91, 92,93) €0F(T) there exists a unique solution u of (5.39) on a (possibly) small
time interval [0,7]. This follows as above by taking into account that the terms
involving u on the right side of (5.39) are linear and of lower order. Denote by
S 1 oF(T) — oE(T) the corresponding solution operator. It remains to prove the
existence of a right inverse for L. Writing u = S(f, 91, 92, 93), where (f,g1,92,93) €
oF(7T), it follows that

N
(5.40) S(f,91,92,93) = Z@/Jk(Sk(fkyglf‘i‘Gllc(gS)?g’QCag§)+8k(Fk(u)aGz(u)a070)>~
k=0

Applying the operator L to (5.40) we obtain

LS(f7 g1, 92)93) - (f7 g1, 92, 93) + R(fa g1, 92, 93)7
where the linear operator R is given by
N

R(fa 91792a93) = Z[Lv¢k] (Sk(fkvglf + Gllc(g3)ag’2cvg§) =+ Sk(Fk(u)v Gi(u)a 0, 0))
k=0

N
+ Z(Fk(u>7 Gk(uvg3)> 0, 0)
k=0

Since the commutator [L, ] as well as Fi(u) and G (u,g3) are of lower order
compared to L, it follows that there exists v > 0 such that R satisfies the estimate

HR(fa g1, gQ?QS)HF(T) < MT’YH(f? 91, 92793>H]F(T)7

where M > 0 does not depend on T'. Therefore, a Neumann series argument implies
that the right inverse for L is given by the linear operator S(I — R)~!, provided
that T' > 0 is sufficiently small. This implies that L is boundedly invertible and the
proof of the first assertion is complete.

2. Concerning the second assertion, we use local coordinates and make use of
the fact that the corresponding local solution operators are bounded by 1/w in the
norm of F. By means of interpolation we are able to control all lower order terms
by C'/w® for some uniform a > 0. Choosing w > 0 large enough, the norms of the
lower order terms will become small. This yields the invertibility of L, as above,
where L, results from L by replacing d; with 9y + w. O

We will also need a result on the well-posedness of the two-phase problem
O(pu) — pAu = f, in Q\X,
[1Osv] + [V yw] = go, on X,
[103w] = gw, on X,

[u] =usx, on X,

(5.41) .
Pg, (M(Vu + Vu )V51> = Pg,g1, on S1\0%,

u-vs, =gz, onS;\0%,
u = g3, on 527
u(0) =up, in Q\X.
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Lemma 5.10. Letp > 2, p#3, p1; >0, pj >0, T >0 and J = [0,T]. Then there
exrists a unique solution

u € Hy(J; Ly(Q)°) N Ly(J; Hy (X))
of (5.41) if and only if the data are subject to the following reqularity and compati-
bility conditions
(1) f € Lp(J; Lp()?),
UHW””%L%@WH%MWﬁW@W,

)
)
)
)
)
)
) uo = (vo, wo) € Wy P(Q\D)?,

) Ps, (1(Vuo + Vug )vs,) = Ps,g1li=o, [#d3v0] + [V rwol = guli=o (p > 3),
) uols, - Vs, = g2lt=0, Uols, = 93lt=0, [HO3wo] = guwlt=0, [uo] = us|i=o,

) 93-vs, = g2 at 0Sa, us - vs, = [g2] at 0%,

)

)

)

)

Pys, ((Vx/vz + VI/U;)VQE) = Pox[gi/p] at 0%,
Oys, ws; = [(91 - €3)/ 10 — B392], (9v|vos) = [g1 - es] at 0%,
Py (1(Vargh + Vi (95) T vas,) = Pocg; at 85s
1(ug, (g3 - €3) + O392) = g1 - €3 at DSa,
where g; = Zi:l(gj -eg)ex for j € {1,3}.
The result remains true for the case J = Ry if Oy is replaced by 0y +w, with some
sufficiently large w > 0.

Proof. 1. Without loss of generality we may assume ug = 0. This can be seen as
follows. Extend ug := uo|y,e(0,1,) € ngZ/p(G x (0, Hs))? first w.r.t. x3, then
w.r.t. (21,22) to some 47 € Wg_Q/p(R3)3 and solve the full space problem
(5.42) ot — AT =0, inR3,
a*t(0) =af, inR?

to obtain a unique solution

@t € Hy(J; Ly(R®)?) N Ly (J; HY(R?)?).
Then we extend ugy = Uo|ze(r,,0) € W§_2/p(G x (Hp,0))? first wr.t. 3, then
w.r.t. (z1,22) to some 4, € ngQ/p(R‘g)?’ and solve (5.42) with @g replaced by g
to obtain a unique solution

W~ € Hy(J; Ly(R?)?) N Ly(J; Hp (R?)?).

Define @ := 71+XGx(0,H2) + U™ Xax (Hy,0)- 1f u solves (5.41), then u — @ solves (5.41)
with up = 0 and with some modified data (f,g;j,us) (not to be relabeled). Note
that the time traces of the modified data at ¢t = 0 are zero by construction, whenever
they exist.
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Step 1: In a first step we consider the case p; = p; = 1. Extend
(90s 9w) €W, 272 (J; Ly()%) N Ly (J; W, VP (E)?)
and
us €W V2(J; Ly(2)%) N Ly(J; W2P(2)?),
to some functions
(Gos Guw) €W, 27V (J; Ly(R%)®) 0 Ly (J; W, ~/P(R?)?)
and
iy €Wy 2 (J; Ly(R?)) N Ly (J; W2 VP (R?)?)
respectively. Then we solve the following two-phase problem in R3 := R? x R.
Ot — At =0, in R?,
[030] + [Vod] = G, on R%x {0},
(5.43) [030] = Guw, on R%x {0},
[a] = @x, on R? x {0},
@(0) =0, inR®
This yields the existence of a unique solution
@ €oHy (5 Ly(R*)*) N Ly(J; Hy (R?)?).
If u solves (5.41) with ug = 0, then u — g solves (5.41) with ug = gy = guw =
uy = 0 and some modified data (f,gi,g2,§g3) in the right regularity classes and

with vanishing trace at ¢ = 0 whenever it exists. Observe that the compatibility
conditions on the modified data at 9% read as follows.

[92] = [0542] =0, and [Ps, 1] = Ps, [91] =0

Note that this is in general not the case if [u] # 0. Therefore it follows that
Ps, g1 €W,/ > 2P (J5 Ly(S1)?) N Ly (J; Wy 7P (S1)?),

and

Go €Wy V(T3 Ly(Sh)) N Ly(J; W2YP(Sy)).
Since the modified data g; also satisfy the compatibility conditions at 952, we may
solve (5.35) by Lemma 5.9 with p = 1, f = f, g1 = Ps,G1, 92 = G2, 93 = §3
and ug = 0. This in turn implies that problem (5.41) is well-posed, provided that
pr = p2 =1

Step 2: In the second step we consider the case [p] # 0, [u] # 0. Let us

first reduce (5.41) with ug = 0 to the case g1 = g2 = g3 = 0. To this end will
apply Lemma 5.9 twice. First we extend gj := Gjlase(0,,) Dy some (higher order)

reflections at {z3 = 0} to some functions
g €W P Ly(1)*) N Lp(J3 Wy P (51)°)

and
93 €W, V2 (J; Lp(S1)) N Ly(J; W2~ 1/P(S1)),
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such that g;-L|$3:H1 = 0. Then, we solve (5.35) with u = pa, f =0, g1 = Ps, 3,
92 = Go s 93|us—H, = 935 and g3|zs—m, = 0 to obtain a unique solution
" €oH)(J; Lyp(Q2)%) N Ly(J; H (Q2)%).
Repeating the same procedure for g; = g5 z3€(Hy,0) Yields a unique solution
i~ €oHy(J; Lp()%) N Ly(J; HA(Q)%).

Define @ := 4" Xax(0,H,) + @ Xax (1,0 I u solves (5.41) with ug = 0, then
u — 4 solves (5.41) with ug = 0, g1 = 0, g2 = 0 g3 = 0 and some modified data
(f, Gv, gw, tx) which are subject to the following compatibility conditions at 0%:

(5.44) s vs, =0, dyg s =0, gy vos =0
and
(5.45) Pos, (Vs + VardD)vos ) = 0.

Step 3: Let oE(T) :=oH, (J; Ly(2)?) N Ly(J; HZ(Q\X)?) and denote by oF(T) the
space of data (f,g;,ux), j € {v,w,1,2,3} such that the compatibility conditions
(11)-(15) in Lemma 5.10 are satisfied. Define L :oE(T") —oF(T") by the left side of
(5.41) without the initial condition. By means of a localization procedure one can
show that L satisfies the a priori estimate

(5.46) lulloger) < M| Lullger)-

This can be seen as in the proof of Lemma 5.9. Indeed, the charts which intersect
055 and 9% may be treated as in Subsections 2.3.1 & 2.3.3, respectively, while the
treatment of the remaining charts is well-known. Note that there is no need to carry
any correction terms as in the proof of Lemma 5.9, since for the proof of (5.46) one
already starts with a solution of (5.41). Therefore, the compatibility conditions at
052 and 9% are necessarily satisfied.

Next, we set

OE(T) := {u €0HL(J; Ly()®) N Ly(J; HX(Q\X)®) :
uls, =0, uls, -vs, =0, Ps, ((u+VuT)vs, ) =0},

and denote by oF(T)) the space of data (f, gu, gw, ux;) together with the compatibility
conditions (5.44) & (5.45) at 9. Note that

Ps, <(Vu + VuT)l/51> =0« Pg, <N(Vu + VUT)Vsl) =0

at S1\0%. Define L :oE(T) — oF(T) by

O (pu) — pAu
Fu— [0sv] + [V prw]
[[M[[OS]]W]]

Since the norm in oE(T) is the same as in oE(T') and since

| Zallwery = 1Ll 2y
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for u € oE(T), it follows from (5.46) that L is injective with closed range, i.e. L is
a semi-Fredholm operator. It is also crucial to observe that the constant M > 0 is
uniform on compact sets of > 0 and p > 0, by continuity.

We replace the coefficients (p1, p2, 11, p2) by

(pﬁlrvpgv /,671—, /‘72—) = T(pla 92>N17/L2) + (1 - T)(l’ 17 17 1)7 TE [0> 1]a

and denote by L, :oE(.J) — oF(J) the corresponding operator which is induced by
replacing p and p with p” and u7, resectively. Note that L, satisfies the estimate

lull gz < MILrul, gry-

with some constant M > 0 which is uniform with respect to 7 € [0,1]. Hence L, is
semi-Fredholm for each 7 € [0, 1]. By Step 1 of the proof, we already know that Lg
is a Fredholm operator with index zero. The continuity method for semi-Fredholm
operators implies that L is Fredholm with index zero as well. We remark that the
reduction obtained in Step 2 of the proof is essential, since otherwise the viscosity
coeflicient p appears in the definition of I~F(T) Replacing p by p”, it would follow
that F(T) depends on 7 as well.

2. The strategy for proof of the second assertion is the same as in the proof of
Lemma 5.9. Will will not repeat the arguments. O

5.4. Miscellaneous results. Let G C R"! n € {2,3} be a bounded domain with
boundary G € C! and define 2 := G x (Hy, Hs), with H; < 0 < H. Furthermore,
let ¥ := G x {0}, S1 := 0G x (Hy, H) and Sy := U§:1{G x {H;}}. Define
v = (z1,...,2,-1)" and z = (2/,2,)". Assume that h: G — (Hp, Hy) is C' and
set

[:={z=(2,2,) €Q: 2, =Nh(a), 2’ € G},

that is, I is an (n — 1)-dimensional manifold in € which is given as the graph of the
height function h over X.

Proposition 5.11 (Divergence theorem in cylindrical domains). For each u €
HI(Q\X)" the following identity holds.

/divu dx :/ uls, - vs, dSi +/ uls, - Vs, dSs — /[[u]]yr dr,
Q S1 So r

where vg; are the outer unit normals on Sj and vr is the normal on I' pointing from
O ={z=(2",2,) € Q: 2, <h(2), 2/ € G}
to QQ = Q\Qil

Proof. The proof follows from the fact that €2; are both Lipschitz domains. Indeed,
it is well-known that the divergence theorem is valid for Lipschitz domains, see for
example [17, Section 4.3]. O

Last but not least, we need an auxiliary result which is crucial for the proof of
local well-posedness in Section 4. Here and in the sequel, Dv denotes the symmetric
part of the gradient Vu.
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Proposition 5.12. Letp > 2, G C R? be a bounded domain with boundary 0G € C?
and outer unit normal vector field v which is C' in a neighborhood of 0G. If

v e WZ(G;R?) and h € W;’fl/p(G) such that (v|v) = d,h = 0 and Pyc[(Dv)v] =0,
then 0, (v|Vh) = 0.
Proof. An easy computation shows that
d,(v|Vh) = (0,v|Vh) + (v|Vhv),
where d,v := VoTv.

Note that Pyg[(Dv)r] = 0 implies that ((Dv)v|Vh) = 0, since by assumption
Oyh = 0. This in turn yields (9,v|Vh) = —(Vor|Vh). Making use of the represen-
tation Vh = 70,;h + vd,h = 70.h, where 7 € R? with |7| = 1 and (7|v) = 0, we
obtain

(Vov|Vh) = (Vh - V)v|v) = 0:h(0;v|v) = —0;h(v|0-v).
Here we made use of the assumption (v|v) =0 and Vh -V := 23:1 0;h0;.
Concentrating on the term (v|V2hv), we obtain

2 2
(U|v2hV) == Z viaiajhuj == Z [vl-@i((‘)jhuj) - viajhaiyj]
1,j=1 1,5=1
2 2
= (v-V)o,h — Z v;0;hdivj = (v|7)0-0,h + (v|V)02h — Z v;0;h0;v;
i,j=1 6j=1
2

= — Z Uiajhaivj',

1,j=1

since (v|v) = d,h = 0. Here it is important to observe that 0;0,h = 0, whenever
dyh = 0, since J; denotes the derivative in tangential direction.
Note that
2
Z v;0;h0iv; = ((v- V)v|Vh) = (v|7)(0-v|Vh) = (v|T)0-h(0-v|T) = 0-h(0rv|v),
ij=1
since v = 7(v|T) + v(v|v) = 7(v|T) and Vh = 79-h. Finally, this yields
0y (v|Vh) = 0-h[(0;v|v) — (Orv|v)] = 0.

The proof is complete. O
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