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Assuming that (uj , πj) satisfies the Navier-Stokes equations in each of the phases
Ωj(t), we may conclude that (u, π) satisfies (1.1) for all t > 0 and x ∈ Ω\Γ(t), where
ρ and µ are defined by

ρ(x) :=

{
ρ1, x ∈ Ω1(t),

ρ2, x ∈ Ω2(t),
µ(x) :=

{
µ1, x ∈ Ω1(t),

µ2, x ∈ Ω2(t).

Clearly one expects that the two fluids should affect each other in their dynamics.
Therefore, it is natural to ask for relations that describe the coupling of the two
fluids across the interface Γ(t). If one neglects effects of phase transitions between
the phases Ω1(t) and Ω2(t) (e.g. the exchange of mass) then the motion of the moving
boundary Γ(t) is only caused by the velocity fields of the both fluids. Therefore it
is natural to propose that u2|Γ(t) = u1|Γ(t). Then the normal velocity VΓ of Γ(t) is
given by

(1.2) VΓ = u · νΓ,
where νΓ denotes the unit normal field on Γ(t) pointing from Ω1(t) to Ω2(t). We
call the quantity [[u]] := u2|Γ(t) − u1|Γ(t) the jump of u across Γ(t). Note that

(1.3) [[u]] = 0

if and only if the velocity field u is continuous across the interface Γ(t). Another
condition on Γ(t) reads

(1.4) −[[µ(∇u+∇uT)]]νΓ + [[π]]νΓ = σHΓνΓ,

where σ > 0 denotes the (constant) surface tension of Γ(t) and HΓ := −divΓ νΓ is
themean curvature of Γ(t) with divΓ being the surface divergence on Γ(t). Condition
(1.4) describes the balance of forces on the interface. To be precise, there is no
contribution to the rate of change of the momentum coming from the interface Γ(t).

If the fixed boundary ∂Ω of Ω is not empty, then the system (1.1)-(1.4) with
[[u]] = 0 has to be equipped with appropriate boundary conditions on ∂Ω as well
as some initial conditions on u(0) = u0 and Γ(0) = Γ0. There is a vast literature
concerning the mathematical treatment of free boundary problems for the Navier-
Stokes equations with or without surface tension. To this end we can only give a
selection and refer the reader to [2, 5, 6, 7, 8, 9, 10, 11, 19, 23, 24, 25, 28, 29, 30,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. For a derivation of (1.1)-(1.4) we refer
to [18] or [27].

It is the main purpose of this article to extend the results on well-posedness
obtained in [26] to the framework of bounded cylindrical domains. To be precise,
we assume that Ω = G × (H1,H2), where G ⊂ Rn−1, n ∈ {2, 3} is a bounded
domain with smooth boundary and H1 < 0 < H2. Suppose furthermore that there
is a family of hypersurfaces {Γ(t)}t≥0 given as a graph of some height function h
over G, i.e.

Γ(t) = {(x′, xn) ∈ Ω : xn = h(t, x′), x′ ∈ G}, t > 0,

such that for each t ≥ 0 the interface Γ(t) divides Ω into two subdomains Ω1(t)
and Ω2(t) which are filled with two fluids, respectively. Let us use the convention
that Ω2(t) is the upper phase. Assuming that the equations (1.1)-(1.4) are be
satisfied, we are led in a natural way to the problem of finding suitable boundary
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conditions on the vertical part S1 := ∂G × (H1,H2) and the horizontal part S2 :=
(G×{H1})∪ (G×{H2}) of the boundary ∂Ω of Ω. This turns out to be a delicate
question, since within the above setting we are on the one side concerned with two
parts S1 and S2 of the boundary such that ∂S1 = ∂S2. Therefore the boundary
conditions on S1 and S2 have to be chosen in such a way that they are compatible
to each other. On the other side we have to deal with a contact angle problem, as
∂Γ(t) is a moving contact line on S1. At this point we want to emphasize that the
choice of the periodic setting in [44] allows to circumvent the formation of a contact
angle.

G

(t)

Figure 1. Cylindrical domain

The theory of contact angle problems, in particular with a dynamic contact angle
which depends on t, is yet not well understood. In fact, there exist different points of
view about how to model such a problem. Some researchers argue that the dynamic
contact angle is determined by an additional equation, while others assume that the
contact angle will be determined by the dynamic equations for the interface and the
fluid, hence the equation for the contact angle should be redundant. We refer to [3]
& [31] and to the references given therein.

Therefore, in order to avoid this lack of clarity, we assume throughout this article
that the contact angle is constant and equal to 90 degrees. One can interpret this
ansatz as an idealization. It is possible to translate the condition on the contact
angle to a condition on the height function h from above. Indeed, if h is sufficiently
smooth, then the unit normal on Γ(t) with respect to Ω1(t) is given by

νΓ =
1√

1 + |∇x′h|2

(
−∇x′h

1

)
.

Since the outer unit normal on S1 is given by νS1 = (ν∂G, 0)
T, the condition on

the contact angle reads νΓ · νS1 = 0 or equivalently ∂ν∂Gh = 0 at the contact
line. Concerning S1 it is not possible to propose Dirichlet boundary conditions,
the so-called no-slip boundary conditions, since this leads to a paradoxon for the
moving contact line, see e.g. [28]. The next canonical choice are the so-called Navier
boundary conditions or partial-slip boundary conditions

u · νS1 = 0, PS1(µ(∇u+∇uT)νS1) + αu = 0,
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where PS1 := I − νS1 ⊗ νS1 denotes the projection to the tangent space on S1. The
parameter α > 0 has the physical meaning of a friction coefficient. However, it
turns out that for α > 0, these boundary conditions do not allow the interface to
move along S1 which is not very reasonable, as numerical simulations show. To see
this defect, consider for simplicity the case n = 2. The equation (1.2) in terms of h
then reads

(1.5) ∂th = u2 − u1∂1h,

where u = (u1, u2). Observe that for n = 2 the partial slip conditions read as follows

u1 = 0, µ(∂1u2 + ∂2u1) + αu2 = 0.

Therefore it holds that µ∂1u2 + αu2 = 0, which is a Robin boundary condition for
u2 on S1. Differentiating (1.5) with respect to x1, and taking into account that
∂1h = 0 at S1 (by the contact angle condition) we obtain ∂1u2 = 0, hence u2 = 0 if
α > 0. Consequently it holds that ∂th = 0 at S1 and therefore h(t) is constant with
respect to t.

In order to circumvent this problem, we will consider the case α = 0, the so-called
pure-slip boundary conditions. From a physical point of view this means that there
is no friction on the boundary S1. Having fixed the boundary conditions on S1
we may choose suitable boundary conditions on S2, having in mind that these
conditions have to match those on S1. It turns out that homogeneous Dirichlet
boundary conditions are a good choice, since they are compatible with the pure-
slip boundary conditions on S1. Note that the no-slip boundary conditions on S2
do not cause any problems with the moving interface, since we will always have
Γ(t) ∩ S2 = ∅ for all t ≥ 0. We are thus led to the problem

∂t(ρu)− µ∆u+ ρ(u · ∇)u+∇π = −ργaen, in Ω\Γ(t),
div u = 0, in Ω\Γ(t),

−[[µ(∇u+∇uT)]]νΓ + [[π]]νΓ = σHΓνΓ, on Γ(t),

[[u]] = 0, on Γ(t),

VΓ = u · νΓ, on Γ(t),

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Γ(t),

u · νS1 = 0, on S1\∂Γ(t),
u = 0, on S2,

νΓ · νS1 = 0, on ∂Γ(t),

u(0) = u0, in Ω\Γ(0),
Γ(0) = Γ0,

(1.6)

where we denote by γa > 0 the acceleration constant due to gravity.
With this article, we present a rather complete analysis of (1.6) with respect

to the existence and uniqueness of strong Lp-solutions. In Section 2 we will first
transform (1.6) to a fixed domain which does not vary in time. This will be done by
means of a height function h, assuming that Γ(t) is given as the graph of h over the
domain G. By means of local charts the transformed problem can be pulled back
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to certain model problems. As the analysis of two types of these model problems,
namely the Stokes equations in quarter-spaces and the two-phase Stokes equations
in half spaces is not known, we will provide a systematic treatment of these problems
subsequently. At this point we want to emphasize that the analysis of the latter
problems is more involved than the usual model problems in half spaces. This is
due to the fact that one has to deal with mixed boundary conditions meeting at
the contact line. However, our assumption on the contact angle enables us to use
reflection techniques in order to pull back the quarter space to a half space with
Dirichlet boundary conditions and the two-phase half space to a two-phase full space
with a flat interface.

In Section 3 we use the results from Section 2 combined with a localization pro-
cedure to prove existence and uniqueness of a solution of the principal linearization
having maximal regularity of type Lp. To be precise, if u and π denote the (trans-
formed) velocity field and pressure field, respectively, we will show that (u, π, [[π]], h)
enjoys the regularity

u ∈ H1
p (J ;Lp(Ω)

n) ∩ Lp(J ;H
2
p (Ω\Σ)n), π ∈ Lp(J ; Ḣ

1
p (Ω)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)).

and

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)),

where J = [0, T ] is some nonempty bounded interval. This optimal regularity result
in turn allows to apply the contraction mapping principle in Section 4 to obtain
a unique solution of the nonlinear problem having optimal regularity as well. In
particular, problem (1.6) generates a local semiflow in a natural phase space.

Finally, all technical results which are needed for the execution of the above
program are collected in an appendix. Several results concerning extension opera-
tors, auxiliary elliptic and parabolic problems in quarter spaces and two-phase half
spaces but also in bounded cylindrical domains are provided. In addition, we state
the divergence theorem for bounded Lipschitz domains.

Notation: The symbols Hs
p , W

s
p , s ≥ 0 refer to the Bessel potential spaces and

Sobolev-Slobodeckii spaces, respectively. If J = [0, T ] is some interval and X a
suitable Banach space, then 0W

s
p (J ;X) denotes the subspace ofW s

p (J ;X) consisting
of all functions having a vanishing trace at t = 0, whenever it exists. We denote by
Ẇ k

p (Ω) = Ḣk
p (Ω) the homogeneous Sobolev space of order k ∈ N, where Ω ⊂ Rn is

some domain. The symbol (·|·) denotes the standard inner product in Rn and we
sometimes also make use of the notation u · v = (u|v) for u, v ∈ Rn.

2. Preliminaries and model problems

For the sake of readability we will assume throughout this article that the space
dimension n is equal to 3. This is the most important case from a viewpoint of
applications. Furthermore we will assume from now on that p > n + 2 = 5. In
Section 4 about the well-posedness of the nonlinear model, this condition on p is a
result of some Sobolev embeddings which are needed for the proof.
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It is convenient to introduce the modified pressure π̃ := π+ργax3 in (1.6), where
x3 = x · e3, x ∈ R3 and e3 = (0, 0, 1). Then we obtain the following problem.

∂t(ρu)− µ∆u+ ρ(u · ∇)u+∇π̃ = 0, in Ω\Γ(t),
div u = 0, in Ω\Γ(t),

−[[µ(∇u+∇uT)]]νΓ + [[π̃]]νΓ = σHΓνΓ + [[ρ]]γax3νΓ, on Γ(t),

[[u]] = 0, on Γ(t),

VΓ = u · νΓ, on Γ(t),

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Γ(t),

u · νS1 = 0, on S1\∂Γ(t),
u = 0, on S2,

νΓ · νS1 = 0, on ∂Γ(t),

u(0) = u0, in Ω\Γ(0),
Γ(0) = Γ0.

(2.1)

Here Ω = G× (H1,H2), H1 < 0 < H2, is a cylindrical domain where G ⊂ R2 is an
open bounded domain with a smooth boundary ∂G. The compact free boundary
Γ(t) divides Ω into two unbounded disjoint phases Ωj(t), j = 1, 2, so that Ω =
Ω1(t) ∪ Γ(t) ∪ Ω2(t). The convention is that Ω2(t) is the upper phase while Ω1(t)
is the lower one with the unit normal νΓ at x ∈ Γ(t) pointing from Ω1(t) to Ω2(t).
We denote by νS1 the outer unit normal at the fixed boundary S1. The operator
PS1 := I − νS1 ⊗ νS1 stands for the projection to the tangential space on S1.

2.1. Reduction to a flat interface. In this subsection we transform the time-
dependent domain Ω\Γ(t) to a fixed domain. To this end, we assume that

Γ(t) = {x = (x1, x2, x3) ∈ G× (H1,H2) : x3 = h(t, x′), x′ = (x1, x2) ∈ G}

t ≥ 0. Let φ ∈ C∞(R; [0, 1])) such that φ(s) = 1 if |s| ≤ δ/2 and φ(s) = 0 if |s| ≥ δ,
where δ < min{−H1,H2}/2. Define a mapping

Θh(t, x̄) := x̄+ φ(x̄3)h(t, x̄
′)e3 =: x̄+ θh(t, x̄),

where e3 = (0, 0, 1), x̄ := (x̄′, x̄3) and for fixed t > 0 set x = Θh(t, x̄). An easy
computation shows

θ′Th =

0 0 ∂1hφ
0 0 ∂2hφ
0 0 hφ′

 ,

It follows that Θ′
h is invertible if ∥h∥∞,∞ < 1/(2|φ′|∞) and

(Θ′
h)

−T = (I + θ′Th )−1 =
1

1 + hφ′

1 + hφ′ 0 −∂1hφ
0 1 + hφ′ −∂2hφ
0 0 1

 .

Here ∥·∥∞,∞ denotes the L∞-norm in the time-space cylinder (0, a)×Ω, a ∈ (0,∞].
In the sequel, let ∥h∥∞,∞ < η with 0 < η ≤ 1/(2|φ′|∞) being sufficiently small.

Then the inverse Θ−1
h : Ω → Ω is well defined and it transforms the free interface
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Γ(t) to the flat and fixed interface Σ := G × {0}. Now we define the transformed
quantities

ū(t, x̄) := u(t,Θh(t, x̄))

π̄(t, x̄) := π̃(t,Θh(t, x̄))

and compute νΓ = (−∇x′h, 1)T/
√

1 + |∇x′h|2,

∇π̃ = ∇π̄ −M0(h)∇π̄
div u = div ū− (M0(h)∇|ū)
∆u = ∆ū−M1(h) : ∇2ū−M2(h)∇ū
∂tu = ∂tū− φ∂th(1 + φ′h)−1∂3ū,

where M0(h) := θ′Th (I + θ′Th )−1,

M1(h) : ∇2ū :=
[
2 sym(θ′Th [I + θ′h]

−T)− [I + θ′h]
−1θ′hθ

′T
h [I + θ′h]

−T
]
: ∇2ū,

and

M2(h)∇ū :=
(
[∆Θ−1

h ] ◦Θh|∇
)
ū.

Furthermore it holds that VΓ = (∂tΘh|νΓ) = ∂th(e3|νΓ) = ∂th/
√

1 + |∇x′h|2. This
yields the following transformed problem for ū and π̄ (for convenience we drop the
bars in the sequel).

∂t(ρu)− µ∆u+∇π = F (u, π, h), in Ω\Σ,
div u = Fd(u, h), in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = Gv(u, h), on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h− [[ρ]]γah = Gw(u, h), on Σ,

[[u]] = 0, on Σ,

∂th− w = H1(u, h), on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= H2(u, h), on S1\∂Σ,

u · νS1 = 0, on S1\∂Σ,
u = 0, on S2,

∂ν∂Gh = 0, on ∂Σ,

u(0) = u0, in Ω\Σ
h(0) = h0, on Σ.

(2.2)

Here

F (u, p, h) := ρφ∂th(1 + φ′h)−1∂3u− µ(M1(h) : ∇2u+M2(h)∇u) +M0(h)∇π
Fd(u, h) := (M0(h)∇|u)

Gv(u, h) := −[[µ(∇v +∇vT)]]∇h+ |∇h|2[[µ∂3v]]
+
(
(1 + |∇h|2)[[µ∂3w]]− (∇h|[[µ∇w]])

)
∇h

Gw(u, h) := −(∇h|[[µ∇w]])− (∇h|[[µ∂3v]]) + |∇h|2[[µ∂3w]] + σGκ(h)
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Gκ(h) := div

(
∇h√

1 + |∇h|2

)
−∆h

H1(u, h) := −(v|∇h)

H2(u, h) := PS1(µ(M0(h)∇u+∇uTM0(h)
T)νS1),

where we have set v := (u1, u2), w := u3 and ∇w = ∇x′w, ∇v = ∇x′v, ∇h = ∇x′h
for the sake of readability.

2.2. Linearization, regularity and compatibility conditions. We consider
first the principal linearization of (2.2), that is

∂t(ρu)− µ∆u+∇π = f, in Ω\Σ,
div u = fd, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h = gw, on Σ,

[[u]] = uΣ, on Σ,

∂th−m[w] = gh, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1\∂Σ,

u · νS1 = g2, on S1\∂Σ,
u = g3, on S2,

∂ν∂Gh = g4, on ∂Σ,

u(0) = u0, in Ω\Σ
h(0) = h0, on Σ,

(2.3)

where m[w] := (w+ + w−)/2 is the arithmetic mean of the directional traces w±
of w to Σ from Ω2 and Ω1. This arithmetic mean is introduced, since the jump
of w = u3 across Σ is not necessarily zero. However, note that m[w] = w in case
[[w]] = 0. Note further, that we neglected the term [[ρ]]γah in the jump of the stress
tensor, as it is of lower order compared to ∆x′h.

Let J = [0, T ] with T ∈ (0,∞). We are looking for solutions (u, π) of the Stokes
equation with

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), π ∈ Lp(J ; Ḣ

1
p (Ω)),

and
[[π]] ∈W 1/2−1/2p

p (J ;Lp(Σ)) ∩ Lp(J ;W
1−1/p
p (Σ)).

Note that the latter regularity condition on [[π]] is determined by the regularity of
the Neumann trace of u on Σ. For the height function h this yields

∆x′h ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ))

and
∂th ∈W 1−1/2p

p (J ;Lp(Σ)) ∩ Lp(J ;W
2−1/p
p (Σ)),

hence the optimal regularity class for h is given by

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)).
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Let us discuss the necessary regularity and compatibility conditions on the data
(f, fd, gv, gw, gh, g1, g2, g3, g4, uΣ, u0, h0). If (u, π, [[π]], h) is a solution of (2.3) in
the regularity classes stated above, then it holds that f ∈ Lp(J ;Lp(Ω)

3), fd ∈
Lp(J ;H

1
p (Ω\Σ))

(gv, gw) ∈W 1/2−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
1−1/p
p (Σ)3),

uΣ ∈W 1−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
2−1/p
p (Σ)3),

gh ∈W 1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

2−1/p
p (Σ)),

PS1g1 ∈W 1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1\∂Σ)3),

g2 ∈W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1\∂Σ)),

g3 ∈W 1−1/2p
p (J ;Lp(S2)

3) ∩ Lp(J ;W
2−1/p
p (S2)

3),

g4 ∈W 3/2−1/p
p (J ;Lp(Σ)) ∩H1

p (J ;W
1−2/p
p (Σ)) ∩ Lp(J ;W

2−2/p
p (Σ)),

u0 ∈W 2−2/p
p (Ω\Σ)3, h0 ∈W 3−2/p

p (Σ).

Concerning compatibility conditions at t = 0 we have div u0 = fd|t=0,

gv|t=0 = −[[µ∂3v0]]− [[µ∇x′w0]],

[[u0]] = uΣ|t=0, u0 · νS1 = g2|t=0, u0 = g3|t=0, ∂ν∂Gh0 = g4|t=0 and

PS1(µ(∇u0 +∇uT0 )νS1) = PS1g1|t=0.

Since ∂Σ ⊂ S1 ̸= ∅ and ∂S1∩∂S2 ̸= ∅, there are additional compatibility conditions
which have to be satisfied.

If (u, π, [[π]], h) is a solution of (2.3) with the above regularity, then the following
compatibility conditions at ∂Σ and ∂S2 have necessarily to be satisfied.

• [[g2]] = uΣ · νS1 , [[(g1 · e3)/µ− ∂3g2]] = ∂νS1
(uΣ · e3), at ∂Σ,

• P∂G[(D
′vΣ)ν

′] = [[P∂Gg
′
1/µ]], ∂tg4 −m[(g1 · e3)/µ− ∂3g2] = ∂ν∂Ggh, at ∂Σ,

• (gv|ν∂G) = −[[g1 · e3]] at ∂Σ, (g3|νS1) = g2 at ∂S2,
• P∂G[µ(D

′g′3)ν
′] = (P∂Gg

′
1), µ∂νS1

(g3 · e3) + µ∂3g2 = g1 · e3 at ∂S2.

Here we use the notation ν ′ = ν∂G, P∂G := I − ν ′ ⊗ ν ′, D′v := ∇x′v +∇x′vT and
g′ :=

∑2
k=1(g · ek)ek. These conditions follow easily by comparing the equations

(2.3)3 and (2.3)5−10 with each other.
There is another compatibility and regularity condition hidden in the system,

which stems from the divergence equation. Multiply div u = fd by ϕ ∈ H1
p′(Ω),

p′ = p/(p− 1) and integrate by parts (see Proposition 5.11) to the result

(2.4)

∫
Ω
fdϕdx−

∫
S1

g2ϕ|S1dS1 −
∫
S2

(g3 · νS1)ϕ|S2dS2+

+

∫
Σ
(uΣ · νΣ)ϕ|ΣdΣ = −

∫
Ω
u · ∇ϕdx,

where νS2(x
′,H2) = e3, νS2(x

′,H1) = −e3 for x′ ∈ G and νΣ = e3. It follows that the
functional [ϕ 7→ ⟨(fd, g2, g3, uΣ), ϕ⟩] defined by the left side of (2.4) is continuous
on H1

p′(Ω) with respect to the semi-norm ∥∇ · ∥Lp′ (Ω). Since H1
p′(Ω) is dense in

the homogeneous Sobolev space Ḣ1
p′(Ω) (the constants are already factorized) with
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respect to ∥∇ · ∥Lp′ (Ω) for all domains Ω which are considered in this article, it

follows that (fd, g2, g3, uΣ) determines a functional on Ḣ1
p′(Ω), i.e. (fd, g2, g3, uΣ) ∈

Ĥ−1
p (Ω) := (Ḣ1

p′(Ω))
∗. The norm of (fd, g2, g3, uΣ) in Ĥ

−1
p (Ω) is then given by

∥(fd, g2, g3, uΣ)∥Ĥ−1
p

= sup{⟨(fd, g2, g3, uΣ), ϕ⟩/∥∇ϕ∥Lp′ : ϕ ∈ H1
p′(Ω)}.

Moreover, if u ∈ H1
p (J ;Lp(Ω)

3), then d
dt(fd, g2, g3, uΣ) is well defined by the com-

putation above, hence

(fd, g2, g3, uΣ) ∈ H1
p (J ; Ĥ

−1
p (Ω))

is another necessary compatibility and regularity condition on the data. In partic-
ular, if Ω is bounded, then we may choose ϕ = 1 in (2.4) to obtain∫

Ω
fddx−

∫
S1

g2dS1 −
∫
S2

(g3 · νS1)dS2 +

∫
Σ
(uΣ · νΣ)dΣ = 0.

2.3. Model problems. The proof of existence and uniqueness of a solution
(u, π, [[π]], h) to (2.3) is based on a localization procedure. We will obtain six dif-
ferent types of charts, which yield six different types of model problems. These
are

• the full space Stokes equations (without any boundary- or interface condi-
tions)

• the two-phase Stokes equations with a flat interface and without any bound-
ary condition

• the Stokes equations with pure slip boundary conditions in a half-space and
no interface

• the Stokes equations with no-slip boundary conditions in a half-space and
no interface

• the Stokes equations in a quarter space with pure slip boundary conditions
on one part of the boundary and no-slip boundary conditions on the other
part

• the two-phase Stokes equations with pure slip boundary conditions in a
half-space, a flat interface and a contact angle of 90 degrees.

While the first four of these problems are well understood, there seem to be no
results on well-posedness of the last two problems.

2.3.1. The Stokes equations in quarter-spaces. Consider the problem

∂t(ρu)− µ∆u+∇π = f, x1 ∈ R, x2 > 0, x3 > 0,

div u = fd, x1 ∈ R, x2 > 0, x3 > 0,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]
T = g1, x1 ∈ R, x2 = 0, x3 > 0,

u2 = g2, x1 ∈ R, x2 = 0, x3 > 0,

u = g3, x1 ∈ R, x2 > 0, x3 = 0,

u(0) = u0, x1 ∈ R, x2 > 0, x3 > 0.

(2.5)

For convenience, let Ω := R×R+×R+, S1 := R×{0}×R+ and S2 := R×R+×{0}.



TWO-PHASE NAVIER-STOKES IN CYLINDRICAL DOMAINS 131

In a first step we extend u0 ∈W
2−2/p
p (Ω)3 with respect to x2 via the reflection

ũ0(x1, x2, x3) =

{
u0(x1, x2, x3), if x2 > 0,

−u0(x1,−2x2, x3) + 2u0(x1,−x2/2, x3), if x2 < 0.

Then ũ0 ∈W
2−2/p
p (R× R× R+)

3. Applying the same method to

g3 ∈W 1−1/2p
p (J ;Lp(S2)

3) ∩ Lp(J ;W
2−1/p
p (S2)

3)

yields an extension

g̃3 ∈W 1−1/2p
p (J ;Lp(R× R)3) ∩ Lp(J ;W

2−1/p
p (R× R)3).

Furthermore it holds that g̃3|t=0 = ũ0|x3=0, since g3|t=0 = u0|S2 . Then we solve the
half-space problem

∂tũ−∆ũ = 0, (x1, x2, x3) ∈ R2 × R+,

ũ|x3=0 = g̃3, (x1, x2) ∈ R2, x3 = 0,

ũ(0) = ũ0, (x1, x2, x3) ∈ R2 × R+,

(2.6)

to obtain a unique solution

ũ ∈ H1
p (J ;Lp(R3

+)
3) ∩ Lp(J ;H

2
p (R3

+)
3).

If (u, π) is a solution of (2.5), then the (restricted) function (u − ũ, π) solves (2.5)
with u0 = g3 = 0 and some modified data (f, g1, g2) (not to be relabeled) in the
right regularity classes having a vanishing trace at t = 0 whenever it exists.

In a next step we extend

g1 ∈0W
1/2−1/2p
p (J ;Lp(S1)

2) ∩ Lp(J ;W
1−1/p
p (S1)

2),

and

g2 ∈0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)),

w.r.t. x3 to some functions

g̃1 ∈0W
1/2−1/2p
p (J ;Lp(R2)2) ∩ Lp(J ;W

1−1/p
p (R2)2),

and

g̃2 ∈0W
1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

2−1/p
p (R2)),

and solve the half-space problem

∂tū−∆ū = 0, x1, x3 ∈ R, x2 > 0,

µ[∂2ū1 + ∂1ū2, ∂3ū2 + ∂2ū3]
T = g̃1, x1, x3 ∈ R, x2 = 0,

ū2 = g̃2, x1, x3 ∈ R, x2 = 0,

ū(0) = 0, x1, x3 ∈ R, x2 > 0,

(2.7)

to obtain a unique solution

ū ∈0H
1
p (J ;Lp(R× R+ × R)3) ∩ Lp(J ;H

2
p (R× R+ × R)3).
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If (u, π) is a solution of (2.5) it follows that the (restricted) function (u− ũ− ū, π)
solves the problem

∂t(ρu)− µ∆u+∇π = f, (x1, x2, x3) ∈ Ω,

div u = fd, (x1, x2, x3) ∈ Ω,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]
T = 0, (x1, x2, x3) ∈ S1,

u2 = 0, (x1, x2, x3) ∈ S1,

u = g3, (x1, x2, x3) ∈ S2,

u(0) = 0, (x1, x2, x3) ∈ Ω,

(2.8)

with some modified data (f, fd, g3) in the right regularity classes having a vanishing
trace at t = 0 whenever it exists. Note that g3 := ū|x3=0 and the compatibility
conditions (g3)2 = ∂2(g3)1,3 = 0 hold if x1 ∈ R, x2 = 0 and x3 = 0 (here we use the
abbreviation (g3)j := g3 · ej , j ∈ {1, 2, 3}). We will now extend (f1, f3, fd, (g3)1,3)
by even reflection and (f2, (g3)2) by odd reflection to {x2 < 0}. Then we consider
the (reflected) half-space problem

∂t(ρû)− µ∆û+∇π̂ = f̃ , x1, x2 ∈ R, x3 > 0,

div û = f̃d, x1, x2 ∈ R, x3 > 0,

û = g̃3, x1, x2 ∈ R, x3 = 0,

û(0) = 0, x1, x2 ∈ R, x3 > 0,

(2.9)

which has a unique solution

û ∈0H
1
p (J ;Lp(R3

+)
3) ∩ Lp(J ;H

2
p (R3

+)
3),

π̂ ∈ Lp(J ; Ḣ
1
p (R3

+)),

by [4, Theorem 6.1].
The (restricted) pair (u, π) := (ũ + ū + û, π̂) is the desired unique solution to

(2.5). We have thus proven the following

Theorem 2.1. Let n = 3, p > 5, T > 0, ρ, µ > 0 and J = [0, T ]. Then there exists
a unique solution

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3)

π ∈ Lp(J ; Ḣ
1
p (Ω))

of (2.5) if and only if the data satisfy the following regularity and compatibility
conditions.

(1) f ∈ Lp(J ;Lp(Ω)
3);

(2) fd ∈ Lp(J ;H
1
p (Ω));

(3) g1 ∈W
1/2−1/2p
p (J ;Lp(S1)

2) ∩ Lp(J ;W
1−1/p
p (S1)

2);

(4) g2 ∈W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1));

(5) g3 ∈W
1−1/2p
p (J ;Lp(S2)

3) ∩ Lp(J ;W
2−1/p
p (S2)

3);

(6) u0 ∈W
2−2/p
p (Ω)3;

(7) div u0 = fd|t=0, µ[∂2(u0)1 + ∂1(u0)2, ∂3(u0)2 + ∂2(u0)3]|Tx2=0 = g1|t=0;
(8) (u0)2|x2=0 = g2|t=0, u0|x3=0 = g3|t=0;
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(9) (g3)2|x2=0 = g2|x3=0, µ[∂2(g3)1+∂1(g3)2, ∂3g2|x3=0+∂2(g3)3]|Tx2=0 = g1|x3=0;

(10) (fd, g2, g3) ∈ H1
p (J ; Ĥ

−1
p (Ω)).

2.3.2. The Stokes equations in bent quarter-spaces. Let θ ∈ BC3(R) such that

Gθ := {(x1, x2) ∈ R2 : x2 > θ(x1)} and Ωθ = Gθ × R+.

We assume furthermore that |θ′|∞ ≤ η and |θ(j)|∞ ≤ M , j ∈ {2, 3}, where we may
choose η > 0 as small as we wish. Let S1,θ := ∂Gθ × R+ and S2,θ := Gθ × {0}.
Furthermore, let νS1,θ

= (νGθ
, 0)T with νGθ

:= 1√
1+θ′(x1)2

(θ′(x1),−1)T denote the

outer unit normal to S1,θ at (x1, θ(x1), x3), (x1, x3) ∈ R × R+ and let PS1,θ
be the

tangential projection to S1,θ. Consider the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ωθ,

div u = fd, x ∈ Ωθ,

PS1,θ
[µ(Du)νS1,θ

] = PS1g1, x ∈ S1,θ,

(u|νS1,θ
) = g2, x ∈ S1,θ,

u = g3, x ∈ S2,θ

u(0) = u0, x ∈ Ωθ.

(2.10)

Here ρ, µ > 0 are given constants. Note that since νS1 = (ν∂G, 0)
T it holds that

(2.11) PS1,θ
[µ(Du)νS1,θ

] =

(
P∂Gθ

[µ(D′v)νGθ
]

µ∂3(v|νGθ
) + µ∂νGθ

w,

)
where D′ = D(x1,x2) and u = (v, w). Therefore, the given data (f, fd, g1, g2, g3, u0)
is subject to the compatibility conditions (g3|νS1,θ

) = g2|S2,θ
,

P∂Gθ
[µ(D′g′3)νS1,θ

] = P∂Gθ
g′1,

and µ(∂3g2 + ∂νGθ
(g3 · e3)) = g1 · e3 at the contact line {(x1, θ(x1), 0) : x1 ∈ R},

where

g′j :=
2∑

k=1

(gj · ek)ek

for j ∈ {1, 3}. Furthermore, at t = 0 we have div u0 = fd|t=0, u0|S2,θ
= g3|t=0,

(u0|νS1,θ
) = g2|t=0 and PS1,θ

[µ(Du0)νS1,θ
] = PS1,θ

g1|t=0. Lastly, (fd, g2, g3) ∈
H1

p (J ; Ĥ
−1
p (Ωθ)).

For convenience we shall reduce (2.10) to the case u0 = f = g3 = 0. To this end

we first extend u0 and f to some ũ0 ∈ W
2−2/p
p (R3)3 and f ∈ Lp(J ;Lp(R3)3) and

solve the full-space problem

∂t(ρũ)− µ∆ũ = f̃ , in R3,

ũ(0) = ũ0, in R3,

to obtain a unique solution

ũ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H

1
p (R3)3).
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Let now g̃3 := g3 − ũ|S2 . Then g̃3|t=0 = 0 by construction and we may extend g̃3 to
some

ĝ3 ∈0W
1−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W

2−1/p
p (R2)3).

With ĝ3 at hand we solve the half-space problem

∂t(ρû)− µ∆û = 0, in R3
+,

û = ĝ3, on R2,

û(0) = 0, in R3
+,

to obtain a unique solution

û ∈ H1
p (J ;Lp(R3

+)
3) ∩ Lp(J ;H

1
p (R3

+)
3).

If u is a solution of (2.10), it follows that the (restricted) function ū := u − ũ − û
solves (2.10) with f = u0 = g3 = 0 and some modified functions f̄d, ḡj , j ∈ {1, 2}
in the correct regularity classes satisfying the compatibility conditions ḡ2|S2,θ

=

0, P∂Gθ
ḡ′1 = 0 and ḡ1 · e3 = ∂3ḡ2 at the contact line. Moreover, (f̄d, ḡ2, 0) ∈

0H
1
p (J ; Ĥ

−1
p (Ωθ)).

Observe that by the identity (PS1,θ
w|νS1,θ

) = 0, w ∈ R3, the second component
of PS1,θ

w is redundant (it can always be calculated from the first one). Therefore
we may replace the term PS1,θ

[µ(Du)νS1,θ
] by its first and last component, i.e. we

consider the two equations

PS1,θ
[µ(Du)νS1,θ

] · ej = PS1,θ
g1 · ej

for j ∈ {1, 3}. Observe also that PS1,θ
g1 · e3 = g1 · e3, since the last component of

νS1,θ
is identically zero..

In what follows we will transform the domain Gθ to G := R×R+, the boundaries
S1,θ and S2,θ to S1 := ∂G× R+ and S2 := G× {0}, respectively, and, hence, Ωθ to
Ω := G×R+. To this end we introduce the new variables x̄1 = x1, x̄2 = x2 − θ(x1)
and x̄3 = x3 for x ∈ Ωθ = Gθ × R+. Suppose that (u, π) is a solution of (2.10) and
define the new functions

ū(x̄) := u(x̄1, x̄2 + θ(x̄1), x̄3)

and

π̄(x̄) := π(x̄1, x̄2 + θ(x̄1), x̄3),

where x̄ := (x̄1, x̄2, x̄3). In the same way we transform the data (fd, g1, g2) to

(f̄d, ḡ1, ḡ2). It holds that ∂
j

k̄
ū = ∂jku for k ∈ {2, 3}, j ∈ {1, 2},

∂1u = ∂1ū− θ′(x̄1)∂2ū

and

∂21u = ∂21 ū− 2θ′(x̄1)∂1∂2ū− θ′′(x̄1)∂2ū+ θ′(x̄1)
2∂22 ū.
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Therefore, the pair (ū, π̄) solves the following problem

∂t(ρū)− µ∆ū+∇π̄ =M1(θ, ū, π̄), x̄ ∈ Ω,

div ū =M2(θ, ū) + f̄d, x̄ ∈ Ω,

µ(∂1ū2 + ∂2ū1) =M3(θ, ū)−
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], x̄ ∈ S1,

µ(∂2ū3 + ∂3ū2) =M4(θ, ū)−
√

1 + θ′2[ḡ1 · e3], x̄ ∈ S1,

ū2 =M5(θ, ū)−
√

1 + θ′2ḡ2, x̄ ∈ S1,

ū = 0, x̄ ∈ S2,

ū(0) = 0, x̄ ∈ Ω,

(2.12)

where the functions Mj are given by

M1(θ, ū, π̄) := 2θ′(x̄1)∂1∂2ū+ θ′′(x̄1)∂2ū− θ′(x̄1)
2∂22 ū+ θ′(x̄1)∂2π̄e1,

M2(θ, ū) := θ′(x̄1)∂2ū1,

M3(θ, ū) := µθ′(x̄1)[2∂1ū1 + θ′(x̄1)(∂1ū2 − ∂2ū1)− (1 + θ′(x̄1)
2)∂2ū2],

M4(θ, ū) := µθ′(x̄1)(∂1ū3 − θ′(x̄1)∂2ū3 + ∂3ū1),

M5(θ, ū) := θ′(x̄1)ū1.

Now we want to go back from (2.12) to (2.10). To this end we consider the functions
on the right hand side of (2.12) as given data in the right regularity classes. Our
aim is the to interpret (2.12) as a perturbation of (2.5), provided |θ′|∞ < η and
η > 0 is sufficiently small. It is therefore reasonable to solve (2.12) by a Neumann
series argument. To this end let

0Eu(T ) := {u ∈0H
1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3) : u|S2 = 0},

Eπ(T ) := Lp(J ; Ḣ
1
p (Ω)),

0E(T ) :=0Eu(T )× Eπ(T ),

F̃(T ) := F1(T )× F2(T )×5
j=3 0Fj(T ),

where

F1(T ) := Lp(J ;Lp(Ω)
3),

F2(T ) := Lp(J ;H
1
p (Ω)),

0F3(T ) :=0W
1/2−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

1−1/p
p (S1)),

0F4(T ) :=0F3(T ), and

0F5(T ) :=0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)).

Finally, we set

0F(T ) := {(f1, . . . , f5) ∈ F̃(T ) : (9) & (10) in Theorem 2.1 are satisfied}.
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Define an operator L : 0E(T ) →0F(T ) by

L(ū, π̄) :=


∂t(ρū)− µ∆ū+∇π̄

div ū
µ(∂2ū1 + ∂1ū2)|S1

µ(∂3ū2 + ∂2ū3)|S1

ū2|S1


and note that L : 0E(T ) →0F(T ) is an isomorphism by Theorem 2.1. Define

M(θ, ū, π̄) := (M1(θ, ū, π̄),M2(θ, ū),M3(θ, ū),M4(θ, ū),M5(θ, ū))
T

and

F := (0, f2, f3, f4, f5)
T,

with f2 := f̄d,

f3 := −
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], f4 := −
√

1 + θ′2[ḡ1 · e3]

and f5 := −
√
1 + θ′2ḡ2. By the smoothness of θ, it follows that F ∈ F̃(T ). So it

remains to check that the compatibility conditions (9) & 10 in Theorem 2.1 are
satisfied. Since ḡ2|S2 = 0, P∂Gθ

ḡ1,v = 0 and ḡ1,w = ∂3ḡ2 at the contact line, the
compatibility conditions in Theorem 2.1 (9) are easily verified. To verify (10) in

Theorem 2.1 we have to show that (f2, f5, 0) ∈ 0H
1
p (J ; Ĥ

−1
p (Ω)). Note that for the

reduced data from above we have (fd, g2, 0) ∈0H
1
p (J ; Ĥ

−1
p (Ωθ)), hence for a.e. t ∈ J

the functional Ψ(t) : H1
p′(Ωθ) → R defined by

⟨Ψ(t), ϕ⟩ :=
∫
Ωθ

fd(t)ϕ dx−
∫
S1,θ

g2(t)ϕ|S1,θ
dSθ

as well as its derivative with respect to t are continuous with respect to the norm
∥∇ · ∥Lp′ (Ωθ). Transforming Ωθ to the quarter space Ω and S1,θ to S1 via the above

diffeomorphism Φ(x1, x2, x3) = (x1, x2 − θ(x1), x3) yields∫
Ωθ

fd(t)ϕ dx−
∫
S1,θ

g2(t)ϕ|S1,θ
dSθ =

=

∫
Ω
f̄d(t)ϕ̄ dx̄−

∫
S1

√
1 + θ′(x̄)2ḡ2(t)ϕ̄|S1 dS,

where ϕ̄(x̄1, x̄2, x̄3) := ϕ(x1, x2 − θ(x1), x3). This shows that for a.e. t ∈ J the
functional Ψ̄(t) : H1

p′(Ω) → R given by

⟨Ψ̄(t), ϕ̄⟩ :=
∫
Ω
f̄d(t)ϕ̄ dx̄−

∫
S1

√
1 + θ′(x̄)2ḡ2(t)ϕ̄|S1 dS

and its derivative with respect to t are continuous with respect to the norm ∥∇ ·
∥Lp′ (Ω), hence (f2, f5, 0) ∈0H

1
p (J ; Ĥ

−1
p (Ω)). This implies F ∈0F(T ).

Concerning M(θ, ū, π̄), we observe that for ū ∈ 0Eu(T ) we have ū = 0 as well as
∂j ū = 0 at S2 for j ∈ {1, 2} and therefore also at the line

∂S1 = ∂S2 = S1 ∩ S2 = R× {0} × {0},
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by continuity of ū and ∂j ū in Ω. Therefore M3(θ, ū) = M5(θ, ū) = 0 at S1 ∩ S2.
Moreover,

M4(θ, ū) = µθ′(x̄1)∂3ū1

at S1 ∩ S2, hence µ∂3M5(θ, ū) =M4(θ, ū). It remains to verify the condition

(M2(θ, ū),−M5(θ, ū), 0) ∈0H
1
p (J ; Ĥ

−1
p (Ω))

for ū ∈0Eu(T ). We compute∫
Ω
M2(θ, ū)ϕ dx̄−

∫
S1

(−M5(θ, ū))ϕ|S1 dS

=

∫
Ω
θ′(x̄1)(∂2ū1)ϕ dx̄+

∫
S1

θ′(x̄1)ū1ϕ|S1 dS

= −
∫
Ω
θ′(x̄1)ū1∂2ϕ dx̄,

for each ϕ ∈ H1
p′(Ω), where we integrated by parts with respect to the variable x̄2.

This yields the claim.
It follows that M(θ, ū) ∈ 0F(T ) for each (ū, π̄) ∈ 0E(T ) and therefore we may

rewrite (2.12) shortly as (ū, π̄) = L−1M(θ, ū, π̄) + L−1F in 0E(T ). We intend to
show that for each ε > 0 there exist T0 > 0 and η0 > 0 such that

(2.13) ∥M(θ, ū, π̄)∥F(T ) ≤ ε∥(ū, π̄)∥E(T ),

provided that T ∈ (0, T0) and η ∈ (0, η0).
The above computation for (M2,M5, 0) readily yields that

∥(M2(θ, ū),M5(θ, ū), 0)∥H1
p(J ;Ĥ

−1
p (Ω)) ≤ ∥θ′∥∞∥ū∥Eu(T ).

Moreover, it holds that

∥M2(θ, ū)∥Lp(J ;H1
p(Ω)) ≤ ∥θ′∥∞∥ū∥Eu(T ) + ∥θ′′∥∞∥ū∥Lp(J ;H1

p(Ω))

≤ ∥θ′∥∞∥ū∥Eu(T ) + T 1/2p∥θ′′∥∞∥ū∥L2p(J ;H1
p(Ω))

≤ (∥θ′∥∞ + T 1/2pC∥θ′′∥∞)∥ū∥Eu(T ),

where the constant C > 0 stems from the embeddings

0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H

2
p (Ω)) ↪→0H

1/2
p (J ;H1

p (Ω)) ↪→ L2p(J ;H
1
p (Ω)),

valid for each p > 1. Note that C > 0 does not depend on T > 0, since ū|t=0 = 0.
The estimate for M1 is very easy. Indeed, by Hölder’s inequality we obtain

∥M1(θ, ū, π̄)∥Lp(J ;Lp(Ω)) ≤ C
[
∥θ′∥∞(1 + ∥θ′∥∞) + T 1/2p∥θ′′∥∞

]
∥(ū, π̄)∥E(T ).

Again, C > 0 does not depend on T > 0. The estimates for M3,M4 are nearly the
same. So we just concentrate on M4.

∥M4(θ, ū)∥F4(T ) ≤ ∥M4(θ, ū)∥W 1/2−1/2p
p (J ;Lp(S1))

+ ∥M4(θ, ū)∥Lp(J ;W
1−1/p
p (S1))

≤ C
[
∥θ′∥∞∥ū∥Eu(T ) + ∥M4(θ, ū)∥Lp(J ;W

1−1/p
p (S1))

]
.
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To estimate last term, it suffices to consider a term of the form θ′∂j ū in

Lp(J ;W
1−1/p
p (S1)) for some j ∈ {1, 2, 3}. Making use of the embedding

Lp(J ;H
1
p (Ω)) ↪→ Lp(J ;W

1−1/p
p (S1))

we obtain

∥θ′∂j ū∥Lp(J ;W
1−1/p
p (S1))

≤ C∥θ′∂j ū∥Lp(J ;H1
p(Ω)) ≤

≤ C
[
∥θ′∥∞ + T 1/2p∥θ′′∥∞

]
∥ū∥Eu(T ),

with C > 0 being independent of T > 0. Finally, it remains to estimate M5 in
F5(T ). We employ the embedding

Lp(J ;H
2
p (Ω)) ↪→ Lp(J ;W

2−1/p
p (S1))

to the result

∥θ′ū1∥Lp(J ;W
2−1/p
p (S1))

≤ C∥θ′ū1∥Lp(J ;H2
p(Ω))

≤ C
[
∥θ′∥∞ + T 1/2p(∥θ′′∥∞ + ∥θ′′′∥∞)

]
∥ū∥Eu(T ).

Collecting everything together, we have shown that

∥M(θ, ū, π̄)∥F(T ) ≲
[
∥θ′∥∞ + T 1/2p(∥θ′′∥∞ + ∥θ′′′∥∞)

]
∥(ū, π̄)∥E(T ).

Recall that ∥θ′∥∞ < η. Therefore, choosing first η > 0, then T > 0 small enough,
we obtain the desired estimate (2.13). A Neumann series argument in 0E(T ) finally
implies that there exists a unique solution (ū, π̄) ∈0E(T ) of the equation L(ū, π̄) =
M(θ, ū, π̄) + F or equivalently a solution (u, π) of (2.10), provided that the data
satisfy all relevant compatibility conditions at the contact line S1 ∩ S2.

This in turn yields a solution operator SQS : FQS → EQS for (2.10), where EQS

and FQS are the solution space and data space, respectively, for the bent quarter-
space and the data in FQS satisfy all relevant compatibility conditions at the contact
line {(x1, θ(x1), 0) : x1 ∈ R}.

2.3.3. The two-phase Stokes equations in half-spaces. Consider the problem

∂t(ρu)− µ∆u+∇π = f, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,

div u = fd, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,
−[[µ∂3v]]− [[µ∇x′u3]] = gv, x1 ∈ R, x2 > 0, x3 = 0,

−2[[µ∂3u3]] + [[π]]− σ∆x′h = gw, x1 ∈ R, x2 > 0, x3 = 0,

[[u]] = uΣ, x1 ∈ R, x2 > 0, x3 = 0,

∂th−m[u3] = gh, x1 ∈ R, x2 > 0, x3 = 0,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]
T = g1, x1 ∈ R, x2 = 0, x3 ∈ Ṙ,

u2 = g2, x1 ∈ R, x2 = 0, x3 ∈ Ṙ,
∂2h = g3, x1 ∈ R, x2 = 0, x3 = 0,

u(0) = u0, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,
h(0) = h0 x1 ∈ R, x2 > 0, x3 = 0.

(2.14)
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Here m[w] := (w+ +w−)/2, where w± denote the traces of w at x3 = 0 from above
and below, respectively. Note that m[w] = w|x3=0 if w is continuous at x3 = 0, that
is, if [[w]] = w+ − w− = 0. Furthermore x′ := (x1, x2).

For convenience we set Ω := R×R+ ×R, S1 := R×{0}×R, Σ := R×R+ ×{0}
and ∂Σ := R × {0} × {0}. We will prove the following existence and uniqueness
result.

Theorem 2.2. Let n = 3, p > 5, T > 0, ρj , µj > 0, j = 1, 2, J = [0, T ]. The
problem (2.14) has a unique solution (u, π, h) with regularity

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), π ∈ Lp(J ; Ḣ

1
p (Ω\Σ)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)),

if and only if the data satisfy the following regularity and compatibility conditions.

(1) f ∈ Lp(J ;Lp(Ω)
3),

(2) fd ∈ Lp(J ;H
1
p (Ω\Σ)),

(3) g = (gv, gw) ∈W
1/2−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
1−1/p
p (Σ))3,

(4) uΣ ∈W
1−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
2−1/p
p (Σ)3);

(5) gh ∈W
1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

2−1/p
p (Σ)),

(6) g1 ∈W
1/2−1/2p
p (J ;Lp(S1))

2 ∩ Lp(J ;W
1−1/p
p (S1\∂Σ))2,

(7) g2 ∈W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1\∂Σ)),

(8) g3 ∈W
3/2−1/p
p (J ;Lp(∂Σ)) ∩H1

p (J ;W
1−2/p
p (∂Σ)) ∩ Lp(J ;W

2−2/p
p (∂Σ));

(9) u0 = (v0, w0) ∈W
2−2/p
p (Ω)3, h0 ∈W

3−2/p
p (Σ)

(10) div u0 = fd|t=0, [[u0]] = uΣ|t=0,
(11) µ[∂2(u0)1 + ∂1(u0)2, ∂3(u0)2 + ∂2(u0)3]|Tx2=0 = g1|t=0,
(12) (u0)2|x2=0 = g2|t=0, ∂2h0|x2=0 = g3|t=0, −[[µ∂3v0]]− [[µ∇x′(u0)3]] = gv|t=0,
(13) (gv)2 + [[(g1)2]] = 0, [[(g1)1/µ]] = ∂2(uΣ)1 + ∂1(uΣ)2 at ∂Σ;
(14) [[(g1)2/µ− ∂3g2]] = ∂2(uΣ)3, [[g2]] = (uΣ)2 at ∂Σ,
(15) ∂tg3 −m[(g1)2/µ− ∂3g2] = ∂2gh at ∂Σ,

(16) (fd, uΣ · e3, g2) ∈ H1
p (J ; Ĥ

−1
p (Ω)).

Proof. In a first step we will show that without loss of generality we may assume
u0 = 0 and h0 = 0. We start with h0. For that purpose we extend h0 and gh with

respect to x2 to some functions h̃0 ∈W
3−2/p
p (R2) and

g̃h ∈W 1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

2−1/p
p (R2)),

respectively. Furthermore, we extend u0 with respect to x2 to some function ũ0 ∈
W

2−2/p
p (R2× Ṙ)3, where Ṙ := R\{0}. The extensions for u0 and gh can be achieved

by applying a higher order reflection method as in Subsection 2.3.1. In general,
for the extension of h0, one cannot apply the reflection technique from Subsection

2.3.1, since for large p one has W
3−2/p
p ↪→ C2. However, the extension for h̃0 exists

due to the results in [45, 46]. Let now

h̃(t) = [2e−(I−∆x′ )
1/2t − e−2(I−∆x′ )

1/2t]h̃0+
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[e−(I−∆x′ )t − e−2(I−∆x′ )t](I −∆x′)−1{m[ũ0 · e3] + g̃h|t=0}, t ≥ 0,

where ∆x′ denotes the Laplace operator with respect to the variables x′ = (x1, x2) ∈
R2. Since h̃0 ∈ W

3−2/p
p (R2) and m[ũ0 · e3], g̃h|t=0 ∈ W

2−3/p
p (R2), it follows from

elementary semigroup theory that

h̃ ∈W 2−1/2p
p (J ;Lp(R2)) ∩H1

p (J ;W
2−1/p
p (R2)) ∩ Lp(J ;W

3−1/p
p (R2))

with h̃(0) = h̃0 and ∂th̃(0) = m[ũ0 · e3] + g̃h|t=0.

Let us turn to u0. Consider the extension ũ0 ∈W
2−2/p
p (R2× Ṙ)3 from above and

let ũ±0 := ũ0|x3≷0 ∈ W
2−2/p
p (R2 × R±)

3. Extend ũ+0 with respect to the variable x3

to û+0 ∈W
2−2/p
p (R3)3. Then we solve the full space problem

∂tû
+ −∆û+ = 0, x ∈ R3,

û+(0) = û+0 , x ∈ R3,

to obtain a unique solution

û+ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H

2
p (R3)3).

Extending ũ−0 with respect to x3 to some û−0 ∈W
2−2/p
p (R3)3 and solving the latter

full space problem with û+0 being replaced by û−0 yields a unique solution

û+ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H

2
p (R3)3).

Then we define

û :=

{
û+|Ω, x3 > 0,

û−|Ω, x3 < 0.

Then û ∈ H1
p (J ;Lp(Ω)

3)∩Lp(J ;H
2
p (Ω\Σ)3) and û|t=0 = u0 in Ω\Σ. If (u, π, [[π]], h)

is a solution of (2.14), then (u − û, π, [[π]], h − h̃) solves (2.14) with u0 = 0, h0 = 0
and some modified data

(f, fd, gv, gw, uΣ, gh, g1, g2, g3)

(not to be relabeled) in the right regularity classes, having vanishing traces at t = 0
and satisfying the compatibility conditions at ∂Σ stated in Theorem 2.2. Note also
that by construction ∂t(h− h̃)|t=0 = 0.

By Proposition 5.2 we may also assume that g3 = 0. Indeed, there exists

h∗ ∈0W
2−1/2p
p (J ;Lp(Σ)) ∩0H

1
p (J ;W

2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ))

such that ∂2h∗|x2=0 = g3. Replacing h by h − h∗ it follows that ∂2(h − h∗)|x2=0 =
0. The functions gh and gw have to be replaced by gh − ∂th∗ and gw + σ∆x′h∗,
respectively.

Next we extend

g+1 := g1|x3>0 ∈ 0W
1/2−1/2p
p (J ;Lp(R2

+)
2) ∩ Lp(J ;W

1−1/p
p (R2

+)
2)

by even reflection and

g+2 := g2|x3>0 ∈ 0W
1−1/2p
p (J ;Lp(R2

+)) ∩ Lp(J ;W
2−1/p
p (R2

+))
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by means of the reflection

g̃+2 (t, x1, x3) =

{
g+2 (t, x1, x3), if x3 > 0,

−g+2 (t, x1,−2x3) + 2g+2 (t, x1,−x3/2), if x3 < 0.

to functions

g̃+1 ∈ 0W
1/2−1/2p
p (J ;Lp(R2)2) ∩ Lp(J ;W

1−1/p
p (R2)2)

and

g̃+2 ∈ 0W
1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

2−1/p
p (R2)).

Let µ+ := µ|x3>0 and solve the parabolic system
(2.15)

∂tu∗ −∆u∗ = 0, (x1, x3) ∈ R2, x2 > 0,
µ+[∂2(u∗)1 + ∂1(u∗)2, ∂3(u∗)2 + ∂2(u∗)3]

T = g̃+1 , (x1, x3) ∈ R2, x2 = 0,
(u∗)2 = g̃+2 , (x1, x3) ∈ R2, x2 = 0,
u∗(0) = 0, (x1, x3) ∈ R2, x2 > 0,

by [13], to obtain a solution

u∗ ∈ 0H
1
p (J ;Lp(R2

+ × R))3 ∩ Lp(J ;H
2
p (R2

+ × R))3.

Then we repeat the same procedure for g−j := gj |x3<0 to obtain a function

u∗∗ ∈ 0H
1
p (J ;Lp(R2

+ × R))3 ∩ Lp(J ;H
2
p (R2

+ × R))3

as a solution of (2.15) with g̃+j being replaced by the extensions g̃−j of g−j and µ+

being replaced by µ− := µ|x3<0.
Define

v :=

{
u∗, x3 > 0,

u∗∗, x3 < 0.

It follows that the function ū := u− v satisfies ū|t=0 = 0, [[ū]] = uΣ − [[v]] =: k and

µ[∂2ū1 + ∂1ū2, ∂3ū2 + ∂2ū3] = 0, ū2 = 0

at S1\Σ. In order to remove the jump of ū, we note that by the compatibility
conditions it holds that k2 = 0 and ∂2k1 = ∂2k3 = 0 on ∂Σ. Therefore it is possible
to extend

k ∈ 0W
1−1/2p
p (J ;Lp(R2

+))
3 ∩ Lp(J ;W

2−1/p
p (R2

+))
3

to a function

k̃ ∈ 0W
1−1/2p
p (J ;Lp(R2))3 ∩ Lp(J ;W

2−1/p
p (R2))3

by even reflection of k1, k3 and odd reflection of k2. Then we solve the Dirichlet
problem

(2.16)

∂tw −∆w = 0, (x1, x2) ∈ R2, x3 > 0,

trx3=0w = k̃, (x1, x2) ∈ R2, x3 = 0,
w(0) = 0, (x1, x2) ∈ R2, x3 > 0,

to obtain a unique solution

w ∈ 0H
1
p (J ;Lp(R3

+)) ∩ Lp(J ;H
2
p (R3

+)).
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Note that by symmetry the function

w̄(t, x) =

 w1(t, x1,−x2, x3),
−w2(t, x1,−x2, x3),
w3(t, x1,−x2, x3)


is a solution of (2.16) too, hence w = w̄ and therefore it holds that w2 = 0 as well
as ∂2w1 + ∂1w2 = ∂3w2 + ∂2w3 = 0 at S1\Σ. Let ū± := ū|x3≷0 and define

u∗ :=

{
ū+ − w, if x3 > 0,

ū−, if x3 < 0.

Then [[u∗]] = 0 and

µ[∂2u
∗
1 + ∂1u

∗
2, ∂3u

∗
2 + ∂2u

∗
3] = 0, u∗2 = 0

on S1\Σ. We arrive at the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ω\Σ,
div u = fd, x ∈ Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, x ∈ Σ,

−2[[µ∂3u3]] + [[π]]− σ∆x′h = gw, x ∈ Σ,

[[u]] = 0, x ∈ Σ,

∂th− u3 = gh, x ∈ Σ,

µ[∂2u1 + ∂1u2, ∂3u2 + ∂2u3]
T = 0, x ∈ S1\∂Σ,
u2 = 0, x ∈ S1\∂Σ,
∂2h = 0, x ∈ ∂Σ,

u(0) = 0, x ∈ Ω\Σ,
h(0) = 0 x ∈ Σ,

(2.17)

with modified data f ∈ Lp(J ;Lp(Ω))
3,

fd ∈ Lp(J ;H
1
p (Ω\Σ)),

(gv, gw) ∈ 0W
1/2−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
1−1/p
p (Σ)3),

and

gh ∈ 0W
1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

2−1/p
p (Σ)),

satisfying the compatibility conditions (gv)2 = ∂2gh = 0 at ∂Σ and (fd, 0, 0) ∈
0H

1
p (J ; Ĥ

−1
p (Ω)).

Therefore it is possible to extend (f1, f3, fd, (gv)1, gw, gh) by even reflection to
{x2 < 0}. On the other side we may extend (f2, (gv)2) by odd reflection to {x2 < 0}.
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In a next step we consider the (reflected) problem

∂t(ρũ)− µ∆ũ+∇π̃ = f̃ , (x1, x2) ∈ R2, x3 ∈ Ṙ,

div ũ = f̃d, (x1, x2) ∈ R2, x3 ∈ Ṙ,
−[[µ∂3ṽ]]− [[µ∇x′ ũ3]] = g̃v, (x1, x2) ∈ R2, x3 = 0,

−2[[µ∂3ũ3]] + [[π̃]]− σ∆x′ h̃ = g̃w, (x1, x2) ∈ R2, x3 = 0,

[[ũ]] = 0, (x1, x2) ∈ R2, x3 = 0,

∂th̃− ũ3 = g̃h, (x1, x2) ∈ R2, x3 = 0,

ũ(0) = 0, (x1, x2) ∈ R2, x3 ∈ Ṙ,

h̃(0) = 0, (x1, x2) ∈ R2, x3 = 0,

(2.18)

with given reflected data f̃ ∈ Lp(J ;Lp(R2 × R))3,

f̃d ∈ Lp(J ;H
1
p (R2 × Ṙ)),

(g̃v, g̃w) ∈ 0W
1/2−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W

1−1/p
p (R2)3),

and

g̃h ∈ 0W
1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

2−1/p
p (R2)),

where (f̃d, 0) ∈0H
1
p (J ; Ĥ

−1
p (R2 × R)).

By [24, Theorem 5.1] there exists a unique solution (ũ, π̃, [[π̃]], h̃) of (2.18) with
regularity

ũ ∈0H
1
p (J ;Lp(R3))3 ∩ Lp(J ;H

2
p (Ṙ3))3,

π̃ ∈ Lp(J ; Ḣ
1
p (Ṙ3)),

[[π̃]] ∈0W
1/2−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

1−1/p
p (R2)),

and

h̃ ∈0W
2−1/2p
p (J ;Lp(R2)) ∩0H

1
p (J ;W

2−1/p
p (R2)) ∩ Lp(J ;W

3−1/p
p (R2)).

Note that by symmetry the function (ū, π̄, h̄) with ūj(x) := ũj(x1,−x2, x3), j ∈
{1, 3}, ū2(x) := −ũ2(x1,−x2, x3), π̄(x) := π̃(x1,−x2, x3) and h̄(x′) := h̃(x1,−x2) is
a solution of (2.18) too. Therefore, by uniqueness, it follows that

ũj(x1,−x2, x3) = ũj(x1, x2, x3), j ∈ {1, 3},

ũ2(x1, x2, x3) = −ũ2(x1,−x2, x3), π̃(x1, x2, x3) = π̃(x1,−x2, x3)

and h̃(x1, x2) = h̃(x1,−x2). This necessarily yields

ũ2 = (∂2ũ1 + ∂1ũ2) = (∂3ũ2 + ∂2ũ3) = 0,

as well as ∂2h̃ = 0 at S1\Σ. Hence the restriction (ũ, π̃, [[π̃]], h̃)|Ω is the unique strong
solution of (2.17). □
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2.3.4. The two-phase Stokes equations in bent half-spaces. Let θ ∈ BC3(R) such
that

Gθ := {(x1, x2) ∈ R2 : x2 > θ(x1)} and Ωθ = Gθ × R.
We assume furthermore that |θ′|∞ ≤ η and |∂jxθ|∞ ≤ M , j ∈ {2, 3}, where we
may choose η > 0 as small as we wish. Let S1,θ := ∂Gθ × R. Furthermore, let

νS1,θ
= (νGθ

, 0)T with νGθ
:= 1√

1+θ′(x1)2
(θ′(x1),−1)T denote the outer unit normal

to S1,θ at (x1, θ(x1), x3), (x1, x3) ∈ R×R and let PS1,θ
be the tangential projection

to S1,θ. Furthermore, let Σθ := Gθ × {0} and ∂Σθ := ∂Gθ × {0}.
Consider the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ωθ\Σθ,

div u = fd, x ∈ Ωθ\Σθ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, x ∈ Σθ,

−2[[µ∂3w]] + [[π]]− σ∆x′h = gw, x ∈ Σθ,

[[u]] = uΣ, x ∈ Σθ,

∂th−m[w] = gh, x ∈ Σθ,

PS1,θ

(
µ(∇u+∇uT)νS1,θ

)
= PS1,θ

g1, x ∈ S1,θ\∂Σθ,

u · νS1,θ
= g2, x ∈ S1,θ\∂Σθ,

∂νGθ
h = g3, x ∈ ∂Σθ

u(0) = u0, x ∈ Ωθ\Σθ,

h(0) = h0, x ∈ Σθ,

(2.19)

where u = (v, w) and v = (u1, u2), w = u3. Without loss of generality we may
consider u0 = 0 and h0 = 0 in (2.19). Literally, this can be seen as in Subsection
2.3.3, we will not go into the details. The remaining modified data (not to be
relabeled) belong to the right regularity classes and they have vanishing traces at
t = 0.

Next, we will show that we may assume uΣ = 0. For that purpose, extend uΣ
with respect to x2 to some function

ũΣ ∈0W
1−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W

2−1/p
p (R2)3),

and solve the half space problem

∂tu∗ −∆u∗ = 0, x ∈ R2 × R+,

u∗ = ũΣ, x ∈ R2 × {0},
u∗(0) = 0, x ∈ R2 × R+,

by [13] to obtain a unique solution

u∗ ∈0H
1
p (J ;Lp(R2 × R+)

3) ∩ Lp(J ;H
2
p (R2 × R+)

3).

If (u, π, [[π]], h) is a solution of (2.19) with u0 = 0 and h0 = 0, and

u∗∗ :=

{
ū+ − u∗, if x3 > 0,

ū−, if x3 < 0.
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where u± := u|x3≷0, then [[u∗∗]] = 0. Again the remaining modified data have the
correct regularity and vanishing traces at t = 0. Note that in this casem[w∗∗] = w∗∗,
where u∗∗ = (v∗∗, w∗∗).

Let us show that we may reduce (2.19) with u0 = 0, h0 = 0 and uΣ = 0 to the
case gv = 0, gw = 0 and gh = 0. To this end we extend the data (gv, gw, gh) with
respect to x2 to some functions

(g̃v, g̃w) ∈0W
1/2−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W

1−1/p
p (R2)3),

and

g̃h ∈0W
1−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

2−1/p
p (R2)).

Then we consider the two-phase problem

∂tũ−∆ũ = 0, x ∈ R2 × Ṙ,
−[[µ∂3ṽ]]− [[µ∇x′w̃]] = g̃v, x ∈ R2 × {0},

−2[[µ∂3w̃]]− σ∆x′ h̃ = g̃w, x ∈ R2 × {0},
[[ũ]] = 0, x ∈ R2 × {0},

∂th̃− w̃ = g̃h, x ∈ R2 × {0},

ũ(0) = 0, x ∈ R2 × Ṙ,

h̃(0) = 0, x ∈ R2 × {0},

(2.20)

for the unknowns (ũ, h̃). Interestingly, the equations for ṽ and w̃ decouple. There-
fore we study for the moment the problem

∂tw̃ −∆w̃ = 0, x ∈ R2 × Ṙ,

−2[[µ∂3w̃]]− σ∆x′ h̃ = g̃w, x ∈ R2 × {0},
[[w̃]] = 0, x ∈ R2 × {0},

∂th̃− w̃ = g̃h, x ∈ R2 × {0},

w̃(0) = 0, x ∈ R2 × Ṙ,

h̃(0) = 0, x ∈ R2 × {0},

(2.21)

for the unknowns (w̃, h̃). Assume that (w̃, h̃) are already known. Then, w̃ is explic-
itly given by

(2.22) w̃(x3) =
1

2(µ+ + µ−)

{
e−Lx3L−1(σ∆x′ h̃+ g̃w), if x3 > 0,

e−L(−x3)L−1(σ∆x′ h̃+ g̃w), if x3 < 0,

where L := (∂t −∆x′)1/2. Therefore,

w̃|x3=0 =
1

2(µ+ + µ−)
L−1(σ∆x′ h̃+ g̃w)

and it follows that we may reduce (2.21) to a single equation for h̃ which reads

(2.23) ∂th̃− σ

2(µ+ + µ−)
L−1∆x′ h̃ =

1

2(µ+ + µ−)
L−1g̃w + g̃h,
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and which is subject to the initial condition h̃(0) = 0. Making use of the R-
boundedness of the operator ∆x′ in Ks

p(R2), K ∈ {W,H}, the operator-valued H∞-

calculus for ∂t in 0H
r
p(J ;K

s
p(R2)) and real interpolation one can show as in [24, Sec-

tion 5] that the operator ∂t− σ
2(µ++µ−)L

−1∆x′ is invertible in 0W
1−1/2p
p (J ;Lp(R2))∩

Lp(J ;W
2−1/p
p (R2)) with domain

0W
2−1/2p
p (J ;Lp(R2)) ∩0H

1
p (J ;W

2−1/p
p (R2)) ∩ Lp(J ;W

3−1/p
p (R2)).

Hence there exists a unique solution

h̃ ∈0W
2−1/2p
p (J ;Lp(R2)) ∩0H

1
p (J ;W

2−1/p
p (R2)) ∩ Lp(J ;W

3−1/p
p (R2))

of (2.23). Then w̃ is given by (2.22) and, finally, ṽ is the unique solution of the
two-phase problem

∂tṽ −∆ṽ = 0, x ∈ R2 × Ṙ,
−[[µ∂3ṽ]] = [[µ∇x′w̃]] + g̃v, x ∈ R2 × {0},

[[ṽ]] = 0, x ∈ R2 × {0},

ṽ(0) = 0, x ∈ R2 × Ṙ.

In summary, we have shown that we may reduce (2.19) to the problem

∂t(ρu)− µ∆u+∇π = f, x ∈ Ωθ\Σθ,

div u = fd, x ∈ Ωθ\Σθ,

−[[µ∂3v]]− [[µ∇x′w]] = 0, x ∈ Σθ,

−2[[µ∂3w]] + [[π]]− σ∆x′h = 0, x ∈ Σθ,

[[u]] = 0, x ∈ Σθ,

∂th− w = 0, x ∈ Σθ,

PS1,θ

(
µ(∇u+∇uT)νS1,θ

)
= PS1,θ

g1, x ∈ S1,θ\∂Σθ,

u · νS1,θ
= g2, x ∈ S1,θ\∂Σθ,

∂νGθ
h = g3, x ∈ ∂Σθ

u(0) = 0, x ∈ Ωθ\Σθ,

h(0) = 0, x ∈ Σθ,

(2.24)

with given data (f, g1, g2, g3) having vanishing traces at t = 0 and which satisfy the
compatibility conditions

[[g2]] = 0, [[g1 · e3]] = 0, [[PS1,θ
g1 · e1/µ]] = 0, [[∂3g2 − g1 · e3/µ]] = 0,

and

∂tg3 + ∂3g2 − g1 · e3/µ = 0

at the contact line {(x1, θ(x1), 0) : x1 ∈ R}. To see this, one can apply the represen-
tation (2.11) from Subsection 2.3.2. Note also that the second component of PS1,θ

w
is redundant, as it can always be reproduced from the first component. Finally, it
holds that (fd, 0, g2) ∈0H

1
p (J ; Ĥ

−1
p (Ωθ)).
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We will now transform Ωθ to Ω := R×R+ ×R, S1,θ to S1 := R× {0} ×R, Σθ to
Σ := R × R+ × {0} and ∂Σθ to ∂Σ := R+ × {0} × {0}. To this end we introduce
the new variables x̄1 = x1, x̄2 = x2 − θ(x1) and x̄3 = x3 for x ∈ Ωθ. Suppose that
(u, π, h) is a solution of (2.19) and define the new functions

ū(x̄) := u(x̄1, x̄2 + θ(x̄1), x̄3)

π̄(x̄) := π(x̄1, x̄2 + θ(x̄1), x̄3)

and
h̄(x̄′) := h(x̄1, x̄2 + θ(x̄1)),

where x̄′ := (x̄1, x̄2). In the same way we transform all of the data. Then, as in
Subsection 2.3.2, (ū, π̄, h̄) satisfies the problem

∂t(ρū)− µ∆ū+∇π̄ =M1(θ, ū, π̄) + f̄ , x̄ ∈ Ω\Σ,
div ū =M2(θ, ū) + f̄d, x̄ ∈ Ω\Σ,

−[[µ∂3v̄]]− [[µ∇x̄′w̄]] =M3(θ, ū), x̄ ∈ Σ

−2[[µ∂3w̄]] + [[π̄]]− σ∆x̄′ h̄ =M4(θ, h̄), x̄ ∈ Σ,

[[ū]] = 0, x̄ ∈ Σ

∂th̄− w̄ = 0, x̄ ∈ Σ,

µ(∂1ū2 + ∂2ū1) =M5(θ, ū)−
√
1 + θ′2

3
[PS1,θ

ḡ1 · e1], x̄ ∈ S1\∂Σ,

µ(∂2ū3 + ∂3ū2) =M6(θ, ū)−
√
1 + θ′2[ḡ1 · e3], x̄ ∈ S1\∂Σ,

ū2 =M7(θ, ū)−
√
1 + θ′2ḡ2, x̄ ∈ S1\∂Σ,

∂2h̄ =M8(θ, h̄)−
√
1 + θ′2ḡ3, x̄ ∈ ∂Σ,

ū(0) = 0, x̄ ∈ Ω\Σ
h̄(0) = 0, x̄ ∈ Σ,

(2.25)

where ū = (v̄, v̄). The functions Mj are given by

M1(θ, ū, π̄) := 2θ′(x̄1)∂1∂2ū+ θ′′(x̄1)∂2ū− θ′(x̄1)
2∂22 ū+ θ′(x̄1)∂2π̄e1,

M2(θ, ū) := θ′(x̄1)∂2ū1,

M3(θ, ū) = [−θ′(x̄1)[[µ∂2w̄]], 0]T,
M4(θ, h̄) = σ

(
−2θ′(x̄1)∂1∂2h̄− θ′′(x̄1)∂2h̄+ θ′(x̄1)

2∂22 h̄
)
,

M5(θ, ū) := µθ′(x̄1)[2∂1ū1 + θ′(x̄1)(∂1ū2 − ∂2ū1)− (1 + θ′(x̄1)
2)∂2ū2],

M6(θ, ū) := µθ′(x̄1)(∂1ū3 − θ′(x̄1)∂2ū3 + ∂3ū1),

M7(θ, ū) := θ′(x̄1)ū1.

and
M8(θ, h̄) = θ′(x̄1)

(
∂1h̄− θ′(x̄1)∂2h̄

)
.

Let us define the function spaces

0Eu(T ) := {u ∈0H
1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3) : [[u]] = 0, on Σ},

Eπ(T ) := Lp(J ; Ḣ
1
p (Ω\Σ)),
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0Eq(T ) :=0W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

0Eh(T ) :=0W
2−1/2p
p (J ;Lp(Σ)) ∩0H

1
p (J ;W

2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ))

0E(T ) := {(u, π, q, h) ∈0Eu(T )× Eπ(T )×0Eq(T )×0Eh(T ) :

q = [[π]], ∂th− u · e3 = 0 on Σ},

F̃(T ) := F1(T )× F2(T )×8
j=3 0Fj(T ),

where
F1(T ) := Lp(J ;Lp(Ω)

3),

F2(T ) := Lp(J ;H
1
p (Ω\Σ)),

0F3(T ) :=0W
1/2−1/2p
p (J ;Lp(Σ)

2) ∩ Lp(J ;W
1−1/p
p (Σ)2),

0F4(T ) :=0W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

0F5(T ) :=0W
1/2−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

1−1/p
p (S1\∂Σ)),

0F6(T ) :=0F5(T ),

0F7(T ) :=0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)),

and

0F8(T ) := 0W
3/2−1/p
p (J ;Lp(∂Σ)) ∩H1

p (J ;W
1−2/p
p (∂Σ)) ∩ Lp(J ;W

2−2/p
p (∂Σ)).

Finally, we set

0F(T ) := {(f1, . . . , f8) ∈ F̃(T ) : (13) & (16) in Theorem 2.2 are satisfied}.
Define an operator L : 0E(T ) →0F(T ) by

L(ū, π̄, q̄, h̄) :=



∂t(ρū)− µ∆ū+∇π̄
div ū

−[[µ∂3v̄]]− [[µ∇x̄′w̄]]
−2[[µ∂3w̄]] + q̄ − σ∆x̄′ h̄
µ(∂2ū1 + ∂1ū2)|S1

µ(∂3ū2 + ∂2ū3)|S1

ū2|S1

∂2h̄|∂Σ


and note that L : 0E(T ) →0F(T ) is an isomorphism by Theorem 2.2. Define

M(θ, ū, π̄, h̄) := (M1,M2,M3,M4,M5,M6,M7,M8)
T(θ, ū, π̄, h̄)

and
F := (f1, f2, 0, 0, f5, f6, f7, f8)

T,

with f1 := f̄ , f2 := f̄d,

f5 := −
√

1 + θ′2
3
[PS1,θ

ḡ1 · e1], f6 := −
√

1 + θ′2[ḡ1 · e3],

f7 := −
√
1 + θ′2ḡ2 and f8 := −

√
1 + θ′2ḡ3. It can be readily checked that the

components of F satisfy the compatibility conditions (13)-(16) in Theorem 2.2. In
fact, this can be seen as in Subsection 2.3.2. Since θ ∈ BC3(R) this implies that
F ∈ 0F(T ). In the same way one can show that the components of M(θ, ū, π̄, h̄)
satisfy the compatibility conditions (14)-(16) as well as the second compatibility
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condition in (13) in Theorem 2.2. Unfortunately the first condition in Theorem 2.2
(13) for M6, which reads

[[M6(θ, ū)]] = 0 on Σ,

is in general not satisfied. To circumvent this problem, we modify M3(θ, ū) as
follows

M̄3(θ, ū) := θ′(x̄1)
[
[[µ∂2w̄]],− extΣ

(
[[µ(∂1w̄ − θ′(x̄1)∂2w̄ + ∂3ū1)|S1\∂Σ]]

)]T
.

Here extΣ is a suitable bounded and linear extension operator from

0W
1/2−1/p
p (J ;Lp(∂Σ)) ∩ Lp(J ;W

1−2/p
p (∂Σ))

to

0W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

such that [extΣ z]|∂Σ = z for all z ∈ 0W
1/2−1/p
p (J ;Lp(∂Σ)) ∩ Lp(J ;W

1−2/p
p (∂Σ)),

which exists due to Proposition 5.1. Note that if we have a solution (u, π, q, h) ∈
0E(T ) of (2.25) with M3(θ, ū) replaced by M̄3(θ, ū), then, by the first component of
the third line in (2.25), we obtain that

[[µ(∂1w̄ − θ′(x̄1)∂2w̄ + ∂3ū1)]] = 0

on Σ, hence M̄3(θ, ū) =M3(θ, ū) in this case.
Let us define

M̄(θ, ū, π̄, h̄) := (M1,M2, M̄3,M4,M5,M6,M7,M8)
T(θ, ū, π̄, h̄).

Since the modification in M3 does not affect the other compatibility conditions in
Theorem 2.2, it follows readily that M̄(θ, ū, π̄, h̄) ∈ 0F(T ) for each (ū, π̄, q̄, h̄) ∈
0E(T ). Therefore, we may rewrite (2.25), with M3 replaced by M̄3, in the more
condensed form

(2.26) (ū, π̄, q̄, h̄) = L−1M̄(θ, ū, π̄, h̄) + L−1F

in the space 0E(T ). As in Subsection 2.3.2 we will apply a Neumann series argument
to show that (2.26) has a unique solution (ū, π̄, q̄, h̄) ∈ 0E(T ). For that purpose we
need to show the following property for M̄ . For each ε > 0 there exist T0 > 0 and
η0 > 0 such that

∥M̄(θ, ū, π̄, h̄)∥F(T ) ≤ ε∥(ū, π̄, q̄, h̄)∥E(T ),

provided that T ∈ (0, T0) and η ∈ (0, η0). Mimicking the estimates of Subsection
2.3.2 for the components of M̄ and taking into account that the operator extΣ is
linear and bounded, one obtains an estimate of the form

∥M̄(θ, ū, π̄, h̄)∥F(T ) ≤ C
[
∥θ′∥∞ + T 1/2p(∥θ′′∥∞ + ∥θ′′′∥∞)

]
∥(ū, π̄, q̄, h̄)∥E(T ),

with a uniform constant C > 0. Since ∥θ′∥∞ ≤ η, we may first choose η > 0
sufficiently small and then T > 0 sufficiently small, to obtain the desired estimate
for the function M̄ .

Then we may apply a Neumann series argument in 0E(T ) to conclude that there
exists a unique solution (ū, h̄, π̄) ∈0E(T ) of the equation

L(ū, π̄, q̄, h̄) = M̄(θ, ū, π̄, h̄) + F

or equivalently a unique solution (u, π, q, h) of (2.19) as explained above.
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This in turn yields a solution operator SHS : FHS → EHS for (2.10), where EHS

and FHS are the solution space and data space, respectively, for the bent half-space
and the data in FHS satisfy all relevant compatibility conditions at the contact line
∂Σθ.

3. General bounded cylindrical domains

Let n = 3 and p > 5. In this section we will prove that system (2.3) admits
a unique solution. To this end we apply the method of localization. We want
to emphasize that this localization procedure cannot be simply carried over from
standard parabolic systems. This is due to the divergence equation and the presence
of the pressure in (2.3). Let

Eu(J) := H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), Eπ(J) := Lp(J ; Ḣ

1
p (Ω)),

Eq(J) :=W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)).

Eh(J) :=W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)),

and
E(J) := {(u, π, q, h) ∈ Eu(J)× Eπ(J)× Eq(J)× Eh(J) : q = [[π]]}.

3.1. Regularity of the pressure. Let (u)Ω := u − 1
|Ω|
∫
Ω udx denote the part of

u ∈ L1(Ω) with mean value zero. We start with an auxiliary lemma which provides
some additional regularity for the pressure, which is needed for the localization
procedure.

Lemma 3.1. Let (u, π, [[π]], h) ∈ E(J) be a solution of (2.3) with

(fd, u0, h0, g2, uΣ · νΣ, g3 · ν∂Ω) = 0,

and f ∈0W
α
p (J ;Lp(Ω)

3) for some α ∈ (0, 1/2−1/2p). Then the following assertions
hold.

(1) If Ω is bounded, then (π)Ω ∈0W
α
p (J ;Lp(Ω)) and the estimate

∥(π)Ω∥Wα
p (Lp) ≤ C

(
∥u∥Eu + ∥[[π]]∥Eq + ∥f∥Wα

p (Lp)

)
is valid, where C > 0 does not depend on the length of the interval J .

(2) If Ω is a full space, a (bent) quarter space or a (bent) half space, then
(π)K ∈ 0W

α
p (J ;Lp(K)) for each bounded set K ⊂ Ω. Furthermore there

exists a constant CK > 0 which does not depend on the length of the interval
J such that the estimate

∥(π)K∥Wα
p (Lp(K)) ≤ CK

(
∥u∥Eu + ∥[[π]]∥Eq + ∥f∥Wα

p (Lp)

)
is valid.

Proof. 1. Let g ∈ Lp′(Ω) be given and solve the problem

∆ψ = g − (g|1) in Ω\Σ,
[[ρψ]] = 0 on Σ,

[[∂νΣψ]] = 0 on Σ,(3.1)

∂ν∂Ωψ = 0 on ∂Ω\∂Σ = (S1\∂Σ) ∪ S2,
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by Lemma 5.6 and define ϕ := ρψ. Since ((π)Ω|1) = (u|∇ϕ) = 0 we obtain by
integration by parts

((π)Ω|g) = ((π)Ω|(g)Ω)

=

(
(π)Ω
ρ

|∆ϕ
)

= −
∫
Σ
[[
(π)Ω
ρ

∂νΣϕ]]dΣ−
(
∇π
ρ

|∇ϕ
)

= −
∫
Σ
[[π]]

∂νΣϕ

ρ
dΣ−

(
µ

ρ
∆u|∇ϕ

)
− (f |∇ϕ)

=

∫
Ω

µ

ρ
∇u : ∇2ϕdx−

∫
∂Ω

µ∂ν∂Ωu

ρ
∇ϕdσ +

∫
Σ
{[[µ∂νΣu

ρ
∇ϕ]]− [[π]]

∂νΣϕ

ρ
}dΣ

− (f |∇ϕ).

Note that there exists a constant C > 0 such that ∥ϕ∥W 2
p′
≤ C∥g∥Lp′ . Hence, taking

the supremum of the left hand side over all functions g ∈ Lp′(Ω) with norm less or
equal to one, we obtain

∥(π)Ω(t)∥Lp(Ω) ≤ C
(
∥∇u(t)∥Lp(Ω) + ∥∂ν∂Ωu(t)∥Lp(∂Ω)

+ ∥ (∂νΣu(t))± ∥Lp(Σ) + ∥[[π(t)]]∥Lp(Σ) + ∥f(t)∥Lp(Ω)

)
,

for almost all t ∈ J . The same strategy yields the estimate

∥(π)Ω(t)− (π)Ω(s)∥Lp(Ω) ≤ C
(
∥∇(u(t)− u(s))∥Lp(Ω) + ∥∂ν∂Ω(u(t)− u(s))∥Lp(∂Ω)

+ ∥ (∂νΣ(u(t)− u(s)))± ∥Lp(Σ) + ∥[[π(t)]]− [[π(s)]]∥Lp(Σ) + ∥f(t)− f(s)∥Lp(Ω)

)
,

for almost all s, t ∈ J .
By the mixed derivative theorem and trace theory it holds that ∂kul ∈

0H
1/2
p (J ;Lp(Ω)),

(∂kul)± |Σ ∈0W
1/2−1/2p
p (J ;Lp(Σ))

and

∂kul|∂Ω ∈0W
1/2−1/2p
p (J ;Lp(∂Ω)),

for k, l ∈ {1, 2, 3}. Moreover, [[π]] ∈ 0W
1/2−1/2p
p (J ;Lp(Σ)). Since Hs

p ↪→ W s−ε
p for

each s > 0, ε ∈ (0, s), the claim follows.
2. The proof of the second assertion follows essentially the lines of the proof

of the first assertion. We fix a bounded set K ⊂ Ω. Let g ∈ Lp(K) and define
(g)K := g− 1

|K|(g|1)K , where (u|v)K :=
∫
K uvdx. Extend (g)K by zero to g̃ ∈ Lp(Ω).

Then g̃ ∈ Ŵ−1
p (Ω) ∩ Lp(Ω) and we may solve the elliptic problem (3.1) with g̃

as an inhomogeneity in the first equation by Lemma 5.6. This yields a solution
ψ ∈ Ḣ1

p (Ω\Σ) ∩ Ḣ2
p (Ω\Σ) satisfying the estimate

∥∇ψ∥Lp(Ω) + ∥∇2ψ∥Lp(Ω) ≤ C∥g̃∥Lp(Ω) ≤ CK∥g∥Lp(K).

We have ((π)K |g)K = ((π)K |(g)K)K = ((π)K |g̃)Ω :=
∫
Ω(π)K g̃dx. We are now in

a position to imitate the steps in the proof of the first assertion. This yields the
validity of the second assertion. □
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3.2. Reduction of the data. It is convenient to reduce the data in (2.3) to the
special case

f = fd = u0 = h0 = g2 = uΣ · νΣ = g3 · ν∂Ω = 0.

Extend h0 ∈ W
3−2/p
p (Σ) and gh|t=0,m[u0 · e3] ∈ W

2−3/p
p (Σ) to some functions

h̃0 ∈W
3−2/p
p (R2) and g̃0h, m̃0 ∈W

2−3/p
p (R2), respectively, and define

h̃∗(t) = [2e−(I−∆x′ )
1/2t − e−2(I−∆x′ )

1/2t]h̃0+

[e−(I−∆x′ )t − e−2(I−∆x′ )t](I −∆x′)−1
(
m̃0 + g̃0h

)
, t ≥ 0.

Then

h̃∗ ∈W 2−1/2p
p (J ;Lp(R2)) ∩H1

p (J ;W
2−1/p
p (R2)) ∩ Lp(J ;W

3−1/p
p (R2))

and it holds that h̃∗(0) = h̃0 as well as ∂th̃∗(0) = m̃0 + g̃0h. Defining h∗ := h̃∗|Σ it
follows that h∗(0) = h0 and ∂th∗(0) = m[u0] + gh|t=0. Setting h1 := h− h∗ we have
h1|t=0 = ∂th1|t=0 = 0.

Next, let u0 = (v0, w0) and q0 := 2[[µ∂3w0]] + σ∆x′h0 + gw|t=0 ∈ W
1−3/p
p (Σ).

Extend q0 to some q̃0 ∈W
1−3/p
p (R2) and define q̃∗(t) := e∆x′ tq̃0. Then

q̃∗ ∈W 1/2−1/2p
p (J ;Lp(R2)) ∩ Lp(J ;W

1−1/p
p (R2)).

Setting q∗ := q̃∗|Σ it follows that

q∗ ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ))

and q∗|t=0 = q0. Given q∗, we solve the weak elliptic transmission problem

(∇π∗|∇ϕ) = 0, ϕ ∈ H1
p′(Ω),

[[π∗]] = q∗, on Σ

to obtain a unique solution π∗ ∈ Lp(J ; Ḣ
1
p (Ω\Σ)) by Lemma 5.7.

Next we solve the parabolic transmission problem

∂t(ρu∗)− µ∆u∗ = −∇π∗ + ρf, in Ω\Σ,
−[[µ∂3v∗]]− [[µ∇x′w∗]] = gv, on Σ,

−2[[µ∂3w∗]] = gw − q∗ + σ∆x′h∗, on Σ,

[[u∗]] = uΣ, on Σ,

PS1

(
µ(∇u∗ +∇uT∗ )νS1

)
= PS1g1, on S1\∂Σ,

u∗ · νS1 = g2, on S1\∂Σ,
u∗ = g3, on S2,

u∗(0) = u0, in Ω\Σ.

(3.2)

to obtain a solution u∗ ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3) by Lemma 5.10. Note

that all relevant compatibility conditions of the data are satisfied by assumption.
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Setting u1 = u − u∗ and π1 = π − π∗ we see that w.l.o.g. we may assume that
u0 = h0 = f = 0. To remove fd we solve the transmission problem

(3.3)

∆ψ = fd − div u∗ in Ω\Σ,
[[ρψ]] = 0 on Σ,

[[∂e3ψ]] = 0 on Σ,

∂ν∂Ωψ = 0 on ∂Ω\∂Σ = (S1\∂Σ) ∪ S2,

by Lemma 5.8. We remark that
∫
Ω(fd − div u∗)dx = 0 by the compatibility condi-

tions on (fd, uΣ, g2, g3) and

fd − div u∗ ∈0H
1
p (J ; Ĥ

−1
p (Ω)) ∩ Lp(J ;H

1
p (Ω\Σ)).

Therefore we obtain a solution ∇ψ ∈ 0Eu(J). Setting u2 := u1 − ∇ψ, π2 := π1 +
ρ∂tψ − µ∆ψ and h2 := h1 we see that we may assume that fd = g2 = uΣ · e3 =
g3 · e3 = 0. The time trace of all the remaining data at t = 0 vanishes.

3.3. Localization procedure. Before we can state the main result of this subsec-
tion, we introduce some function spaces. Let

F1(J) := Lp(J ;Lp(Ω)
3), F2(J) := Lp(J ;H

1
p (Ω\Σ)).

F3(J) :=W 1/2−1/2p
p (J ;Lp(Σ)

2) ∩ Lp(J ;W
1−1/p
p (Σ)2),

F4(J) :=W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

F5(J) :=W 1−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
2−1/p
p (Σ)3),

F6(J) :=W 1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

2−1/p
p (Σ)),

F7(J) :=W 1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1\∂Σ)3),

F8(J) :=W 1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1\∂Σ)),

F9(J) :=W 1−1/2p
p (J ;Lp(S2)) ∩ Lp(J ;W

2−1/p
p (S2)),

F10(J) :=W 3/2−1/p
p (J ;Lp(∂Σ)) ∩H1

p (J ;W
1−2/p
p (∂Σ)) ∩ Lp(J ;W

2−2/p
p (∂Σ)),

and F̃(J) := ×10
j=1Fj(J) as well as

F(J) := {(f1, . . . , f10) ∈ F̃(J) : (f2, f5, f8, f9) ∈ H1
p (J ; Ĥ

−1
p (Ω))}.

Furthermore, we set Xγ := Xγ,u ×Xγ,h, where Xγ,u :=W
2−2/p
p (Ω\Σ)3 and Xγ,h :=

W
3−2/p
p (Σ).
The main result of this subsection reads as follows.

Theorem 3.2. Let µj , ρj ,Hj , σ > 0, n = 3, p > 5 and let G ∈ Rn−1 be open
and bounded with ∂G ∈ C4. Define Ω := G × (H1,H2) and let Σ := G × {0}. Let
S1 := ∂G×(H1,H2) and S2 := (G×{H1})∪(G×{H2}) be the vertical and horizontal
parts of the boundary of Ω, respectively. Then there exists a unique solution

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), π ∈ Lp(J ; Ḣ

1
p (Ω\Σ)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ))

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)),
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of (2.3) if and only if the data are subject to the following regularity and compatibility
conditions.

(1) (f, fd, gv, gw, uΣ, gh, g1, g2, g3, g4) ∈ F(J),
(2) (u0, h0) ∈ Xγ,
(3) div u0 = fd|t=0, −[[µ∇x′w0]]− [[µ∂3v0]] = gv|t=0, [[u0]] = uΣ|t=0,
(4) PS1(µ(∇u0 +∇uT0 )νS1) = PS1g1|t=0, u0 · νS1 = g2|t=0, u0 = g3|t=0,
(5) ∂ν∂Gh0 = g4|t=0,
(6) [[g2]] = uΣ · νS1,
(7) [[(g1 · e3)/µ− ∂3g2]] = ∂νS1

(uΣ · e3),
(8) P∂G[(D

′vΣ)ν
′] = [[P∂Gg

′
1/µ]],

(9) ∂tg4 −m[(g1 · e3)/µ− ∂3g2] = ∂νS1
gh,

(10) (gv|νS1) = −[[g1 · e3]], (g3|νS1) = g2,
(11) P∂G[µ(D

′g′3)ν
′] = (P∂Gg

′
1),

(12) µ∂νS1
(g3 · e3) + µ∂3g2 = g1 · e3,

where ν ′ := ν∂G.

Proof. We will split the proof in two parts.
(I) Existence of a left inverse

Let (u, π, [[π]], h) be a solution of (2.3). By the results of the last subsection there
exists (ū, π̄, [[π̄]], h̄) such that

(ũ, π̃, [[π̃]], h̃) := (u, π, [[π]], h)− (ū, π̄, [[π̄]], h̄)

solves the problem

∂t(ρũ)− µ∆ũ+∇π̃ = 0, in Ω\Σ,
div ũ = 0, in Ω\Σ,

−[[µ∂3ṽ]]− [[µ∇x′w̃]] = g̃v, on Σ,

−2[[µ∂3w̃]] + [[π̃]]− σ∆x′ h̃ = g̃w, on Σ,

[[ũ]] = ũΣ, on Σ,

∂th̃−m[w̃] = g̃h, on Σ,

PS1

(
µ(∇ũ+∇ũT)νS1

)
= PS1 g̃1, on S1\∂Σ,

ũ · νS1 = 0, on S1\∂Σ,
ũ = g̃3, on S2,

∂ν∂G h̃ = g̃4, on ∂Σ,

ũ(0) = 0, in Ω\Σ

h̃(0) = 0, on Σ,

(3.4)

and (g̃3|e3) = (ũΣ|e3) = 0. Choose open sets Uk = Br(xk) with

• ∂Σ ⊂
∪N1

k=7 Uk,

• ∂S2 ⊂
∪N

k=N1+1 Uk,

and choose r > 0 sufficiently small such that the corresponding solution operators
from Subsections 2.3.2 & 2.3.4 are well-defined. According to Proposition 5.3 there
exist open and connected sets
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• U0 ∩ Σ ̸= ∅, U0 ∩ ∂Ω = ∅;
• Uk ⊂ Ωk, k = 1, 2;
• Uk ∩ S1 ̸= ∅, Uk ∩ (Σ ∪ S2) = ∅, k = 3, 4;
• Uk ∩ S2 ̸= ∅, Uk ∩ (Σ ∪ S1) = ∅, k = 5, 6,

and a family of functions {φ}Nk=0 ⊂ C3
c (R3; [0, 1]) such that Ω ⊂

∪N
k=0 Uk, suppφk ⊂

Uk,
∑N

k=0 φk = 1 and ∂νS1
φk(x) = ∂e3φk(x) = 0 for x ∈ Uk ∩ (∂Σ ∪ ∂S2), k ≥ 7.

Multiplying each equation in (3.4) by φk we obtain the following local problems

∂t(ρũk)− µ∆ũk +∇π̃k = Fk(ũ, π̃), in Ωk\Σk,

div ũk = Fdk(ũ), in Ωk\Σk,

−[[µ∂3ṽk]]− [[µ∇x′w̃k]] = g̃vk +Gvk(ũ), on Σk,

−2[[µ∂3w̃k]] + [[π̃k]]− σ∆x′ h̃k = g̃wk +Gwk(ũ, h̃), on Σk,

[[ũk]] = ũΣk, on Σk,

∂th̃k −m[w̃k] = g̃hk, on Σk,

PSk
1

(
µ(∇ũk +∇ũTk )νk

)
= PSk

1
g̃1k +G1k(ũ), on Sk

1\∂Σk,

ũk · νk = 0, on Sk
1\∂Σk,

ũk = g̃3k, on Sk
2 ,

∂νk h̃k = g̃4k, on ∂Σk,

ũk(0) = 0, in Ωk\Σk

h̃k(0) = 0, on Σk,

(3.5)

where
Fk(ũ, π̃) := [∇, φk]π̃ − µ[∆, φk]ũ,

Fdk(ũ) := ũ · ∇φk,

Gvk(ũ) := (I − e3 ⊗ e3)Gk(ũ, h̃),

Gwk(ũ, h̃) := Gk(ũ, h̃)e3,

Gk(ũ, h̃) := [[−µ(∇φk ⊗ ũ+ ũ⊗∇φk)]]e3 − σ[∆Σ, φk]h̃e3,

and
G1k(ũ) := (I − νk ⊗ νk)(µ(∇φk ⊗ ũ+ ũ⊗∇φk))νk.

Furthermore we have set PSk
1
:= I − νk ⊗ νk.

For k = 0 we obtain a pure two-phase problem with a flat interface in Rn.
This case has been treated in [24]. If k ∈ {1, 2} then we are lead to one-phase
Stokes equations in Rn. An analysis of these problems can be found in [4]. If
k ∈ {7, . . . , N1} and k ∈ {N1 + 1, . . . , N} then we rotate the coordinate system
(with respect to the x3 axis) and translate it to obtain two-phase Stokes equations in
bent half-spaces and one-phase Stokes equations in bent quarter-spaces, respectively.
These problems have been treated in Subsections 2.3.2 and 2.3.4. Hence, the solution
operators for the charts Uk, k ≥ 7 are well defined by the results in 2.3.2 and 2.3.4.
Finally, if k ∈ {3, 4} then we obtain the Stokes equations in bent half-spaces with
pure-slip conditions, while for k ∈ {5, 6} we are lead to the Stokes equations in
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half-spaces with no-slip boundary condition, see e.g. [4] for the theory of the last
two type of problems. We denote the corresponding solution operators for each
chart Uk by Sk.

Note that all functions Fj , Gj carry additional time regularity (take into account
Lemma 3.1) with exception of Fdk. To circumvent this problem we will reduce
(3.5) to the case Fdk = 0. For this purpose we apply Lemma 5.8 and solve the
transmission problem

∆ϕk = Fdk(ũ) in Ωk\Σk,

[[ρϕk]] = 0 on Σk,

[[∂e3ϕk]] = 0 on Σk,

∂νkϕk = 0 on ∂Ωk\∂Σk.

This yields a solution

∇ϕk ∈0H
1
p (J ;H

1
p (Ω

k\Σk)3) ∩ Lp(J ;H
3
p (Ω

k\Σk)3) =:0Z(J)

satisfying the estimate

(3.6) ∥∇ϕk∥Z(J) ≤ CN∥ũ∥Eu(J).

The constant CN > 0 depends on N but not on the length of J . We define ûk :=
ũk −∇ϕk and π̂k := π̃k + ρ∂tϕk − µ∆ϕk. With ĥ = h̃ we obtain the system

∂t(ρûk)− µ∆ûk +∇π̂k = Fk(ũ, π̃), in Ωk\Σk,

div ûk = 0, in Ωk\Σk,

−[[µ∂3v̂k]]− [[µ∇x′ŵk]] = g̃vk + Ĝvk(ũ), on Σk,

−2[[µ∂3ŵk]] + [[π̂k]]− σ∆x′ ĥk = g̃wk + Ĝwk(ũ, h̃), on Σk,

[[ûk]] = ũΣk − [[∇ϕk]], on Σk,

∂tĥk −m[ŵk] = g̃hk +m[∂3ϕk], on Σk,

PSk
1

(
µ(∇ûk +∇ûTk )νk

)
= PSk

1
g̃1k + Ĝ1k(ũ), on Sk

1\∂Σk,

ûk · νk = 0, on Sk
1\∂Σk,

ûk = g̃3k −∇ϕk, on Sk
2 ,

∂νk ĥk = g̃4k, on Sk
1 ∩ Σk,

ûk(0) = 0, in Ωk\Σk

ĥk(0) = 0, on Σk,

(3.7)

where

Ĝk(ũ, h̃) := Gk(ũ, h̃) + 2[[µ∇2ϕk]]e3 − [[µ∆ϕk]]e3,

Ĝkv, Ĝkw defined as above and

Ĝ1k(ũ) := G1k(ũ)− 2µ(I − νk ⊗ νk)∇2ϕkνk.
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With the help of the solution operators Sk, we may rewrite (3.7) as

(3.8) (ûk, π̂k, ĥk) = Sk

(
H̃k +Hk(ũ, π̃, h̃)

)
,

where H̃k stands for the set of given data and Hk(ũ, π̃, h̃) denotes the remaining
part on the right hand side of (3.7). Let {θk}Nk=0 ⊂ C∞

c (Uk) such that θk|suppφk
=

1 and multiply (3.8) by θk. By Lemma 3.1 it holds that (π̃k∇jθk), (π̂k∇jθk) ∈
0W

α
p (J ;Lp(Ω

k)) for each j ∈ {0, 1, 2} and k ∈ {0, . . . , N}, since supp θk ⊂ Uk is
bounded. In addition, the estimate

∥π̃k∇jθk∥Wα
p (J ;Lp(Ωk)) + ∥π̂k∇jθk∥Wα

p (J ;Lp(Ωk))

≤ C
(
∥ũ∥Eu(J) + ∥h̃∥Eu(J) + ∥H̃∥F(J)

)
is valid, where C > 0 does not depend on T > 0. This implies

∥(∇jθk)(ρ∂tϕk − µ∆ϕk)∥Wα
p (J ;Lp(Ωk)) = ∥(∇jθk)(π̂k − π̃k)∥Wα

p (J ;Lp(Ωk))

≤ C
(
∥ũ∥Eu(J) + ∥h̃∥Eu(J) + ∥H̃∥F(J)

)
and since ∆ϕk = Fdk(ũ) ∈0Eu(J), it follows that

∥(∇jθk)∂tϕk∥0Wα
p (J ;Lp(Ωk)) ≤ C

(
∥ũ∥Eu(J) + ∥h̃∥Eu(J) + ∥H̃∥F(J)

)
for each j ∈ {0, 1, 2} and k ∈ {0, . . . , N}. Hence, by Hölder’s inequality and Sobolev
embedding

∥(∇jθk)∂tϕk∥Lp(J ;Lp(Ωk)) ≤ T 1/2p∥(∇jθk)∂tϕk∥0Wα
p (J ;Lp(Ωk)).

Next, we apply Hölder’s inequality, Sobolev embeddings and the mixed derivative
theorem to obtain

∥θk∂tϕk∥Lp(J ;H1
p(Ω

k)) ≤ T 1/2p∥θk∂tϕk∥L2p(J ;H1
p(Ω

k))

≤ CT 1/2p∥θk∂tϕk∥Wα/2−ε
p (J ;H1

p(Ω
k))

≤ CT 1/2p∥θk∂tϕk∥Hα/2−ε/2
p (J ;H1

p(Ω
k))

≤ CT 1/2p∥θk∂tϕk∥Hα−ε
p (J ;Lp(Ωk))∩Lp(J ;H2

p(Ω
k))

≤ CT 1/2p∥θk∂tϕk∥Wα
p (J ;Lp(Ωk))∩Lp(J ;H2

p(Ω
k))

for some α ∈ (0, 1/2− 1/2p) and a sufficiently small ε > 0. Note that

∥∇∂tϕk∥Lp(J ;Lp(Ωk)) + ∥∇2∂tϕk∥Lp(J ;Lp(Ωk)) ≤ C∥ũ∥Eu(J),

by (3.6), hence

∥θk∂tϕk∥Lp(J ;H1
p(Ω

k)) ≤ CT 1/2p
(
∥ũ∥Eu(J) + ∥h̃∥Eu(J) + ∥H̃∥F(J)

)
.

In particular, this implies

∥θk∂t∇ϕk∥Lp(J ;Lp(Ωk)) ≤ ∥θk∂tϕk∥Lp(J ;H1
p(Ω

k)) + ∥(∇θk)∂tϕk∥Lp(J ;Lp(Ωk))

≤ CT 1/2p
(
∥ũ∥Eu(J) + ∥h̃∥Eu(J) + ∥H̃∥F(J)

)
.
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Moreover, by Sobolev embedding and the mixed derivative theorem, we obtain

∥θk∇ϕk∥Lp(J ;H2
p(Ω

k)) ≤ CT 1/2p∥∇ϕk∥
0H

1/2
p (J ;H2

p(Ω
k))

≤ CT 1/2p∥ũ∥Eu(J).

Since all terms in Hk(ũ, π̃, h̃) carry additional time regularity, there exists some
γ > 0 such that

∥Hk(ũ, π̃, h̃)∥F(J) ≤ CT γ∥(ũ, π̃, h̃)∥E(J).
We may now replace θkûk by θk(ũk −∇ϕk) and θkπ̂k by θk(π̃k + ρ∂tϕk − µ∆ϕk) in
(3.8) to obtain the estimate

(3.9) ∥θk(ũk, π̃k, h̃k)∥E(J) ≤ C
(
∥θkH̃k∥F(J) + T γ̃∥(ũ, π̃, h̃)∥E(J)

)
,

with a constant C > 0 being independent of T > 0. Here γ̃ := max{1/2p, γ}. Since
θk(ũk, π̃k, h̃k) = (ũk, π̃k, h̃k) we may take the sum over all charts to obtain

∥(ũ, π̃, h̃)∥E(J) ≤ CN

(
∥H̃∥F(J) + T γ̃∥(ũ, π̃, h̃)∥E(J)

)
.

Therefore, choosing T > 0 sufficiently small, we obtain the a priori estimate

∥(ũ, π̃, h̃)∥E(J) ≤ CN∥H̃∥F(J)
for the solution of (3.4). A successive application of the above argument yields
the estimate on each finite interval J = [0, T ]. It follows that the solution-to-data
operator L : 0E(J) → 0F(J), defined by the left hand side of (3.4) is injective with
closed range. In particular, there exists a left inverse S for L, that is SLz = z for
all z ∈0E(J).
(II) Existence of a right inverse

It remains to prove the existence of a right inverse for L. To this end, let the
data F := (f, fd, gv, gw, g1, g2, g3, g4, uΣ, gh) ∈ F(J), (u0, h0) ∈ Xγ , subject to the
conditions in Theorem 3.2 be given. By the results in Subsection 3.2, we may
assume without loss of generality that u0 = h0 = 0. In particular this means that
the time traces of all inhomogeneities at t = 0 vanish if they exist.

Let u∗,∇ψ ∈ 0Eu(J) denote the unique solutions of (3.2) and (3.3), respectively,
where now q∗ = π∗ = h∗ = 0. Set ū := u∗ − ∇ψ, π̄ := µ∆ψ − ρ∂tψ and h̄ = 0.
Defining

S̄F := (ū, π̄, [[π̄]], h̄)

it holds that

LS̄F = L(ū, π̄, [[π̄]], h̄) =



f
fd

gv +Gv(ψ)
gw +Gw(ψ)
uΣ +GΣ(ψ)
Gh(u∗, ψ)
g1 +G1(ψ)

g2
g3 +G3(ψ)

0


,

where
Gv(ψ) := 2[[µ(I − e3 ⊗ e3)(∇2ψe3)]],
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Gw(ψ) := 2[[µ(∇2ψe3) · e3]] + [[µ∆ψ]],

GΣ(ψ) := −[[∇ψ]], Gh(u∗, ψ) := −m[u∗ · e3 − ∂3ψ],

G1(ψ) := −2µ(I − νS1 ⊗ νS1)(∇2ψνS1),

and G3(ψ) := −∇ψ|S2 .
In a next step we consider the problems

∂t(ρũk)− µ∆ũk +∇π̃k = 0, in Ωk\Σk,

div ũk = 0, in Ωk\Σk,

−[[µ∂3ṽk]]− [[µ∇x′w̃k]] = Gk
v(ψ), on Σk,

−2[[µ∂3w̃k]] + [[π̃k]]− σ∆x′ h̃k = Gk
w(ψ), on Σk,

[[ũk]] = Gk
Σ(ψ), on Σk,

∂th̃k −m[w̃k] = Gk
h(u∗, ψ)− gkh, on Σk,

PSk
1

(
µ(∇ũk +∇ũTk )νk

)
= Gk

1(ψ), on Sk
1\∂Σk,

ũk · νk = 0, on Sk
1\∂Σk,

ũk = Gk
3(ψ), on Sk

2 ,

∂νk h̃k = −gk4 , on ∂Σk,

ũ(0) = 0, in Ωk\Σk

h̃(0) = 0, on Σk,

(3.10)

where

Gk
j (ψ) := Gj(ψ)φk, j ∈ {v, w,Σ, 1, 3}, Gk

h(u∗, ψ) := Gh(u∗, ψ)φk,

and gkm := gmφk, m ∈ {h, 4}. Let us check whether the right hand side in (3.10)
satisfies all relevant compatibility conditions at ∂Σk and ∂Sk

2 , k ≥ 7. Consider first
the case x ∈ ∂Sk

2 , k ∈ {7, . . . , N1}.
We have to show that the relations Gk

3(ψ) · νk = 0, µ∂νk(G
k
3(ψ) · e3) = Gk

1(ψ) · e3
and

P∂Gk [µ(D′Gk′
3 (ψ))ν

′
k] = −P∂Gk [µ(D′ψ)ν ′k]φk

hold at ∂Sk
2 , where

Gk′
3 (ψ) :=

(
Gk

3(ψ) · e1
Gk

3(ψ) · e2

)
.

The first condition is equivalent to φk(∇ψ · νk) = 0 at ∂Sk
2 . Since νk = νS1 = (ν ′, 0)

on suppφk, the claim follows from the fact that ∂νkψ = ∇ψ · νk = ∇x′ψ · ν ′ = 0 at
x ∈ ∂S2 ∩ suppφk, by construction of ψ. Next, we compute

∂νk(G
k
3(ψ) · e3) = −∂νk(φk∂3ψ) = −∂3ψ∂νkφk − φk∂νk∂3ψ = 0,

since ∂νkφk = 0 and

∂νk∂3ψ = ∂ν′∂3ψ = ∂3∂ν′ψ = 0
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at suppφk ∩ ∂S2, since ν
′ does not depend on x3 and ∂ν′ψ(x3) = 0 for all x3 ∈

[H1,H2]\{0} by construction of ψ. Furthermore we have

Gk
1ψ · e3 = ν1∂1∂3ψ + ν2∂2∂3ψ = ∂3∂ν′ψ = 0

at suppφk ∩ ∂S2. Therefore, the second compatibility condition holds. Concerning
the last compatibility condition, note that

D′Gk′
3 (ψ) = −D′(φk∇x′ψ) = −2φk∇2ψ −∇x′φk ⊗∇x′ψ −∇x′ψ ⊗∇x′φk.

From this identity we obtain

(D′Gk′
3 (ψ))ν

′
k = −2φk∇2ψν ′k −∇x′φk∂ν′kψ −∇x′ψ∂ν′kφk

= −P∂Gk [µ(D′ψ)ν ′k],

since ν ′k = ν ′ on suppφk and therefore ∂ν′kφk = ∂ν′kψ = 0 at ∂S2 ∩ suppφk. It

follows that all compatibility conditions at ∂Sk
2 are satisfied.

The validity of the compatibility conditions at ∂Σk, k ∈ {N1 +1, . . . , N}, can be
checked in a very similar way, taking into account the properties of ψ and the fact
that ∂ν′kφk = 0 at ∂Σ ∩ suppφk, k ∈ {N1 + 1, . . . , N}.

Therefore, for each k ∈ {0, . . . , N}, there exists a unique solution (ũk, π̃k, h̃k)
of (3.10). Let {θk}Nk=0 ⊂ C∞

c (Uk) such that θk|suppφk
= 1. Note that the function

(∇θk ·ũk)|Ω is mean value free, since ũk is a divergence free vector field and [[ũk]]·e3 =
0 on Σ∩Uk, ũk · νk = 0 at (S1\∂Σ)∩Uk as well as ũk · e3 = 0 at S2 ∩Uk. Therefore,
we may solve the problems

(3.11)

∆ψk = (∇θk · ũk)|Ω in Ω\Σ,
[[ρψk]] = 0 on Σ,

[[∂e3ψk]] = 0 on Σ,

∂ν∂Ωψk = 0 on ∂Ω\∂Σ = (S1\∂Σ) ∪ S2,

by Lemma 5.8. This yields unique solutions

∇ψk ∈0H
1
p (J ;H

1
p (Ω\Σ)3) ∩ Lp(J ;H

3
p (Ω\Σ)3).

Finally, we define

S̃F :=
N∑
k=0

(θkũk −∇ψk, θkπ̃k + ρ∂tψk − µ∆ψk, θkh̃k),



TWO-PHASE NAVIER-STOKES IN CYLINDRICAL DOMAINS 161

and we observe that

LS̃F =
N∑
k=0



−µ[∆, θk]ũk + [∇, θk]π̃k
0

θkG
k
v(ψ) + (I − e3 ⊗ e3)G(ũk, h̃k) +Gv(ψk)

θkG
k
w(ψ) +G(ũk, h̃k)e3 +Gw(ψk)

θkG
k
Σ(ψ) +GΣ(ψk)

θk(G
k
h(u∗, ψ)− gkh) +m[∂3ψk]

θkG
k
1(ψ) + PSk

1
[µ(∇θk ⊗ ũk + ũk ⊗∇θk)νk] +G1(ψk)

0
θkG

k
3(ψ) +G3(ψk)

h̃k∂νkθk − θkg
k
4


,

where

G(ũk, h̃k) := [[−µ(∇θk ⊗ ũk + ũk ⊗∇θk)]]e3 − σ[∆x′ , θk]h̃ke3.

Since θk|suppφk
= 1 it follows that θkG

k
j (ψ) = Gk

j (ψ), θkg
k
m = gkm and θkG

k
h(u∗, ψ) =

Gk
h(u∗, ψ) for j ∈ {v, w,Σ, 1, 3}, m ∈ {h, 4}. Therefore we have

N∑
k=0

θkG
k
j (ψ) = Gj(ψ)

as well as
∑N

k=0 θkg
k
m = gm and

∑N
k=0 θkG

k
h(u∗, ψ) = Gh(u∗, ψ) since

∑N
k=0 φk = 1.

Setting ŜF := S̄F − S̃F , we obtain the identity

LŜF = LS̄F − LS̃F = F −RF

where

RF :=

N∑
k=0



−µ[∆, θk]ũk + [∇, θk]π̃k
0

(I − e3 ⊗ e3)G(ũk, h̃k) +Gv(ψk)

G(ũk, h̃k)e3 +Gw(ψk)
GΣ(ψk)

0
PSk

1
[µ(∇θk ⊗ ũk + ũk ⊗∇θk)νk] +G1(ψk)

0
G3(ψk)

h̃k∂νkθk


.

If we can show that there exists a constant C > 0 being independent of T > 0 such
that the estimate

∥RF∥F(J) ≤ CT γ∥F∥F(J)
for some γ > 0 holds, then, if T > 0 is sufficiently small, the operator (I − R) is

invertible and the right inverse S for L is given by S := Ŝ(I −R)−1.

We remark that all terms which involve ũk and h̃k are of lower order and therefore
these terms carry additional (time-) regularity. Furthermore the terms involving ψk

carry additional (time-) regularity as well, since ∇ψk is regular enough. The only

difficulty that arises is the estimate of
∑N

k=0[∇, θk]π̃k in Lp(J ;Lp(Ω)
3). However,
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by Lemma 3.1 we know that π̃k ∈0W
α
p (0, T ;Lp,loc(Ω

k)) for some α ∈ (0, 1/2−1/2p).
Since θk has compact support, this yields the estimate

∥[∇, θk]π̃k∥Wα
p (Lp) ≤ C

(
∥ũk∥Eu + ∥h̃k∥Eh

+ ∥∇ψ∥Eu

)
for some constant C > 0 which does not depend on T > 0. In particular this implies

∥
N∑
k=0

[∇, θk]π̃k∥Lp(J ;Lp(Ω)) ≤ CNT
γ
(
∥u∗∥Eu(J) + ∥∇ψ∥Eu(J)

+ ∥gh∥F6(J) + ∥g4∥F10(J)

)
≤ CNT

γ∥F∥F(J),

for some γ > 0. □

We shall also prove a result on well-posedness for the linear system

∂t(ρu)− µ∆u+∇π = f, in Ω\Σ,
div u = fd, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = gv, on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h− γa[[ρ]]h = gw, on Σ,

[[u]] = uΣ, on Σ,

∂th−m[w] = gh, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1\∂Σ,

u · νS1 = g2, on S1\∂Σ,
u = g3, on S2,

∂ν∂Gh = g4, on ∂Σ,

u(0) = u0, in Ω\Σ
h(0) = h0, on Σ.

(3.12)

Corollary 3.3. Let γa > 0. Under the assumptions of Theorem 3.2, there exists a
unique solution

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), π ∈ Lp(J ; Ḣ

1
p (Ω\Σ)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ))

h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)),

of (3.12) if and only if the data are subject to the conditions (1)-(12) in Theorem
3.2.

Proof. Necessity of the conditions follows from trace theory. To prove the sufficiency
part, let

E1(J) := H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), E2(J) := Lp(J ; Ḣ

1
p (Ω\Σ)),

E3(J) :=W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ))

E4(J) :=W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)),
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and E(J) := {(u, π, q, h) ∈ ×4
j=1Ej(J) : q = [[π]]}. We first solve (2.3) for the given

data, to obtain a unique solution (u∗, π∗, q∗, h∗) ∈ E(J). Then we consider the
problem

∂t(ρu)− µ∆u+∇π = 0, in Ω\Σ,
div u = 0, in Ω\Σ,

−[[µ∂3v]]− [[µ∇x′w]] = 0, on Σ,

−2[[µ∂3w]] + [[π]]− σ∆x′h− γa[[ρ]]h = γa[[ρ]]h∗, on Σ,

[[u]] = 0, on Σ,

∂th−m[w] = 0, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= 0, on S1\∂Σ,

u · νS1 = 0, on S1\∂Σ,
u = 0, on S2,

∂ν∂Gh = 0, on ∂Σ,

u(0) = 0, in Ω\Σ
h(0) = 0, on Σ.

(3.13)

Define L :0E(J) →0F(J) by the left side of (3.13) and L0 :0E(J) →0F(J) by the left
side of (2.3) without the initial conditions. We already know that L0 :0E(J) →0F(J)
is boundedly invertible, hence

L = L0 + (L− L0) = L0(I + L−1
0 (L− L0)).

This in turn yields that L : 0E(J) → 0F(J) is boundedly invertible, provided that
((I+L−1

0 (L−L0)) :0E(J) →0E(J) has this property. To this end it suffices to show

that the norm of L−1
0 (L−L0) in E(J) is less than one. For z ∈0E(J) we obtain the

estimate

∥L−1
0 (L− L0)z∥E(J) ≤Mγa[[ρ]]∥h∥F4(J) ≤

≤ TαMγa[[ρ]]∥h∥E4(J) ≤ TαMγa[[ρ]]∥z∥E(J),

for some α > 0. Here M := ∥L−1
0 ∥B(0F(J0);0E(J0)) and J = [0, T ] ⊂ [0, T0] =: J0.

It follows that if T > 0 is sufficiently small, then L : 0E(J) → 0F(J) is boundedly
invertible. The result extends to all T > 0 by a successive application of this
argument. □

4. The nonlinear problem

It is the aim of this section to establish an existence and uniqueness result for
the nonlinear problem (2.2).

4.1. Function spaces and regularity. Before we go into details, a remark con-
cerning the nonlinearity

H2(u, h) = PS1

(
µ(M0(h)∇u+∇uTM0(h)

T)νS1

)
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in (2.2) is in order. One readily computes

(M0(h)∇u+∇uTM0(h)
T)νS1 =

1

1 + hφ′

φ∂3u1∂ν∂Gh+ φ∂1h∂3(u · νS1)
φ∂3u2∂ν∂Gh+ φ∂2h∂3(u · νS1)
φ∂3u3∂ν∂Gh+ φ′h∂3(u · νS1)

 ,

where νS1 = (ν1, ν2, 0)
T. Therefore, since u · νS1 = 0 on S1\∂Σ and ∂ν∂Gh = 0 on

∂G, it follows that H2(u, h) = 0 at S1\∂Σ (note that the function h depends only
on x′ = (x1, x2), wherefore it is constant with respect to x3).

Define the solution spaces

Eu(T ) := {u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3) :

[[u]] = 0, u · νS1 = 0, PS1(µ(∇u+∇uT)νS1) = 0, u|S2 = 0},

Eπ(T ) := Lp(J ; Ḣ
1
p (Ω\Σ)),

Eq(T ) :=W 1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

Eh(T ) := {h ∈W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W
2−1/p
p (Σ)) ∩ Lp(J ;W

3−1/p
p (Σ)) :

∂ν∂Gh = 0},
and

E(T ) := {(u, π, q, h) ∈ Eu(T )× Eπ(T )× Eq(T )× Eh(T ) : q = [[π]]}.
Moreover, we define the data spaces as follows.

F1(T ) := Lp(J ;Lp(Ω)
3),

F2(T ) := H1
p (J ; Ĥ

−1
p (Ω)) ∩ Lp(J ;H

1
p (Ω\Σ)),

F3(T ) := {f3 ∈W 1/2−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
1−1/p
p (Σ)3) : PΣ(f3) · νS1 = 0},

F4(T ) := {f4 ∈W 1−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

2−1/p
p (Σ)) : ∂ν∂Gf4 = 0},

and F(T ) := ×4
j=1Fj(T ).

Define an operator L = (L1, L2, L3, L4) on E(T ) by
L1(u, π) := ρ∂tu− µ∆u+∇π
L2(u) := div u

L3(u, q, h) := [[−µ(∇u+∇uT)]]e3 + qe3 − (∆x′h)e3 − γa[[ρ]]he3

L4(u, h) := ∂th− (u|e3)
and a nonlinear mapping N = (N1, N2, N3, N4) on E(T ) by

N1(u, π, h) := F (u, π, h)

N2(u, h) := Fd(u, h)−
1

|Ω|

∫
Ω
Fd(u, h) dx

N3(u, h) := (Gv(u, h), 0)
T +Gw(u, h)e3

N4(u, h) := H1(u, h).

It follows from Corollary 3.3 that for each fixed T > 0 the mapping L : 0E(T ) →
0F(J) is an isomorphism, since all compatibility conditions at the contact line ∂Σ
are satisfied by construction.
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Let UT := {z = (u, π, q, h) ∈ E(T ) : ∥h∥L∞(L∞) < η}, where η > 0 is sufficiently
small. Concerning the nonlinearity N(z) we have the following result

Proposition 4.1. Let p > n+ 2. Then

(1) N ∈ C2(UT ;F(T )) and N(0) = 0 as well as DN(0) = 0.
(2) DN(w) ∈ B(UT ;F(T )) for each w ∈ E(T ).

Proof. We shall show that N(z) ∈ F(T ) for each z ∈ UT . Let z = (u, π, q, h) ∈ UT .
Then it is easily seen that N1(z) = F (u, π, h) ∈ F1(T ). Concerning N2(z), we have

∥N2(z)∥Lp(H1
p)

≤ C(∥h∥L∞(W 2
∞)∥u∥Lp(H1

p)
+ ∥h∥L∞(W 1

∞)∥u∥Lp(H2
p)
),

since Eh(T ) ↪→ BUC([0, T ];C2(Σ)) for p > n + 2. Furthermore, for ϕ ∈ Ḣ1
p (Ω) we

obtain after integration by parts (h does not depend on x3)

(N2(z)|ϕ)2 = (N2(z)|ϕ− ϕ̄)2 = −
∫
Ω

[
(u1∂1h+ u2∂2h)∂3

(
(ϕ− ϕ̄)

φ

1 + hφ′

)
+

+ u3h∂3

(
(ϕ− ϕ̄)

φ′

1 + hφ′

)]
dx,

where ϕ̄ := 1
|Ω|
∫
Ω ϕdx. Since Eh(T ) ↪→ BUC1([0, T ];C1(Σ)) for p > n+2, it follows

from Poincaré’s inequality for functions with mean value zero that N2(z) ∈ F2(T ).
The desired regularity property of N3(z) can be readily checked. It remains to

show that
PΣN3(z) · νS1 = (Gv(u, h), 0)

T · νS1 = 0.

Inserting the expression for Gv(u, h) yields

PΣN3(z) · νS1 = −
(
[[µ(∇x′v +∇x′vT)]]∇x′h|ν∂G

)
+ |∇x′h|2[[µ∂3(u|νS1)]] +

(
(1 + |∇x′h|2)[[µ∂3w]]− (∇x′h|[[µ∇w]])

)
∂ν∂Gh,

where νS1 = (ν∂G, 0)
T. The last term in this equation vanishes, since ∂ν∂Gh = 0.

Moreover, since µ(u · νS1)(x3) = 0 for each x3 ∈ (H1, 0) ∪ (0,H2), the second term
vanishes as well. Finally, since PS1(µ(∇u+∇uT)νS1) = 0, it holds that

µ(∇u+∇uT)νS1 =
(
µ(∇u+∇uT)νS1 |νS1

)
νS1

on S1\∂Σ, hence also

[[µ(∇u+∇uT)]]νS1 =
(
[[µ(∇u+∇uT]])νS1 |νS1

)
νS1

at the contact line, since νS1 does not depend on x3. Taking the inner product with
(∇x′h, 0)T yields

([[µ(∇u+∇uT)]]νS1 |(∇x′h, 0)T) =
(
µ(∇u+∇uT)νS1 |νS1

)
∂ν∂Gh = 0,

since ∂ν∂Gh = 0. But by symmetry of the stress tensor we also have

([[µ(∇u+∇uT)]]νS1 |(∇h, 0)T) = (ν∂G|[[µ(∇x′v +∇x′vT)]]∇h),
where u = (v, w), hence N3(z) ∈ F3(T ).

Finally, concerning N4(z), one has to observe that (u|νS1) = 0 and PS1((∇u +
∇uT)νS1) = 0 on S1\∂Σ if u ∈ Eu(T ). For νS1 = (ν∂G, 0)

T, this implies in particular
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that (v|ν∂G) = 0 and P∂G((∇x′v + ∇x′vT)ν∂G) = 0 on S1\∂Σ. Since [[v]] = 0 on
Σ, by continuity of v, we clearly have [[∇x′v]] = 0 on Σ, since the jump acts into
the direction of x3 which is perpendicular to both e1 and e2. In particular we
have (v|ν∂G) = 0 and P∂G((∇x′v + ∇x′vT)ν∂G) = 0 at the contact line ∂Σ. Since
in addition we know that ∂ν∂Gh = 0 at ∂Σ, it follows from Proposition 5.12 that
∂ν∂G(v|∇x′h) = 0 at ∂Σ.

The remaining assertions can be proved as in [24, Proposition 6.2]. □

4.2. Reduction to time trace zero. Let (u0, h0) ∈W
2−2/p
p (Ω\Σ)3 ×W

3−2/p
p (Σ)

such that

div u0 = Fd(u0, h0), −[[µ∂3v0]]− [[µ∇x′w0]] = Gv(v0, h0),

[[u0]] = 0 on Σ, u0 · νS1 = 0, PS1(µ(∇u0 +∇uT0 )νS1) = 0 on S1\∂Σ, u0|S2 = 0 and
∂ν∂Gh0 = 0 on ∂Σ.

Let H := max{H1,−H2} < 0 and u+0 := u0|x3∈[0,H2]. Define

ũ+0 (x) :=

{
u+0 (x1, x2, x3), if x3 ∈ [0,H2),

−u+0 (x1, x2,−2x3) + 2u+0 (x1, x2,−x3/2), if x3 ∈ (H/2, 0)

as well as

ū+0 (x) :=


ũ+0 (x1, x2, x3), if x3 ∈ [0,H2),

ũ+0 (x1, x2, x3)ψ(x3), if x3 ∈ (H/2, 0),

0, if x3 ∈ (H1,H/2],

where ψ ∈ C∞
c (R; [0, 1]) such that ψ(s) = 1 if |s| < −H/6 and ψ(s) = 0 if |s| >

−H/3. It follows by construction that ū+0 ∈ W
2−2/p
p (Ω)3 ↪→ C1(Ω)3, if p > n + 2.

We then solve the parabolic problem

∂t(u
+)− µ+∆u+ = 0, in Ω,

PS1

(
µ+(∇u+ +∇(u+)T)νS1

)
= 0, on S1,

u+ · νS1 = 0, on S1,

u+ = 0, on S2,

u+(0) = ū+0 , in Ω,

(4.1)

by Lemma 5.9, where µ+ := µ|x3∈(0,H2) > 0 is constant.

Let us check whether ū+0 satisfies the relevant compatibility conditions at S1 and
S2. It is easy to see that ū+0 = 0 at S2. Furthermore we have u+0 · νS1 = 0 for all
x3 ∈ (0,H2) by the assumption on u0. From the definition of ũ+0 we obtain that
ũ+0 · νS1 = 0 for all x3 ∈ (H/2, 0), hence also ū+0 · νS1 = 0 for x3 ∈ (H1, 0) by the

definition of ū+0 . Since ū
+
0 ∈ C1(Ω)3 we also have ū+0 ·νS1 = 0 for x3 = 0. It remains

to prove that

(4.2) PS1

(
µ+(∇ū+0 +∇(ū+0 )

T)νS1

)
= 0

on S1. Again, this is true for x3 ∈ (0,H2), by the assumption on u0. Since the
first two components of this tangential projection do only contain derivatives with
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respect to the (x1, x2)-variables, it follows from the definition of ū+0 that

PS1

(
µ+(∇ū+0 +∇(ū+0 )

T)νS1

)
· ej = 0

for j ∈ {1, 2} and x3 ∈ (H1, 0). The third component of the projection is given by

∂νS1
(ū+0 · e3) + ∂3(ū

+
0 · νS1).

Evidently, it holds that ∂νS1
(ū+0 · e3) = 0 by the same reasons as above, since the

last component of νS1 vanishes. Furthermore, we have

∂3(ū
+
0 · νS1) =

{
ψ∂3(ũ

+
0 · νS1) + ψ′(ũ+0 · νS1), if x3 ∈ (H/2, 0),

0, if x3 ∈ (H1,H/2].

Since u+0 ·νS1 = 0 for all x3 ∈ (0,H2) it follows that ∂3(u
+
0 ·νS1) = 0 for x3 ∈ (0,H2).

From the identity

∂3(ũ
+
0 · νS1) = −∂3[u+0 (x1, x2,−2x3) · νS1 ] + 2∂3[u

+
0 (x1, x2,−x3/2) · νS1 ]

for x3 ∈ (H/2, 0), we readily obtain that ∂3(ū
+
0 · νS1) = 0 for x3 ∈ (H1, 0). Finally,

since ū+0 ∈ C1(Ω)3, it follows that (4.2) holds on all of S1.
Solving (4.1) by Lemma 5.9 yields a unique solution

u+ ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3)

satisfying the estimate

∥u+∥H1
p(Lp)∩Lp(H2

p)
≤M∥ū+0 ∥W 2−2/p

p
,

where M > 0 does not depend on u+0 .
Applying the same procedure to u−0 := u0|x3∈[H1,0] (with a suitable cut-off func-

tion ψ) yields a C1-extension ū−0 of u−0 . Therefore, we obtain a unique solution

u− ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3)

of (4.1) with µ+ and ū+0 replaced by µ− and ū−0 , respectively, satisfying the estimate

∥u−∥H1
p(Lp)∩Lp(H2

p)
≤M∥ū−0 ∥W 2−2/p

p
,

where M > 0 does not depend on u−0 . We then define

ū :=

{
u+, if x3 ∈ (0,H2),

u−, if x3 ∈ (H1, 0).

Note that in general ū ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3), since [[ū]] is not neces-

sarily zero.
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In a next step we solve the two phase problem

∂t(ρũ)− µ∆ũ = 0, in Ω\Σ,
[[µ∂3ṽ]] + [[µ∇x′w̃]] = [[µ∂3v̄]] + [[µ∇x′w̄]], on Σ,

[[µ∂3w̃]] = [[µ∂3w̄]], on Σ,

[[ũ]] = 0, on Σ,

PS1

(
µ(∇ũ+∇ũT)νS1

)
= 0, on S1\∂Σ,

ũ · νS1 = 0, on S1\∂Σ,
ũ = 0, on S2,

ũ(0) = u0, in Ω\Σ,

(4.3)

by Lemma 5.10, where ũ = (ṽ, w̃) and ū = (v̄, w̄). The compatibility conditions at
t = 0 are satisfied, since ū(0) = u0. Let us check that the compatibility condition

[[µ∂3(ū|νS1)]] + [[µ∂νS1
w̄]] = 0

holds at the contact line ∂Σ. Since by construction of ū we have

PS1

(
µ(∇ū+∇ūT)νS1

)
= 0,

at S1\∂Σ, the third component yields µ
(
∂νS1

w̄ + ∂3(ū · νS1)
)
= 0 at S1\∂Σ. This

in turn implies that [[µ∂3(ū|νS1)]] + [[µ∂νS1
w̄]] = 0. Note that for the third equation

in (4.3) there has no compatibility condition at ∂Σ to be satisfied. Therefore we
obtain a unique solution ũ ∈ Eu(T ) by Lemma 5.10.

Define f∗d := div ũ ∈ F2(T ), g
∗ := [[−µ(∇ũ + ∇ũT)e3]] ∈ F3(T ) and g∗h :=

e−At(v0|Σ · ∇h0), with A := (I − ∆N ), where ∆N is the Neumann-Laplacian
and e−At denotes the C0-semigroup, generated by −A in Lp(Σ). Then, since

(v0|Σ · ∇h0) ∈ W
2−3/p
p (Σ) with ∂ν∂G(v0|Σ · ∇h0) = 0 by Proposition 5.12 at ∂Σ,

it follows that e−Atgh ∈ F4(T ). The fact that PΣ([[−µ(∇ũ + ∇ũT)e3]]) · νS1 = 0
holds by construction of ũ.

By Corollary 3.3 there exists a unique solution z∗ = (u∗, π∗, q∗, h∗) ∈ E(T ) of
the initial value problem Lz∗ = (0, f∗d , g

∗, g∗h), (u∗, h∗)|t=0 = (u0, h0), since the
compatibility conditions at t = 0 in the second and third component are satisfied
by construction. We remark that z∗ satisfies the estimate

∥z∗∥E(T ) ≤ C0∥(u0, h0)∥Xγ ,

and C0 > 0 does not depend on (u0, h0).

4.3. Nonlinear well-posedness. Define the mapping K(z) := N(z + z∗) − Lz∗,
where z ∈0E(T ). By Proposition 4.1 it holds that K(z) ∈0F(T ) for each z ∈0E(T ),
wherefore, we may consider the mapping K(z) := L−1K(z). We intend to show
that this mapping has a fixed point in 0E(T ).

The main result of this section reads as follows.

Theorem 4.2. Let n = 3, p > 5. For each given T > 0 there exists a number

η = η(T ) > 0 such that for all initial values (u0, h0) ∈W
2−2/p
p (Ω\Σ)3 ×W

3−2/p
p (Σ)
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satisfying the compatibility conditions

div u0 = Fd(u0, h0), −[[µ∂3v0]]− [[µ∇x′w0]] = Gv(v0, h0),

[[u0]] = 0, u0 · νS1 = 0, PS1(µ(∇u0 + ∇uT0 )νS1) = 0, u0|S2 = 0 and ∂ν∂Gh0 = 0 as
well as the smallness condition

∥u0∥W 2−2/p
p (Ω\Σ)

+ ∥h0∥W 3−2/p
p (Σ)

≤ η,

there exists a unique solution (u, π, q, h) ∈ E(T ) of (2.2).

Proof. For a given Banach space Z, let

BZ := {z ∈ Z : ∥z∥Z ≤ 1}.
Based on Proposition 4.1, for each ε ∈ (0, 1) there exists δ(ε) > 0 such that

∥DN(z + z∗)∥B(E(T ),F(T )) ≤ ε

whenever (z + z∗) ∈ δBE(T ) ⊂ UT . Let M := ∥L−1∥B(0F(T );0E(T )) > 0 and C :=
∥L∥B(E(T );F(T )) > 0. We assume that ε > 0 from above is chosen sufficiently small,

such that ε ∈ (0, 1/(2M)). Suppose furthermore that z ∈ δ
2B0E(T ) and (u0, h0) ∈

δ
4MC0(1+C)BXγ . This yields

∥z + z∗∥E(T ) ≤ δ/2 + δ/(4M(1 + C)) < δ

and therefore

∥K(z)∥E(T ) ≤M∥K(z)∥F(T ) ≤M(∥N(z + z∗)∥F(T ) + ∥Lz∗∥F(T ))

≤M [ε(∥z∥E(T ) + ∥z∗∥E(T )) + C∥z∗∥E(T )]

≤M(ε∥z∥E(T ) + C0(1 + C)∥(u0, h0)∥Xγ )

≤Mε
δ

2
+
δ

4
≤ δ/2

hence K : δ
2B0E(T ) → δ

2B0E(T ) is a self-mapping. Furthermore we obtain

∥K(z1)−K(z2)∥E(T ) ≤Mε∥z1 − z2∥E(T ) ≤
1

2
∥z1 − z2∥E(T ),

valid for all z1, z2 ∈ δ
2B0E(T ) and all initial values (u0, h0) ∈ δ

4MC0(1+C)BXγ . The

contraction mapping principle yields a unique fixed point z̃ ∈ δ
2B0E(T ) of K(z), i.e.

z̃ = K(z̃). Equivalently this means Lz̃ = N(z̃ + z∗) − Lz∗, hence z̄ := z̃ + z∗
solves Lz̄ = N(z̄). To show that z̄ = (ū, π̄, q̄, h̄) is a solution of (2.2), it remains
to prove that Fd(ū, h̄) is mean value free. Indeed, let t ∈ [0, T ] be fixed and set
û(t, x) := ū(t,Θ−1

h̄
(t, x)) it follows that û ∈ H1

p (Ω) with (û|νS1) = 0 at S1\∂Γ(t),
û = 0 at S2 and

div û = (div ū− Fd(ū, h̄)) ◦Θ−1
h̄
.

The divergence theorem and the transformation formula yield

0 =

∫
Ω\Γ(t)

div û dx

=

∫
Ω\Σ

(
div ū− Fd(ū, h̄)

)
detΘ′

h̄ dx̄
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= − 1

|Ω|

∫
Ω\Σ

Fd(ū, h̄) dx̄

∫
Ω\Σ

detΘ′
h̄ dx̄,

where x̄ := Θ−1
h̄

(x). Since detΘ′
h̄
> 0, the claim follows. □

5. Appendix

5.1. Extension operators.

Proposition 5.1. Let p > 2. There exists a linear and bounded extension operator
ext from

0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R))

to

0W
1/2−1/2p
p (J ;Lp(R× R+)) ∩ Lp(J ;W

1−1/p
p (R× R+))

such that [ext v]|R×{0} = v, for all v ∈0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)).

Moreover, if

v = v(t, x, y) ∈0W
1/2−1/2p
p (J ;Lp(R× R+)) ∩ Lp(J ;W

1−1/p
p (R× R+)) =: X,

then

try=0 v ∈0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)) =: Y

and there exists a constant C > 0 such that

∥ try=0 v∥Y ≤ C∥v∥X
for all v ∈ X.

Proof. LetX0 = Lp(J ;Lp(R)) and consider the operator (∂t−∂2x) inX0 with domain

0W
1
p (J ;Lp(R)) ∩ Lp(J ;W

2
p (R)).

The operator −A := −(∂t − ∂2x)
1/2 generates an analytic semigroup {e−Ay}y≥0 in

X0 with domain D(A) = [X0, D(A2)]1/2. Since

DA(1− 2/p, p) = (X0, D(A))1−2/p,p = (X0, D(A2))1/2−1/p,p,

by [46, Theorem 1.15.2], we obtain

DA(1− 2/p, p) = 0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)).

Hence, if v ∈ DA(1− 2/p, p), then

[y 7→ e−Ayv] ∈W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p))

by [14, Theorems 3 & 8], where DA(1− 1/p, p) = (X0, D(A2))1/2−1/2p,p, hence

DA(1− 1/p, p) =0W
1/2−1/2p
p (J ;Lp(R)) ∩ Lp(J ;W

1−1/p
p (R)).

Setting [ext v](y) = e−Ayv yields the first claim, by the Fubini property of the spaces
W s

p .
For the proof of the second assertion, we consider v(t, x, y) as a function w(y)(t, x),

i.e. w(y)(t, x) := v(t, x, y). Then we have

w ∈W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p)),
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where X0 and A are defined as above. By [22, Lemma 4.1, (4.4)] with α = 1− 1/p
and µ = 1 it holds that tr |y=0 is a continuous mapping from

W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p))

to DA(1− 1/2p, p) = DA2(1/2− 1/p, p) = (X0, D(A2))1/2−1/p,p with

(X0, D(A2))1/2−1/p,p = 0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)).

The proof is complete. □
Proposition 5.2. Let p > 2, J = [0, T ], 0 < T <∞ or J = R+ and

g ∈0W
3/2−1/p
p (J ;Lp(R)) ∩0H

1
p (J ;W

1−2/p
p (R)) ∩ Lp(J ;W

2−2/p
p (R)) =: Y.

Then there exists

h ∈0W
2−1/2p
p (J ;Lp(R2

+)) ∩0H
1
p (J ;W

2−1/p
p (R2

+)) ∩ Lp(J ;W
3−1/p
p (R2

+)) =: X,

such that ∂yh = g at y = 0.
Moreover, the mapping (tr |y=0 ◦ ∂y) : X → Y is continuous.

Proof. (1) Consider the operator (∂t − ∂2x) in X0 := Lp(J ;Lp(R)) with domain

0W
1
p (J ;Lp(R)) ∩ Lp(J ;W

2
p (R)).

Let A := (∂t − ∂2x)
1/2 with domain D(A) = [X0, D(A2)]1/2. Denote by e−Ay the

analytic C0-semigroup, generated by −A in X0 and set h(y) := −e−AyA−1g. Since

g, ∂tg,A
−1g,A−1∂tg ∈0W

1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R))

it follows from Proposition 5.1 that

h, ∂th,Ah,A∂th ∈W 1−1/p
p (R+;X0) ∩ Lp(R+;DA(1− 1/p, p)).

The operatorA−1 is an isomorphism from (X0, D(A2))1/2−1/2p,p to (X0, D(A2))1−1/2p,p

by [46, Theorem 1.15.2], hence h as well as ∂th belong to

0W
1−1/2p
p (J ;Lp(R2

+)) ∩ Lp(J ;W
2−1/p
p (R2

+))

by the Fubini property. Furthermore ∂t : 0W
s
p (J ;X) → 0W

s−1
p (J ;X), s ∈ [1, 2) is

an isomorphism, hence

(5.1) h ∈0W
2−1/2p
p (J ;Lp(R2

+)) ∩0W
1
p (J ;W

2−1/p
p (R2

+)).

(2) Next, we use the regularity

Ag ∈0W
1−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)),

to conclude

(5.2) −∂2yh = A2e−AyA−1g = e−AyAg ∈W 1−1/p
p (R+;X0)

by [14, Theorem 8], since

Ag ∈ DA(1− 2/p, p) =0W
1/2−1/p
p (J ;Lp(R)) ∩ Lp(J ;W

1−2/p
p (R)).

In particular, this yields that

h ∈W 3−1/p
p (R+;Lp(J ;Lp(R))).
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(3) It remains to show that

h ∈ Lp(R+;Lp(J ;W
3−1/p
p (R))).

To this end we consider the semigroup {e−Ay}y≥0 in X̃0 := Lp(J ;W
1−1/p
p (R)). The

domain of the operator A2 := (∂t − ∂2x) in X̃0 is given by

0W
1
p (J ;W

1−1/p
p (R)) ∩ Lp(J ;W

3−1/p
p (R)).

Then we have
[y 7→ e−Ayg] ∈ Lp(R+;D(A)),

if
g ∈ DA(1− 1/p, p) =0W

1/2−1/2p
p (J ;W 1−1/p

p (R)) ∩ Lp(J ;W
2−2/p
p (R)).

Note that the assumption on g implies

g ∈0H
1
p (J ;W

1−2/p
p (R)) ∩ Lp(J ;W

2−2/p
p (R)) ↪→0W

1/2−1/2p
p (J ;W 1−1/p

p (R)),

which follows from [22, Proposition 3.2]. Replacing g by A−1g it follows that

[y 7→ e−AyA−1g] ∈ Lp(R+;D(A2)),

hence
[y 7→ e−AyA−1g] ∈ Lp(R+;Lp(J ;W

3−1/p
p (R))).

(4) For the proof of the second assertion, note first that ∂y maps X continuously to

0W
3/2−1/2p
p (J ;Lp(R2

+)) ∩0H
1
p (J ;W

1−1/p
p (R2

+)) ∩ Lp(J ;W
2−1/p
p (R2

+)),

since

0W
2−1/2p
p (J ;Lp(R2

+)) ∩0H
1
p (J ;W

2−1/p
p (R2

+))

is continuously embedded into

0W
3/2−1/2p
p (J ;H1

p (R2
+)),

by [22, Proposition 3.2]. Then the assertion follows from similar arguments as in
the proof of Proposition 5.1. □

5.2. Partition of unity with vanishing Neumann trace.

Proposition 5.3. Let G ⊂ R2 be a bounded domain with boundary ∂G ∈ Cm+1.
Then for each finite open covering {Uk}Nk=1 of ∂G in R2 there exists an open set

U0 ⊂ G with U0 ∩ ∂G = ∅,
∪N

k=0 Uk ⊃ G and a subordinated partition of unity
{ψk}Nk=0 ⊂ Cm

c (R2) such that suppψk ⊂ Uk and ∂νψk = 0 at ∂G.

Proof. Let {Uj}Nj=1 be a finite open cover of ∂G. Then there exist open sets Vj

such that Kj := V j ⊂ Uj and
∪N

k=1 Vj ⊃ ∂G. Moreover, there exist functions ϕj ∈
C∞
c (Uj) with 0 ≤ ϕj ≤ 1 such that ϕj |Kj = 1. It is well-known that for sufficiently

small a > 0, the mapping F : ∂G× (−a, a) → Rn, defined by F (p, r) := p+ rν(p),
is a Cm-diffeomorphism onto its image Ua := imF . The inverse mapping F−1 may
be decomposed as F−1 = (Π, d), where Π ∈ Cm(Ua; ∂G) and d ∈ Cm(Ua; (−a, a)).
Note that Π(x) denotes the nearest point on ∂G to x ∈ Ua and d(x) stands for the
signed distance from x ∈ Ua to ∂G. It can be shown that

Ua = {x ∈ Rn : dist(x, ∂G) < a}.
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Choose a > 0 small enough such that Ua ⊂
∪N

j=1Kj and define new functions

ϕ̄j(x) := ϕj(Π(x)) for x ∈ Ua. It follows that ∇ϕ̄j(x) = DΠT(x)∇ϕj(Π(x)), hence
∂ν ϕ̄j(x) = (∇ϕj(Π(x))|DΠ(x)ν(x)) = 0 for x ∈ ∂G, since DΠ(x)ν(x), x ∈ ∂G. Let

ϕ̃j(x) :=

{
ϕ̄j(x)φ(d(x)), x ∈ Ua,

0, x /∈ Ua,

where φ ∈ C∞
c (R; [0, 1]) such that φ(s) = 1 if |s| < a/2 and φ(s) = 0 if |s| > 3a/4.

Then we still have ∂ν ϕ̃(x) = 0 for x ∈ ∂G. Define K̃j := Kj ∩ ∂G. Then there

exists some δ ∈ (0, a/2) such that Fj := F (K̃j , [−δ, δ]) is compact, Fj ⊂ Uj and∪N
j=1 Fj ⊃ ∂G. It follows that ϕj |K̃j

= 1 and therefore ϕ̃j |Fj = 1.

Consider the set G := G\
∪N

j=1 Fj . Then G is a proper open subset of G. Choose
an open set U0 ⊂ G that covers G and a set F0 ⊃ G that is compactly contained in
U0. Define F0 := F0. Then there exists a smooth function ϕ̃0 ∈ C∞

c (U0; [0, 1]) such

that ϕ̃0|F0 = 1. In particular it holds that
∪N

j=0 Fj ⊃ G and
∑N

j=0 ϕ̃j(x) > 0 for

x ∈ G. Finally, we set ψk := ϕ̃k/
∑N

j=0 ϕ̃j , k = 0, . . . , N . Then
∑N

k=0 ψk = 1 and

∂νψk =
∂ν ϕ̃k∑N
j=0 ϕ̃j

−
ϕ̃k
∑N

j=0 ∂ν ϕ̃j(∑N
j=0 ϕ̃j

)2 = 0,

for k ∈ {0, . . . , N} at ∂G, since by construction also ∂ν ϕ̃0 = 0 at ∂G. The proof is
complete. □

It is possible to extend the previous result to cylindrical domains Ω := G ×
(H1,H2). To this end let S1 := ∂G× (H1,H2),

S2 :=
2∪

j=1

G× {Hj},

and Σ := G× {0}.

Proposition 5.4. Let G ⊂ R2 be a bounded domain with boundary ∂G ∈ Cm+1

and Ω := G× (H1,H2), H1 < 0 < H2. Then for each finite open covering {Uk}Nk=1

of ∂S2 ∪ ∂Σ in Rn there exist open sets Uj ⊂ R3, j ∈ {N + 1, . . . , N + 7} such that

• UN+1 ⊂ G× (H1, 0), UN+2 ⊂ G× (0,H2),
• UN+3 ∩ UN+1 ∩ S1 ̸= ∅, UN+3 ∩ (Σ ∪ S2) = ∅,
• UN+4 ∩ UN+2 ∩ S1 ̸= ∅, UN+4 ∩ (Σ ∪ S2) = ∅,
• UN+5 ∩ Σ ̸= ∅, UN+5 ∩ (S1 ∪ S2) = ∅,
• UN+6 ∩ UN+1 ∩ S2 ̸= ∅, UN+6 ∩ (S1 ∪ Σ) = ∅,
• UN+7 ∩ UN+2 ∩ S2 ̸= ∅, UN+7 ∩ (S1 ∪ Σ) = ∅,
•
∪N+7

j=1 Uj ⊃ Ω.

Furthermore, there exists a subordinated partition of unity {ϕk}N+7
k=1 ⊂ Cm

c (R3) such
that suppϕk ⊂ Uk and ∂ν∂Gϕk = ∂enϕk = 0 at ∂S2 ∪ ∂Σ.

Proof. The idea of the proof is quite simple. Let {Uj}N1
j=1 be an open covering of

∂Σ in Rn and define Ũj := Uj ∩{Rn−1×{0}}. Let Vj := Ũj , j ∈ {1, . . . , N1}, where



174 MATHIAS WILKE

we identify Vj with a set in Rn−1. Then, of course, {Vj}N1
j=1 is an open covering

of ∂Σ in Rn−1. Now we are in a position to apply Proposition 5.3 to find an open
set V0 ⊂ Σ such that

∪N1
j=0 Vj ⊃ Σ. Furthermore, by Proposition 5.3, there exists

a subordinated partition of unity {ψΣ
j }

N1
j=0 ⊂ Cm

c (Rn−1) with suppψΣ
j ⊂ Vj and

∂ν∂Gψ
Σ
j = 0 at ∂Σ.

Now we define ϕΣj (x
′, xn) := ψΣ

j (x
′)φ(xn), where φ ∈ C∞

c (R; [0, 1]) such that

φ(s) = 1 if |s| < δ and φ(s) = 0 if |s| > 2δ, where δ > 0 is sufficiently small. It
follows that ϕΣj ∈ Cm

c (Rn) and, if δ > 0 is sufficiently small, then suppϕΣj ⊂ Uj for

j ∈ {1, . . . , N1}. Furthermore we still have ∂ν∂Gϕ
Σ
k = 0 and, in addition, ∂enϕ

Σ
j = 0

at ∂Σ, since φ is constant in a neighborhood of s = 0.
The same procedure can be applied for the charts covering ∂S2. The remaining

set which is a proper subset of Ω\(S2 ∪ Σ) can be covered by finitely many open
charts. □

5.3. Auxiliary elliptic and parabolic problems.

5.3.1. Elliptic problems. The following result deals with the two-phase elliptic prob-
lem

λu−∆u = f in Ω\Σ,
[[ρu]] = g1 on Σ,

[[∂νΣu]] = g2 on Σ,

∂νS1
u = h1 on S1\∂Σ,

∂νS2
u = h2 on S2,

(5.3)

where Ω and Σ satisfy one of the following conditions.
(a) Ω is either a full space, a (bent) half space or a (bent) quarter space and Σ = ∅,
(b) Ω is either a full space or a (bent) half space with outer unit normal −en−1 at

x = 0 and Σ = {Rn−1 × {0}} ∩ Ω,
(c) Ω = G× (H1,H2), H1 < 0 < H2, is a cylindrical domain where G is a bounded

domain with boundary ∂G ∈ C4 and Σ = G× {0}.
The sets S1 and S2 are the corresponding vertical and horizontal parts of the bound-
ary of Ω, respectively.

Lemma 5.5. Let n = 2, 3, p ≥ 2 and assume that Ω and Σ are subject to one of
the conditions in (a)-(c) above. Then there exists λ0 ≥ 0 such that for each λ ≥ λ0,
problem (5.3) has a unique solution u ∈W 2

p (Ω\Σ) if and only if the data satisfy the
following regularity and compatibility conditions.

(1) f ∈ Lp(Ω),

(2) g1 ∈W
2−1/p
p (Σ),

(3) g2 ∈W
1−1/p
p (Σ),

(4) h1 ∈W
1−1/p
p (S1\∂Σ),

(5) h2 ∈W
1−1/p
p (S2),

(6) [[ρh1]] = ∂ν∂Gg1 on ∂Σ.
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Proof. For convenience we restrict ourselves to the case n = 3. The arguments for
the case n = 2 are similar and even simpler.

(a) If Ω and Σ are subject to the first two conditions in (a), i.e. Ω is a full space or
a half space, then the result is folklore. So let us consider the case where Σ = ∅ and
Ω is a quarter space. To be precise, let Ω := R×R+×R+ with S1 := R×{0}×R+

and S2 := R× R+ × {0}. Therefore we have to study the problem

λu−∆u = f, x ∈ Ω,

∂2u = h1, x ∈ S1,

∂3u = h2, x ∈ S2.

(5.4)

Extend f and h2 with respect to x2 (by even reflection) to some functions f ∈
Lp(R2 × R+) and h̃2 ∈W

1−1/p
p (R2) and solve the half space problem

λũ−∆ũ = f̃ , x ∈ R2 × R+,

∂3ũ = h̃2, x ∈ R2 × {0},

to obtain a unique solution ũ ∈W 2
p (R2×R+) for each λ > 0. Note that by symmetry,

the function [x 7→ ũ(x1,−x2, x3)] is a solution of this problem too. Therefore, by
uniqueness, it holds that ∂2ũ|S1 = 0.

In a next step, we extend h1 by even reflection and with respect to the x3 variable

to some h̃1 ∈W
1−1/p
p (R2) and solve the half space problem

λṽ −∆ṽ = 0, x ∈ R× R+ × R,

∂2ṽ = h̃2, x ∈ R× {0} × R,

to obtain a unique solution ṽ ∈ W 2
p (R × R+ × R) for each λ > 0. As above,

by symmetry and uniqueness, it holds that ∂3ṽ|S2 = 0. Therefore it follows that
u := (ũ+ ṽ)|Ω is the unique solution of (5.4).

Finally, let Ω be a bent quarter space with S2 as above and

S1,θ := {(x1, x2, x3) ∈ R3 : x2 = θ(x1)},

where θ ∈ BC3(R) with ∥θ∥∞ + ∥θ′∥∞ ≤ η and η > 0 can be made as small as
we wish. Then the corresponding result follows from change of coordinates (set
x̄2 := x2 − θ(x1)) and perturbation theory for elliptic problems. We will give
a detailed proof for the case of a two-phase half space in part (b) below. The
technique carries over to this case. Indeed, things are easier in (a) as there are no
compatibility conditions, since Σ = ∅.

(b) Let Ω = R3 and Σ = R2 × {0}. Then we have to solve the problem

λu−∆u = f, x ∈ Ω\Σ,
[[ρu]] = g1, x ∈ Σ,

[[∂3u]] = g2, x ∈ Σ,

(5.5)

where ρ = ρ1χx3<0 + ρ2χx3>0 and ρj > 0. Since f ∈ Lp(R3) we may first solve the
full space problem

λũ−∆ũ = f, x ∈ Rn;
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to obtain a unique solution ũ ∈W 2
p (Rn) for each λ > 0. Consider now the problem

λū−∆ū = 0, x ∈ Ω\Σ,
[[ρū]] = g1 − [[ρũ]] =: ḡ1, x ∈ Σ,

[[∂3ū]] = g2, x ∈ Σ.

(5.6)

By semigroup theory, it is easy to see that the unique solution of (5.6) is explicitly
given by

ū(x3) :=
1

ρ1 + ρ2

{
e−Lx3a+, x3 ≥ 0,

e−L(−x3)a−, x3 < 0,

where L := (λ−∆x′)1/2 and

a+ := ḡ1 + ρ2L
−1g2 − (ρ1 + ρ2)L

−1g2, a− = −(ḡ1 + ρ2L
−1)g2.

Therefore the function u := ũ + ū is the unique solution of (5.5) which exists for
each λ > 0.

Let now Ω = R×R+ ×R and Σ = {R2 × {0}} ∩Ω, i.e. we consider the case of a
two-phase half space. Now we have to solve the problem

λu−∆u = f in Ω\Σ,
[[ρu]] = g1 on Σ,

[[∂3u]] = g2 on Σ,

∂2u = h1 on S1\∂Σ,

(5.7)

where S1 := R×{0}×R. We will first reduce (5.7) to the case h1 = 0. To this end we

first extend h+1 := h1|x3>0 with respect to the x3 variable to some h̃+1 ∈W
1−1/p
p (R2)

and solve the half space problem

λu+ −∆u+ = 0, x2 > 0, ∂2u
+ = h̃+1 , x2 = 0,

to obtain a unique solution u+ ∈ W 2
p (R × R+ × R). Then we repeat the same

procedure for h−1 := h1|x3<0 to obtain a unique solution u− ∈ W 2
p (R × R+ × R).

Define the function

ū :=

{
u+, x3 ≥ 0,

u−, x3 < 0,

and consider the problem

λũ−∆ũ = f̄ in Ω\Σ,
[[ρũ]] = ḡ1 on Σ,

[[∂3ũ]] = ḡ2 on Σ,

∂2ũ = 0 on S1\∂Σ,

(5.8)

where f̄ := f , ḡ1 := g1 − [[ρū]] and ḡ2 := g2 − [[∂3ū]]. Note that by the compatibility
condition on g1 and h1 at ∂Σ it holds that ∂2ḡ1 = 0 at ∂Σ. Therefore it is possible to

extend f̄ , ḡj by even reflection in x2 to some functions f̂ ∈ Lp(R3), ĝ1 ∈W
2−1/p
p (R2)

and ĝ2 ∈W
1−1/p
p (R2). Solve (5.5) with (f, gj) replaced by (f̂ , ĝj) to obtain a unique

solution û ∈ W 2
p (R2 × Ṙ). Since the function [x 7→ û(x1,−x2, x3)] is a solution of

this problem too, it follows by uniqueness that ∂2û = 0 at S1\∂Σ, hence ũ := û|Ω
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is the unique solution of (5.8). Finally, u := ũ + ū solves (5.7) for each λ > 0 and
this solution is unique.

Consider now the case of a bent two-phase half space with outer unit normal −e2
at x = 0. To be precise, let

Ωθ := {x ∈ R3 : x2 > θ(x1)},

where θ ∈ BC3(R), with θ(0) = θ′(0) = 0 and ∥θ′∥∞+∥θ∥∞ ≤ η, where η > 0 can be
made as small as we wish. Furthermore, let S1,θ := ∂Ωθ and Σθ := {R2×{0}}∩Ωθ.
We have to investigate the following problem.

λu−∆u = f in Ωθ\Σθ,

[[ρu]] = g1 on Σθ,

[[∂3u]] = g2 on Σθ,

∂ν∂Σθ
u = h1 on S1,θ\∂Σθ.

(5.9)

First of all we extend f , g1 and g2 to some functions f̃ ∈ Lp(R3), g̃1 ∈W
2−1/p
p (R2)

and g̃2 ∈W
1−1/p
p (R2), respectively. Then we solve (5.5) with (f, g1, g2) replaced by

(f̃ , g̃1, g̃2) to obtain a unique solution ũ ∈ W 2
p (R2 × Ṙ). Let h̄1 := h1 − ∂ν∂Σθ

ũ|S1,θ

and note that [[ρh̄1]] = 0 at ∂Σθ by the compatibility condition on (g1, h1) at ∂Σθ.
We arrive at the problem

λū−∆ū = 0 in Ωθ\Σθ,

[[ρū]] = 0 on Σθ,

[[∂3ū]] = 0 on Σθ,

∂ν∂Σθ
ū = h̄1 on S1,θ\∂Σθ.

(5.10)

Transforming Ωθ, S1,θ and Σθ to Ω = R × R+ × R, S1 = R × {0} × R and Σ =
{R2 × {0}} ∩ Ω via the diffeomorphism

Ω ∋ (x̄1, x̄2, x̄3) 7→ (x̄1, x̄2 + θ(x̄1), x̄3) ∈ Ωθ

yields the transformed problem

λû−∆û =M1(θ, û) in Ω\Σ,
[[ρû]] = 0 on Σ,

[[∂3û]] = 0 on Σ,

∂2û =M2(θ, û)−
√

1 + θ′2ĥ1 on S1\∂Σ,

(5.11)

where û(x̄) := ū(x̄1, x̄2 + θ(x̄1), x̄3), ĥ1(x̄1, x̄3) := h̄(x̄1, θ(x̄1), x̄3),

M1(θ, û) := −2θ′(x̄1)∂1∂2û− θ′′(x̄1)∂2û+ θ′(x̄1)
2∂22 û,

and

M2(θ, û) := θ′(x̄1)∂1û|S1\∂Σ − θ′(x̄1)
2∂2û|S1\∂Σ.

Observe that [[ρĥ1]] = 0 at ∂Σ.
Define the function spaces

E := {û ∈W 2
p (Ω\Σ) : [[ρû]] = [[∂3û]] = 0 on Σ},
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equipped with the equivalent norm ∥û∥E,λ := λ∥û∥Lp + ∥û∥W 2
p
, λ > 0 and

F := {(f1, f2) ∈ Lp(Ω)×W 1−1/p
p (S1\∂Σ) : [[ρf2]] = 0 at ∂Σ}.

Furthermore, let a linear operator L : E → F be defined by

Lû :=

(
λû−∆û
∂2û|S1\∂Σ

)
.

It follows from our previous arguments that L : E → F is an isomorphism, provided
λ > 0. Furthermore, by the same strategy as in [21, Section 3.1.1], there exists
λ0 > 0 and a constant C > 0 such that for all λ ≥ λ0 and (f1, f2) ∈ F the estimate

(5.12) ∥L−1(f1, f2)∥E,λ ≤ C
(
∥f1∥Lp(Ω) + |λ|1/2∥f̃2∥Lp(Ω) + ∥∇f̃2∥Lp(Ω)

)
,

is valid, where f̃2 is an extension of f2 to W 1
p (Ω\Σ).

Let now F := (0,−
√
1 + θ′2ĥ1) and M(θ, û) := (M1,M2)(θ, û). Clearly, for each

û ∈ E, it holds that M(θ, û) ∈ F, since

[[ρθ′(x̄1)∂1û]] = θ′(x̄1)∂1[[ρû]] = 0

at ∂Σ. Furthermore it holds that

[[ρ
√

1 + θ′2ĥ1]] =
√

1 + θ′2[[ρĥ1]] = 0

at ∂Σ as well, hence F ∈ F. Therefore, for û ∈ E, the expressions L−1M(θ, û),
L−1F are well defined in E and we may rewrite (5.11) in the shorter form

(5.13) û = L−1M(θ, û) + L−1F.

We will now apply (5.12) to the term L−1M(θ, û). To this end, note that

M̃2(θ, û) := θ′(x̄1)∂1û− θ′(x̄1)
2∂2û

is a proper extension of M2(θ, û) to W
1
p (Ω\Σ). By (5.12), this yields the estimate

∥L−1M(θ, û)∥E,λ ≤

≤ C
(
∥θ′∥L∞(Ω)∥û∥W 2

p (Ω) + [∥θ′′∥L∞(Ω) + λ1/2∥θ′∥L∞(Ω)]∥û∥W 1
p (Ω)

)
.

Clearly, ∥û∥W 2
p (Ω) ≤ ∥û∥E,λ and by complex interpolation we obtain furthermore

∥û∥W 1
p (Ω) ≤ C∥û∥1/2Lp(Ω)∥û∥

1/2
W 2

p (Ω)
≤ 1

λ1/2
∥û∥E,λ.

Choosing first ∥θ′∥∞ sufficiently small and then λ > 0 sufficiently large, it fol-
lows that for each ε > 0 there exist numbers η0 > 0 and λ1 > 0 such that
∥L−1M(θ, û)∥E,λ ≤ ε∥û∥E,λ, whenever ∥θ′∥∞ ≤ η ∈ (0, η0) and λ ≥ λ1. There-
fore, a Neumann series argument yields a unique solution of (5.13).

(c) The proof for this assertion uses the technique of localization. By Proposition
5.4 there exists a finite covering of Ω and a subordinated partition of unity {ϕk}Nk=1
such that ∂ν∂Gϕk = 0 at (∂Σ ∪ ∂S2) ∩ suppϕk.

Multiplying each equation in (5.3) by ϕk, we obtain problems in local coordinates,
which correspond to perturbed versions of one of the problems which have been
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treated in (a) & (b). Assume that u is a solution of (5.3), uk := uϕk, g
k
1 := g1ϕk

and hk1 := h1ϕk, then [[ρuk]] = gk1 and

∂νS1
uk = ϕk∂νS1

u+ u∂νS1
ϕk = ϕkh1 = hk1,

since νS1 = (ν∂G, 0)
T. In particular, the commutator term in the Neumann bound-

ary condition is identically zero. By the same reason, one has

∂νS1
g1,k = ϕk[[ρh1]] = [[ρhk1]],

hence the local data (gk1 , h
k
1) satisfy the compatibility condition at ∂Σ ∩ suppϕk.

The remaining localization procedure follows along standard arguments. We
refrain from giving the details and refer the reader e.g. to [12]. □

We shall also prove some results on the solvability of (5.3) in case λ = 0. If
λ = 0 and Ω is unbounded, one cannot expect to obtain u ∈ Lp(Ω). Instead, we are

looking for solutions u ∈ Ẇ 1
p (Ω\Σ) ∩ Ẇ 2

p (Ω\Σ), or equivalently ∇u ∈W 1
p (Ω\Σ).

If ∇u ∈ W 1
p (Ω\Σ) is a solution of (5.3) with g1 = 0, then, by trace theory,

f ∈ Lp(Ω), g2 ∈ W
1−1/p
p (Σ), h1 ∈ W

1−1/p
p (S1\∂Σ) and h2 ∈ W

1−1/p
p (S2). There

is some hidden compatibility/regularity condition for the data (f, g2, h1). To see
this, let ϕ ∈ C∞

c (Ω). We multiply (5.3)1 by ϕ and integrate by parts, to obtain the
identity

⟨(f, g2, h1, h2), ϕ⟩ :=
∫
Ω
fϕ dx+

∫
S1

h1ϕ dS1 +

∫
S2

h2ϕ dS2 −
∫
Σ
g2ϕ dΣ =

=

∫
Ω
∇u · ∇ϕ dx.

It follows that the linear mapping [ϕ 7→ ⟨(f, g2, h1, h2), ϕ⟩] is continuous on C∞
c (Ω)

with respect to the norm ∥∇ · ∥Lp′ (Ω).

If Ω is a full space, a (bent) half space or a (bent) quarter space, then it is well

known, that C∞
c (Ω) (hence also W 1

p′(Ω)) is dense in Ẇ 1
p′(Ω) with respect to the

norm ∥∇ · ∥Lp′ (Ω). Therefore, since each functional in

Ŵ−1
p (Ω) :=

(
Ẇ 1

p′(Ω)
)∗
,

is uniquely determined by its restriction to C∞
c (Ω), it follows that (f, g2, h1, h2)

yields a well defined element of Ŵ−1
p (Ω) with norm given by

∥(f, g2, h1, h2)∥Ŵ−1
p

:= sup{⟨(f, g2, h1, h2), ϕ⟩/∥∇ϕ∥Lp′ : ϕ ∈ C∞
c (Ω)}

= sup{⟨(f, g2, h1, h2), ϕ⟩/∥∇ϕ∥Lp′ : ϕ ∈W 1
p′(Ω)}.

Note that if Ω is bounded, then the above representation formula for (f, g2, h1, h2)

holds for each ϕ ∈ Ẇ 1
p′(Ω), since Ẇ

1
q (Ω) ⊂ W 1

q (Ω) if Ω is bounded. This follows
for example from the Poincaré-Wirtinger inequality. However, if Ω is unbounded,
then the above representation for (f, g2, h1, h2) holds at least on the dense subspace
C∞
c (Ω).
Furthermore, if Sj = ∅, j ∈ {1, 2} and/or Σ = ∅, then we simply neglect hj

and/or g2 in (f, g2, h1, h2).
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We are now in a position to state the next auxiliary lemma concerning the solv-
ability of (5.3) with λ = 0.

Lemma 5.6. Let n = 2, 3, p ≥ 2 and λ = 0. Then the following assertions are
valid.

(1) If Ω and Σ satisfy one of the conditions in (a), (b) above, then there exists a
unique solution ∇u ∈W 1

p (Ω\Σ) of (5.3) with g1 = 0 if and only if f ∈ Lp(Ω),

g2 ∈ W
1−1/p
p (Σ), h1 ∈ W

1−1/p
p (S1\∂Σ), h2 ∈ W

1−1/p
p (S2), [[ρh1]] = 0 on ∂Σ

and (f, g2, h1, h2) ∈ Ŵ−1
p (Ω).

(2) If Ω and Σ are subject to the condition (c) above, then there exists a unique
solution u ∈W 2

p (Ω\Σ) of (5.3) with g1 = h1 = h2 = 0 if and only if

f ∈ L(0)
p (Ω) := {f ∈ Lp(Ω) :

∫
Ω
fdx = 0}.

Proof. 1. (a) If Ω = Rn, then we have to solve −∆u = f for f in Ŵ−1
p (Ω) ∩ Lp(Ω).

It is a folkloristic result that whenever f ∈ Lp(Rn), then there is a unique solution

u ∈ Ẇ 2
p (Rn) of the equation −∆u = f . Multiplying −∆u = f by ϕ ∈ C∞

c (Rn) and
integrating by parts, we obtain∫

Rn

∇u · ∇ϕ dx = −
∫
Rn

∆uϕ dx =

∫
Rn

fϕ dx.

Let us show that there exists a constant C > 0 such that the estimate

(5.14) ∥∇u∥Lp(Rn) ≤ C sup

{
|
∫
Rn ∇u · ∇ϕ dx|
∥∇ϕ∥Lp′ (Rn)

: ϕ ∈ C∞
c (Rn)

}
is valid. Indeed, it holds that

sup

{
|
∫
Rn ∇u · ∇ϕ dx|
∥∇ϕ∥Lp′ (Rn)

: ϕ ∈ C∞
c (Rn)

}
≥

|
∫
Rn ∇u · ∇∂jφ dx|
∥∇∂jφ∥Lp′ (Rn)

≥ 1

C

|
∫
Rn ∂ju ·∆φ dx|
∥∆φ∥Lp′ (Rn)

,

(5.15)

for all φ ∈ C∞
c (Rn), where we integrated by parts and applied the Caldéron-

Zygmund inequality ∥∇2φ∥Lp′ (Rn) ≤ C∥∆φ∥Lp′ (Rn).

It is well-known that ∆C∞
c (Rn) is dense in Lp′(Rn) with respect to the Lp′-norm.

Taking the supremum on the right hand side of (5.15) over all functions φ ∈ C∞
c (Rn)

we obtain the desired inequality (5.14). Evidently, for the solution u ∈ Ẇ 2
p (Rn) of

−∆u = f it follows that

∥∇u∥Lp(Rn) ≤ C sup

{
|
∫
Rn fϕ dx|

∥∇ϕ∥Lp′ (Rn)
: ϕ ∈ C∞

c (Rn)

}
.

hence, if f ∈ Lp(Rn) ∩ Ŵ−1
p (Rn), then

∥f∥Ŵ−1
p

= sup

{
|
∫
Rn fϕ dx|

∥∇ϕ∥Lp′ (Rn)
: ϕ ∈ C∞

c (Rn)

}
<∞,
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and we obtain the estimate ∥∇u∥Lp(Rn) ≤ C∥f∥Ŵ−1
p

. This shows that u ∈ Ẇ 1
p (Rn)∩

Ẇ 2
p (Rn) is the unique solution.

Let Ω = R2 × R+ be a half space and consider the problem

−∆u = f, x ∈ Ω,

∂3u = h, x ∈ S,
(5.16)

where S := ∂Ω = R2 × {0}. By Lemma 5.5 there exists some λ0 > 0 such that the
shifted problem

λ0ū−∆ū = f, x ∈ Ω,

∂3ū = h, x ∈ S,
(5.17)

admits a unique solution ū ∈W 2
p (Ω) satisfying the estimates

∥ū∥W 2
p (Ω) ≤ C(∥f∥Lp(Ω) + ∥h∥

W
1−1/p
p (S)

),

and
∥ū∥W 1

p (Ω) ≤ C∥(f, h)∥Ŵ−1
p (Ω).

To see the validity of the second estimate we use the notation from [1, Chapter V]
and let A0 := λ0 −∆ with domain

E1 := D(A0) = {u ∈W 2
p (Ω) : ∂3u = 0 on S}

in E0 := Lp(Ω). Then A0 is a linear isomorphism from E1 to E0. Let E1/2 :=

[E0, E1]1/2 =W 1
p (Ω) and E−1/2 := (E♯

1/2)
∗ = (W 1

p′(Ω))
∗, since A♯

0 = (λ0−∆)|Lp′ (Ω)).

Denote by A−1/2 the E−1/2-realization of A0. By the results in [1, Chapter V] it
follows that A−1/2 : E1/2 → E−1/2 is a linear isomorphism. Moreover, since E1 is
dense in E1/2, it holds that

⟨A−1/2u, ϕ⟩ = λ0

∫
Ω
uϕ dx+

∫
Ω
∇u · ∇ϕ dx

for all ϕ ∈W 1
p′(Ω) and each u ∈W 1

p (Ω).

Multiply the first equation in (5.17) by ϕ ∈W 1
p′(Ω) and integrate by parts to the

result

λ0

∫
Ω
ūϕ dx+

∫
Ω
∇ū · ∇ϕ dx =

∫
Ω
fϕ dx−

∫
S
hϕ|S dS.

By assumption, the right side of the last equation determines a functional (f, h) on

Ẇ 1
p′(Ω), hence also on W 1

p′(Ω). Therefore it follows from the considerations above
that

∥ū∥W 1
p (Ω) ≤ C∥(f, h)∥(W 1

p′ (Ω))∗ = C sup
0̸=ϕ∈W 1

p′ (Ω)

|⟨(f, h), ϕ⟩|
∥ϕ∥W 1

p′ (Ω)

≤ C sup
0̸=ϕ∈W 1

p′ (Ω)

|⟨(f, h), ϕ⟩|
∥∇ϕ∥Lp′ (Ω)

= C∥(f, h)∥Ŵ−1
p (Ω).

Therefore it suffices to study the problem

−∆u∗ = f∗, x ∈ Ω,

∂3u∗ = 0, x ∈ S,
(5.18)
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where f∗ := f + ∆ū. Observe that f∗ ∈ Lp(Ω) ∩ Ŵ−1
p (Ω). We extend f∗ with

respect to x3 by even reflection to some f̃ to obtain f̃ ∈ Lp(R3) ∩ Ŵ−1
p (R3). Solve

the full space problem −∆ũ = f̃ to obtain a unique solution ũ ∈ Ẇ 1
p (R3)∩Ẇ 2

p (R3).
By uniqueness and symmetry, it follows that ũ(x1, x2, x3) = ũ(x1, x2,−x3), hence
∂3ũ = 0 on S. Since

∥∇u∗∥Lp(Ω) ≤ ∥∇ũ∥Lp(R3) ≤ C∥f̃∥Ŵ−1
p (R3),

and ∥f̃∥Ŵ−1
p (R3) ≤ 2∥f∗∥Ŵ−1

p (Ω) (f̃ is the even extension of f∗) it follows that

∥∇u∗∥Lp(Ω) ≤ C∥f∗∥Ŵ−1
p (Ω).

The function u := ū+ũ|Ω = ū+u∗ is the desired unique solution of (5.19), satisfying
the estimates

∥∇2u∥Lp(Ω) ≤ C(∥f∥Lp(Ω) + ∥h∥
W

1−1/p
p (S)

),

and

∥∇u∥Lp(Ω) ≤ C∥(f, h)∥Ŵ−1
p (Ω).

Uniqueness follows by even reflection of the solution of (5.16) with f = h = 0 at S
and the uniqueness result for the full space.

If Ω = R× R+ × R+ is a quarter space, we have to solve

−∆u = f, x ∈ Ω,

∂2u = h1, x ∈ S1,

∂3u = h2, x ∈ S2,

(5.19)

where S1 = R × {0} × R+ and S2 = R × R+ × {0}. The data satisfy f ∈ Lp(Ω),

hj ∈W
1−1/p
p (Sj), j = 1, 2 and (f, h1, h2) ∈ Ŵ−1

p (Ω).
By Lemma 5.5 we first solve

λ0ū−∆ū = f, x ∈ Ω,

∂2ū = h1, x ∈ S1,

∂3ū = h2, x ∈ S2,

(5.20)

for some sufficiently large λ0 > 0 to obtain a unique solution ū ∈W 2
p (Ω). Note that

ū satisfies the estimates

∥ū∥W 2
p (Ω) ≤ C(∥f∥Lp(Ω) + ∥h1∥W 1−1/p

p (S1)
+ ∥h2∥W 1−1/p

p (S2)
),

and

∥ū∥W 1
p (Ω) ≤ C∥(f, h1, h2)∥Ŵ−1

p (Ω).

We arrive at the problem

−∆u∗ = f∗, x ∈ Ω,

∂2u∗ = 0, x ∈ S1,

∂3u∗ = 0, x ∈ S2,

(5.21)
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where f∗ := f + ∆ū ∈ Ŵ−1
p (Ω) ∩ Lp(Ω), which follows from integration by parts.

Extend f∗ to the half space R3
+ by even reflection, i.e. we set

f̃(x) :=

{
f∗(x1, x2, x3), x2 ≥ 0,

f∗(x1,−x2, x3), x2 < 0.

Then f̃ ∈ Ŵ−1
p (R3

+)∩Lp(R3
+). Next we extend f̃ by even reflection to the full space

R3 by defining

f̂(x) :=

{
f̃(x1, x2, x3), x3 ≥ 0,

f̃(x1, x2,−x3), x3 < 0,

This yields that f̂ ∈ Ŵ−1
p (R3) ∩ Lp(R3). Solve the full space problem −∆û = f̂

to obtain a unique solution û ∈ Ẇ 1
p (R3) ∩ Ẇ 2

p (R3). Since with û also û(−x3) and

û(−x2) are solutions of −∆û = f̂ , it follows from the uniqueness of the solution
that û(x3) = û(−x3) and û(x2) = û(−x2), hence ∂3û = 0 on S2 as well as ∂2û = 0
on S1. Since

∥∇u∗∥Lp(Ω) ≤ ∥∇û∥Lp(R3) ≤ C∥f̂∥Ŵ−1
p (R3),

and ∥f̂∥Ŵ−1
p (R3) ≤ C∥f∗∥Ŵ−1

p (Ω) it follows that

∥∇u∗∥Lp(Ω) ≤ C∥f∗∥Ŵ−1
p (Ω).

The function u := ū+û|Ω = ū+u∗ is the desired unique solution of (5.19), satisfying
the estimates

∥∇2u∥Lp(Ω) ≤ C(∥f∥Lp(Ω) + ∥h1∥W 1−1/p
p (S1)

+ ∥h2∥W 1−1/p
p (S2)

),

and

∥∇u∥Lp(Ω) ≤ C∥(f, h1, h2)∥Ŵ−1
p (Ω).

If Ω is a bent quarter space, we will use change of coordinates and perturbation
theory to prove the assertion in this case. We will give a detailed proof for the case
of a bent two-phase half space below. The technique from this case carries over to
the bent quarter space case.

(b) Let Ω = R3 and Σ = R2 × {0}. Consider the problem

−∆u = f in Ω\Σ,
[[ρu]] = 0 on Σ,

[[∂3u]] = g2 on Σ,

(5.22)

with f ∈ Lp(Ω), g2 ∈W
1−1/p
p (Σ) and (f, g2) ∈ Ŵ−1

p (Ω).
By Lemma 5.5 we may first solve the problem

λ0ū−∆ū = f in Ω\Σ,
[[ρū]] = 0 on Σ,

[[∂3ū]] = g2 on Σ,

(5.23)
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where λ0 > 0 is sufficiently large but fixed. This yields a unique solution ū ∈
W 2

p (Ω\Σ). Next we consider the equation −∆ũ = f̃ in R3, where f̃ := f + ∆ū ∈
Ŵ−1

p (R3) ∩ Lp(R3), since∫
R3

(f +∆ū)ϕ dx = −
∫
Σ
g2ϕ dΣ+

∫
R3

fϕ dx−
∫
R3

∇ū · ∇ϕ dx.

by what we have already shown, this full space problem admits a unique solution
ũ ∈ Ẇ 1

p (Ω) ∩ Ẇ 2
p (Ω). Finally we study the problem

−∆û = 0 in Ω\Σ,
[[ρû]] = ĝ1 on Σ,

[[∂3û]] = 0 on Σ,

(5.24)

with ĝ1 := −[[ρũ]] ∈ Ẇ
1−1/p
p (Σ) ∩ Ẇ 2−1/p

p (Σ). The solution is given in terms of the
Poisson semigroup as follows.

û(x3) =
1

ρ1 + ρ2

{
e−Lx3 ĝ1, x3 ≥ 0,

−e−L(−x3)ĝ1, x3 < 0,

where L := (−∆x′)1/2. By semigroup theory it follows that û ∈ Ẇ 1
p (Ω\Σ) ∩

Ẇ 2
p (Ω\Σ). Here we use the fact that

(5.25)

(∫ ∞

0
z(k−s)p∥Lke−Lzg∥pLp(Σ)

dz

z

)1/p

defines an equivalent norm in Ẇ s
p (Σ) for s > 0 and k > s (if s = j− 1/p, j ∈ {1, 2},

we choose k = j). The function u := ū + ũ + û is the unique solution of (5.22),
satisfying the estimates

∥∇2u∥Lp(Ω) ≤ C(∥f∥Lp(Ω) + ∥g2∥W 1−1/p
p (Σ)

),

and

∥∇u∥Lp(Ω) ≤ C∥(f, g2)∥Ŵ−1
p (Ω).

The uniqueness of the solution can be seen as follows. Let u ∈ Ẇ 1
p (Ω\Σ)∩Ẇ 2

p (Ω\Σ)
be a solution of (5.22) with f = g2 = 0. We want to show that ∇u = 0 in Ω\Σ. To
this end we define two functions

v(x1, x2, x3) := ρ2u+(x1, x2, x3)− ρ1u−(x1, x2,−x3), (x1, x2) ∈ R2, x3 > 0,

and

w(x1, x2, x3) := u+(x1, x2, x3) + u−(x1, x2,−x3), (x1, x2) ∈ R2, x3 > 0,

where u± := u|x3≷0. It follows that v and w solve the half space problems

∆v = 0, (x1, x2) ∈ R2, x3 > 0, v = 0, (x1, x2) ∈ R2, x3 = 0,

and

∆w = 0, (x1, x2) ∈ R2, x3 > 0, ∂3w = 0, (x1, x2) ∈ R2, x3 = 0,
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respectively in Ẇ 1
p (R3

+) ∩ Ẇ 2
p (R3

+). Therefore ∇w = ∇v = 0 by even or uneven
reflection at {x3 = 0}. This yields

0 = ρ2∇u+ + ρ1∇u−,
0 = ∇u+ −∇u−,

wherefore ∇u− = ∇u+ = 0, hence ∇u = 0 in Ω\Σ.
Let now Ω = R2

+×R with Σ = {R2×{0}}∩Ω. Here we have to solve the problem

−∆u = f in Ω\Σ,
[[ρu]] = 0 on Σ,

[[∂3u]] = g2 on Σ,

∂2u = h1 on S1\∂Σ,

(5.26)

with [[ρh1]] = 0 at ∂Σ. For some large λ0 > 0, we first solve the problem

λ0ū−∆ū = f in Ω\Σ,
[[ρū]] = 0 on Σ,

[[∂3ū]] = g2 on Σ,

∂2ū = h1 on S1\∂Σ,

(5.27)

by Lemma 5.5, to obtain a unique solution ū ∈ W 2
p (Ω\Σ). Let f∗ := f + ∆ū and

note that f∗ ∈ Ŵ−1
p (Ω) ∩ Lp(Ω), which follows from integration by parts and from

the assumption on (f, g2, h1). We extend f∗ with respect to x2 by even reflection to
some function

f̃(x) :=

{
f∗(x1, x2, x3), x2 ≥ 0,

f∗(x1,−x2, x3), x2 < 0.

Then f̃ ∈ Ŵ−1
p (R3)∩Lp(R3) and we may solve the full space problem −∆ũ = f̃ to

obtain a unique solution ũ ∈ Ẇ 1
p (R3)∩ Ẇ 2

p (R3) with the property ũ(x2) = ũ(−x2),
hence ∂2ũ = 0 at S1\∂Σ. Consider next the problem

∆û = 0 in Rn\Σ,
[[ρû]] = g on Σ,

[[∂3û]] = 0 on Σ,

(5.28)

where g := −[[ρũ]] ∈ Ẇ
1−1/p
p (Σ) ∩ Ẇ 2−1/p

p (Σ). As in the previous case, the unique
solution û of (5.28) is given in terms of the Poisson semigroup.

Finally, since ũ(x2) = ũ(−x2), it follows that g(x2) = g(−x2), hence û(x2) =
û(−x2), by uniqueness, and therefore ∂2û = 0 at S1\∂Σ. The function u := ū +
ũ|Ω + û|Ω is the unique solution of (5.26), satisfying the estimates

∥∇2u∥Lp(Ω) ≤ C(∥f∥Lp(Ω) + ∥h1∥W 1−1/p
p (S1\∂Σ)

+ ∥g2∥W 1−1/p
p (Σ)

),

and
∥∇u∥Lp(Ω) ≤ C∥(f, h1, g2)∥Ŵ−1

p (Ω).

In a next step we consider the case of a bent two-phase half space. To be precise,
we assume that

Ωθ := {x ∈ R3 : x2 > θ(x1)},
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where θ ∈ BC3(R) with ∥θ∥∞ + ∥θ′∥∞ < η, and η > 0 can be made as small as we
wish. Let furthermore S1,θ := {x ∈ R3 : x2 = θ(x1)} and Σθ := {R2 × {0}} ∩ Ωθ.
Consider the problem

−∆u = f in Ωθ\Σθ,

[[ρu]] = 0 on Σθ,

[[∂3u]] = g2 on Σθ,

∂ν∂Σθ
u = h1 on S1,θ\∂Σθ,

(5.29)

where f ∈ Lp(Ωθ), g2 ∈ W
1−1/p
p (Σθ), h1 ∈ W

1−1/p
p (S1,θ\∂Σθ) and (f, g2, h1) ∈

Ŵ−1
p (Ωθ). Moreover, the compatibility condition [[ρh1]] = 0 at ∂Σθ holds.
By means of Lemma 5.5, we may solve the problem

λ0û−∆û = f in Ωθ\Σθ,

[[ρû]] = 0 on Σθ,

[[∂3û]] = g2 on Σθ,

∂ν∂Σθ
û = h1 on S1,θ\∂Σθ,

(5.30)

where λ0 > 0 is large but fixed. This yields a unique solution û ∈W 2
p (Ωθ\Σθ). Let

f̃ := f +∆û and consider

−∆ũ = f̃ in Ωθ\Σθ,

[[ρũ]] = 0 on Σθ,

[[∂3ũ]] = 0 on Σθ,

∂ν∂Σθ
ũ = 0 on S1,θ\∂Σθ.

(5.31)

Observe that f̃ ∈ Ŵ−1
p (Ωθ) ∩ Lp(Ωθ). We will now transform Ωθ to Ω0 by means

of the coordinates x̄1 := x1, x̄2 := x2 − θ(x1) and x̄3 := x3. Assume that ũ solves
(5.31) and define ū(x̄) := ũ(x̄1, x̄2+ θ(x̄1), x̄3). Then, the function ū is a solution of
the problem

−∆ū = f̄ +M1(θ, ū) in Ω\Σ,
[[ρū]] = 0 on Σ,

[[∂3ū]] = 0 on Σ,

−∂2ū =M2(θ, ū) on S1\∂Σ,

(5.32)

where f̄ is the transformation of f̃ ,

M1(θ, ū) := −2θ′(x̄1)∂1∂2ū− θ′′(x̄1)∂2ū+ θ′(x̄1)
2∂22 ū,

and M2(θ, ū) := −θ′(x̄1)∂1ū|S1\∂Σ + θ′(x̄1)
2∂2ū|S1\∂Σ.

Define the function spaces

E := {∇ū ∈W 1
p (Ω\Σ) : [[ρū]] = [[∂3ū]] = 0 on Σ},

with the equivalent norm ∥ū∥E,λ := λ∥∇ū∥Lp + ∥∇2ū∥Lp , λ > 0, and let

F := {(f1, f2) ∈ Lp(Ω)×W 1−1/p
p (S1\∂Σ) : [[ρf2]] = 0 at ∂Σ and (f1, f2) ∈ Ŵ−1

p (Ω)}.
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Moreover, we define a linear operator L : E → F by

Lū :=

(
∆ū

∂2ū|S1\∂Σ

)
.

It follows from our previous considerations that L : E → F is an isomorphism. Let
F := (f̄ , 0) and M(θ, ū) := (M1,M2)(θ, ū). It follows that F ∈ F, since∫

Ωθ

f̃ϕ dx =

∫
Ω
f̄ ϕ̄ dx̄,

with ϕ̄(x̄) := ϕ(x̄1, x̄2−θ(x̄1), x̄3) and ϕ ∈ C∞
c (Ωθ). Furthermore, for each ū ∈ E, we

have M(θ, ū) ∈ F. Indeed, as in the proof of Lemma 5.5, it can be readily checked

that M(θ, ū) ∈ Lp(Ω)×W
1−1/p
p (S1\∂Σ) and [[ρM2(θ, ū)]] = 0 at ∂Σ. It remains to

verify the condition (M1,M2)(θ, ū) ∈ Ŵ−1
p (Ω). To this end, we integrate by parts

to obtain the identity∫
Ω
M1(θ, ū)ϕ dx+

∫
S1

M2(θ, ū)ϕ dS1

=

∫
Ω

(
θ′(x̄1)∂2ū∂1ϕ+ θ′(x̄1)∂1ū∂2ϕ− θ′(x̄1)

2∂2ū∂2ϕ
)
dx.

for each ϕ ∈ C∞
c (Ω). This in turn yields the claim. We are now in a position to

write (5.32) in the shorter form

ū = L−1M(θ, ū) + L−1F.

We may now follow the lines of the proof of Lemma 5.5 to obtain a unique solution
of (5.29).

2. It follows from Lemma 5.5 that the operator Au := −∆u with domain

D(A) = {u ∈W 2
p (Ω\Σ) : [[ρu]] = [[∂νΣu]] = 0, ∂νSj

u = 0},

is closed. Since D(A) is compactly embedded in Lp(Ω), the spectrum σ(A) consists
solely of isolated eigenvalues and λ = 0 is a simple eigenvalue of A. Indeed, N(A) =
span1ρ, with

1ρ := χΩ1 +
ρ1
ρ2
χΩ2 .

Furthermore, N(A2) ⊂ N(A), since if u ∈ N(A2), then v := Au ∈ N(A). It follows
that v ∈ L1(Ω) and we may integrate Au = v over Ω to obtain∫

Ω
v dx = −

∫
Ω
∆u dx = 0,

hence v = 0, since 1ρ has a non-vanishing mean value.

In particular this yields Lp(Ω) = N(A)⊕R(A) and it holds that R(A) = L
(0)
p (Ω).

This can be seen as follows. Obviously one has the inclusion

R(A) ⊂ L(0)
p (Ω).
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So, let f ∈ L
(0)
p (Ω). Then there exist unique f1 ∈ N(A) and f2 ∈ R(A) such that

f = f1 + f2. This in turn yields f1 ∈ L
(0)
p (Ω). Since f1 = α1ρ for some α ∈ R with

1ρ := χΩ1 +
ρ1
ρ2
χΩ2 ,

it follows that

(f1|1) = α

(
|Ω1|+

ρ1
ρ2

|Ω2|
)
,

hence α = 0 and therefore f = f2 ∈ R(A), hence L
(0)
p (Ω) ⊂ R(A). □

We will also need an existence and uniqueness result for the weak version of (5.3)
with λ = 0. To be precise, we consider the problem

(∇u|∇ϕ)2 = ⟨f, ϕ⟩, ϕ ∈W 1
p′(Ω),

[[ρu]] = g, on Σ.
(5.33)

Then we have the following result.

Lemma 5.7. Let ρj > 0, n = 2, 3, p ≥ 2 and let Ω ⊂ Rn satisfy condition (c) from

above. Then there exists a unique solution u ∈ Ẇ 1
p (Ω\Σ) of (5.33) if and only if

f ∈ Ŵ−1
p (Ω) and g ∈W

1−1/p
p (Σ).

Proof. Let g ∈W
1−1/p
p (Σ). The Neumann Laplacian ∆N in Lp(Σ) with domain

D(∆N ) = {u ∈W 2
p (Σ) : ∂ν∂Gu = 0 on ∂Σ}

generates an analytic semigroup. In particular, D(∆N ) is dense in

W 1−1/p
p (Σ) = (Lp(Σ), D(∆N ))1/2−1/2p = D∆N

(1/2− 1/2p, p).

Therefore, there exists (gn)n∈N ⊂ W
2−1/p
p (Σ) such that ∂ν∂Ggn = 0 for each n ∈ N

on ∂Σ and gn → g as n→ ∞ in W
1−1/p
p (Σ). Denote by un ∈W 2

p (Ω\Σ) the solution
of (5.3) with f = g2 = h1 = h2 = 0, g1 = gn and a fixed λ ≥ λ0. Making use of
local coordinates one can show that the estimate

∥un − um∥W 1
p (Ω\Σ) ≤ C∥gn − gm∥

W
1−1/p
p (Σ)

is valid, with some constant C > 0 which does not depend on n. Indeed, each of the
local charts yields a transformed problem which is subject to one of the conditions
in (a) and (b) above. We have already seen in the proof of Lemma 5.5 that the
two-phase half space and the quarter space can be pulled back to a two-phase full
space and an ordinary half space, respectively, by means of reflection techniques.
Making use of change of coordinates, perturbation theory and the results in [19,
Section 8] one obtains the desired estimate.

In particular, (un) is a Cauchy sequence in W 1
p (Ω\Σ) and therefore it has a limit

point u ∈W 1
p (Ω\Σ). By trace theory it follows that u satisfies the weak problem

λ(u|ϕ)2 + (∇u|∇ϕ)2 = 0, ϕ ∈W 1
p′(Ω),

[[ρu]] = g, on Σ,
(5.34)

for some fixed λ ≥ λ0.
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Next, let

a : {u ∈W 1
p (Ω\Σ) : [[ρu]] = 0 on Σ} ×W 1

p′(Ω) → R, a(u, ϕ) :=

∫
Ω
∇u · ∇ϕdx,

and define an operator B :W 1
p (Ω\Σ) → (W 1

p′(Ω))
∗ with domain

D(B) = {u ∈W 1
p (Ω\Σ) : [[ρu]] = 0 on Σ},

by means of ⟨Bu, ϕ⟩ := a(u, ϕ). It follows from integration by parts that the operator
A from the proof of the second assertion of Lemma 5.6 is the part of B in Lp(Ω).
As in the proof of Lemma 5.6 one can show that λ = 0 is a simple eigenvalue of B.
It follows that (W 1

p′(Ω))
∗ = N(B)⊕ R(B) and W 1

p (Ω\Σ) = N(B)⊕ Y , where Y is

a closed subspace of W 1
p (Ω\Σ). Therefore there exists a unique solution v ∈ Y of

the equation Bv = f if and only if f ∈ R(B) or equivalently ⟨f,1⟩ = 0. It follows

readily that R(B) = Ŵ−1
p (Ω). Indeed, the inclusion Ŵ−1

p (Ω) ⊂ R(B) is easy, since

⟨f,1⟩ = 0 for each f ∈ Ŵ−1
p (Ω) and the restriction of f to W 1

p′(Ω) belongs to

(W 1
p′(Ω))

∗. Let now f ∈ R(B), i.e. f ∈ (W 1
p′(Ω))

∗ and ⟨f,1⟩ = 0. This yields

|⟨f, ϕ⟩| = |⟨f, ϕ− ϕ̄⟩| ≤ C∥ϕ− ϕ̄∥W 1
p′ (Ω) ≤ C∥∇ϕ∥Lp′ (Ω),

by the Poincaré-Wirtinger inequality and therefore [ϕ 7→ ⟨f, ϕ⟩] is continuous on
C∞
c (Ω) with respect to the norm ∥∇ · ∥Lp′ (Ω).

Let u ∈ W 1
p (Ω\Σ) denote the unique solution of (5.34) and let v ∈ Ẇ 1

p (Ω\Σ)
denote the unique solution of

(∇v|∇ϕ)2 = ⟨f, ϕ⟩ − (∇u|∇ϕ)2, ϕ ∈W 1
p′(Ω),

[[ρv]] = 0, on Σ.

It follows readily that the function w := v+ u ∈ Ẇ 1
p (Ω\Σ) is the unique solution of

(5.33). □
A final result considers the system (5.3) with λ = g1 = g2 = h1 = h2 = 0. We

assume that the function f depends on the spatial variable x and on some parameter
t, i.e. f = f(t, x). In this case the solution u = u(t, x) depends on t as well. The
following result contains some information about the regularity of u with respect to
t and x.

Lemma 5.8. Let n = 2, 3, p ≥ 2, J = [0, T ] or J = R+ and λ = g1 = g2 = h1 =
h2 = 0. Then the following assertions are valid.

(1) If Ω and Σ satisfy one of the conditions in (a), (b) above, then there exists
a unique solution

∇u ∈0W
1
p (J ;W

1
p (Ω\Σ)) ∩ Lp(J ;W

3
p (Ω\Σ))

of (5.3) if and only if

f ∈0W
1
p (J ; Ŵ

−1
p (Ω) ∩ Lp(Ω)) ∩ Lp(J ;W

2
p (Ω\Σ)).

(2) If Ω and Σ are subject to the condition (c) above, then there exists a unique
solution

u ∈0W
1
p (J ;W

1
p (Ω\Σ)) ∩ Lp(J ;W

3
p (Ω\Σ))
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of (5.3) if and only if

f ∈0W
1
p (J ; Ŵ

−1
p (Ω)) ∩ Lp(J ;W

1
p (Ω\Σ)).

Proof. (i) The regularity

∇u ∈0W
1
p (J ;W

1
p (Ω\Σ))

in the first assertion and
u ∈0W

1
p (J ;W

1
p (Ω\Σ))

in the second assertion is a direct consequence of Lemma 5.6 and Lemma 5.7,
respectively.

(ii) Concerning the additional spatial regularity of u, one uses the fact that one
already knows the unique solution u of (5.3) with the regularity stated in Lemma
5.6 and Lemma 5.7. By means of local coordinates, one reduces each of the local
problems to one of the model probolems in (a) and (b) above. In particular, the two-
phase half space and the quarter space can be pulled back to a two-phase full space
and an ordinary half space, respectively, by reflection techniques. The mapping
behavior of the Laplacian and the Poisson semigroup in homogeneous Sobolev-
Slobodeckii spaces, see (5.25), yield the corresponding higher order estimates for
the solution operators of the model problems. Therefore, the proof of the additional
regularity of u with respect to x follows along the lines of [19, Proof of Theorem
8.6]. We will not repeat the arguments. □

5.3.2. Parabolic problems. The following auxiliary lemma is concerned with the par-
abolic one-phase problem

∂tu− µ∆u = f, in Ω,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1,

u · νS1 = g2, on S1,

u = g3, on S2,

u(0) = u0, in Ω.

(5.35)

Again, we will concentrate on the case n = 3. The results in this subsection remain
true for the case n = 2.

Lemma 5.9. Let p > 2, p ̸= 3, µ > 0, T > 0 and J = [0, T ]. Then there exists a
unique solution

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3)

of (5.35) if and only if the data are subject to the following regularity and compati-
bility conditions

(1) f ∈ Lp(J ;Lp(Ω)
3),

(2) g1 ∈W
1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1)

3),

(3) g2 ∈W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)),

(4) g3 ∈W
1−1/2p
p (J ;Lp(S2)

3) ∩ Lp(J ;W
2−1/p
p (S2)

3),

(5) u0 ∈W
2−2/p
p (Ω)3,

(6) PS1

(
µ(∇u0 +∇uT0 )νS1

)
= PS1g1|t=0 (p > 3),

(7) u0|S1 · νS1 = g2|t=0, u0|S2 = g3|t=0,
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(8) g3 · νS1 = g2 at ∂S2,
(9) P∂G

(
µ(∇x′g′3 +∇x′(g′3)

T)ν∂S2

)
= P∂Gg

′
1 at ∂S2,

(10) µ(∂νS1
(g3 · e3) + ∂3g2) = g1 · e3 at ∂S2,

where g′j :=
∑2

k=1(gj · ek)ek for j ∈ {1, 3}.
The result remains true for the case J = R+ if ∂t is replaced by ∂t+ω, with some

sufficiently large ω > 0.

Proof. 1. Extend u0 to some function ũ0 ∈ W
2−2/p
p (R3)3 and solve the full space

problem

∂tũ− µ∆ũ = 0, in R3,

ũ(0) = ũ0, in R3,
(5.36)

to obtain a unique solution

ũ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H

2
p (R3)3).

If u is a solution of (5.35), then u− ũ|Ω solves (5.35) with u0 = 0 and some modified
data (f, g1, g2, g3) (not to be relabeled) having vanishing temporal trace at t = 0,
whenever it exists. Therefore, we may w.l.o.g. assume that u0 = 0 in (5.35).

Suppose that u is a solution of (5.35) with u0 = 0. We cover ∂S2 by finitely
many open balls Uk := Br(xk), xk ∈ ∂S2, k = 1, . . . , N . This way, we obtain
N bent quarter spaces with corresponding solution operators Sk, which are well-
defined, if r > 0 is sufficiently small. Furthermore, by the results in Subsection 5.2
there exist open sets UN+j , j = 1, . . . , 3 such that

• UN+1 ⊂ Ω,
• UN+2 ∩ S1 ̸= ∅, UN+2 ∩ S2 = ∅,
• UN+3 ∩ S1 = ∅, UN+3 ∩ S2 ̸= ∅,
• Ω ⊂

∪N+3
k=1 Uk,

and a subordinated partition of unity {φk}Nk=0 ⊂ C3
c (R3; [0, 1]) with ∂ν∂Gφk =

∂3φk = 0 at ∂S2. Let uk := uφk, fk := fφk and gkj := gjφk. Then uk solves
the problem

∂tuk − µ∆uk = Fk(u) + fk, in Ωk,

PSk
1

(
µ(∇uk +∇uTk )νSk

1

)
= Gk(u) + PSk

1
gk1 , on Sk

1 ,

uk · νSk
1
= gk2 , on Sk

1 ,

uk = gk3 , on Sk
2 ,

uk(0) = 0, in Ωk,

(5.37)

where Fk(u) := −µ[∆, φk]u and Gk(u) := PSk
1

(
µ(∇φk ⊗ u+ u⊗∇φk)νSk

1

)
.

Here ΩN+1 = R3, ΩN+2 reduces to bent half-spaces with pure-slip boundary
conditions, ΩN+3 is a half-space with Dirichlet boundary conditions and Ωk, k =
1, . . . , N are bent quarter-spaces with pure-slip boundary conditions on one part of
the boundary and Dirichlet boundary conditions on the other part. Sk

j denote the

corresponding parts of the boundary ∂Ωk and SN+1
j = SN+3

1 = SN+2
2 = ∅.
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Denoting by Sk the corresponding solution operators to each of the N + 3 prob-
lems, we obtain the representation

uk = Sk

(
(fk, g

k
1 , g

k
2 , g

k
3 ) + (Fk(u), Gk(u), 0, 0)

)
.

Let {ψk}Nk=0 ⊂ C∞
c (R3; [0, 1]) such that ψk ≡ 1 on suppφk and suppψk ⊂ Uk.

Multiplying uk with ψk and summing from k = 0 to N yields the identity

(5.38) u =

N∑
k=0

ψkSk

(
(fk, g

k
1 , g

k
2 , g

k
3 ) + (Fk(u), Gk(u), 0, 0)

)
.

Therefore, any solution to (5.35), with u0 = 0, necessarily satisfies (5.38). The
converse however is in general not true. This pathology stems from the compatibility
conditions at ∂Sk

2 for the commutator term Gk(u) in (5.37). Thanks to Proposition
5.1 there exists an appropriate extension operator extx3,k from

0W
1/2−1/p
p (J ;Lp(∂S

k
2 )) ∩ Lp(J ;W

1−2/p
p (∂Sk

2 ))

to

0W
1/2−1/2p
p (J ;Lp(∂S

k
2 × R+)) ∩ Lp(J ;W

1−1/p
p (∂Sk

2 × R+)),

such that [extx3,k v](0) = v. Replace Gk(u) by

G̃k(u, g3) := Gk(u)− extx3,k

(
Gk(u)|x3=Hj −Gk(g3)|x3=Hj

)
= G1

k(g3) +G2
k(u),

where G1
k(g3) := extx3,kGk(g3)|x3=Hj . We note on the go that G̃k(u, g3) = Gk(u),

if u is a solution of (5.35), since then u = g3 at ∂S2 and g3|S1 · νS1 = g2|S2 at ∂S2
by assumption.

Therefore we will henceforth work with the identity

(5.39) u =

N∑
k=0

ψk

(
Sk(fk, g

k
1 +G1

k(g3), g
k
2 , g

k
3 ) + Sk(Fk(u), G

2
k(u), 0, 0)

)
.

Let 0E(T ) :=0H
1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3),

F1(T ) := Lp(J × Ω)3,

0F2(T ) :=0W
1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1)

3),

0F3(T ) :=0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)),

0F4(T ) :=0W
1−1/2p
p (J ;Lp(S2)

3) ∩ Lp(J ;W
2−1/p
p (S2)

3)

and

0F(T ) := {(f, g1, g2, g3) ∈ F1(T )×4
j=2{ 0Fj(T )} : (8)−(10) in Lemma 5.9 are satisfied}.

Since the terms involving u on the right side of (5.39) are of lower order, it follows
that there exists γ > 0 such that the a priori estimate

∥u∥E(T ) ≤M
(
∥(f, g1, g2, g3)∥F(T ) + T γ∥u∥E(T )

)
,

holds for any solution u of (5.39). Therefore, if T > 0 is sufficiently small, it follows
that the operator L : 0E(T ) → 0F(T ) defined by the left side of (5.35) without the
initial condition is injective and has closed range. This in turn implies that L has
a left-inverse.
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Applying a Neumann series argument, we see that for each given set of data
(f, g1, g2, g3) ∈0F(T ) there exists a unique solution u of (5.39) on a (possibly) small
time interval [0, T ]. This follows as above by taking into account that the terms
involving u on the right side of (5.39) are linear and of lower order. Denote by
S : 0F(T ) → 0E(T ) the corresponding solution operator. It remains to prove the
existence of a right inverse for L. Writing u = S(f, g1, g2, g3), where (f, g1, g2, g3) ∈
0F(T ), it follows that

(5.40) S(f, g1, g2, g3) =
N∑
k=0

ψk

(
Sk(fk, g

k
1+G

1
k(g3), g

k
2 , g

k
3 )+Sk(Fk(u), G

2
k(u), 0, 0)

)
.

Applying the operator L to (5.40) we obtain

LS(f, g1, g2, g3) = (f, g1, g2, g3) +R(f, g1, g2, g3),

where the linear operator R is given by

R(f, g1, g2, g3) :=
N∑
k=0

[L,ψk]
(
Sk(fk, g

k
1 +G1

k(g3), g
k
2 , g

k
3 ) + Sk(Fk(u), G

2
k(u), 0, 0)

)

+

N∑
k=0

(Fk(u), Gk(u, g3), 0, 0)

Since the commutator [L,ψk] as well as Fk(u) and Gk(u, g3) are of lower order
compared to L, it follows that there exists γ > 0 such that R satisfies the estimate

∥R(f, g1, g2, g3)∥F(T ) ≤MT γ∥(f, g1, g2, g3)∥F(T ),

whereM > 0 does not depend on T . Therefore, a Neumann series argument implies
that the right inverse for L is given by the linear operator S(I − R)−1, provided
that T > 0 is sufficiently small. This implies that L is boundedly invertible and the
proof of the first assertion is complete.

2. Concerning the second assertion, we use local coordinates and make use of
the fact that the corresponding local solution operators are bounded by 1/ω in the
norm of F. By means of interpolation we are able to control all lower order terms
by C/ωa for some uniform a > 0. Choosing ω > 0 large enough, the norms of the
lower order terms will become small. This yields the invertibility of Lω as above,
where Lω results from L by replacing ∂t with ∂t + ω. □

We will also need a result on the well-posedness of the two-phase problem

∂t(ρu)− µ∆u = f, in Ω\Σ,
[[µ∂3v]] + [[µ∇x′w]] = gv, on Σ,

[[µ∂3w]] = gw, on Σ,

[[u]] = uΣ, on Σ,

PS1

(
µ(∇u+∇uT)νS1

)
= PS1g1, on S1\∂Σ,

u · νS1 = g2, on S1\∂Σ,
u = g3, on S2,

u(0) = u0, in Ω\Σ.

(5.41)
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Lemma 5.10. Let p > 2, p ̸= 3, µj > 0, ρj > 0, T > 0 and J = [0, T ]. Then there
exists a unique solution

u ∈ H1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3)

of (5.41) if and only if the data are subject to the following regularity and compati-
bility conditions

(1) f ∈ Lp(J ;Lp(Ω)
3),

(2) gv ∈W
1/2−1/2p
p (J ;Lp(Σ)

2) ∩ Lp(J ;W
1−1/p
p (Σ)2),

(3) gw ∈W
1/2−1/2p
p (J ;Lp(Σ)) ∩ Lp(J ;W

1−1/p
p (Σ)),

(4) uΣ = (vΣ, wΣ) ∈W
1−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
2−1/p
p (Σ)3),

(5) g1 ∈W
1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1\∂Σ)3),

(6) g2 ∈W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1\∂Σ)),

(7) g3 ∈W
1−1/2p
p (J ;Lp(S2)

3) ∩ Lp(J ;W
2−1/p
p (S2)

3),

(8) u0 = (v0, w0) ∈W
2−2/p
p (Ω\Σ)3,

(9) PS1

(
µ(∇u0 +∇uT0 )νS1

)
= PS1g1|t=0, [[µ∂3v0]] + [[µ∇x′w0]] = gv|t=0 (p > 3),

(10) u0|S1 · νS1 = g2|t=0, u0|S2 = g3|t=0, [[µ∂3w0]] = gw|t=0, [[u0]] = uΣ|t=0,
(11) g3 · νS1 = g2 at ∂S2, uΣ · νS1 = [[g2]] at ∂Σ,
(12) P∂Σ

(
(∇x′vΣ +∇x′vTΣ)ν∂Σ

)
= P∂Σ[[g

′
1/µ]] at ∂Σ,

(13) ∂νS1
wΣ = [[(g1 · e3)/µ− ∂3g2]], (gv|ν∂Σ) = [[g1 · e3]] at ∂Σ,

(14) P∂G

(
µ(∇x′g′3 +∇x′(g′3)

T)ν∂S2

)
= P∂Gg

′
1 at ∂S2

(15) µ(∂νS1
(g3 · e3) + ∂3g2) = g1 · e3 at ∂S2,

where g′j =
∑2

k=1(gj · ek)ek for j ∈ {1, 3}.
The result remains true for the case J = R+ if ∂t is replaced by ∂t+ω, with some

sufficiently large ω > 0.

Proof. 1. Without loss of generality we may assume u0 = 0. This can be seen as

follows. Extend u+0 := u0|x3∈(0,H2) ∈ W
2−2/p
p (G × (0,H2))

3 first w.r.t. x3, then

w.r.t. (x1, x2) to some ũ+0 ∈W
2−2/p
p (R3)3 and solve the full space problem

∂tũ
+ −∆ũ+ = 0, in R3,

ũ+(0) = ũ+0 , in R3,
(5.42)

to obtain a unique solution

ũ+ ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H

2
p (R3)3).

Then we extend u−0 := u0|x3∈(H1,0) ∈ W
2−2/p
p (G × (H1, 0))

3 first w.r.t. x3, then

w.r.t. (x1, x2) to some ũ−0 ∈W
2−2/p
p (R3)3 and solve (5.42) with ũ+0 replaced by ũ−0

to obtain a unique solution

ũ− ∈ H1
p (J ;Lp(R3)3) ∩ Lp(J ;H

2
p (R3)3).

Define ũ := ũ+χG×(0,H2) + ũ−χG×(H1,0). If u solves (5.41), then u− ũ solves (5.41)
with u0 = 0 and with some modified data (f, gj , uΣ) (not to be relabeled). Note
that the time traces of the modified data at t = 0 are zero by construction, whenever
they exist.
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Step 1: In a first step we consider the case µj = ρj = 1. Extend

(gv, gw) ∈0W
1/2−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
1−1/p
p (Σ)3)

and

uΣ ∈0W
1−1/2p
p (J ;Lp(Σ)

3) ∩ Lp(J ;W
2−1/p
p (Σ)3),

to some functions

(g̃v, g̃w) ∈0W
1/2−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W

1−1/p
p (R2)3)

and

ũΣ ∈0W
1−1/2p
p (J ;Lp(R2)3) ∩ Lp(J ;W

2−1/p
p (R2)3)

respectively. Then we solve the following two-phase problem in Ṙ3 := R2 × Ṙ.

∂tũ−∆ũ = 0, in Ṙ3,

[[∂3ṽ]] + [[∇x′w̃]] = g̃v, on R2 × {0},
[[∂3w̃]] = g̃w, on R2 × {0},

[[ũ]] = ũΣ, on R2 × {0},

ũ(0) = 0, in Ṙ3.

(5.43)

This yields the existence of a unique solution

ũ ∈0H
1
p (J ;Lp(R3)3) ∩ Lp(J ;H

2
p (Ṙ3)3).

If u solves (5.41) with u0 = 0, then u − ũ|Ω solves (5.41) with u0 = gv = gw =

uΣ = 0 and some modified data (f̂ , ĝ1, ĝ2, ĝ3) in the right regularity classes and
with vanishing trace at t = 0 whenever it exists. Observe that the compatibility
conditions on the modified data at ∂Σ read as follows.

[[ĝ2]] = [[∂3ĝ2]] = 0, and [[PS1 ĝ1]] = PS1 [[ĝ1]] = 0

Note that this is in general not the case if [[µ]] ̸= 0. Therefore it follows that

PS1 ĝ1 ∈0W
1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1)

3),

and

ĝ2 ∈0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)).

Since the modified data ĝj also satisfy the compatibility conditions at ∂S2, we may

solve (5.35) by Lemma 5.9 with µ = 1, f = f̂ , g1 = PS1 ĝ1, g2 = ĝ2, g3 = ĝ3
and u0 = 0. This in turn implies that problem (5.41) is well-posed, provided that
µ1 = µ2 = 1.

Step 2: In the second step we consider the case [[ρ]] ̸= 0, [[µ]] ̸= 0. Let us
first reduce (5.41) with u0 = 0 to the case g1 = g2 = g3 = 0. To this end will
apply Lemma 5.9 twice. First we extend g+j := gj |x3∈(0,H2) by some (higher order)

reflections at {x3 = 0} to some functions

g̃+1 ∈0W
1/2−1/2p
p (J ;Lp(S1)

3) ∩ Lp(J ;W
1−1/p
p (S1)

3)

and

g̃+2 ∈0W
1−1/2p
p (J ;Lp(S1)) ∩ Lp(J ;W

2−1/p
p (S1)),
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such that g̃+j |x3=H1 = 0. Then, we solve (5.35) with µ = µ2, f = 0, g1 = PS1 g̃
+
1 ,

g2 = g̃+2 , g3|x3=H2 = g+3 and g3|x3=H1 = 0 to obtain a unique solution

ũ+ ∈0H
1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3).

Repeating the same procedure for g−j := gj |x3∈(H1,0) yields a unique solution

ũ− ∈0H
1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω)

3).

Define ũ := ũ+χG×(0,H2) + ũ−χG×(H1,0). If u solves (5.41) with u0 = 0, then
u − ũ solves (5.41) with u0 = 0, g1 = 0, g2 = 0 g3 = 0 and some modified data

(f̂ , ĝv, ĝw, ûΣ) which are subject to the following compatibility conditions at ∂Σ:

(5.44) ûΣ · νS1 = 0, ∂νS1
ŵΣ = 0, ĝv · ν∂Σ = 0

and

(5.45) P∂Σ

(
(∇x′ v̂Σ +∇x′ v̂TΣ)ν∂Σ

)
= 0.

Step 3: Let 0E(T ) :=0H
1
p (J ;Lp(Ω)

3) ∩Lp(J ;H
2
p (Ω\Σ)3) and denote by 0F(T ) the

space of data (f, gj , uΣ), j ∈ {v, w, 1, 2, 3} such that the compatibility conditions
(11)-(15) in Lemma 5.10 are satisfied. Define L : 0E(T ) → 0F(T ) by the left side of
(5.41) without the initial condition. By means of a localization procedure one can
show that L satisfies the a priori estimate

(5.46) ∥u∥
0E(T ) ≤M∥Lu∥

0F(T ).

This can be seen as in the proof of Lemma 5.9. Indeed, the charts which intersect
∂S2 and ∂Σ may be treated as in Subsections 2.3.1 & 2.3.3, respectively, while the
treatment of the remaining charts is well-known. Note that there is no need to carry
any correction terms as in the proof of Lemma 5.9, since for the proof of (5.46) one
already starts with a solution of (5.41). Therefore, the compatibility conditions at
∂S2 and ∂Σ are necessarily satisfied.

Next, we set

0Ẽ(T ) := {u ∈0H
1
p (J ;Lp(Ω)

3) ∩ Lp(J ;H
2
p (Ω\Σ)3) :

u|S2 = 0, u|S1 · νS1 = 0, PS1

(
(∇u+∇uT)νS1

)
= 0},

and denote by 0F̃(T ) the space of data (f, gv, gw, uΣ) together with the compatibility
conditions (5.44) & (5.45) at ∂Σ. Note that

PS1

(
(∇u+∇uT)νS1

)
= 0 ⇔ PS1

(
µ(∇u+∇uT)νS1

)
= 0

at S1\∂Σ. Define L̃ :0Ẽ(T ) →0F̃(T ) by

L̃u =


∂t(ρu)− µ∆u

[[µ∂3v]] + [[µ∇x′w]]
[[µ∂3w]]
[[u]]

 .

Since the norm in 0Ẽ(T ) is the same as in 0E(T ) and since

∥Lu∥
0F(T ) = ∥L̃u∥

0F̃(T )
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for u ∈ 0Ẽ(T ), it follows from (5.46) that L̃ is injective with closed range, i.e. L̃ is
a semi-Fredholm operator. It is also crucial to observe that the constant M > 0 is
uniform on compact sets of µ > 0 and ρ > 0, by continuity.

We replace the coefficients (ρ1, ρ2, µ1, µ2) by

(ρτ1 , ρ
τ
2 , µ

τ
1 , µ

τ
2) := τ(ρ1, ρ2, µ1, µ2) + (1− τ)(1, 1, 1, 1), τ ∈ [0, 1],

and denote by L̃τ : 0Ẽ(J) → 0F̃(J) the corresponding operator which is induced by

replacing ρ and µ with ρτ and µτ , resectively. Note that L̃τ satisfies the estimate

∥u∥
0Ẽ(T ) ≤M∥L̃τu∥

0F̃(T ),

with some constant M > 0 which is uniform with respect to τ ∈ [0, 1]. Hence L̃τ is
semi-Fredholm for each τ ∈ [0, 1]. By Step 1 of the proof, we already know that L0

is a Fredholm operator with index zero. The continuity method for semi-Fredholm
operators implies that L1 is Fredholm with index zero as well. We remark that the
reduction obtained in Step 2 of the proof is essential, since otherwise the viscosity
coefficient µ appears in the definition of F̃(T ). Replacing µ by µτ , it would follow

that F̃(T ) depends on τ as well.
2. The strategy for proof of the second assertion is the same as in the proof of

Lemma 5.9. Will will not repeat the arguments. □

5.4. Miscellaneous results. Let G ⊂ Rn−1, n ∈ {2, 3} be a bounded domain with
boundary ∂G ∈ C1 and define Ω := G× (H1,H2), with H1 < 0 < H2. Furthermore,

let Σ := G × {0}, S1 := ∂G × (H1,H2) and S2 :=
∪2

j=1{G × {Hj}}. Define

x′ = (x1, . . . , xn−1)
T and x = (x′, xn)

T. Assume that h : G → (H1,H2) is C1 and
set

Γ := {x = (x′, xn) ∈ Ω : xn = h(x′), x′ ∈ G},
that is, Γ is an (n−1)-dimensional manifold in Ω which is given as the graph of the
height function h over Σ.

Proposition 5.11 (Divergence theorem in cylindrical domains). For each u ∈
H1

2 (Ω\Σ)n the following identity holds.∫
Ω
div u dx =

∫
S1

u|S1 · νS1 dS1 +

∫
S2

u|S2 · νS2 dS2 −
∫
Γ
[[u]]νΓ dΓ,

where νSj are the outer unit normals on Sj and νΓ is the normal on Γ pointing from

Ω1 := {x = (x′, xn) ∈ Ω : xn < h(x′), x′ ∈ G}

to Ω2 := Ω\Ω1.

Proof. The proof follows from the fact that Ωj are both Lipschitz domains. Indeed,
it is well-known that the divergence theorem is valid for Lipschitz domains, see for
example [17, Section 4.3]. □

Last but not least, we need an auxiliary result which is crucial for the proof of
local well-posedness in Section 4. Here and in the sequel, Dv denotes the symmetric
part of the gradient ∇v.
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Proposition 5.12. Let p > 2, G ⊂ R2 be a bounded domain with boundary ∂G ∈ C2

and outer unit normal vector field ν which is C1 in a neighborhood of ∂G. If

v ∈W 2
p (G;R2) and h ∈W

3−1/p
p (G) such that (v|ν) = ∂νh = 0 and P∂G[(Dv)ν] = 0,

then ∂ν(v|∇h) = 0.

Proof. An easy computation shows that

∂ν(v|∇h) = (∂νv|∇h) + (v|∇2hν),

where ∂νv := ∇vTν.
Note that P∂G[(Dv)ν] = 0 implies that ((Dv)ν|∇h) = 0, since by assumption

∂νh = 0. This in turn yields (∂νv|∇h) = −(∇vν|∇h). Making use of the represen-
tation ∇h = τ∂τh + ν∂νh = τ∂τh, where τ ∈ R2 with |τ | = 1 and (τ |ν) = 0, we
obtain

(∇vν|∇h) = ((∇h · ∇)v|ν) = ∂τh(∂τv|ν) = −∂τh(v|∂τν).
Here we made use of the assumption (v|ν) = 0 and ∇h · ∇ :=

∑2
j=1 ∂jh∂j .

Concentrating on the term (v|∇2hν), we obtain

(v|∇2hν) =
2∑

i,j=1

vi∂i∂jhνj =
2∑

i,j=1

[vi∂i(∂jhνj)− vi∂jh∂iνj ]

= (v · ∇)∂νh−
2∑

i,j=1

vi∂jh∂iνj = (v|τ)∂τ∂νh+ (v|ν)∂2νh−
2∑

i,j=1

vi∂jh∂iνj

= −
2∑

i,j=1

vi∂jh∂iνj ,

since (v|ν) = ∂νh = 0. Here it is important to observe that ∂τ∂νh = 0, whenever
∂νh = 0, since ∂τ denotes the derivative in tangential direction.

Note that
2∑

i,j=1

vi∂jh∂iνj = ((v · ∇)ν|∇h) = (v|τ)(∂τν|∇h) = (v|τ)∂τh(∂τν|τ) = ∂τh(∂τν|v),

since v = τ(v|τ) + ν(v|ν) = τ(v|τ) and ∇h = τ∂τh. Finally, this yields

∂ν(v|∇h) = ∂τh[(∂τν|v)− (∂τν|v)] = 0.

The proof is complete. □
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