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Γ-convergence are also over the space IS 2(Ω, IR3) of infinitesimal isometries. Thus
the space IS 2(Ω, IR3) naturally plays a crucial role in the analysis of shells. The
aim of the present paper is to understand the space ISm(Ω, IR3).

We now give heuristic overview of our results, whose precise formulations will be
presented in the sections later. Let N be the unit normal field of surface M and let
X(Ω) be all vector fields on Ω. For V ∈ Hm(Ω, IR3), we decompose as

V =W + wN for W ∈ X(Ω), w ∈ Hm(Ω).

We look for conditions on functions w such that there areHm vector fieldsW ∈ X(Ω)
to guarantee V ∈ ISm(Ω, IR3).

Let Hm
is (Ω) denote all functions w ∈ Hm(Ω) such that there are Hm vector

fields W ∈ X(Ω), which are perpendicular to all Killing fields, to ensure that V =
W + wN ∈ ISm(Ω, IR3). Section 2 shows that if w ∈ Hm

is (Ω), then w satisfies
equation (2.25). Moreover, if

(1.1) Ω̄ ⊂ expoΣ(o),

then equation (2.25) is also sufficient (Theorem 2.5), where o ∈ Ω is such that Ω is
star-shaped with respect to o and expoΣ(o) is the interior of the cut locus of o.

The type of equation (2.25) is subject to the Gaussian curvature function: It is
elliptic, or parabolic according to ellipticity, or parabolicity of the middle surface Ω,
respectively. The two cases are studied, respectively, in Sections 3 and 4. We have
shown that without assumption (1.1) equation (2.30) is still sufficient for a closed
spherical shell (Theorem 3.11) but it is not for a cylinder (Theorem 4.2) or a conical
shell (Theorem 4.4).

Our results show that the problem to determine whether w ∈ Hm
is (Ω) is actually

that of 1-dimension in the above two types, respectively. As a consequence of the
above reults, we show that Hm

is (Ω) ∩ C∞(Ω) is dense in Hm
is (Ω) in the norm of

Hm(Ω) if assumption (1.1) holds (Theorems 3.6 and 4.3): Such an issue is actually
not trivial. In general, even though Ω is elliptic, an element V ∈ IS 2(Ω, IR3) may
not be approximated by smooth infinitesimal isometries. An interesting example,
discovered in [9] (also see [34]), is a closed smooth surface of non-negative curvature
for which the infinitesimal rigidity holds true: All C∞ infinitesimal isometries are
trivial. But there is a C2 non-trivial infinitesimal isometry. Therefore H2

is (Ω) ∩
C∞(Ω) is not dense in H2

is (Ω) for this surface.
In Section 5 we apply the above reults to some limit energy of Γ-convergence.

Then the limit energy functional is changed to a one-dimensional formula over
a function space with one variable (Theorem 5.3). In particular, we present the
explicit formulas of the limit energy functionals for a spherical shell (Theorem 5.5)
and a cylinder shell (Theorem 5.6), respectively, for nonlinear isotropic materials.

Furthermore, we motion that the strain tensor equation and it’s applications in
elasticity for the hyperbolic surface have also been studied in [39, 40, 41, 42].

Here we do not use the traditional methods where everything is done in a coordi-
nate. We view the middle surface Ω as a 2-dimensional Riemannian manifold with
the induced metric to make everything coordinate free as far as possible. When nec-
essary, some special coordinates are chosen to simplify computations as in modelling
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and control for the classical thin shells, see [1, 2, 3, 4, 5, 6, 7, 14, 19, 25, 36, 37, 38]
and many others.

2. Infinitesimal Isometries

Let M be a surface with the induced metric g from IR3. Let N be the unit
normal field of M . Let Ω ⊂ M be an open set. We shall give some characteristic
conditions on a function w for which there exists a vector field W such that V =
W + wN is to be an infinitesimal isometry (Theorem 2.5).

Let Π be the second fundamental form of M . Let m ≥ 2 be an integer. Let
ISm(Ω, IR3) be all Hm infinitesimal isometries on Ω. It is easy to check that V =
W + wN ∈ ISm(Ω, IR3) is an infinitesimal isometry if and only if, W, w are Hm,
and

(2.1) DW (X,X) + wΠ(X,X) = 0 for X ∈Mx, x ∈ Ω,

where D is the Levi-Civita connection of the induced metric g. In particular, if
w = 0 and V =W is an infinitesimal isometry, then W is said to be a Killing field.
Let

(2.2) KF (Ω, IR3) = { all C∞ Killing fields on Ω }.
Then [30]

dim KF (M, IR3) ≤ 3.

Let Hm
is (Ω) denote all functions w ∈ Hm(Ω) such that there is a Hm vector field

W ∈ X(Ω), which is perpendicular to all Killing fields in KF (Ω, IR3), to ensure that
V =W + wN ∈ ISm(Ω, IR3).

Let o ∈M be fixed and let expo : Mo →M be the exponential map in the metric
g. For any v ∈ Mo with |v| = 1, there is a unique t0(v) > 0 (or t0(v) = ∞) such
that the normal geodesic γ(t) = expo tv is the shortest on the interval [0, t0]. Let

C(o) = { t0(v)v | v ∈Mo, |v| = 1 },
Σ(o) = { tv | v ∈Mo, |v| = 1, 0 ≤ t < t0(v) }.

The set expoC(o) ⊂ M is said to be the cut locus of o and the set expoΣ(o) ⊂ M
is called the interior of the cut locus of o. Then

M = expoΣ(o) ∪ expoC(o).

Furthermore, expo : Σ(o) → expoΣ(o) is a diffeomorphism and C(o) is a zero
measure set onMo. Then expoC(o) is a zero measure set onM since it is the image
of the zero measure set C(o), that is, expoΣ(o) is M excluding a zero measure set.

We introduce the polar coordinate system at o ∈ M as follows. Let e1, e2 be an
orthonormal basis of Mo. Set

(2.3) σ(θ) = cos θe1 + sin θe2 for θ ∈ [0, 2π).

Consider a family of two-parameter curves on M given by

F(t, θ) = expo tσ(θ) for tσ(θ) ∈ Σ(o).

Then

(2.4) ∂t =
∂

∂t
F(t, θ) = expo∗ σ(θ), ∂θ =

∂

∂θ
F( t , θ) = t expo∗ σ̇(θ).
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In particular, the classical Gauss-Jacobi theorem yields

g = d t 2 + f2( t , θ)dθ2 for x = expo t σ(θ) ∈ expoΣ(o),

where f(t, θ) is the solution to the problem

(2.5)

{
ftt(t, θ) + κ(t, θ)f(t, θ) = 0,
f(0, θ) = 0, ft(0, θ) = 1,

where κ is the Gaussian curvature function on M and κ(t, θ) = κ(F(t, θ)) [30].
Let

(2.6) T = ∂t, E =
1

f
∂θ for x ∈ expoΣ(o)− {o}.

Then T, E is a frame field on expoΣ(o)− {o}. We have

(2.7) DTT = 0, DTE = 0, DET =
ft
f
E, DEE = −ft

f
T

for x ∈ expoΣ(o)− {o}.
We suppose that o ∈ Ω is given such that Ω is star-shaped with respect to o. Let

the frame field T , E be given in (2.6). Let

W = φ(t, θ)T + ϕ(t, θ)E for x = F(t, θ) ∈ Ω ∩ expoΣ(o).

In the sequel all our computations are made on the region Ω ∩ expoΣ(o). A simple
computation shows that the relation (2.1) is equivalent to

(2.8)


φt + wΠ(T, T ) = 0,
fϕt − ftϕ+ φθ + 2fwΠ(T,E) = 0,
ϕθ + ftφ+ fwΠ(E,E) = 0,
φ(0) = ⟨W,σ(θ)⟩ , ϕ(0) = ⟨W, σ̇(θ)⟩ .

Let φ solve the first equation in (2.8) with initial data φ(0) = ⟨W,σ(θ)⟩ . Then

(2.9) φ = ⟨W0, σ(θ)⟩ −
∫ t

0
wΠ11ds,

and ϕ solves the second equation in (2.8) if and only if it satisfies

(2.10)

{
ϕtt + κϕ = P (w),
ϕ(0) = ⟨W, σ̇(θ)⟩ ,

where

(2.11) P (w) = −2w1Π12 + w2Π11 − wΠ121 for x ∈ Ω,

w1 = ⟨Dw, T ⟩ , w2 = ⟨DW,E⟩ , Π12 = Π(T,E),

Π11 = Π(T, T ), Π121 = DΠ(T,E, T ),

etc. In the computation of (2.10) the formula (2.5) and the one below have been
used

[Π(T,E)]t = DΠ(T,E, T ) + Π(DTT,E) + Π(T,DTE) = Π121.

Furthermore, differentiating the third equation in (2.8) with respect to the vari-
able t and using the first equation of (2.8) yield

(2.12) 0 = ϕtθ + fttφ+ ft[wΠ(E,E)− wΠ(T, T )] + f [wΠ(E,E)]t for t > 0.
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Letting t→ 0 in (2.12), we obtain another initial data for problem (2.10)

(2.13) ϕt(0) = −w(o)Π(σ(θ), σ̇(θ)) + c0,

where c0 is constant.
Let k be an integer. Let T k(M) be all tensor fields of rank k on M . Let

RXY : T k(M) → T k(M)

be the curvature operator where X, Y ∈ X(M) are vector fields. For K ∈ T k(M),
we have the following formulas, called the Ricci identities,

(2.14) D2K(· · · , X, Y ) = D2K(· · · , Y,X) + (RXYK)(· · · ).
The above formulas are very useful when we need to exchange the order of the
covariant derivatives of a tensor field.

Let M be orientable. Let X be a vector field on M . We define a vector field QX
on M by

(2.15) QX = ⟨X, e2⟩ e1 − ⟨X, e1⟩ e2 for x ∈ Ω,

where e1, e2 is an orthonormal basis of Mx with positive orientation. It is easy to
check that the right hand side of (2.15) is independent of the choice of the positively
oriented orthonormal basis e1, e2. The operator Q plays an important role in strain
tensors for the hyperbolic surface, see [39, 42].

We seek some conditions on w such that problem (2.1) has a vector field solution
W .

Lemma 2.1. Let M be orientable. Let V = W + wN be an infinitesimal isometry
of Ω. Then

(2.16)
⟨
D2w,Q∗Π

⟩
+ wκ trΠ = ⟨∇κ,W ⟩ for x ∈ Ω,

where Q is defined by (2.15), κ is the Gaussian curvature function, and ∇, tr are
the gradient, the trace of the induced metric of M , respectively.

Proof. Let o ∈ Ω be any point. Then there is ε > 0 such that the geodesic ball
centered at o with the radius ε is contained in Ω. Therefore, the systems (2.8) and
(2.10) make sense for (t, θ) ∈ [0, ε)× [0, 2π).

From (2.10) and using the symmetry of DΠ, we have

ϕttθ + κθϕ+ κϕθ = −2(w1Π12)θ + (w2Π11)θ − (wΠ121)θ

= −2f(w12Π12 + w1Π122)− 2ft[w2Π12 + w1(Π22 −Π11)]

+f(w22Π11 + w2Π112) + ft(2w2Π12 − w1Π11)

−f(w2Π121 + wΠ1212)− ftw(2Π221 −Π111)

= f(w22Π11 − 2w12Π12 − 2w1Π122 − wΠ1212)

+ft[w1(Π11 − 2Π22) + w(Π111 − 2Π221)],(2.17)

which yields

ϕ
(3)
θ (0) = w22Π11 − 2w12Π12 − 2w1Π122 − wΠ1212 + [w1(Π11 − 2Π22)

+w(Π111 − 2Π221)]
′(0)− κ′θϕ(0)− κ′ϕθ(0)− κϕ′θ(0)

= w11(Π11 − 2Π22) + w22Π11 − 2w12Π12 + 2w1(Π111 − 3Π221)
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+w[Π1111 − 3Π2211 + 2κ(Π22 −Π11)]

−⟨∇κ, σ̇(θ)⟩ ⟨W, σ̇(θ)⟩+ ⟨∇κ, σ(θ)⟩ ⟨W,σ(θ)⟩ ,(2.18)

where the superscripts ′ and (3) denote the first derivative and the third derivative
with respect to variable t, respectively, and the following formulas have been used

Π1212 = Π2211 +RTED
2Π(T,E) = Π2211 + κ(Π11 −Π22) (by (2.14)),

ϕ′θ(0) = wκ(Π11 −Π22).

On the other hand, using equation (2.5) and the first equation in (2.8), we obtain

(ftφ)
(3)(0) = [f (4)φ+ 3f (3)φ′ + 3f ′′φ′′ + f ′φ(3)](0)

= −2κ′φ(0)− 3κ(0)φ′(0) + φ(3)(0)

= −2 ⟨∇κ, σ(θ)⟩ ⟨W,σ(θ)⟩ − w11Π11 − 2w1Π111 + w(3κΠ11 −Π1111)(2.19)

at o. Moreover, we have

(fwΠ22)
(3)(0) = f (3)(0)w(o)Π22(o) + 3(wΠ22)

′′(0)

= 3w11Π22 + 6w1Π221 + w(3Π2211 − κΠ22) at o.(2.20)

Finally, using the third equation in (2.8), we obtain from (2.18)-(2.20)

0 = (ϕθ + ftφ+ fwΠ22)
(3)(0)

= w11Π22 − 2w12Π12 + w22Π11 + wκ(Π11 +Π22)

−⟨∇κ, σ̇(θ)⟩ ⟨W, σ̇(θ)⟩ − ⟨∇κ, σ(θ)⟩ ⟨W,σ(θ)⟩
=

⟨
D2w,Q∗Π

⟩
+ wκ trΠ− ⟨∇κ,W ⟩ at o.

□

Let s ≥ 0 be given. Let Φ0(t) and Φ(t, s) solve the problem

(2.21)

{
Φ0tt(t) + κ(t)Φ0(t) = 0 for t ≥ 0,
Φ0(0) = 1, Φ0t(0) = 0,

and

(2.22)

{
Φtt(t, s) + κ(t)Φ(t, s) = 0 for t ≥ s,
Φ(s, s) = 0, Φt(s, s) = 1,

respectively. Note that

Φ(t, 0) = f.

Let w be a function on Ω and Wo ∈Mo. Let

(2.23) ϕ = Φ0(t) ⟨Wo, σ̇(θ)⟩ − w(o)Π(o)(σ̇(θ), σ(θ))f +

∫ t

0
Φ(t, s)P (w)(s)ds,

where P (w) is given by (2.11). Then ϕ solves the problem (2.10) and (2.13).
We denote by Hm

ob (Ω) the set of all functions of Hm(Ω) which are in the form of

(2.24) w = u(x) + ⟨Wo, N⟩ (x) for x ∈ Ω ∩ expoΣ(o),

where Wo ∈Mo are constant vectors and u ∈ Hm(Ω) satisfies the problem

(2.25) Aou+ u(o)Π(o)(σ(θ), σ̇(θ))κ2f = 0 for x ∈ Ω ∩ expoΣ(o),
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where

(2.26) Aou =
⟨
D2u,Q∗Π

⟩
+ uκ trΠ + κ1

∫ t

0
uΠ11ds− κ2

∫ t

0
Φ(t, s)P (u)(s)ds,

κ1 = ⟨∇κ, T ⟩ , and k2 = ⟨∇κ,E⟩ .

Remark 2.2. Since Ω is star-shaped with respect to o, the imbedding theorem
implies that for m ≥ 2

(2.27) |u(o)| ≤ C(∥u∥Hm(Ω) + ∥u∥L2(Γ)) for u ∈ Hm(Ω),

where Γ = ∂Ω is the boundary of Ω. Thus the second term in the left hand side of
(2.25) makes sense for u ∈ Hm(Ω) with m ≥ 2. In general the above estimate is not
true for m = 1.

Remark 2.3. As a constant vector Wo on Ω, or a translation displacement of Ω,
(W̃o, ⟨Wo, N⟩) is a trivial infinitesimal isometry where Wo = W̃o + ⟨Wo, N⟩N.

Remark 2.4. The formula (2.25) depends on the choice of the point o ∈ Ω. If the
point o can be chosen to be an umbilical point of M, then κ(o) ≥ 0 and

Π(o) =
√
κ(o)g,

which yields

Π(o)(σ(θ), σ̇(θ)) = 0 for θ ∈ (0, 2π].

In this case the equation (2.25) becomes

(2.28) Aou = 0 for x ∈ Ω.

Another case for which (2.28) holds true is that o ∈ Ω can be chosen such that
κ2 = 0 for x ∈ Ω.

We have the following.

Theorem 2.5. Let M be orientable and let Ω be a star-shaped domain with respect
to a point o ∈ Ω. Let m ≥ 2. Then

(2.29) Hm
is (Ω) ⊂ Hm

ob (Ω).

Moreover, if

(2.30) Ω̄ ⊂ expoΣ(o),

then

(2.31) Hm
is (Ω) = Hm

ob (Ω).

Remark 2.6. From (2.7) vector fields T and E have singularities on the cut locus
expoC(o). Without assumption (2.30) formula (2.31) may not be true. Later we
will show that if Ω is a closed spherical shell, formula (2.31) holds (Theorem 3.11)
but it is not true if Ω is a cylinder (Theorem 4.2) or conical shell (Theorem 4.4).

Proof of Theorem 2.5. Let w ∈ Hm
is (Ω) be given. Let a vector field W⊥KF (Ω, IR3)

be such that V =W + wN is an infinitesimal isometry. Let

W (o) = Ŵ (o) + ⟨W (o), N⟩N for x ∈ Ω,
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where Ŵ (o) =W (o)− ⟨W (o), N⟩N. Let

U =W − Ŵ (o), u = w − ⟨W (o), N⟩ for x ∈ Ω.

Then (U, u) is an infinitesimal isometry field with U(o) = 0. Using (2.9) and (2.23)
in (2.16) where (W,w) is replaced by (U, u), we have formula (2.25) for u. Thus
w ∈ Hm

ob (Ω).
Next, suppose (2.30) is true. Then the vector fields T and E are smooth on Ω̄.

Let u ∈ Hm(Ω) solve problem (2.25). It will suffice to prove that there is a vector
field U ∈ X(Ω̄) such that V = U + uN is an infinitesimal isometry. We define

U = φT + ϕE for x ∈ Ω̄,

where

(2.32) φ = −
∫ t

0
uΠ11ds, ϕ = −u(o)Π(σ̇(θ), σ(θ))f +

∫ t

0
Φ(t, s)P (u)ds.

Then equation (2.25) means that

(2.33)
⟨
D2u,Q∗Π

⟩
+ uκ trΠ = ⟨∇κ,U⟩ for x ∈ Ω̄.

Clearly, φ and ϕ satisfy the first equation and the second equation in (2.8). To
complete the proof, it remains to show that φ and ϕ, given by (2.32), solve the third
equation in (2.8). For this end, we let

η = ϕθ + ftφ+ fuΠ22 for x ∈ Ω̄.

Using (2.5), (2.17), and (2.33), we compute

η′′ = ϕ′′θ + f (3)φ+ 2f ′′φ′ + f ′φ′′ + f(uΠ22)
′′ + 2f ′(uΠ22)

′ + f ′′uΠ22

= ϕ′′θ − (fκ′ + f ′κ)φ− 2fκφ′ + f ′φ′′ + f(uΠ22)
′′ + 2f ′(uΠ22)

′ − fκuΠ22

= ϕ′′θ + f [(uΠ22)
′′ − κuΠ22 − 2κφ′ − κ′φ] + f ′[2(uΠ22)

′ − κφ+ φ′′]

= −(κθϕ+ κϕθ + fκ′φ+ f ′κφ) + f [(uΠ22)
′′ − κuΠ22 − 2κφ′]

+f ′[2(uΠ22)
′ + φ′′] + f [u22Π11 − 2u12Π12 − 2u1Π122 − uΠ1122]

+f ′[u1(Π11 − 2Π22) + u(Π111 − 2Π122)]

= −[f ⟨∇κ,U⟩+ κ(ϕθ + f ′φ+ fuΠ22)] + f(
⟨
D2u,Q∗Π

⟩
+ uκ trΠ)

+f ′(u1Π11 + uΠ111 + φ′′)

= f(
⟨
D2u,Q∗Π

⟩
+ uκ trΠ− ⟨∇κ,U⟩)− κη + f ′(uΠ11 + φ′)′

= −κη,(2.34)

where the following formula has been used

RE1E2Π(E1, E2) = κ(Π11 −Π22)(by (2.14)).

Moreover, we have the initial data

η(0) = ϕθ(0) + φ(0) = 0, η′(0) = ϕ′θ(0) + φ′(0) + u(o)Π22(o) = 0,

which imply by the equation (2.34) that V = U + uN is an infinitesimal isometry.
Then equations (2.8) hold true where w is replaced with u. In particular,

(2.35) φt + uΠ(T, T ) = 0, ϕθ + ftφ+ fuΠ(E,E) = 0 for all x ∈ Ω̄.

Thus u ∈ Hm(Ω) implies that φ, ϕ ∈ Hm(Ω), that is, V ∈ ISm(Ω, IR3). □
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Remark 2.7. If equations (2.35) just hold almost everywhere on Ω, the regularity
of u ∈ Hm(Ω) may not imply U ∈ Hm(Ω, IR3), see the proof of Theorem 4.2 later,
where equation (4.7) has a solution (φ, ϕ) not in C0(Ω)×C0(Ω) when w ∈ Hm(Ω)

with
∫ 2π
0 wdθ ̸= 0.

If surface M is given as a graph, an infinitesimal isometry function w ∈ Hm
is (Ω)

can be written as an explicit formula in the Cartesian orthogonal coordinate system.
Let

(2.36) M = { (x, h(x)) |x = (x1, x2) ∈ IR2 },

where h is a smooth function on IR2. Let

(2.37) V (p) = (u1, u2, u) for p ∈M.

We then have

Theorem 2.8 ([31, 34]). Let Ω̃ ⊂ IR2 be a star-shaped with respect to a point

õ ∈ Ω̃. Then there are functions u1, u2 such that V = (u1, u2, u) is an infinitesimal
isometry on

Ω = { (x, h(x)) |x ∈ Ω̃ }
if and only if u solves the problem

(2.38) d̃ivA(x)∇̃u = 0 for x ∈ Ω̃,

where d̃iv and ∇̃ are the divergence and gradient of IR2 in the Euclidean metric,
respectively, and

(2.39) A(x) =

(
hx2x2 −hx1x2

−hx1x2 hx1x1

)
for x ∈ Ω̃.

3. Elliptic Surfaces

Let M be a surface in IR3. M is said to be elliptic if the fundamental form Π
is positive for all x ∈ M. Assume that M is elliptic throughout this section. Then
problem (2.25) will become an elliptic one (Theorem 3.3). We introduce another
metric on M by

ĝ = Π for x ∈M.

Proposition 3.1. Let M be elliptic. Then for w ∈ C2(M),

(3.1) κ∆Πw +
1

2κ
Q∗Π(∇κ,∇w) =

⟨
D2w,Q∗Π

⟩
for x ∈M,

where ∆Π is the Laplacian of the metric ĝ = Π and Q : X(M) → X(M) is the
operator, given by (2.15).

Proof. Let o ∈M be fixed. Consider the polar coordinates in the induced metric g

∂t = T, ∂θ = fE.

Note that the above (∂t, ∂θ) is no longer the polar coordinates in the metric ĝ = Π.
In the coordinate system (∂t, ∂θ), we have

ĝ = ĝ11dt
2 + ĝ12(dtdθ + dθdt) + ĝ22dθ

2,
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Ĝ =
(
ĝij

)
=

(
Π11 fΠ12

fΠ12 f2Π22

)
, det Ĝ = κf2, Ĝ−1 =

1

κf2

(
f2Π22 −fΠ12

−fΠ12 Π11

)
.

Moreover,

wtθ = fw12 + f ′w2, wθθ = f2w22 − ff ′w1 + fθw2.

Using those formulas, we obtain

κ∆Πw =
κ√
κf

[(
√
κf

Π22

κ
wt)t − (

√
κf

Π12

κf
wt)θ − (

√
κf

Π12

κf
wθ)t + (

√
κf

Π11

κf2
wθ)θ]

=
⟨
D2w,Q∗Π

⟩
+ {

√
κ

f
[(
fΠ22√
κ

)t − (
Π12√
κ
)θ]−Π11}w1 − 2

f ′

f
Π12w2

+{
√
κ[(

Π11√
κf

)θ − (
Π12√
κ
)t] +

fθ
f2

Π11}w2

=
⟨
D2w,Q∗Π

⟩
+

1

2κ
(κ2Π12 − κ1Π22)w1 − 2

f ′

f
Π12w2

+[2
f ′

f
Π12 +

1

2κ
(κ1Π12 − κ2Π11)]w2

=
⟨
D2w,Q∗Π

⟩
− 1

2κ
Π(Q∇κ,Q∇w).

□

Let o ∈ Ω be fixed. For w ∈ Hm(Ω), we let

(3.2) Bw = Bow + w(o)
κ2
κ
Π(σ(θ), σ̇(θ))f for x ∈ Ω ∩ expoΣ(o),

where

Bow =
1

2κ2
Q∗Π(∇κ,∇w) + w trΠ +

κ1
κ

∫ t

0
wΠ11ds

−κ2
κ

∫ t

0
Φ(t, s)P (w)(s)ds for x ∈ Ω ∩ expoΣ(o).(3.3)

Remark 3.2. Let o ∈ Ω. Since Ω ∩ expoC(o) has measure zero and

Ω = [Ω ∩ expoΣ(o)] ∪ [Ω ∩ expoC(o)],

Bw is defined by (3.2) on Ω almost everywhere.

Consider operator Ao, defined by (2.26). It follows from (2.26) and (3.1) that

(3.4) Aow + w(o)κ2Π(σ(θ), σ̇(θ))f = κ(∆Πw +Bw).

Since for Wo ∈ Mo, (W̃o, ⟨Wo, N⟩) is a trivial, smooth infinitesimal isometry

where W0 = W̃o + ⟨Wo, N⟩N, it follows from (3.4) that

Theorem 3.3. Let m ≥ 2. Let Ω ⊂ M be elliptic and star-shaped with respect to
o ∈ Ω. Then

(3.5) Hm
ob (Ω) = { w | w ∈ Hm(Ω), ∆Πw +Bw = 0 }.
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We consider the structure of solutions to the equation ∆Πw+Bw = 0 in Hm(Ω).
For this purpose, we suppose that assumption (2.30) holds true. This assumption
guarantees that Γ ̸= ∅ and operator (3.2) satisfies

Bw ∈ Hm−1(Ω) for w ∈ Hm(Ω).

Instead of the usual inner product of L2(Ω), we use the following inner product
on L2(Ω)

(w, v)L2
Π(Ω) =

∫
Ω
wvdgΠ for w, v ∈ L2(Ω).

We denote by L2
Π(Ω) the above space. It is well known that the negative Laplacian

operator −∆Π on Ω with the Dirichlet boundary condition is a positive selfadjoint
operator on L2

Π(Ω) with D(∆Π) = H2(Ω) ∩H1
0 (Ω). Moreover,

(3.6) ∆Π : H2(Ω) ∩H1
0 (Ω) → L2(Ω)

is an isomorphism since Γ ̸= ∅.
Since ∆−1

Π w ∈ H2(Ω) ∩H1
0 (Ω) for w ∈ L2(Ω), using (3.3) and assumption (2.30)

we have the following estimates

∥Bo∆
−1
Π w∥L2

Π(Ω) ≤ C∥∆−1
Π w∥H1(Ω) ≤ C∥∆−1

Π w∥H2(Ω) ≤ C∥w∥L2
Π(Ω) for w ∈ L2

Π(Ω),

which yield

Lemma 3.4. Let assumption (2.30) hold true. The operator Bo∆
−1
Π : L2

Π(Ω) →
L2
Π(Ω) is a compact operator.

Let δ(o) be the Dirac function at o. Then for w ∈ L2
Π(Ω), by the imbedding

theorem we have

|(∆−1
Π δ(0), w)L2

Π(Ω)| ≤ c|(∆−1
Π w)(o)| ≤ c∥∆−1

Π w∥H2(Ω) ≤ c∥w∥L2
Π(Ω),

which imply that ∆−1
Π δ(o) ∈ L2

Π(Ω). Since the second term in (3.2) is an operator

of rank one, B∆−1
Π : L2

Π(Ω) → L2
Π(Ω) is also a compact operator.

Consider the operator ∆Π +B with the domain D(∆Π +B) = H2(Ω) ∩H1
0 (Ω).

Denote by B∗ the adjoint operator of B with respect to the inner product of L2
Π(Ω).

Then

(3.7) B∗ = B∗
o +

(κ2
κ
[Π(σ(θ), σ̇(θ))f ], ·

)
L2
Π(Ω)

δ(o),

and D(∆Π +B∗) = H2(Ω) ∩H1
0 (Ω). Let

(3.8) V0(Ω) = {φ |φ ∈ H2(Ω) ∩H1
0 (Ω), ∆Πφ+Bφ = 0 },

(3.9) V0∗(Ω) = {φ |φ ∈ H2(Ω) ∩H1
0 (Ω), ∆Πφ+B∗φ = 0 }.

It follows from Lemma 3.4 and the formula (3.7) that

∆−1
Π B∗ = (Bo∆

−1
Π )∗ +

(κ2
κ
[Π(σ(θ), σ̇(θ))f ], ·

)
L2
Π(Ω)

∆−1
Π δ(o) :

L2
Π(Ω) → L2

Π(Ω) is a compact operator. By the first Fredholm theorem [18], V0(Ω)
and V0∗(Ω) are subspaces of finite dimension and dimV0(Ω) = dimV0∗(Ω). Let

Vm−1/2(Γ) = {ψ ∈ Hm−1/2(Γ) | (ψ,φν)L2
Π(Γ) = 0, φ ∈ V0∗(Ω) }.
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Theorem 3.5. Let m ≥ 2. Suppose assumption (2.30) is true. Then w ∈ Hm
is (Ω)

if and only if w has a form of

(3.10) w = φ+ ŵ,

where φ ∈ V0(Ω) and ŵ is given by

(3.11) ŵ = w0 −∆−1
Π (I +B∆−1

Π )−1Bw0,

where w0 ∈ Hm(Ω) is a solution to problem

(3.12)

{
∆Πw0 = 0 for x ∈ Ω,
w0 = ψ for x ∈ Γ,

for some ψ ∈ Vm−1/2(Γ).

Proof. We use induction inm ≥ 2. Letm = 2. By Theorems 2.5 and 3.3, w ∈ H2
is (Ω)

is given by (3.10) if and only if ŵ ∈ H2(Ω) solves problem

(3.13)

{
∆Πŵ +Bŵ = 0 for x ∈ Ω,
ŵ = ψ for x ∈ Γ,

where ψ = w|Γ ∈ H3/2(Γ). Let w0 ∈ H2(Ω) be the solution to problem (3.12) and
let v = ŵ − w0. Then problem (3.13) is equivalent to solve

(3.14) ∆Πv +Bv = −Bw0 for some v ∈ H2(Ω) ∩H1
0 (Ω).

Let u = ∆Πv. Then problem (3.14) is the same to problem

(3.15) u+B∆−1
Π u = −Bw0 for some u ∈ L2

Π(Ω).

By the second Fredholm theorem [18], problem (3.15) is solvable if and only if

(3.16) (Bw0, φ)L2
Π(Ω) = 0

for all φ ∈ V where

(3.17) V = {φ ∈ L2
Π(Ω) |φ+ (B∆−1

Π )∗φ = 0 }.

It is easy to check that

V = V0∗(Ω) = {φ ∈ H2(Ω) ∩H1
0 (Ω) |∆Πφ+B∗φ = 0 }.

Thus,

(Bw0, φ)L2
Π(Ω) = (w0,B

∗φ)L2
Π(Ω) = −(w0,∆Πφ)L2

Π(Ω) = −(ψ,φν)L2
Π(Γ),

for all φ ∈ V0∗(Ω). It follows from (3.16) that problem (3.14) is solvable if and only

if ψ ∈ V3/2(Γ).
Suppose the equivalent relationship holds true for some m ≥ 2. We prove it is

true for m+ 1. Let ŵ be given by (3.11) and (3.12) for some ψ ∈ Vm+1/2(Γ). Since
Hm+1

is (Ω) ⊂ Hm
is (Ω), it suffices to show ŵ ∈ Hm+1(Ω). By the induction assumption,

ŵ ∈ Hm(Ω). In addition from (3.12), w0 ∈ Hm+1(Ω). Thus, v = ŵ − w0 ∈ Hm(Ω).
By (3.14), we obtain

∥v∥Hm+1(Ω) ≤ C[∥Bv +Bw0∥Hm−1(Ω) + ∥v∥Hm(Ω)],

which implies ŵ ∈ Hm+1(Ω). The proof is complete. □
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From the proof Theorem 3.5 we have

(3.18) ∥ŵ∥Hm(Ω) ≤ cm∥ψ∥Hm−1/2(Γ) for ψ ∈ Vm−1/2(Γ).

Thus, if ψ ∈ Vm−/2(Γ)∩C∞(Γ), then w ∈ Hm
is (Ω)∩C∞(Ω). SinceVm−/2(Γ)∩C∞(Γ)

is dense in Vm−1/2(Γ), estimate (3.18) yields the following density result.

Theorem 3.6. Let m ≥ 2. Suppose assumption (2.30) is true. Let Ω ⊂ M be
elliptic which is star-shaped with respect to o ∈ Ω. Then the strong Hm(Ω) closure
of

Hm
is (Ω) ∩ C∞(Ω)

agrees with Hm
is (Ω).

Remark 3.7. If Ω̄ ∩ expoC(o) ̸= ∅, the term Bw may have singularities on Ω̄ ∩
expoC(o). Thus estimate (3.18) may not be true. An interesting example is given in
[9] (see [22] or [34]), where Ω is a closed smooth surface of non-negative curvature for
which C∞ infinitesimal isometries consist only of trivial fields, whereas there exist
non-trivial C2 infinitesimal isometries. Therefore H2

is (Ω) ∩ C∞(Ω) is not dense in
H2

is (Ω) for this surface.

By Theorem 3.5, if V0(Ω) = { 0 }, an infinitesimal isometry function w ∈ Hm
is (Ω)

is completely given by its boundary trace w ∈ Hm−1/2(Γ). However, in general
V0(Ω) ̸= { 0 } even for a spherical cap, see Theorem 3.8 later.

A Spherical Cap Let M be a sphere of constant curvature κ > 0 with the
induced metric g from IR3. Then the second fundamental form of M is given by

(3.19) Π =
√
κg.

Then √
κ∆Πw = ∆w, Bw = 2

√
κw,

where ∆ is the Laplacian of M in the induced metric g from IR3.
Let o ∈ M be given. Let ρ(x) = ρ(x, o) be the distance from x ∈ M to o in the

induced metric g of M . Set

Ω(a) = {x |x ∈M, ρ(x) < a } for 0 < a ≤ π√
κ
.

Then for 0 < a <
π√
κ
, Ω(a) is a spherical cap with a nonempty smooth boundary

Γ(a) = {x |x ∈M, ρ(x) = a },

where assumption (2.30) holds true. It follows Theorems 2.5 and 3.3 that w ∈
Hm

is (Ω(a)) if and only if w ∈ Hm(Ω) satisfies problem

(3.20) ∆w + 2κw = 0 for x ∈ Ω(a), 0 < a <
π√
κ
.

Moreover,

V0(Ω(a)) = V0∗(Ω(a)) = {φ ∈ H2(Ω(a)) |∆φ+ 2κφ = 0, φ|Γ(a) = 0 }.

We have the following. Its proof is omitted.
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Theorem 3.8.

(3.21)


V0(Ω(a)) = { 0 } for 0 < a <

π

2
√
κ
,

V0(Ω(a)) ̸= { 0 } for
π

2
√
κ
≤ a ≤ π√

κ
.

Remark 3.9. The relations (3.21) mean that, for the first eigenvalue λ1(a) of −∆
on Ω(a) with the Dirichlet boundary condition on Γ(a),

λ1(a) > 2κ for 0 < a <
π

2
√
κ
,

λ1(a) = 2κ for
π

2
√
κ
≤ a ≤ π√

κ
.

A Closed Spherical Shell For simplicity, we assume that Ω = M is the unit
closed spherical shell. By Theorem 3.3, for m ≥ 2,

(3.22) Hm
ob (Ω) = {w |w ∈ H2(Ω), ∆w + 2w = 0 },

which is the subspace of eigenfunctions of −∆ corresponding to the eigenvalue 2. It
is well-known that Hm

ob (Ω) is finitely dimensional and

Hm
ob (Ω) = H2

ob (Ω) = C∞
ob (Ω) for all m ≥ 2.

Let o ∈ Ω be fixed and m ≥ 2. We have

Theorem 3.10.

(3.23) Hm
ob (Ω) = span { cos t, sin t cos θ, sin t sin θ }.

Proof. In the polar coordinates (t, θ), we have

(3.24) wtt +
ft
f
wt +

1

f2
wθθ + 2w = 0 for w ∈ Hm

ob (Ω),

which imply that wθ ∈ Hm
ob (Ω) for w ∈ Hm

ob (Ω). Moreover, the operator A :
Hm

ob (Ω) → Hm
ob (Ω), given by

Aw = −wθθ for w ∈ Hm
ob (Ω),

is a self-adjoint, nonnegative operator in the norm of L2(Ω). Thus, all the eigen-
functions of A span Hm

ob (Ω).
Next, we compute the eigenfunctions of A. Let w ∈ Hm

ob (Ω) be such that Aw = 0.
From (3.24), w satisfies

(3.25) fwtt + ftwt + 2fw = 0 for 0 ≤ t < π.

It follows from (3.25) that wt(0) = 0 since f(0) = 0 and ft(0) = 1. Thus, equation
(3.25) has a dimensional subspace of solutions in L2(0, π) withAw = 0. In particular,
w = cos t ∈ Hm

ob (Ω) is an eigenfunction of A corresponding to the zero eigenvalue.
Let λ > 0 be an eigenvalue of A. Then its eigenfunctions have the form of

w = α(t) cos kθ, or w = α(t) sin kθ,

where k =
√
λ is an integer. Using the relation −wθθ = λw in (3.24), we obtain

(3.26) f2α′′ + ff ′α′ + (2f2 − λ)α = 0 for 0 ≤ t < π.
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Setting t = 0 in the above equation yields α(0) = 0. Moreover, after differentiating
the above equation, we let t = 0 to have (1−λ)α′(0) = 0. Thus equation (3.26) has
a nonzero solution if and only if λ = 1 and α′(0) ̸= 0. Then a linearly independent
solution of (3.26) is α(t) = sin t, where λ = 1. Thus, we obtain (3.23). □

For a closed spherical shell, assumption (2.30) fails. However, we still have the
following.

Theorem 3.11. Let m ≥ 2 and o ∈ Ω. Then

Hm
is (Ω) = Hm

ob (Ω).

Proof. The proof consists of a simple computation by (2.8) and (3.23) as follows.
Let

Ω = { (x1, x2, x3) ∈ IR3 |x21 + x22 + (x3 − 1)2 = 1 },
and o = (0, 0, 0). Then

T =
(
σ(θ) cos t, sin t

)
, E =

(
σ̇(θ), 0

)
, N =

(
σ(θ) sin t, − cos t

)
,

where σ(θ) = (cos θ, sin θ).
(1) Let w = cos t. The corresponding infinitesimal isometry is

V =
(
σ̇(θ) sin t,−1

)
.

Then
D̂XV = AX for X ∈ Ωx, x ∈ Ω,

where

A =

0 −1 0
1 0 0
0 0 0

 ,

that is, V is trivial.
(2) For w = sin t cos θ, or sin t sin θ, the corresponding infinitesimal isometry is

V = (1, 0, 0), or (0, 1, 0),

respectively. □
It follows from the above proof that

Corollary 3.12 ([31]). Let m ≥ 2. For the unit closed spherical shell Ω, all
Hm(Ω, IR3) infinitesimal isometries are trivial.

4. Parabolic Surfaces

A surface M is said to be parabolic if

κ = 0, Π ̸= 0 for all x ∈M.

Let M be parabolic and orientable. Let m ≥ 2. It follows from equation (2.25) that
w ∈ Hm

ob (M) if and only if w ∈ Hm(M) solves the problem⟨
D2w,Q∗Π

⟩
= 0 for x ∈M.

We assume that there is a vector field E ∈ X(M) such that

(4.1) D̂EN = 0, |E| = 1 for x ∈M.
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Let p0 ∈M be given. We consider the parabolic coordinates (t, s) on M as follows.
Let curves r and ζ : IR→M be given by{

ṙ(t) = E(r(t)) for t ∈ IR,
r(0) = p0,

and {
ζ̇(s) = QE(ζ(s)) for s ∈ IR,
ζ(0) = p0,

respectively, where operator Q : Mp → Mp for p ∈ M is given by (2.15). Let
two-parameters families α(t, s) and β(t, s) be given by{

∂α

∂t
(t, s) = E(α(t, s)) for t ∈ IR,

α(0, s) = ζ(s),

and {
∂β

∂s
(t, s) = QE(β(t, s)) for s ∈ IR,

ζ(t, 0) = r(t),

respectively. Then

α(t, s) = β(t, s) for (t, s) ∈ IR2,

∂t =
∂α

∂t
(t, s) = E, ∂s =

∂β

∂s
(t, s) = Q

∂α

∂t
(t, s).

We have the following.

Theorem 4.1. Let M be a parabolic surface and orientable and let m ≥ 2.. Let
(t, s) be the parabolic coordinates on M . Then

(4.2) Hm
ob (M) = {w0(s) + w1(s)t | w1, w0 ∈ Hm(IR), t ∈ IR }.

Proof. Let w ∈ Hm
ob (M) be given. Consider the frame field E1 = E, E2 = QE. By

(4.1), we have

D∂t∂t = D̂∂t∂t+Π(∂t, ∂t)N =
∂2α

∂t2
(t, s)

=

⟨
∂2α

∂t2
(t, s),

∂α

∂t
(t, s)

⟩
∂α

∂t
(t, s) +

⟨
∂2α

∂t2
(t, s),

∂β

∂s
(t, s)

⟩
∂β

∂s
(t, s)

+

⟨
∂2α

∂t2
(t, s), N

⟩
N

=
1

2

∂

∂t

∣∣∣∂α
∂t

(t, s)
∣∣∣2∂α
∂t

(t, s) +
1

2

∂

∂t

⟨
∂α

∂t
(t, s), Q

∂α

∂s
(t, s)

⟩
∂β

∂s
(t, s)

+
∂

∂t

⟨
∂α

∂t
(t, s), N

⟩
N = 0.(4.3)

It follows from (4.1) and (4.3) that

0 =
⟨
D2w,Q∗Π

⟩
= D2w(E,E)Π(QE,QE) =

∂2w

∂t2
Π(QE,QE).

Since Π(QE,QE) ̸= 0, we have the formula (4.2). □
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A Cylinder Consider a cylinder

M = { (x, z) |x = (x1, x2) ∈ IR2, |x| = 1, z ∈ IR }.

Then

N = (x, 0).

Let E = (0, 0, 1) = ∂z. Then

D̂EN = 0, |E| = 1.

Consider the parabolic coordinates (z, θ), given by

(x, z) = (cos θ, sin θ, z).

Let b > 0 be given and let

(4.4) Ω = { (x, z) | |x| = 1, |z| < b }, T = { x | x ∈ IR2, |x| = 1 }.

Then, by Theorem 4.1,

(4.5) Hm
ob (Ω) = {w0 + w1z |w0, w1 ∈ Hm(T), |z| < b}.

We have the following.

Theorem 4.2. For m ≥ 2,

(4.6) Hm
is (Ω) =

{
w
∣∣∣w ∈ Hm

ob (Ω),

∫ 2π

0
wdθ = 0

}
.

Proof. By Theorem 2.5, Hm
is (Ω) ⊂ Hm

ob (Ω).
We have

∂z = (0, 0, 1), ∂θ = (− sin θ, cos θ, 0), N = (cos θ, sin θ, 0).

For w ∈ Hm
ob (Ω), let

V = φ∂z + ϕ∂θ + wN = (−ϕ sin θ + w cos θ, ϕ cos θ + w sin θ, φ).

Then V is an infinitesimal isometry in ISm(Ω, IR3) if and only if φ and ϕ in Hm(Ω)
solve the problem

(4.7)

φz = 0,
ϕθ + w = 0,
φθ + ϕz = 0.

Clearly, (4.7) has a solution in Hm(Ω) if and only if
∫ 2π
0 wdθ = 0. □

Remark 4.3. Let 0 < ε < 2π. If the middle surface is given by

Ω = { (cos θ, sin θ, z) | 0 ≤ θ ≤ 2π − ε, |z| < b },

then assumption (2.30) holds and, by Theorem 2.5,

Hm
is (Ω) = Hm

ob (Ω) = {w0 + zw1 |w0, w1 ∈ Hm(0, 2π − ε), |z| < b }.
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A Conical Surface Let

M = { (x, z) | |x| = |z|, x = (x1, x2) ∈ IR2, z ∈ IR }.

Then

N =
1√
2
(
x

|x|
,−1).

Consider the parabolic coordinates (z, θ), given by

(x, z) = z(cos θ, sin θ, 1).

Let b1, b2 > 0 be given and let

(4.8) Ω = { (x, z) | |x| = z, b1 < z < b2 }, T = { x | x ∈ IR2, |x| = 1 }.

Since D̂∂zN = 0, we have from Theorem 4.1

(4.9) Hm
ob (Ω) = { w0 + w1z | w0, w1 ∈ Hm(T), b1 < z < b2 }.

By Theorem 2.5, Hm
is (Ω) ⊂ Hm

ob (Ω).
For w = w0 + zw1 ∈ Hm

ob (Ω), let

V = φ
∂z√
2
+ ϕ

∂θ

z
+ wN

=
( 1√

2
(φ+ w) cos θ − ϕ sin θ,

1√
2
(φ+ w) sin θ + ϕ cos θ,

1√
2
(φ− w)

)
,

where

∂z = (cos θ, sin θ, 1), ∂θ = z(− sin θ, cos θ, 0), N =
1√
2
(cos θ, sin θ,−1).

Thus V is an infinitesimal isometry in ISm(Ω, IR3) if and only if φ and ϕ in Hm(Ω)
solve the problem

(4.10)


φz = 0,
ϕθ +

1√
2
(φ+ w) = 0,

zϕz − ϕ+
√
2φθ = 0.

Clearly, (4.7) has a solution if and only if
∫ 2π
0 wdθ = 0. It is easy to check that

(4.10) has a solution (φ, ϕ) in Hm(Ω)×Hm(Ω) if and only if
∫ 2π
0 w1dθ = 0.

We have the following.

Theorem 4.4. If m ≥ 2 and Ω is given by (4.8), then

Hm
is (Ω) = {w0 + zw1 |w0, w1 ∈ Hm(T),

∫ 2π

0
w1dθ = 0 }.

5. Bending of Shells

We shall apply the results in Sections 2-4 to the limit energy functionals of
the Γ-convergence to reduce bending of shells to a one-dimensional problem in the
elliptic case and the parabolic case, respectively.
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Let M be a connected, oriented surface in IR3 with the normal field N . Suppose
that g is the induced metric of the surface M from the standard metric of IR3. A
family { S h}h>0 of shells of small thickness h around Ω is given through

S h = { p | p = x+ zN(x), x ∈ Ω, −h/2 < z < h/2 }, 0 < h < h0.

The projection onto Ω along N will be denoted by π. We will assume that 0 < h <
h0, with h0 sufficiently small to have π well defined on each S h.

To a deformation u ∈ H2( S h, IR3), we associate its elastic energy (scaled per
unit thickness):

(5.1) Eh(u) =
1

h

∫
S h
W (∇̂u)dp,

where ∇̂ denotes the gradient of the Euclidean space IR3. Here, the stored energy
density W : IR3×3 → [0,∞] is assumed to be C2 in a neighborhood of SO (3),
and to satisfy the following normalization, frame indifference, and nondegeneracy
conditions

∀F ∈ IR3×3, ∀R ∈ SO (3), W (R) = 0, W (RF ) =W (F ),

W (F ) ≥ C dist 2(F, SO (3)),

with a uniform constant C > 0.
Suppose Eh(u) ∼ hβ and consider the Γ-limit of Eh(u). In [23], the limiting model

has been identified for the range of scalings β ≥ 4, based on some estimates in [16].
In these cases, the admissible deformations u are only those which are close to a
rigid motion R and whose first order term in the expansion of u − R with respect
to h is given by RV , where V ∈ IS 1(Ω, IR3) is an infinitesimal isometry on Ω.

Let V ∈ IS 2(Ω, IR3). Then there exists a matrix A such that

(5.2) Aτ (x) = −A(x), D̂XV = A(x)X, X ∈Mx, x ∈ Ω.

For β > 4 the limiting energy is given only by a bending term, that is, the first
order change in the second fundamental form of Ω, produced by V ,

(5.3) I(V ) =
1

24

∫
Ω
Q2

(
x, Ξ(V )

)
dg for V ∈ IS 2(Ω, IR3),

where

(5.4) Ξ(V ) = (D̂∗(AN)−AΠ)tan.

In (5.4), D̂∗(AN) is the transpose of D̂(AN), given by

D̂∗(AN)(τ, η) =
⟨
D̂τ (AN), η

⟩
for τ, η ∈Mx, x ∈ Ω.

In (5.3), the quadratic forms Q2(x, ·) are defined as follows:

Q2(x, Ftan) = min
a∈IR3

Q3(F + a⊗N), Q3(F ) = D2W (I)(F, F ).

The form Q3 is defined for all F ∈ IR3×3, while Q2(x, ·) for a given x ∈ Ω is defined
on tangential minors Ftan = (⟨Fτ, η⟩)τ, η∈Mx of such matrices.

It was further shown in [23] that for a certain class of surfaces, referred to as
approximately robust surfaces, the limiting energy for β = 4 reduces to the purely
linear bending functional (5.3). Elliptic surfaces happen to belong to this class [23].
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Moreover, [22] has proved that the limit energy of the range of scalings 2 < β < 4
for elliptic surfaces is still given by (5.3).

Here we focus on the limit energy (5.3) and reduce it from over the space
IS 2(Ω, IR3) to over the space H2

is (Ω) to give mathematical formulas, as in [37].
We now describe the limiting energy formula (5.3) in the common notation in

Riemannian geometry. For simplicity, we restrict ourselves to the case when the
stored-energy function is isotropic (that is to say, W (F ) = W (R1FR2) for all F ∈
M3×3 and all R1, R2 ∈ SO (3)). In this case, the second derivative of W at the
identity is

D2W (I)(A,A) = 2µ|E|2 + λ( t̂rE)2, E =
A+Aτ

2
,

for some constants µ, λ ∈ IR. Let G be a second-order tensor field on Ω. We define

|G|2T 2
x
=

2∑
i=1

G2(ei, ej) for x ∈ Ω,

where e1, e2 is an orthonormal basis of Mx in the induced metric g. We have

Lemma 5.1. Let µ > 0 and 2µ+ λ > 0. For G ∈ T 2(Ω) symmetric,

(5.5) Q2(x,G) = 2µ|G|2T 2
x
+

λµ

µ+ λ/2
tr 2G for x ∈ Ω.

Let k be a nonnegative integer and let T ∈ T k(Ω) be a kth-order tensor field on
Ω. The internal product of X with T is a k− 1-th order tensor field i (X)T, defined
by
(5.6)

i (X)T (X1, · · · , Xk−1) = T (X,X1, · · · , Xk−1) for X1, · · · , Xk−1 ∈ X(M).

Let T0 ∈ T 2(M) be the third fundamental form of surface M , given by

T0(τ, η) =
⟨
D̂τN, D̂ηN

⟩
for τ, η ∈Mx, x ∈M.

A simple computation yields

Lemma 5.2. Let V ∈ IS 2(Ω, IR3) with V =W + wN. Then

(5.7) Ξ(V ) = i (W )DΠ+Π(D·W, ·) + Π(·, D·W ) + wT0 −D2w,

where Ξ(V ) is given by (5.4), D is the Levi-Civita connection of the induced metric
g, and · denotes the position of variables.

Let Ω ⊂M be elliptic and star-shaped with respect to o ∈ Ω such that assumption
(2.30) holds true. We further assume that for any ψ ∈ H3/2(Γ) problem (3.13) has a
unique solution w = λ(ψ) ∈ H2(Ω). By Theorem 3.5, there is a uniqueW = Λ(ψ) ∈
H2(Ω, IR3) which is perpendicular to KF (Ω, IR3) such that V = Λ(ψ) + λ(ψ)N is
an infinitesimal isometry. Then for any V ∈ IS 2(Ω, IR3), we have a formula in the
form of

V =W + Λ(ψ) + λ(ψ)N for W ∈ H2
kf (Ω, IR

3), ψ ∈ H3/2(Γ).

Since dim KF (Ω, IR3) ≤ 3, the limit energy (5.3) of the Γ-convergence becomes a
functional over a one-dimensional space

(5.8) I(V ) = Ĩ(α, ψ) for (α, ψ) ∈ IR3 ×H3/2(Γ).
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Similar situations happen when the middle surface Ω is parabolic. It follows from
Theorems 3.5 and 4.1 that

Theorem 5.3. Let Ω be star-shaped with respect to o ∈ Ω such that

Ω̄ ⊂ expoΣ(o).

If M is parabolic such that condition (4.1) holds and Ω ⊂M , or the middle surface
Ω is elliptic, then the limit energy formula (5.3) of the Γ-convergence reduces to be
a one-dimensional problem.

We shall write out explicit formulas of (5.8) for spherical shells and cylinder shells,
respectively, before ending this section.

Bending of Spherical Shells Let M be the sphere of curvature κ > 0 and let
g be the induced metric of M from IR3. Then the third fundamental form of M is
given by T0 = κg.

Let o ∈ M be fixed. Let ρ(x) = ρ(x, o) be the distance function from x ∈ M to

o in the induced metric g. For 0 < a <
π√
κ
, let

(5.9) Ω(a) = { x | x ∈M, ρ(x) < a }, Γ(a) = { x | x ∈M, ρ(x) = a }.
Let V = W + wN be an infinitesimal isometry on Ω(a). By the formulas (5.7)

and (3.19), we have

Ξ(V ) =
√
κ(DW +D∗W ) + κwg −D2w = −κwg −D2w.(5.10)

In particular, for V =W ∈ KF (Ω, IR3) a Killing field, Ξ(V ) = 0.
By Theorem 3.5, w ∈ H2

is (Ω) if and only if w solves the problem

(5.11)

{
∆w + 2κw = 0 for x ∈ Ω(a),

w = ψ ∈ H3/2(Γ(a)).

Then it follows from (5.10) and (5.11) that

(5.12) tr Ξ(V ) = 0 for x ∈ Ω.

Furthermore, we have

Lemma 5.4. Let V = W + wN be an infinitesimal isometry with w ∈ H2
is (Ω).

Then

(5.13) |Ξ(V )|2T 2
x
=

1

2
∆|Dw|2 + κdivw∇w for x ∈ Ω.

Proof. Recall that the Weitzenböck formula(Theorem 1.27 in [37]) reads

(5.14) |D2w|2T 2
x
=

1

2
∆|Dw|2 + ⟨∆Dw,Dw⟩ − Ric (Dw,Dw) for x ∈ Ω,

where ∆ is the Hodge-Laplacian in the metric g applying to vector fields and
Ric (·, ·) is the Ricci curvature tensor. Since Ric = κg and ⟨∆Dw,Dw⟩ =
−⟨D(∆w), Dw⟩ , we have, by (5.11) and (5.14),

(5.15) |D2w|2T 2
x
=

1

2
∆|Dw|2 + κ|Dw|2 for x ∈ Ω.

From (5.10) and (5.15), we obtain

|Ξ(V )|2T 2
x

= |κwg +D2w|2T 2
x
= 2κ2w2 + 2κw

⟨
g,D2w

⟩
T 2
x
+ |D2w|2T 2

x
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=
1

2
∆|Dw|2 + κ(|Dw|2 − 2κw2)

=
1

2
∆|Dw|2 + κdivw∇w for x ∈ Ω.

□
We define a linear operator Θ : H3/2(Γ(a)) → H1/2(Γ(a)) by

Θψ = wρ,

where w ∈ H2(Ω(a)) is the solution to problem (5.11). Then D(Θ) = H3/2(Γ(a))

for 0 < a ≤ π√
κ
.

Theorem 5.5. Let Ω(a) and Γ(a) be given in (5.9). Then the bending energy (5.3)
of the Γ-convergence becomes the following one-dimensional problem

(5.16) Ĩ(ψ) =
µ

12

∫
Γ(a)

[2ψτ (Θψ)τ − κψΘψ −
√
κa ctg (

√
κa)(|Θψ|2 + |ψτ |2)]dΓ

for ψ ∈ V3/2(Γ(a)), where τ is the unit tangential vector field along Γ(a).

Proof. Let τ = τ(ρ) be the unit tangential vector field along Γ(ρ) for 0 < ρ ≤ a.
Then Dρ, τ forms a frame field on Ω(a). We have

(5.17) DDρDρ = 0, DDρτ = 0,

(5.18) DτDρ =
√
κρ ctg (

√
κρ)τ, Dττ = −

√
κρ ctg (

√
κρ)Dρ.

Moreover, the equation in (5.11) gives

D2w(Dρ,Dρ) = −2κw −D2w(τ, τ)

= −wττ −
√
κa ctg (

√
κa)wρ − 2κw for x ∈ Γ(a).(5.19)

It follows from the formulas (5.13) and (5.17)-(5.19) that∫
Ω(a)

|Ξ(V )|2T 2
x
dg =

∫
Γ(a)

[D2w(Dρ,Dw) + κwwρ]dΓ

=

∫
Γ(a)

[wρD
2w(Dρ,Dρ) + wτ (wρτ − ⟨Dw,DτDρ⟩) + κwwρ]dΓ

=

∫
Γ(a)

[2wτwρτ −
√
κa ctg (

√
κa)(w2

ρ + w2
τ )− κwwρ]dΓ.(5.20)

Finally, we use the formulas (5.20), (5.12) and (5.5) in the formula (5.3) to obtain
(5.16). □

Bending of a Cylinder Shell Let a > 0 and let

(5.21) Ω = { (cos θ, sin θ, z) | θ ∈ [0, 2π), |z| < a }.
Then

∂z = (0, 0, 1), ∂θ = (− sin θ, cos θ, 0).

Let w ∈ H2
is (Ω) be given. By Theorem 4.2,

w = w0 + w1z, w0, w1 ∈ H2(T),

∫ 2π

0
w0dθ =

∫ 2π

0
w1dθ = 0.
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Let W ∈ X(Ω) be such that V = W + wN is an infinitesimal isometry. A simple
computation shows that

W = [

∫ θ

0
(θ − η)w1(η)dη + c1]∂z − [

∫ θ

0
[w0(η) + w1(η)z]dη + c2]∂θ,

where c1, c2 are constants and

Ξ(V )(∂z, ∂z) = 0, Ξ(V )(∂z, ∂θ) = −
∫ θ

0
w1(η)dη−w1θ, Ξ(V )(∂θ, ∂θ) = −w−wθθ.

Using the above formulas, we obtain

Theorem 5.6. Let Ω be given by (5.21). Then the bending energy (5.3) of the Γ-
convergence becomes the following one-dimensional formula

Ĩ(w0, w1) =

∫ π

−π

{µa
3
[
µ+ λ

2µ+ λ
(w0 + w0θθ)

2 + (w1θ +

∫ θ

0
w1(η)dη)

2]

+
µ(µ+ λ)a3

3(2µ+ λ)
(w1 + w1θθ)

2
}
dθ for (w0, w1) ∈ H2(T)×H2(T).
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