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SPACE OF INFINITESIMAL ISOMETRIES AND BENDING OF
SHELLS

PENG-FEI YAO

ABSTRACT. We discuss infinitesimal isometries of the middle surfaces and present
some characteristic conditions for a function to be the normal component of
an infinitesimal isometry. Our results show that those characteristic conditions
depend on the Gaussian curvature of the middle surfaces: Normal components of
infinitesimal isometries satisfy an elliptic problem, or a parabolic one, according
to the middle surface being elliptic, or parabolic, respectively. A problem of
determining an infinitesimal isometry is changed to that of 1-dimension. Then
we apply those results to the energy functionals of bending of shells which have
been obtained as two-dimensional problems by the limit theory of I'-convergence
from the three-dimensional nonlinear elasticity. Therefore the limit theory of
I'-convergence reduces to be a one-dimensional problem in the above two cases.

1. INTRODUCTION

Let M C IR? be a smooth surface and let Q C M be a bounded, open set. A
map V : Q — IR? is said to be an infinitesimal isometry on € if

<DXV,X>:0 for X €M, =€,

where (-,-) is the Euclidean metric of IR® and D denotes the covariant differential
of the Euclidean space IR3. Let m > 2 be an integer. We denote by IS (Q, IR?) all
H™ infinitesimal isometries on 2.

The study of infinitesimal isometries has been a long history, see [34] and ref-
erences there. Their purposes were to establish “infinitesimal rigidity” for some
closed surfaces and their interests were not on the structure of infinitesimal isome-
tries themselves. For a detail survey along this direction, see [34] also.

Our interests in the space IS™((, IR?) of infinitesimal isometries are motivated
by the recent lower dimensional models for thin structures through I'-convergence,
see [10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 26, 27, 29, 32, 35], and many
others. The minimization of quadratic integral functions over the space IS 2(Q, IR?)
of infinitesimal isometries arises in the linear bending theory. In addition, based on
some quantitative rigidity estimate due to [16], [23] demonstrates that the first term
in the expansion u— R, in terms of the thickness, belongs to the space IS%(Q, IR?) of
infinitesimal isometries, where u is a admissible deformation and R is a rigid motion.
Moreover, as shown in [22, 23, 24], the some limit energy functionals of shells by the
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I'-convergence are also over the space IS?2(Q, IR3) of infinitesimal isometries. Thus
the space IS?(€, IR?) naturally plays a crucial role in the analysis of shells. The
aim of the present paper is to understand the space IS (), IR3).

We now give heuristic overview of our results, whose precise formulations will be
presented in the sections later. Let N be the unit normal field of surface M and let
X(2) be all vector fields on Q. For V € H™(Q, IR3), we decompose as

V=W+wN for WeX(Q), weH™).

We look for conditions on functions w such that there are H™ vector fields W € X(Q2)
to guarantee V € IS™(Q, IR3).

Let H1?(S) denote all functions w € H™(Q) such that there are H™ vector
fields W € X(€2), which are perpendicular to all Killing fields, to ensure that V =
W + wN € IS™(Q, R3). Section 2 shows that if w € HT(), then w satisfies
equation (2.25). Moreover, if

(1.1) Q) C exp, X(0),

then equation (2.25) is also sufficient (Theorem 2.5), where o € €2 is such that € is
star-shaped with respect to o and exp, ¥(0) is the interior of the cut locus of o.

The type of equation (2.25) is subject to the Gaussian curvature function: It is
elliptic, or parabolic according to ellipticity, or parabolicity of the middle surface 2,
respectively. The two cases are studied, respectively, in Sections 3 and 4. We have
shown that without assumption (1.1) equation (2.30) is still sufficient for a closed
spherical shell (Theorem 3.11) but it is not for a cylinder (Theorem 4.2) or a conical
shell (Theorem 4.4).

Our results show that the problem to determine whether w € H?(Q) is actually
that of 1-dimension in the above two types, respectively. As a consequence of the
above reults, we show that HY'(Q2) N C*°(f2) is dense in HI}() in the norm of
H™(Q) if assumption (1.1) holds (Theorems 3.6 and 4.3): Such an issue is actually
not trivial. In general, even though € is elliptic, an element V € ISQ(Q, IR?) may
not be approximated by smooth infinitesimal isometries. An interesting example,
discovered in [9] (also see [34]), is a closed smooth surface of non-negative curvature
for which the infinitesimal rigidity holds true: All C*° infinitesimal isometries are
trivial. But there is a C? non-trivial infinitesimal isometry. Therefore HZ (2) N
C*>(Q) is not dense in HZ (2) for this surface.

In Section 5 we apply the above reults to some limit energy of I'-convergence.
Then the limit energy functional is changed to a one-dimensional formula over
a function space with one variable (Theorem 5.3). In particular, we present the
explicit formulas of the limit energy functionals for a spherical shell (Theorem 5.5)
and a cylinder shell (Theorem 5.6), respectively, for nonlinear isotropic materials.

Furthermore, we motion that the strain tensor equation and it’s applications in
elasticity for the hyperbolic surface have also been studied in [39, 40, 41, 42].

Here we do not use the traditional methods where everything is done in a coordi-
nate. We view the middle surface 2 as a 2-dimensional Riemannian manifold with
the induced metric to make everything coordinate free as far as possible. When nec-
essary, some special coordinates are chosen to simplify computations as in modelling
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and control for the classical thin shells, see [1, 2, 3, 4, 5, 6, 7, 14, 19, 25, 36, 37, 3§]
and many others.

2. INFINITESIMAL ISOMETRIES

Let M be a surface with the induced metric g from IR3. Let N be the unit
normal field of M. Let  C M be an open set. We shall give some characteristic
conditions on a function w for which there exists a vector field W such that V =
W + wN is to be an infinitesimal isometry (Theorem 2.5).

Let II be the second fundamental form of M. Let m > 2 be an integer. Let
IS™ (9, IR?) be all H™ infinitesimal isometries on Q. It is easy to check that V =
W 4+ wN € IS™(€, IR?) is an infinitesimal isometry if and only if, W, w are H™,
and

(2.1) DW(X,X)+uwIl(X,X)=0 for XeM,, z€Q,

where D is the Levi-Civita connection of the induced metric g. In particular, if
w =0 and V = W is an infinitesimal isometry, then W is said to be a Killing field.
Let

(2.2) KF (Q, IR?) = { all C* Killing fields on Q2 }.
Then [30]
dim KF (M, IR?) < 3.

Let HT!(€2) denote all functions w € H™(2) such that there is a H™ vector field
W € X(9), which is perpendicular to all Killing fields in KF (€2, IR?), to ensure that
V=W +wN € IS™(Q, R3).

Let 0 € M be fixed and let exp, : M, = M be the exponential map in the metric
g. For any v € M, with |v| = 1, there is a unique ty(v) > 0 (or to(v) = oo) such
that the normal geodesic (t) = exp, tv is the shortest on the interval [0, to]. Let

C(o) ={to(v)v | ve M, |v|]=11},
Yo)={tv|ve M, |v|]=1, 0<t<ty(v) }.
The set exp, C(0) C M is said to be the cut locus of o and the set exp, ¥(0) C M
is called the interior of the cut locus of o. Then
M = exp, (o) Uexp, C(0).

Furthermore, exp, : X(0) — exp,X(0) is a diffeomorphism and C(o0) is a zero
measure set on M,. Then exp, C'(0) is a zero measure set on M since it is the image
of the zero measure set C(0), that is, exp, X(0) is M excluding a zero measure set.

We introduce the polar coordinate system at o € M as follows. Let e1, eo be an
orthonormal basis of M,. Set

(2.3) o(0) = cosfey +sinfey for 6 € [0,27).
Consider a family of two-parameter curves on M given by
5(t,0) = exp, to(0) for to(0) € X(o).

Then

0 0
(2.4) Ot = 5.8(t.0) = expo, 0(6), 90 = 73(t,6) = t exp,, 5(6)-
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In particular, the classical Gauss-Jacobi theorem yields
g=dt?+ f2(t,0)d#* for x=exp,to(h) € exp,X(0),
where f(t,0) is the solution to the problem
o5 {(fute) s st 11(00) o,
f(0,0) =0, f(0,0) =1,

where & is the Gaussian curvature function on M and k(t, 0) = x(§(¢,6)) [30].
Let

1
(2.6) T=0t FE-= ?80 for x € exp,X(0) — {o}.
Then T, E is a frame field on exp, X(0) — {o}. We have
(2.7) DyT =0, DpE=0, DpT = ";fE DpE = —ff

for = € exp, X(0) — {o}.
We suppose that o € 2 is given such that € is star-shaped with respect to o. Let
the frame field 7', E be given in (2.6). Let

W =o(t,)T + ¢(t,0)E for x=7F(t,0) e QnNexp,X(0).

In the sequel all our computations are made on the region Q Nexp, ¥(0). A simple
computation shows that the relation (2.1) is equivalent to

o+ wll(T,T) =0,
(2.8) for — frd+ g + 2fwll(T, E) = 0,
' ¢o + frp + fWII(E,E) =0,
©(0) = (W,0(0)), ¢(0)=(W,5(0)).

Let ¢ solve the first equation in (2.8) with initial data ¢(0) = (W, 0(6)). Then

t
(2.9) Y = <W0,0’(9)> — / wHHds,
0
and ¢ solves the second equation in (2.8) if and only if it satisfies
b1 + ko = P(w),
2.10 .
(210 | o i,
where
(2.11) P(w) = —2willi9 + wollj1 — wlli9; for z € Q,

w1 = <D’LU,T> N wo = <DW, E> s ng = H(T, E),
Hll = H(T7 T)u H121 = DH(T) Ev T)7

etc. In the computation of (2.10) the formula (2.5) and the one below have been
used

(T, E)]; = DI(T,E,T) +1I(DyT,E) + II(T, DrE) = I19;.
Furthermore, differentiating the third equation in (2.8) with respect to the vari-
able t and using the first equation of (2.8) yield

(212) 0= ug+ fup + flwlI(E, E) — wIl(T,T)] + flwIl(E, E)]; for t> 0.
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Letting t — 0 in (2.12), we obtain another initial data for problem (2.10)
(2.13) ¢:(0) = —w(0)l(a(6),5(0)) + co,
where ¢g is constant.

Let k be an integer. Let T%(M) be all tensor fields of rank k on M. Let

Ryxy : TF(M) — T*(M)

be the curvature operator where X, Y € X(M) are vector fields. For K € T*(M),
we have the following formulas, called the Ricci identities,
(2.14) D?’K(-+,X,Y)=DK(-++,Y,X) + (RxyK)(---).

The above formulas are very useful when we need to exchange the order of the
covariant derivatives of a tensor field.

Let M be orientable. Let X be a vector field on M. We define a vector field QX
on M by

(2.15) QX =(X,ea)e1 — (X,e1)eq for z€Q,

where e, eg is an orthonormal basis of M, with positive orientation. It is easy to
check that the right hand side of (2.15) is independent of the choice of the positively
oriented orthonormal basis eq, es. The operator @ plays an important role in strain
tensors for the hyperbolic surface, see [39, 42].

We seek some conditions on w such that problem (2.1) has a vector field solution
wW.

Lemma 2.1. Let M be orientable. Let V. =W + wN be an infinitesimal isometry
of Q. Then

(2.16) <D2w,Q*H> +wrtrll = (Vk, W) for x€Q,
where @Q is defined by (2.15), k is the Gaussian curvature function, and V, tr are

the gradient, the trace of the induced metric of M, respectively.

Proof. Let o € Q be any point. Then there is ¢ > 0 such that the geodesic ball
centered at o with the radius ¢ is contained in €. Therefore, the systems (2.8) and
(2.10) make sense for (¢,0) € [0,¢) x [0, 27).
From (2.10) and using the symmetry of DII, we have
bug + Koo + ko = —2(willi2)g + (walli1)g — (wilia1)g
= —2f(wi2ll12 + willi22) — 2fi[wallig + w1 (T2 — 11)]
+f(wa2llyy + wolly12) + fi(2wallig — wqllyy)

— f(wallyor + wlli212) — frw(2lla2; — Ii11)

= f(wazllin — 2wi2llia — 2wiTli2s — wlliai9)
(2.17) + fe[wi (11 — 21l2g) + w(ll111 — 2Ma21)],

which yields
¢((93) (0) = waollyy — 2wyl — 2wiIl129 — wllig12 + [wi (111 — 2II29)

+w(ITi11 — 2Ma1)])'(0) — Kpp(0) — K'g(0) — K (0)
= w1 (1111 — 2Ia2) + woollyy — 2wi2Ily2 + 2wy (111 — 31a21)



208 PENG-FEI YAO

+w(Ili111 — 32211 + 26122 — II41)]
(2.18) —(Vk,5(0)) (W,5(0)) + (Vk,0(0)) (W,0(0)),

where the superscripts ' and (3) denote the first derivative and the third derivative
with respect to variable ¢, respectively, and the following formulas have been used

1212 = o011 + Rpp DT, E) = aon1 + k(111 — Ilso) (by (2.14)),
qb’g(()) = ’LUI{,(HH - Hgg).
On the other hand, using equation (2.5) and the first equation in (2.8), we obtain
(fi)®(0) = [fWo+ 3@ + 370" + /o) (0)
= —2x"p(0) — 3k(0)¢¢'(0) + ¥ (0)
(219) = -2 <VI€, 0'(9)> <W/, 0'(0)> — w11H11 — 2U11Hlll + U}(Slﬁﬂll — Hllll)
at o. Moreover, we have
(fwITa)®(0) = f@(0)w(0)Tlas(0) + 3(wTls)" (0)
(2.20) = 3wy1lls9 + 6w11lo9 + w(3H2211 — KHQQ) at o.
Finally, using the third equation in (2.8), we obtain from (2.18)-(2.20)
0 = (do + frp + fwlly)®(0)
= wy11lag — 2wiallys + woollyy + wk(Ilyy + Iga)
—(Vk,6(0)) (W,5(0)) — (Vk,a(0)) (W, a(0))
= <D2w, Q1) + wetrIl — (Vk, W) at o.

Let s > 0 be given. Let ®y(t) and P(¢, s) solve the problem

Do (t) + k() Po(t) =0 for ¢>0,
(221) { D0(0) =1, Bor(0) =0,
and
Dy (t,s) + k(t)P(t,s) =0 for t>s,
(2.22) { O(s,s) =0, Dy(s,s)=1,

respectively. Note that
d(t,0) = f.

Let w be a function on Q and W, € M,. Let
t

(2.23) ¢ = Po(t) (Wo,5(0)) — w(O)H(O)(é(9),U(9))f+/ O(t, 5) P(w)(s)ds,
0
where P(w) is given by (2.11). Then ¢ solves the problem (2.10) and (2.13).
We denote by H7} (£2) the set of all functions of H™(£2) which are in the form of
(2.24) w=u(z)+ (W, N)(z) for zeQnexp,X(o),
where W, € M, are constant vectors and u € H™ () satisfies the problem

(2.25) Wou + u(0)ll(0)(c(0),5(0))kef =0 for =z € QNexp,X(0),
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where
¢ t
(2.26) RAu= <D2u, Q*II) + ur tr I + /11/ ullyyds — HQ/ O(t,s)P(u)(s)ds,
0 0

k1= (Vk,T), and ko = (Vk, E) .

Remark 2.2. Since () is star-shaped with respect to o, the imbedding theorem
implies that for m > 2

(2.27) lu(o)| < C(llullgm @) + lullzzr)) for we H™(S),

where I' = 02 is the boundary of 2. Thus the second term in the left hand side of
(2.25) makes sense for u € H™ () with m > 2. In general the above estimate is not
true for m = 1.

Remark 2.3. As a constant vector W, on 2, or a translation displacement of €2,
(W,, (W,, N)) is a trivial infinitesimal isometry where W, = W, + (W,, N) N.

Remark 2.4. The formula (2.25) depends on the choice of the point o € Q. If the
point o can be chosen to be an umbilical point of M, then (o) > 0 and

I1(0) = v/x(0)g,
which yields
II(o)(c(0),5(8)) =0 for 6 € (0,2n].
In this case the equation (2.25) becomes

(2.28) A,u=0 for €.

Another case for which (2.28) holds true is that o € €2 can be chosen such that
ko = 0 for x € Q.

We have the following.

Theorem 2.5. Let M be orientable and let Q be a star-shaped domain with respect
to a point o € Q. Let m > 2. Then

(2.29) H7(Q) C HY ().
Moreover, if

(2.30) Q C exp, X(0),
then

(2.31) H(Q) = HI ().

Remark 2.6. From (2.7) vector fields 7" and E have singularities on the cut locus
exp, C(0). Without assumption (2.30) formula (2.31) may not be true. Later we
will show that if €2 is a closed spherical shell, formula (2.31) holds (Theorem 3.11)
but it is not true if Q is a cylinder (Theorem 4.2) or conical shell (Theorem 4.4).

Proof of Theorem 2.5. Let w € H™(Q) be given. Let a vector field W L KF (Q, IR®)
be such that V = W 4+ wN is an infinitesimal isometry. Let

W(o) =W (0)+ (W(o),NYN for zeQ,
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where W (o) = W (o) — (W (o), N) N. Let
U=W—-W(), u=w—(W(),N) for zeQ.
Then (U, w) is an infinitesimal isometry field with U (o) = 0. Using (2.9) and (2.23)
in (2.16) where (W, w) is replaced by (U,u), we have formula (2.25) for u. Thus
w e H (). B
Next, suppose (2.30) is true. Then the vector fields 7" and E are smooth on €2.
Let uw € H™(2) solve problem (2.25). It will suffice to prove that there is a vector

field U € X(Q2) such that V = U + u/N is an infinitesimal isometry. We define
U=T+¢E for zcQ,

where
¢ t
(2.32) p= —/ ullinds, ¢ = —u(o)ll(a(8),0(0))f +/ O(t,s)P(u)ds.
0 0
Then equation (2.25) means that

(2.33) (D?u, Q*1I) + urtr Il = (Vk,U) for = €.

Clearly, ¢ and ¢ satisfy the first equation and the second equation in (2.8). To
complete the proof, it remains to show that ¢ and ¢, given by (2.32), solve the third
equation in (2.8). For this end, we let

n=¢o+ fro+ fullpy for ze€Q.
Using (2.5), (2.17), and (2.33), we compute
0" =g+ fPo+ 21" + 1o + flullpe)” +2f (ullzs) + f"ull
= ¢y — (fr' + f'r)p = 2fwg’ + f'" + f(ullaz)” + 2f' (ullgz)" — frully
= ¢y + fl(ullze)"” — kullay — 260" — k'] + f'[2(ulls2)” — K + "]
= — (koo + kpg + fr' o+ frp) + fl(ullze)” — kullyy — 2k¢']
+f[2(ulla2)" + ¢"] + fluellin — 2uq2llis — 2uillioe — ullyiao]
+ f'[ur (1y — 20022) + w(Ili11 — 20119)]
= —[f (V& U) + k(g + f'¢ + fullps)] + f((D?u, Q*II) + ur trII)
+f (ur 1y + ullyyg + ¢”)
= f(<D2u, Q*H> +uktr Il — (Vk,U)) — kn + f'(ullyy + ')
(2.34) = —kn,
where the following formula has been used
Rg, g, I1(E1, Ey) = k(1111 — g)(by (2.14)).
Moreover, we have the initial data
1(0) = ¢9(0) +©(0) =0, 7'(0) = ¢(0) + ¢'(0) + u(0)Ilaz(0) = 0,

which imply by the equation (2.34) that V' = U + uNN is an infinitesimal isometry.
Then equations (2.8) hold true where w is replaced with u. In particular,

(2.35) ot +ull(T,T) =0, ¢p+ fro+ full(E,E)=0 forall z €.
Thus u € H™ () implies that ¢, ¢ € H™(), that is, V € IS™(Q, IR3). O
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Remark 2.7. If equations (2.35) just hold almost everywhere on €, the regularity
of w € H™(Q2) may not imply U € H™(£, IR?), see the proof of Theorem 4.2 later,
where equation (4.7) has a solution (¢, ¢) not in C°(2) x C°(Q2) when w € H™(Q)
with [Z7 wdf # 0.

If surface M is given as a graph, an infinitesimal isometry function w € H{?(2)
can be written as an explicit formula in the Cartesian orthogonal coordinate system.
Let

(2.36) M = {(x,h(z))|z = (z1,22) € R?*},
where h is a smooth function on IR?. Let
(2.37) V(p) = (u1,ug,u) for pe M.

We then have

Theorem 2.8 ([31, 34]). Let Q C IR? be a star-shaped with respect to a point
0 € Q. Then there are functions uy, ug such that V = (u1,us,u) is an infinitesimal
1sometry on

Q= {(z,h(z))|z €}
if and only if u solves the problem

(2.38) div A(z)Vu =0 for ze,

where div and ¥V are the divergence and gradient of IR® in the Fuclidean metric,
respectively, and

(2.39) Az) = < fiozes  —haves ) for zeQ.

_hxlarz hx11’1

3. ELLIPTIC SURFACES

Let M be a surface in IR3. M is said to be elliptic if the fundamental form II
is positive for all x € M. Assume that M is elliptic throughout this section. Then
problem (2.25) will become an elliptic one (Theorem 3.3). We introduce another
metric on M by

g=1 for ze€ M.
Proposition 3.1. Let M be elliptic. Then for w € C*(M),

(3.1) RAW + ZLQ*H(VK, Vw) = (D*w,Q*I) for z€ M,
K

where Ay is the Laplacian of the metric g = Il and Q : X(M) — X(M) is the

operator, given by (2.15).

Proof. Let o € M be fixed. Consider the polar coordinates in the induced metric g
ot=T, 00=fE.

Note that the above (9t, 09) is no longer the polar coordinates in the metric g = II.
In the coordinate system (0t,00), we have

G = gr1dt* + §1o(dtdf + ddt) + Goodh?,
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A . Iy fIe A 2 A1 1 [l —fIlip
G = ( ) - C detG=rf? Gl= .
Gij ( S I > ¢ gl kf2\ —flhy I
Moreover,
Wi = fwiz + flwa, weg = frwas — fflwr + fowo.

Using those formulas, we obtain

11 11 11 11
KAnw = ff [(\ffﬁwt) (\/Effljfwt)e - (\/Ef,j}?we)t + (\/Eff}éwe)e]
= (D*w,Q"TL) + {f[(f\r/lzz)t - (1\1/%2)9] — 11wy — 2§H12w2
11 11
HVRI )= (SR + Bt
= <D2w7 Q*H> =+ i(/ﬁgnlg — /<;1H22)w1 — foHm'LUQ
f/

1
+[2 7 =19 + ?(H1H12 — kolliy)]we

= <D2w, Q*H> — %H(QV&', QVw).

Let 0 € Q be fixed. For w € H™(Q), we let

(3.2)  Bw=Bow+ w(o)%ﬂ(a(@),d(@)) f for z€Qnexp,¥(o),

where
1 ., k1 !
Bow = —Q'II(Vk, Vw) + wtr Il + / wlliids
2K? Kk Jo
t
(3.3) —% O(t,s)P(w)(s)ds for x € QNexp,2(0).
0

Remark 3.2. Let o € Q. Since Q2 Nexp, C(0) has measure zero and
Q=[QNexp,X(0)] U[Q2Nexp,C(0)],
Bw is defined by (3.2) on 2 almost everywhere.
Consider operator ,, defined by (2.26). It follows from (2.26) and (3.1) that
(3.4) A,w + w(o)koll(0(0),6(0)) f = k(Anw + Bw).

Since for W, € M,, (W,, (W,,N)) is a trivial, smooth infinitesimal isometry
where Wy = W, + (W,, N) N, it follows from (3.4) that

Theorem 3.3. Let m > 2. Let Q C M be elliptic and star-shaped with respect to
o €. Then

(3.5) ) ={w|we H*(Q), Aqgw + Bw =0 }.
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We consider the structure of solutions to the equation Agw+Bw = 0 in H™(Q).
For this purpose, we suppose that assumption (2.30) holds true. This assumption
guarantees that I # () and operator (3.2) satisfies

Bw e H™ Q) for we H™(Q).

Instead of the usual inner product of L?(12), we use the following inner product
on L?(1)

(w,v)2 Q) = / wvdg  for w, v € L*(Q).
. Q

We denote by L% () the above space. It is well known that the negative Laplacian
operator —Ay on 2 with the Dirichlet boundary condition is a positive selfadjoint
operator on L% (Q) with D(An) = H%(Q) N H(Q). Moreover,
(3.6) Ar:  H*Q)NHH(Q) — L*(Q)
is an isomorphism since I" # ().

Since Agtw € H?(Q) N HY(Q) for w € L2(Q), using (3.3) and assumption (2.30)
we have the following estimates
”%OAﬁleLQH(Q) < CllAG wlg) < ClAT Wl g2 < Cllwl 22 (o) for w € L (),
which yield
Lemma 3.4. Let assumption (2.30) hold true. The operator B,Ag" : LE(Q) —
L%(Q) is a compact operator.

Let 6(0) be the Dirac function at o. Then for w € L%(f2), by the imbedding
theorem we have

[(AF'6(0), w) 2 0| < el(Ag'w)(0)] < el Ag'wl o) < ellwll 2 q).

which imply that A;'6(0) € LE(9Q). Since the second term in (3.2) is an operator
of rank one, BAL : LE(Q) — LE(Q) is also a compact operator.

Consider the operator Ay + B with the domain D(Ap + B) = H?(Q) N HL(Q).
Denote by B* the adjoint operator of %6 with respect to the inner product of L%(Q)
Then

(3.7) B =3+ (0,500, ), 00,
and D(Ap + B*) = H2(Q) N HE(Q). Let

(3.8) Vo($2) = {0 | € HHQ) NHY(S), Anp+Bp=0},
(3.9) Vo () = { | € HA(Q) N H(Q), Anp+ B9 =0},

It follows from Lemma 3.4 and the formula (3.7) that

AR = (BT + (2T ), 00D, ), AF'0(0)

L%(Q) — L%(9) is a compact operator. By the first Fredholm theorem [18], Uy (f2)
and Y. (2) are subspaces of finite dimension and dimUy(Q2) = dim V. (2). Let

mmfl/Q(F) — {’l/] c Hmfl/Z(I‘) ’ (¢7¢V)L%(F) = 07 (TS %0*(9) }



214 PENG-FEI YAO

Theorem 3.5. Let m > 2. Suppose assumption (2.30) is true. Then w € HT ()
if and only if w has a form of

A~

(3.10) w = ¢+ W,
where ¢ € V() and W is given by

(3.11) W= wo — Ay (I +BALY) By,
where wy € H™ () is a solution to problem

{AHwO—O for xe€Q,

(3.12) wog =1 for xel,

for some o € Y™1/2(T),
Proof. We use induction in m > 2. Let m = 2. By Theorems 2.5 and 3.3, w € HZ ()
is given by (3.10) if and only if @ € H?(2) solves problem

{Anw+%w:o for x € Q,

(3.13) w=1vy for xzel,

where 1) = w|p € H32(T"). Let wo € H?(Q) be the solution to problem (3.12) and
let v = W — wp. Then problem (3.13) is equivalent to solve

(3.14) Anv + Bv = —Bwg for some v € H*(Q) N HF(Q).

Let u = Aqv. Then problem (3.14) is the same to problem

(3.15) u+ BALu = —Bwy for some u € LE(NQ).

By the second Fredholm theorem [18], problem (3.15) is solvable if and only if
(3.16) (Buwo, )z =0

for all ¢ € U where

(3.17) T ={peLi(®]e+ (BAL) =0}

It is easy to check that
U = By, () = {p € HA(Q) N HY(Q) | A + B = 0},
Thus,
(Bwo, ©)r2 () = (wo, B ¢) 12 ) = —(wo, Anp) 12 (o) = — (¥, v) 2 (1)

for all ¢ € By, (). It follows from (3.16) that problem (3.14) is solvable if and only
if ¢ € V3/2(T).

Suppose the equivalent relationship holds true for some m > 2. We prove it is
true for m + 1. Let @ be given by (3.11) and (3.12) for some ¢ € 0™ 1/2(T"). Since
HT Q) € H(Q), it suffices to show w € H™+1(Q). By the induction assumption,
w € H™(Q). In addition from (3.12), wg € H™(Q). Thus, v = @ — wg € H™(Q).
By (3.14), we obtain

[l m+1 (@) < ClIBY + Bwol| gm-1(0) + [0l 5m ()],
which implies @ € H™(Q). The proof is complete. O
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From the proof Theorem 3.5 we have
(3.18) ]| () < el ppmrjzry  for o € BMVAT),

Thus, if 1 € ~/2(D)NC®(T), then w € HT(Q)NC(K). Since T—/2(D)NC(T)
is dense in V™~ 1/2(I"), estimate (3.18) yields the following density result.

Theorem 3.6. Let m > 2. Suppose assumption (2.30) is true. Let  C M be
elliptic which is star-shaped with respect to o € Q. Then the strong H™(Q) closure

of
Hig(2) N C=(Q)
agrees with H'(2).

Remark 3.7. If Q Nexp,C(0) # (), the term Bw may have singularities on Q N
exp, C(0). Thus estimate (3.18) may not be true. An interesting example is given in
[9] (see [22] or [34]), where 2 is a closed smooth surface of non-negative curvature for
which C*° infinitesimal isometries consist only of trivial fields, whereas there exist
non-trivial C? infinitesimal isometries. Therefore HZ (2) N C*°(£) is not dense in
H? (Q) for this surface.

By Theorem 3.5, if Uy(2) = {0}, an infinitesimal isometry function w € H{? ()
is completely given by its boundary trace w € H™ 1/ 2(T"). However, in general
Up(Q2) # {0} even for a spherical cap, see Theorem 3.8 later.

A Spherical Cap Let M be a sphere of constant curvature x > 0 with the
induced metric g from IR3. Then the second fundamental form of M is given by

(3.19) I = kg.
Then
VEATW = Aw, Bw = 2Vkw,

where A is the Laplacian of M in the induced metric g from IR3.
Let 0 € M be given. Let p(z) = p(x,0) be the distance from x € M to o in the
induced metric g of M. Set

Qa) ={z|zeM, p(x)<a} for 0<a<——.

N

Then for 0 < a < i, Q(a) is a spherical cap with a nonempty smooth boundary

NG
P(a) = {x]z € M, p(z) =a},
where assumption (2.30) holds true. It follows Theorems 2.5 and 3.3 that w €
H(Q(a)) if and only if w € H™(Q) satisfies problem

(3.20) Aw +2kw =0 for z € Qa), O<a<——.

NG

Moreover,
o(2(a)) = Vo.(Ua)) = {¢ € H*(Ua)) | Ap + 2k = 0, plr@) =0}
We have the following. Its proof is omitted.
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Theorem 3.8.

T
By (2 =10 0 —
o) 0((a)) = {0} for ; a< 2\/@
L <a< .
Do) £ {0} for T
Remark 3.9. The relations (3.21) mean that, for the first eigenvalue A;(a) of —A
on Q(a) with the Dirichlet boundary condition on I'(a),

A 2k for O
1(a) > 2k for <a<2f
Ai(a) =2k for <a<
\/> ’\/7
A Closed Spherical Shell For simplicity, we assume that {2 = M is the unit
closed spherical shell. By Theorem 3.3, for m > 2,
(3.22) mQ) ={w|we H*Q), Aw+2w =0},

which is the subspace of eigenfunctions of —A corresponding to the eigenvalue 2. It
is well-known that H7} (€) is finitely dimensional and

m(Q)=H? (Q)=C%(Q) forall m>2,
Let 0 € Q be fixed and m > 2. We have
Theorem 3.10.
(3.23) m(Q2) = span{ cost, sintcosf, sintsinf }.

Proof. In the polar coordinates (t, ), we have

(324.) Wit + ff‘wt + f2
which imply that wg € H7} (Q) for w € H7} (2). Moreover, the operator A :
H?T () — H7Y (Q), given by

Aw = —wpg for w e HY (),

—weg +2w =0 for we H} (Q),

is a self-adjoint, nonnegative operator in the norm of L?(Q2). Thus, all the eigen-
functions of A span H7} (Q).

Next, we compute the eigenfunctions of A. Let w € H7} (£2) be such that Aw = 0.
From (3.24), w satisfies

(325) fwtt + ftwt + 2fw =0 for 0<t<m.

It follows from (3.25) that w:(0) = 0 since f(0) = 0 and f;(0) = 1. Thus, equation

(3.25) has a dimensional subspace of solutions in L?(0, 7) with Aw = 0. In particular,

w = cost € HY} () is an eigenfunction of A corresponding to the zero eigenvalue.
Let A > 0 be an eigenvalue of A. Then its eigenfunctions have the form of

w=a(t)coskl, or w = «(t)sinkb,
where k& = /X is an integer. Using the relation —wgy = Aw in (3.24), we obtain
(3.26) 2" + ffla' +(2f2=XNa=0 for 0<t<m.
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Setting t = 0 in the above equation yields «(0) = 0. Moreover, after differentiating
the above equation, we let t = 0 to have (1 — X)a/(0) = 0. Thus equation (3.26) has
a nonzero solution if and only if A = 1 and o/(0) # 0. Then a linearly independent
solution of (3.26) is «(t) = sint, where A = 1. Thus, we obtain (3.23). O

For a closed spherical shell, assumption (2.30) fails. However, we still have the
following.

Theorem 3.11. Let m > 2 and o € Q2. Then
Hig () = H, ().
Proof. The proof consists of a simple computation by (2.8) and (3.23) as follows.
Let
Q= { (21,29, 23) € R |23 4+ 235 + (x3 — 1)> =1},
and o = (0,0,0). Then

T= (0(9) cost, Sint), E = (6(9), 0), N = (a(&) sint, —cost),

where o(0) = (cos@,sin@).
(1) Let w = cost. The corresponding infinitesimal isometry is
V= (ay(e) sint,—l).
Then A
DxV =AX for X €, =z,

where
-1

0
A=110
00

o O o

that is, V' is trivial.
(2) For w = sint cosf, or sintsin @, the corresponding infinitesimal isometry is

V =(1,0,0), or (0,1,0),

respectively. O
It follows from the above proof that

Corollary 3.12 ([31]). Let m > 2. For the unit closed spherical shell Q, all
H™(Q, IR?) infinitesimal isometries are trivial.

4. PARABOLIC SURFACES

A surface M is said to be parabolic if
k=0, II#0 forall ze M.

Let M be parabolic and orientable. Let m > 2. It follows from equation (2.25) that
w e HY (M) if and only if w € H™(M) solves the problem

<D2w,Q*H> =0 for ze€ M.
We assume that there is a vector field E' € X(M) such that
(4.1) DN =0, |E|=1 for ze M.
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Let pg € M be given. We consider the parabolic coordinates (¢, s) on M as follows.
Let curves r and ¢ : IR — M be given by

{f(t) =E(r(t)) for te R,
r(0) = po,

e

((s) =

0)
respectively, where operator @ :
two-parameters families a(t, s) and

da
{(%(t $)= E(a(t,s)) for teR,

and

QE(¢(s)) for se R,

Po,

M, — M, for p € M is given by (2.15). Let
B(t, s) be given by

a(0,s) = ((s),
and
{ gf(t,s = QE(B(t,s)) for se R,
¢(t,0) = r(t),

respectively. Then
alt,s) = B(t,s) for (t,s)e€ IR?

Oa op Oa

Ot = 5-(t,s) = B, 9s = o=(1,5) = Q- (1, 9).

We have the following.

Theorem 4.1. Let M be a parabolic surface and orientable and let m > 2.. Let
(t,s) be the parabolic coordinates on M. Then

(4.2) m (M) = {wo(s) + wi(s)t | w1, wo € H(IR), t € R }.

Proof. Let w € H7} (M) be given. Consider the frame field £y = E, Fy = QE. By
(4.1), we have

Dgidt = Dg,0t + 11(dt, Ot)N = %22 (t,s)
Foate! Oa 0 0? 0 0
(G 09 5 ee)) Gt + (G 00, 5 0e)) 5 (0)

O*a
+<3752(t78)7N>N
100« 20« 10 /o« Jda ap
=50 E(ta s) o = () + 20t <8t<t’ 3)7Q88 (t, 3)> 83( s)
0 /o«
(4.3) o < 5 (1:9), N>N — 0.
It follows from (4.1) and (4.3) that

0 = (D*w,Q*II) = D*w(E, B)II(QE, QE) = ?;;UH(QE, QE).

Since II(QFE, QF) # 0, we have the formula (4.2). O
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A Cylinder Consider a cylinder
M ={(z,2) |z = (z1,22) €ER* || =1, 2€ R}.
Then
N = (z,0).
Let £ = (0,0,1) = 0z. Then
DpN =0, |E|l=1.
Consider the parabolic coordinates (z, ), given by
(z,2) = (cosB,sinb, z).
Let b > 0 be given and let
(4.4) Q={(z,2)||z| =1, |z2|<b}, T={z|zecR? |z|=1}.
Then, by Theorem 4.1,
(4.5) m () = {wo + wrz | wy, wy € H™(T), || < b}.
We have the following.

Theorem 4.2. For m > 2,

2m
(4.6) Hqg(n):{w]weﬂgg(m,/ wdg =0},
0
Proof. By Theorem 2.5, H(Q) C H7} (2).
We have

0z =(0,0,1), 00 = (—sinb,cosf,0), N = (cosf,sinb,0).
For w € H} (), let
V =90z 4+ ¢00 + wN = (—¢sinf + wcos b, pcost + wsin b, ).

Then V is an infinitesimal isometry in IS ™ (£, IR?) if and only if ¢ and ¢ in H™ ()
solve the problem

v, =0,
(4.7) ¢ +w =0,
g+ ¢, = 0.
Clearly, (4.7) has a solution in H™(f) if and only if fo% wdh = 0. O

Remark 4.3. Let 0 < ¢ < 27. If the middle surface is given by
Q= {(cosb,sinh,z)|0<0<2mr—e¢, |2| <b},
then assumption (2.30) holds and, by Theorem 2.5,
HZ(Q) = HY () ={wy + zwy |wy, w1 € H™(0,2m —¢€), 2| <b}.
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A Conical Surface Let
M ={(z,2) | |z| = |2|, = (z1,20) € R? z€ R }.

Then
1 =z

N =D

Consider the parabolic coordinates (z,6), given by

Eh

(z,2) = z(cosf,sinb, 1).
Let b1, bo > 0 be given and let
(4.8) Q={(z,2) | |z|=2, bi<z<by}, T={z|zcR? |z|=1}.
Since ﬁaZN = 0, we have from Theorem 4.1
(4.9) b (Q) ={ wo+wiz | wo, wy € H™(T), by <z <by }.

By Theorem 2.5, H{?(2) C H} ().
For w = wo + 2wy € HY} (), let

0z 00
= (L( + w) cosf — ¢sin b L( +w)sinf + ¢cos b L( —w))
- \/§ ¥ 7\/§ ¥ 7\/§ ¥ ’

where

0z = (cosf,sinf,1), 00 = z(—sinh,cosh,0), N = \}i(COS 6,sinf, —1).

Thus V is an infinitesimal isometry in IS ™ (2, IR?) if and only if ¢ and ¢ in H™(Q)
solve the problem
v, =0,
(4.10) %o+ 50 +w) =0,
Z¢z_¢+\/§$00 = 0.
Clearly, (4.7) has a solution if and only if f027r wdf = 0. It is easy to check that

(4.10) has a solution (¢, ¢) in H™(Q2) x H™(Q) if and only if f027r widf = 0.
We have the following.

Theorem 4.4. If m > 2 and Q is given by (4.8), then

2T
HT?(Q) = {wo + 2wy |wo, w1 € H™(T), / wydf =0 }.
0

5. BENDING OF SHELLS

We shall apply the results in Sections 2-4 to the limit energy functionals of
the I'-convergence to reduce bending of shells to a one-dimensional problem in the
elliptic case and the parabolic case, respectively.
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Let M be a connected, oriented surface in IR? with the normal field N. Suppose
that ¢ is the induced metric of the surface M from the standard metric of IR3. A
family {S"};~0 of shells of small thickness h around € is given through

Sh={plp=x+2N(x), 2€Q, —h/2<2<h/2}, 0<h< hyg.

The projection onto €2 along N will be denoted by 7. We will assume that 0 < h <
hg, with hg sufficiently small to have m well defined on each S h.

To a deformation u € H?(S" IR3), we associate its elastic energy (scaled per
unit thickness):

(5.1) E'u)== [ W(Vu)dp,

h Jgn
where V denotes the gradient of the Euclidean space IR3. Here, the stored energy
density W : IR¥3 — [0,00] is assumed to be C? in a neighborhood of SO (3),
and to satisfy the following normalization, frame indifference, and nondegeneracy
conditions

VFe R VRe SO(3), W(R)=0, W(RF)=W(F),
W(F) > Cdist*(F, SO (3)),
with a uniform constant C' > 0.

Suppose E"(u) ~ h% and consider the T-limit of E”(u). In [23], the limiting model
has been identified for the range of scalings 5 > 4, based on some estimates in [16].
In these cases, the admissible deformations u are only those which are close to a
rigid motion R and whose first order term in the expansion of u — R with respect
to h is given by RV, where V € IS (€, IR?) is an infinitesimal isometry on €.

Let V € IS%(Q, IR?). Then there exists a matrix A such that

(5.2) A"(z) = —A(z), DxV =A@@)X, XeM, zeQ.

For 8 > 4 the limiting energy is given only by a bending term, that is, the first
order change in the second fundamental form of €2, produced by V|,

(5.3) I(V) = 214/9532(33, E(V))dg for V € 1S2%(Q, IR%),
where
(5.4) 2(V) = (D*(AN) — All) .

In (5.4), D*(AN) is the transpose of D(AN), given by
D*(AN)(r,n) = <DT(AN),71> for 7, €M, zeQ.
In (5.3), the quadratic forms Qs (x,-) are defined as follows:
DQ(«T,Ftan): m}%QS(F—FCL@N), Q3(F):D2W(I)(F7F)
ac

The form Q3 is defined for all F' € IR3*3 while Qs(x,-) for a given x € € is defined
on tangential minors Fia, = ((F'7,7))7, nenm, of such matrices.

It was further shown in [23] that for a certain class of surfaces, referred to as

approximately robust surfaces, the limiting energy for 8 = 4 reduces to the purely
linear bending functional (5.3). Elliptic surfaces happen to belong to this class [23].
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Moreover, [22] has proved that the limit energy of the range of scalings 2 < § < 4
for elliptic surfaces is still given by (5.3).
Here we focus on the limit energy (5.3) and reduce it from over the space
1S2(Q, IR®?) to over the space H2 () to give mathematical formulas, as in [37].
We now describe the limiting energy formula (5.3) in the common notation in
Riemannian geometry. For simplicity, we restrict ourselves to the case when the
stored-energy function is isotropic (that is to say, W (F) = W(R1FRz) for all F' €
M?3*3 and all Ry, Ry € SO (3)). In this case, the second derivative of W at the
identity is B}
D*W(I)(A,A) = 2u|E|* + A(tr E)*, E= 4 EA ,

for some constants u, A € IR. Let G be a second-order tensor field on 2. We define

2
Gl =Y G(eirey) for zeQ,
=1

where ey, es is an orthonormal basis of M, in the induced metric g. We have
Lemma 5.1. Let 1 > 0 and 2u+ X > 0. For G € T?() symmetric,

A
w4 A/2

Let k be a nonnegative integer and let 7' € T*(2) be a kth-order tensor field on
Q2. The internal product of X with 7" is a k — 1-th order tensor field i(X)T, defined
by
(5.6)

1(X)T<X1, s 7Xk71) = ’I'()(7 X, 7Xk71) for Xy, -+, Xp_1 € X(M)

Let Ty € T?(M) be the third fundamental form of surface M, given by
To(r,7) = <ﬁTN, f)nN> for 7, ne€ M, x¢&M.

tr’G  for xeQ.

(5.5) Qo(x, G) = 21| G2 +

A simple computation yields
Lemma 5.2. Let V € IS%(Q, R?) with V =W + wN. Then
(5.7) =(V) = i(W)DI + I(D.W, ) + (-, D.W) + wTy — D*w,
where Z(V') is given by (5.4), D is the Levi-Civita connection of the induced metric

g, and - denotes the position of variables.

Let 2 C M be elliptic and star-shaped with respect to o € 2 such that assumption
(2.30) holds true. We further assume that for any ¢ € H3/?(I') problem (3.13) has a
unique solution w = A\(¢) € H2(9). By Theorem 3.5, there is a unique W = A(v)) €
H?(Q, IR?) which is perpendicular to KF (2, IR?) such that V = A(z)) + A(¥))N is
an infinitesimal isometry. Then for any V € IS?(Q, IR?), we have a formula in the
form of

V=W+A@W)+AX®)N for W e H(Q,R?), ¢ € H/(D).

Since dim KF (2, IR3) < 3, the limit energy (5.3) of the I'-convergence becomes a
functional over a one-dimensional space

(5.8) I(V)=1I(a,y) for (a,) e R®x H3?().
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Similar situations happen when the middle surface €2 is parabolic. It follows from
Theorems 3.5 and 4.1 that

Theorem 5.3. Let ) be star-shaped with respect to o € Q) such that
Q C exp, %(o0).
If M is parabolic such that condition (4.1) holds and 2 C M, or the middle surface

Q is elliptic, then the limit energy formula (5.3) of the I'-convergence reduces to be
a one-dimensional problem.

We shall write out explicit formulas of (5.8) for spherical shells and cylinder shells,
respectively, before ending this section.

Bending of Spherical Shells Let M be the sphere of curvature x > 0 and let
g be the induced metric of M from IR3. Then the third fundamental form of M is
given by Ty = Kg.

Let 0o € M be fixed. Let p(x) = p(x,0) be the distance function from x € M to
o in the induced metric g. For 0 < a < et

NG
(5.9) Qa)={z|zeM, plx)<a}, T@={z|xzeM, pz)=a}.

Let V.= W + wN be an infinitesimal isometry on (a). By the formulas (5.7)
and (3.19), we have

(5.10) E(V) = V&(DW + D*W) + kwg — D*w = —kwg — D?w.

In particular, for V =W € KF (Q, IR?) a Killing field, Z(V) = 0.
By Theorem 3.5, w € H (Q2) if and only if w solves the problem

Aw+2kw =0 for ze€Qa),
w =1 € H3?(I'(a)).

Then it follows from (5.10) and (5.11) that

(5.12) tr2(V)=0 for xe€Q.

Furthermore, we have

(5.11)

Lemma 5.4. Let V.= W +wN be an infinitesimal isometry with w € H% ().
Then

1
(5.13) |E(V)|?p12 = 5A]Dw|2 + rdivwVw for z €.
Proof. Recall that the Weitzenbéck formula(Theorem 1.27 in [37]) reads
1
(5.14) |D*w|3, = iA\Dw\Q + (ADw, Dw) — Ric (Dw, Dw) for xz € Q,

where A is the Hodge-Laplacian in the metric g applying to vector fields and
Ric(+,+) is the Ricci curvature tensor. Since Ric = kg and (ADw,Dw) =
— (D(Aw), Dw) , we have, by (5.11) and (5.14),

1
(5.15) |D*w|3, = §A\Dw]2 + k|Dw|* for z €.

From (5.10) and (5.15), we obtain
|E(V)]?F3 = |kwg + D2w|2T§ = 2r%w? + 2w <g,D2w>T2 + |D2w|%12
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1
= iA\lez + (| Dw|* — 2kw?)

1
= §A\le2 + kdivwVw for x e Q.

We define a linear operator © : H*2(I'(a)) — HY?(I'(a)) by
Oy = Wp,
where w € H?(Q(a)) is the solution to problem (5.11). Then D(©) = H3/%(T'(a))
for0<a< i.

VE
Theorem 5.5. Let Q(a) and I'(a) be given in (5.9). Then the bending energy (5.3)
of the I'-convergence becomes the following one-dimensional problem

(5.16) () =1 /F 20 (O0)r = OY — ity (VEa) (|09 + [¢[*)]dD

for i € B3/%(T'(a)), where T is the unit tangential vector field along I'(a).

Proof. Let 7 = 7(p) be the unit tangential vector field along I'(p) for 0 < p < a.
Then Dp, 7 forms a frame field on 2(a). We have

(5.17) DDpr = 0, DDpT = 0,

(5.18) D;Dp = rpctg (VEp)T, Drm = —/kpctg (vVrp)Dp.
Moreover, the equation in (5.11) gives

D*w(Dp, Dp) = —2rkw — D*w(r,T)
(5.19) = —w;; — VEractg (Vea)w, — 2kw  for z € I'(a).
It follows from the formulas (5.13) and (5.17)-(5.19) that

/ ’E(V)’%ﬂig :/ [D?w(Dp, Dw) + Kww,|dl’
Q(a) v I'(a)

= / [w,D*w(Dp, Dp) + wr(wyr — (Dw, D-Dp)) + kww,|dl
I'(a)

(5.20) = /F( )[ZwTpr — Vkactg (Via)(w) + w?) — kww,)dl.
Finally, we use the formulas (5.20), (5.12) and (5.5) in the formula (5.3) to obtain
(5.16). O
Bending of a Cylinder Shell Let a > 0 and let
(5.21) Q= { (cosf,sinb,z) | 0 €[0,27), |z|] <a }.
Then

0z =(0,0,1), 00 = (—sinh,cosh,0).
Let w € HZ (Q) be given. By Theorem 4.2,

2 2
w=wy+wyz, wg, wy € H*(T), / wodf = / wydf = 0.
0 0
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Let W € X(€2) be such that V = W 4+ wN is an infinitesimal isometry. A simple
computation shows that

9 9
W= [ 6= murtndn + )z~ [ funlon) + wi(n)eldn + 208
0 0
where cq, ¢ are constants and
0
=E(V)(0z,02) =0, ZE(V)(0z,00) = —/ wy(n)dn—wig, ZE(V)(00,00) = —w—wgy.
0

Using the above formulas, we obtain

Theorem 5.6. Let Q be given by (5.21). Then the bending energy (5.3) of the I'-
convergence becomes the following one-dimensional formula

- & a. -+ o
F(wo, wr) :/ {L;[2/f£+>\(wo+w099)2+(w19+/0 wi (n)dn)?]

o3
+%(w1 +w199)2}d9 for  (wo,w1) € HX(T) x H*(T).

Acknowledgments

The author is very grateful to the anonymous referees for pointing out equation
(2.25) is not a sufficient condition to infinitesimal isometries without assumption
(2.30) and for picking out a mistake in the proof of Theorem 3.5 in the last version
of the paper.

REFERENCES

[1] S. G. Chai, Boundary feedback stabilization of Naghdi’s model, Acta Math. Sin. (Engl. Ser.)
21 (2005), 169-184.

[2] S. G. Chai, Uniqueness in the Cauchy problem for the Koiter shell, J. Math. Anal. Appl. 369
(2010), 43-52.

[3] S. G. Chai and B. Z. Guo, Well-posedness and regularity of Naghdi’s shell equations under
boundary control and observation, J. Diferential Equations 249 (2010), 3174-3214.

[4] S. G. Chai, Y. X. Guo and P. F. Yao, Boundary feedback stabilization of shallow shells, STAM
J. Control Optim. 42 (2004), 239-259.

[5] S. G. Chai and K. Liu, Observability inequalities for transmission of shallow shells, Systems
Control Letters 55 (2006), 726-735.

[6] S. G. Chai and K. Liu, Boundary stabilization of the transmission problem of Naghdi’s models,
J. Math. Anal. Appl. 319 (2006), 199-214.

[7] S. G. Chai and P. F. Yao, Observability inequalities for thin shells, Sci. China Ser. A 46 (2003),
300-311.

[8] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis
(Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970,
pp. 195-199.

[9] S. Cohn-Vossen, Unstarre geschlossene Flichen, Math. Ann. 102 (1929), 10-29.

[10] S. Conti, Habilitation Thesis, University of Leipzig, 2003.

[11] S. Conti and G. Dolzmann, Derivation of elastic theories for thin sheets and constraint of
incompressibility, in: Analysis, Modeling and Simulation of Multiscale Problems, Springer,
Berlin, 2006, pp. 225-247.

[12] S. Conti and G. Dolzmann, Derivation of a plate theory for incompressible materials, C. R.
Math. Acad. Sci. Paris 344 (2007), 541-544.

[13] S. Conti and F. Maggi, Confining thin elastic sheets and folding paper Arch. Ration. Mech.
Anal. 187 (2008), 1-48.



226
(14]

[15]

[16]

17)
18]
[19]
[20]
21]

22]

23]
24]
[25]
[26]
27]
(28]
29]
(30]

(31]

32]
33]
34]
(35]
(36]

37]

(38]

PENG-FEI YAO

S. Feng and D. X. Feng, Ezact internal controllability for shallow shells, Sciences in China 49
(2006), 1-12.

G. Friesecke, R, James, M. G. Mora and S. Miiller, Derivation of nonlinear bending theory for
shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad.
Sci. Paris 336 (2003), 697-702.

G. Friesecke, R, James, M. G. Mora and S. Miiller, A theorem on geometric rigidity and the
derivation of nonlinear plate theory from three dimensional elasticity. Commun, Pure. Appl.
Math. 55 (2002), 1461-1506.(2002).

G. Friesecke, R, James, M. G. Mora and S. Miiller, A hierarchy of plate models derived from
nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006), 183-236.

R. Kress, Linear integral equations. Applied Mathematical Sciences, 82. Springer-Verlag,
Berlin, 1989.

I. Lasiecka and R. Triggiani, Uniform stabilization of a shallow shell model with nonlinear
boundary feedbacks, J. Math. Anal. Appl. 269 (2002), 642-688.

H. LeDret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear
three-dimensional elasticity, J. Math. Pures Appl. 73 (1995), 549-578.

H. LeDret and A. Raoult, The membrane shell model in nonlinear elasticity: a variational
asymptotic derivation, J. Nonlinear Sci. 6 (1996), 59-84.

M. Lewicka, M. G. Mora and M. R. Pakzad, The matching property of infinitesimal isometries
on elliptic surfaces and elasticity of thin shells, Arch. Ration. Mech. Anal. 200 (2011), 1023—
1050.

M. Lewicka, M. G. Mora and M. R. Pakzad, Shell theories arising as low energy I'-limit of 3d
nonlinear elasticity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) IX (2010), 1-43.

H. Li and M. Chermisi, The von Kdarmdn theory for incompressible elastic shells, Calc. Var.
Partial Differential Equations 48 (2013), 185-209.

S. Li and P. F. Yao, Modelling of a nonlinear plate, Evolution Equations and Control Theory
1 (2012), 155-169.

R. Monneau, Justification of the nonlinear Kirchhoff-Love theory of plates as the application
of a new singular inverse method, Arch. Ration. Mech. Anal. 169 (2003), 1-34.

S. Miiller and M. R. Pakzad, Convergence of equilibria of thin elastic plates-the von Kdrmdn
case Comm. Partial Differential Equations 33 (2008), 1018-1032.

M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J.
Math. Soc. Japan 14 (1962), 333-340.

O. Pantz, On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech.
Anal. 167 (2003), 179-209.

P. Petersen, Riemannian Geometry, Second edition. Graduate Texts in Mathematics, 171.
Springer, New York, 2006.

A. V. Pogorelov, Extrinsic geometry of convex surfaces. Translated from the Russian by Is-
rael Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35.
American Mathematical Society, Providence, R.I., 1973.

B. Schmidt, Plates theories for stressed heterogeneous multilayers of finite bending energy, J.
Math. Pures Appl. 88 (2007), 107-122.

R. Schoen and S.-T. Yau, Lectures on Differential Geometry, in: Conference Proceedings and
Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.

M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. V, Second edition.
Publish or Perish, Inc., Wilmington, Del., 1979.

K. Trabelsi, Modeling of a membrane for monlinearly elastic incompressible materials via
gamma-convergence, Anal. Appl. (Singap.) 4 (2006), 31-60.

P. F. Yao, On shallow shell equations, Discrete Contin. Dyn. Syst. Ser. S 2 (2009), 697-722.

P. F. Yao, Modeling and Control in Vibrational and Structural Dynamics, A differential geo-
metric approach. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series.
CRC Press, Boca Raton, FL, 2011.

P. F. Yao, Observability inequalities for shallow shells, STAM J. Contr. and Optim. 38 (2000),
1729-1756.



INFINITESIMAL ISOMETRIES AND BENDING OF SHELLS 227

[39] P. F. Yao, Linear strain tensors and optimal exponential of thickness in Korn’s inequalities for
hyperbolic shells, arXiv:1807.11115 [math—ph].

[40] P. F. Yao, Optimal exponentials of thickness in Korn’s inequalities for parabolic and elliptic
shells, arXiv:1807.11114.

[41] P. F. Yao, Lower bounds of optimal exponentials of thickness in geometry rigidity inequality
for shells, arXiv:1908.04021.

[42] P. F. Yao, Linear strain tensors on hyperbolic surfaces and asymptotic theories for thin shells,
SIAM J. Math. Anal. 51 (2019), 1387-1435.

Manuscript received January 30 2019
revised April 22 2019

P. F. Yao

Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics

and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
E-mail address: pfyao@iss.ac.cn



