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active for over 30 years [1, 2, 11, 12, 13, 14, 15, 24, 22, 25]. The first results con-
cerning the regulator problem were developed for lumped parameter linear systems,
see [5, 8]. These results were extended to distributed parameter systems in [2],
where the control and observation operators are bounded, and in [22, 24, 25], where
the control and observation operators are unbounded but admissible. In all these
references, the exosystem is assumed to be finite-dimensional, while in [10, 11, 23],
it is infinite-dimensional. Another powerful method in dealing with the regulator
problem is the backstepping approach. In [6], the regulator problem for a boundary
controlled parabolic PDEs is solved using the backstepping approach. This method
is again used for the robust output regulation of parabolic PDEs in [7]. An interest-
ing recent work is [16], where based on backstepping, the output tracking problem
is considered for a general 2×2 system of first order linear hyperbolic PDEs, but no
disturbances are taken into consideration. Adaptive control is used for output track-
ing for the Schrödinger equation in [17], where the system is exponentially stable
and the disturbance acts at the boundary. For the optimal regularity, sharp uniform
decay rates and observability of Schrödinger equations in several space dimensions,
we refer to the work of Irena Lasiecka and collaborators [18, 19, 20, 21].

We consider the following one-dimensional Schrödinger equation with Neumann
boundary control and both distributed and boundary disturbance, with t ≥ 0:

(1.1)


zt(x, t) = − izxx(x, t) + h(x)z(x, t) + g(x)d1(t), 0 < x < 1,

zx(0, t) = − iqz(0, t) + d2(t), zx(1, t) = u(t),

z(x, 0) = z0(x), 0 ≤ x ≤ 1,

y(t) = Ce[z(·, t)], ym(t) = z(1, t).

We denote by z′(x, t) or zx(x, t) the derivative of z(x, t) with respect to x and
by ż(x, t) or zt(x, t) the derivative of z(x, t) with respect to t. u(t) is the control
input signal, y is the output signal to be controlled, ym is the measurement (the
information available to the controller), d1(t), d2(t) are the disturbances, z0 is the
initial state, q > 0 and h, g ∈ C[0, 1] are known. The system (1.1) is a typical
unmatched boundary control problem: the control u acts on one end of the domain
and one disturbance d2 acts on the other end (while the other disturbance d1 acts
distributed).

We consider the system (1.1) in the energy state space H = L2[0, 1] with the
usual inner product and norm. We will also use the Sobolev spaces H1(0, 1) and
H2(0, 1), with their usual norms. If z ∈ C([0,∞),H), then instead of [z(t)](x) we
write z(x, t). The observation operator Ce in (1.1) is a bounded linear functional
on H2(0, 1) (not specified). We call Ce bounded if it has a continuous extension to
H and unbounded otherwise.

We will often need to refer to the unperturbed system (perhaps not the best name)
that is obtained from (1.1) by setting d1(t) = 0 (for all t ≥ 0), and also h(x) = 0
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(for all x ∈ [0, 1]):

(1.2)


zt(x, t) = − izxx(x, t) 0 < x < 1,

zx(0, t) = − iqz(0, t) + d2(t), zx(1, t) = u(t),

z(x, 0) = z0(x), 0 ≤ x ≤ 1,

y(t) = Ce[z(·, t)], ym(t) = z(1, t).

We introduce the operator A as the generator of the operator semigroup T that
describes the evolution of the state z(·, t) of (1.2) in H if the inputs are d2 = 0 and
u = 0:

(1.3) Af = − if ′′, D(A) = {f ∈ H2(0, 1) | f ′(0) = − iqf(0), f ′(1) = 0} .

We shall investigate this semigroup in Lemma 3.1. We assume that Ce (re-
stricted to D(A)) is an admissible observation operator for the operator
semigroup T generated by A. The concept of admissible observation operator
will be recalled at the beginning of Sect. 2.

For instance, the above assumption is true if Ce is the sum of a point observation
operator and a distributed observation operator, which means that

(1.4) y(t) = Ce[z(·, t)] = θz(x0) +

∫ 1

0
c(x)z(x, t)dx,

where θ ∈ C, x0 ∈ [0, 1] and c ∈ L2[0, 1] (the proof of this is similar to the proof of
Lemma 3.1).

A triple (z, [ d2u ] , y) is called a classical solution of (1.2) on [0,∞) if:
(a) z ∈ C1([0,∞);H),
(b) d2, u, y ∈ C[0,∞),
(c) z(t) ∈ H2(0, 1) holds for all t ≥ 0,
(d) (1.2) holds for all t ≥ 0.
The system (1.2) has many classical solutions. Indeed, we show in Proposition 3.3

that if d2, u ∈ H1
loc(0,∞) and z0 ∈ H2(0, 1) are such that z′0(0) = −iqz0(0) + d2(0)

and z′0(1) = u(0), then (1.2) has a corresponding classical solution on [0,∞). A
similar statent holds for (1.1), see Corollary 3.4. Moreover, the systems (1.1) and
(1.2) are well-posed, see Proposition 3.5.

We suppose, as is common in regulator theory, that there exists a linear system
with no input, referred to as the exosystem (sometimes called the exogenous system),
that generates both the disturbances d1, d2 and the reference r (these are all scalar
signals):

(1.5)

ẇ(t) = Sw(t), t > 0, w(0) = w0 ∈ Rnw ,

d1(t) = p⊤1 w(t) = q⊤d1wd(t), t ≥ 0,

d2(t) = p⊤2 w(t) = q⊤d2wd(t), t ≥ 0,

r(t) = p⊤r w(t) = q⊤r wr(t), t ≥ 0.

Here, S is a block diagonal matrix S = diag(Sd, Sr), which leads with w = [ wd
wr ]

to the signal models ẇd = Sdwd, wd(0) = wd0 ∈ Cnd , and ẇr = Srwr, wr(0) =
wr0 ∈ Cnr , nd + nr = nw. Clearly qd1 , qd2 ∈ Cnd . We assume that S is a
diagonalizable matrix, all its eigenvalues are on the imaginary axis, the
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eigenvalues of Sd are distinct and (q⊤r , Sr) is observable. The disturbances
cannot be measured and the reference signal is available to the controller.

Our objective is to design an output feedback regulator such that for all initial
states of the systems (1.1) and (1.5), the following requirements are satisfied: (i)
All the internal signals are bounded. (ii) If the observation operator Ce is bounded,
then we design a state feedback control law, using the state z(·, t) of (1.1) as well
as the state w(t) of (1.5), such that the tracking error ey = y − r is exponentially
vanishing: there exist constants m0, µ0 > 0 such that

(1.6) |ey(t)| ≤ m0e
−µ0t ∀ t ≥ 0 .

Based on this, we also design an output feedback controller, a dynamical system
with inputs ym(t) and r(t), such that in the closed-loop system, (1.6) holds.

Alternatively, if Ce is unbounded but admissible, then we design a state feedback
controller and an output feedback controller (with internal loop), such that for some
α < 0,

(1.7) ey ∈ Lα[0,∞),

where Lα[0,∞) is a weighted function space defined by

L2
α[0,∞) :=

{
f ∈ L2

loc[0,∞)

∣∣∣∣ ∫ ∞

0
e−2αt|f(t)|2dt < ∞

}
.

For the concept of stabilizing controller with internal loop we refer to [32, 4]. Es-
sentially it means that the controller is well-posed and to create the well-posed and
stable closed-loop system, we have to close two feedback loops: one involving the
plant and the controller and another one (called the internal loop) involving the
controller only. Closing the internal loop on the controller only (without the plant)
may lead to a non-well-posed system.

The outline of the paper is as follows: In Sect. 2 we give a bit of mathemati-
cal background on compatible system nodes, admissibility and well-posedness. In
Sect. 3 we derive various properties of the Schrödinger equation system (1.1), which
we reformulate in the operator theoretic language. In Sect. 4 we solve the state
feedback regulator problem, while using backstepping for the stabilization. Sect. 5
is devoted to the design of an observer for the combined system (1.1) and (1.5),
using again a backstepping transformation. In Sect. 6, based on the estimated state
from the observer, we show how to solve the output feedback regulator problem.

2. Some background on well-posed system nodes

In this section we recall some general facts on admissible control and observa-
tion operators, compatible system nodes, classical solutions, well-posedness, transfer
functions, feedback and closed-loop systems, following [27], [28], [29] and [31]. For
a better understanding of these topics and for the proofs, the reader is advised to
look up the mentioned references.

Let X,U and Y be Hilbert spaces, let Tt be a strongly continuous semigroup
of operators on X with generator A, let X1 be the space D(A) with the norm
∥x∥1 = ∥(βI −A)x∥ and let X−1 be the completion of X with respect to the norm
∥x∥−1 = ∥(βI−A)−1x∥, where β is an arbitrary (but fixed) element in the resolvent
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set ρ(A). An operator B ∈ L(U,X−1) is called an admissible control operator for T
if for some (hence, for every) τ > 0 and for every u ∈ L2([0,∞);U),∫ τ

0
Tτ−sBu(s)ds ∈ X.

In this case, for any x0 ∈ X and any u ∈ L2
loc([0,∞);U) the equation ẋ = Ax+Bu

has a unique solution in X−1 that satisfies x(0) = x0, and moreover we have x ∈
C([0,∞);X).

An operator C ∈ L(X1, Y ) is an admissible observation operator for T if for some
(hence, for every) τ > 0 there exists mτ > 0 such that∫ τ

0
∥CTtx∥2dt ≤ mτ∥x∥2 ∀ x ∈ D(A).

The Λ-extension of an operator C ∈ L(X1, Y ) (with respect to A), denoted CΛ, is
defined as follows:

(2.1) CΛx = lim
λ→∞

Cλ(λI −A)−1x

and its domain D(CΛ) consists of those x ∈ X for which the above limit exists.
In this case, by [28, Proposition 4.3.6], for every x ∈ X, the output y(t) = CΛTtx
exists for almost every t ≥ 0 and

(2.2) y(t) = CΛTtx ⇒ y ∈ L2
α([0,∞);Y ) for all α > ωT ,

where ωT is the growth bound of the semigroup T. We have that C is an admissible
observation operator for T if and only if C∗ is an admissible control operator for
T∗.

Let U,X, Y and A be as above, and let B ∈ L(U,X−1). We introduce the space
D(S) = {[ xu ] ∈ X × U | Ax+Bu ∈ X} .

We also define the space Z ⊂ X that consists of all the vectors z ∈ X that can be
the first component of a vector in D(S):

(2.3) Z = D(A) + (βI −A)−1BU ,

which is independent of the choice of β ∈ ρ(A). This is a Hilbert space with the
norm

∥z∥2Z = inf
{
∥x∥21 + ∥v∥2 | x ∈ X1, v ∈ U , z = x+ (βI −A)−1Bv

}
.

Let C : D(C)→Y be such that Z ⊂ D(C) and the restriction of C to Z is
in L(Z, Y ). Finally, let D ∈ L(U, Y ). Then (A,B,C,D) is called a compatible
system node on (U,X, Y ). (We mention that we took a short-cut here: in the cited
references, and several others, the more general and complicated concept of system
node is introduced first, and compatible system nodes are introduced later as a
special case. It is easy to show that our definition above is equivalent to the one in
[27, 29]. In the cited references, the notation C appears instead of C, and C is C
restricted to D(A).)

To a compatible system node as above we associate its system operator S :
D(S)→X × Y :

S =

[
A B
C D

]
.
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The compatible system node is usually associated with the equation

(2.4)

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
∀ t ≥ 0 ,

where u, x and y have the meaning of input, state and output functions. B and
C are called the control operator and the observation operator of the system node,
respectively.

In the spirit of [27, Sect. 3], [29, Sect. 4], we define the following concept:

Definition 2.1. Let S be the system operator of a compatible system node (A,B,C,D)
on (U,X, Y ). A triple (x, u, y) is called a classical solution of (2.4) on [0,∞) if:

(a) x ∈ C1([0,∞);X),
(b) u ∈ C([0,∞);U), y ∈ C([0,∞);Y ),

(c)
[
x(t)
u(t)

]
∈ D(S) for all t ≥ 0,

(d) (2.4) holds.

Proposition 2.2. With the notation of the last definition, if u ∈ C2([0,∞);U)
and

[ x0

u(0)

]
∈ D(S), then the equation (2.4) has a unique classical solution (x, u, y)

satisfying x(0) = x0.

For the proof we refer to Proposition 4.2.11 in [28] (it also appears in various
other references). Under the conditions of the above proposition, we have

x(t) = Ttx(0) +

∫ t

0
Tt−σBu(σ)dσ ∀ t ≥ 0 .

Definition 2.3. With the notation of the previous definition, (A,B,C,D) is well-
posed if for some (hence, for every) τ > 0 there is a Kτ > 0 such that for every
classical solution (x, u, y) of (2.4),

∥z(τ)∥2 +
∫ τ

0
|y(t)|2dt ≤ Kτ

(
∥z(0)∥2 +

∫ τ

0
|u(t)|2dt

)
.

Here, T is the operator semigroup generated by A.

We will use the term “well-posed system node” instead of the cumbersome “well-
posed compatible system node”. There is a good justification for this, see [29,
Proposition 4.5].

Proposition 2.4. We use the notation of Definition 2.1 and we denote again by T
the operator semigroup generated by A.

If (A,B,C,D) is well-posed, then it follows that B is an admissible control oper-
ator for T, C (restricted to D(A)) is an admissible observation operator for T, and
the transfer function of (A,B,C,D), defined by

(2.5) G(s) = C(sI −A)−1B +D ∀ s ∈ C with Re s > ωT ,

is bounded on any half-plane Cα = {s ∈ C | Re s > α}, if α > ωT.
Conversely, if B is an admissible control operator for T, C is an admissible

observation operator for T and G is bounded on some right half-plane, then it follows
that (A,B,C,D) is well-posed.

The following simple perturbation result will be useful.
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Proposition 2.5. Let (A,B,C,D) be a well-posed system node on (U,X, Y ) and let
P ∈ L(X). Then (A+ P,B,C,D) is again a well-posed system node on (U,X, Y ).

Proof. Assume that (A,B,C,D) is well-posed, hence (according to the previous
proposition) A and B are admissible for T, the semigroup generated by A. It
follows from [28, Theorem 5.4.2 and Corollary 5.5.1] that B and C are admissible
also for the semigroup generated by A+P , and the spaces X1 and X−1 remain the
same for A+P . According to Proposition 2.4, the transfer function G from (2.5) is
bounded on some right half-plane. Denoting the transfer function of the compatible
system node (A+ P,B,C,D) by GP , we have the elementary identity

(2.6) GP (s)−G(s) = C(sI −A)−1P (sI −A− P )−1B.

The functions C(sI −A)−1 and (sI −A− P )−1B are bounded on some right half-
plane, according to [28, Theorem 4.3.7 and Proposition 4.4.6]. Thus, it follows that
GP is bounded on some right half-plane. Now it follows from Proposition 2.4 that
(A+ P,B,C,D) is well-posed. □

We mention that the above proposition remains valid for a time varying P :
[0,∞)→L(X), as long as it is strongly continuous. This is much harder to prove,
see [3, Theorems 4.2 and 5.3].

We introduce a special class of well-posed systems, following the terminology in
[29], [31], [32], [34] and many other papers. We do this because our systems (1.1)
and (1.2) fall into this category (as we shall see), and we will use tools developed
for such systems.

Definition 2.6. Let (A,B,C,D) be a well-posed system node on (U,X, Y ), with
transfer function G (see (2.5)). We say that this system is regular if the limit
D0v = limλ→∞,λ∈RG(λ)v exists, for each v ∈ U . In this case, D0 ∈ L(U, Y ) is
called the feedthrough operator of the system.

Proposition 2.7. Suppose that the compatible system node (A,B,C,D) on (U,X, Y )
is well-posed, and let G be its transfer function. Recall CΛ from (2.1) and the space
Z introduced in (2.3). We have Z ⊂ D(CΛ) if and only if the system is regular.

If the system is regular, then the quadruple (A,B,C,D) may be replaced with
the equivalent quadruple (A,B,CΛ, D0) (where D0 is the feedthrough operator of the
system), in the sense that this new quadruple has the same system operator S and
the same transfer function.

The following proposition recalls some properties of output feedback for regular
linear systems (for the proof see [31]). In the proposition we make the simplifying
assumption KfD = 0 (true in our application in Sect. 4) that greatly simplifies the
formulas.

Proposition 2.8. Let (A,B,C,D) be a regular linear system on (U,X, Y ), with
transfer function G. Assume that the feedthrough operator of this system is D,
and let Kf ∈ L(Y, U). We assume that the function I − KfG(s) has a uniformly
bounded inverse for all s in some right half-plane, and KfD = 0. Then (Acl, B, (I+
DKf )CΛ, D) is a regular linear system on (U,X, Y ), called the closed-loop system
corresponding to (A,B,C,D) with the output feedback operator Kf . Here

Acl = A+BKfCΛ , D(Acl) = {x ∈ Z | Ax+BKfCΛx ∈ X } .
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(The sum Ax + BKfCΛx is computed in X−1.) In particular, (I +DKf )CΛ is an
admissible observation operator for the semigroup generated by Acl.

Intuitively, the closed-loop system (Acl, B, (I+DKf )CΛ, D) is obtained from the
original system (A,B,C,D) via the output feedback u = Kf y + ρ (where ρ is the
new input function). The transfer function of the closed-loop system is Gcl =
G(I −KfG)−1 = (I −GKf )

−1G.
Let G be a function defined on some domain in C that contains a right half-plane,

with values in a normed space. Following [34], we say that G is strictly proper if

lim
Re s→∞

∥G(s)∥ = 0 , uniformly with respect to Im s.

In other words, there exists an α ∈ R and a continuous function β : (α,∞)→(0,∞)
such that

(2.7) ∥G(s)∥ ≤ β(Re s) ∀ s ∈ Cα and lim
ξ→∞

β(ξ) = 0 .

The notation Cα has been introduced in Proposition 2.4. The above concept gener-
alizes the well-known one of strictly proper rational transfer function. A well-posed
system node is called strictly proper if its transfer function is strictly proper. Clearly
such systems are regular and their feedthrough operator is zero.

The following proposition shows a curious property of certain semigroup gener-
ators A: if B, C and D are such that (A,B,C,D) is a compatible system node,
then the admissibility of B and C for the semigroup generated by A implies the
well-posedness of (A,B,C,D). Moreover, it turns out that the compatible system
node (A,B,CΛ, 0) is strictly proper.

Proposition 2.9. Let X = l2, a > 0 and let the operator A : D(A)→X be defined
on sequences x = (xk) (k ∈ N) by

(Ax)k = iak2xk , D(A) =

{
x ∈ l2

∣∣∣∣∣ ∑
k∈N

k4|xk|2 < ∞

}
.

Then A is the generator of the diagonal unitary operator group

(Ttx)k = eiak
2txk ∀ x ∈ X, t ≥ 0 .

Let B ∈ X−1 be an admissible control operator for T (for the input space C) and
let the bounded linear functional C : X1→C be an admissible observation operator
for T (for the output space C).

Then (A,B,CΛ, 0) is a compatible system node that is well-posed and strictly
proper.

Proof. The fact that A generates the indicated operator group T is easy and stan-
dard material in semigroup theory, see e.g. [28, Proposition 2.6.5]. Let {e1, e2, e3, . . .}
be the standard orthonormal basis of l2. We denote by bk and ck the components
of B and C, respectively:

bk = ⟨B, ek⟩, ck = Cek ∀ k ∈ N .

It follows from the Carleson measure criterion for admissibility (see e.g. [28, Propo-
sition 5.3.5]) that the sequences (bk) and (ck) are bounded. We want to check that
for some (hence for every) s ∈ C0 we have (sI − A)−1B ∈ D(CΛ). For this, we
compute
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lim
λ→∞

Cλ(λI −A)−1(sI −A)−1B

= lim
λ→∞

∑
k∈N

bkckλ

(λ− iak2)(s− iak2)
=

∑
k∈N

bkck
s− iak2

.

This shows that indeed (sI−A)−1B ⊂ D(CΛ), which implies that Z ⊂ D(CΛ), and

CΛ(sI −A)−1B =
∑
k∈N

bkck
s− iak2

.

Hence, for any s ∈ C0 we have, denoting θ = Re s/a and ω = Im s,

|CΛ(sI −A)−1B| ≤
∑
k∈N

|bkck|
1

|θa+ i(ω − ak2)|
.

Using the elementary inequality |ã+ ib̃| ≥ (|ã|+ |b̃|)/
√
2 (for any ã, b̃ ∈ R), we get

(2.8) |CΛ(sI −A)−1B| ≤ m
√
2
∑
k∈N

1

θa+ |ω − ak2|
=

m
√
2

a

∑
k∈N

1

θ + |µ− k2|
,

where m = sup |bkck| and µ = ω/a. Considering the case µ ≤ 0, we get

(2.9) |CΛ(sI −A)−1B| ≤ m
√
2

a

∑
k∈N

1

θ + k2
for Re s = θa, Im s < 0 .

Now consider the case µ > 0, and denote by kµ the largest integer k satisfying
k2 ≤ µ. We decompose

(2.10)
∑
k∈N

1

θ + |µ− k2|
=

∑
1≤k≤kµ

1

θ + µ− k2
+

∑
k>kµ

1

θ + k2 − µ
.

It is very easy to see that the second sum on the right side above is bounded by∑
k∈N 1/(θ+k2). For the first sum we do the change of discrete variables j = kµ−k,

obtaining ∑
1≤k≤kµ

1

θ + µ− k2
=

∑
1≤j≤kµ

1

θ + µ− k2µ + 2kµj − j2

≤
∑

1≤j≤kµ

1

θ + 2kµj − j2
≤

∑
1≤j≤kµ

1

θ + j2
.

Combining this with our earlier estimate for the second sum in (2.10), it follows
that ∑

k∈N

1

θ + |µ− k2|
≤ 2

∑
k∈N

1

θ + k2
for µ > 0 .

This, together with (2.8) and (2.9) implies that, for any θ > 0,

(2.11) |CΛ(sI −A)−1B| ≤ 2
√
2m

a

∑
k∈N

1

θ + k2
for Re s = θa.

If we denote the righ-hand side of (2.11) with β(Re s) and compare with (2.7), we
see that CΛ(sI − A)−1B is strictly proper. In particular, this transfer function is
bounded on any half-plane Cα with α > 0. According to the last part of Proposition
2.4, (A,B,CΛ, 0) is well-posed. □



238 H.C. ZHOU AND G. WEISS

Corollary 2.10. Let X be a Hilbert space, let A : D(A)→X be the generator of an
operator semigroup T on X, let B ∈ L(Cm, X−1) be an admissible control operator
for T and let C ∈ L(X1,Cp) be an admissible observation operator for T. Assume
that A is diagonalizable, meaning that there is a Riesz basis (ϕk) in X (k ∈ N)
consisting of eigenvectors of A, and the corresponding eigenvalues µk satisfy

µk = iak2 +O(1), where a > 0 .

Then (A,B,CΛ, 0) is a compatible system node that is well-posed and strictly
proper.

Indeed, this follows from Propositions 2.5 and 2.9.

3. Properties of the system to be controlled

We want to reformulate the equations (1.1) and (1.2) in the abstract operator
theory framework. For this, first we introduce a semigroup generator on H, a
bounded perturbation of A from (1.3):

(3.1) Ahf = Af + hf ∀ f ∈ D(Ah) = D(A).

We define the operators Bl, Br as follows:

Bl = iδ(·), Br = − iδ(· − 1).

Here δ is the Dirac mass. We denote the adjoints of A, Bl and Br by A∗, B∗
l and

B∗
r , respectively, and it is easy to check that

A∗f = if ′′, D(A∗) = {f ∈ H2(0, 1) | f ′(0) = iqf(0), f ′(1) = 0},
B∗

l f = − if(0), B∗
rf = if(1) ∀ f ∈ D(A∗).

The operators Bl and Br are the control operators that correspond to the inputs d2
and u in the boundary control systems (1.1) as well as (1.2). This can be checked
using [28, Remark 10.1.6].

Define Cm ∈ L(H1(0, 1),C) by Cmf = f(1). Then (1.1) can be rewritten in the
abstract form

(3.2)

{
ż(·, t) = Ahz(·, t) + g(·)d1(t) +Bld2(t) +Bru(t) ,
y(t) = Ce[z(·, t)] , ym(t) = Cm[z(·, t)] ,

which corresponds to the compatible system node(Ah, [g(·) Bl Br],
[
Ce
Cm

]
, 0) on

(C3,H,C2). It is easy to check that for this system node, the space Z from (2.3) is
given by

(3.3) Z = H2(0, 1) .

The equivalence between (1.1) and (3.2) means that they have the same classical
solutions, and this equivalence can be checked using the techniques in [28, Sect. 10.1].

Similarly, the system (1.2) can be rewritten in the abstract form

(3.4)

{
ż(·, t) = Az(·, t) +Bld2(t) +Bru(t) ,
y(t) = Ce[z(·, t)] , ym(t) = Cm[z(·, t)] ,

which corresponds to the compatible system node (A, [Bl Br],
[
Ce
Cm

]
, 0) on (C2,H,C2).

For this system node, the space Z is again given by (3.3).



REGULATOR PROBLEM FOR SCHRÖDINGER EQUATION 239

Lemma 3.1. Let A be defined by (1.3). Then A−1 exists and it is compact. Hence,
σ(A), the spectrum of A, consists of isolated eigenvalues of finite algebraic multi-
plicity. All eigenvalues of A are located in a vertical strip, they have positive real
parts and there exists a sequence of eigenfunctions of A, which forms a Riesz basis
for H. Therefore, A generates an operator group T on H.

The observation operator Cm is admissible for the group T.

Proof. A straightforward computation shows that A has a bounded inverse on H
and

(A−1ϕ)(x) =
−(i+ qx)

∫ 1
0 ϕ(y)dy

iq
− i

∫ x

0
(x− y)ϕ(y)dy.

Since the embedding of H1(0, 1) into L2[0, 1] is compact, it follows that A−1 is
compact. This implies that σ(A) consists of isolated eigenvalues of finite algebraic
multiplicity. It is easy to verify that Re ⟨Af, f⟩ = q|f(0)|2 ≥ 0, which implies that
all the eigenvalues of A have non-negative real parts. Next, we show that there is
no eigenvalue on the imaginary axis. Otherwise, suppose that Af = iβf with β ∈ R
has a nonzero solution, i.e.,

(3.5) f ′′(x) = − βf(x), f ′(0) = − iqf(0), f ′(1) = 0.

Multiplying the first equation of (3.5) with f(x) (the conjugate of f(x)) and inte-
grating over [0, 1], it follows from the boundary condition that

iq|f(0)|2 −
∫ 1

0
|f ′(x)|2dx = −β

∫ 1

0
|f(x)|2dx,

which, jointly with q > 0 and taking imaginary part, gives f(0) = 0. By the second
equation of (3.5), f ′(0) = 0. Thus, (3.5) has only the zero solution, a contradiction.
Therefore, all the eigenvalues of A have positive real parts.

Now we consider the eigenvalue problem Af = µf and let µ = −iλ2, that is
ϕ′′(x) = λ2ϕ(x), ϕ′(0) = − iqϕ(0), ϕ′(1) = 0,

to yield
(3.6) ϕ(x) =

λ− iq

λ+ iq
eλx + e−λx,

where λ ∈ C satisfies

(3.7) e2λ =
λ+ iq

λ− iq
= 1 +

2iq

λ− iq
= 1 +

2iq

λ
+O(|λ|−2) as |λ| → ∞.

Thus, we have
λn = nπi+O(n−1), n ∈ N.

Substituting this into (3.7), we get that for this specific case, O(n−1) = q/(nπ) +
O(n−2), hence

λn = nπi+
q

nπ
+O(n−2), n ∈ N .

It follows from here and (3.6) that the asymptotic expressions for eigenpairs of A
are

(3.8)

{
µn = 2q + i(nπ)2 +O(n−2),
ϕn(x) = cos(nπx) +O(n−1),

which implies that all the eigenvalues µn of A are located in a vertical strip and the
corresponding eigenvectors ϕn are quadratically close to an orthonormal basis. By
a theorem known as “Bari’s theorem”, see [9, Theorem 6.3] or [33, Theorem 2.4],
{ϕn} forms a Riesz basis for H. This shows that the spectrum-determined growth
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condition holds for A. Thus, A generates an operator semigroup T and ∥Tt∥ ≤ Leωt

with ω = sup{Reλ | λ ∈ σ(A)} for some L ≥ 1. Similarly, we can show that −A
generates an operator semigroup. By [28, Proposition 2.7.8], T can be extended to
a group.

We show that Cm is admissible for the group T. Denote cn = Cmϕn, n ∈ N, then
according to (3.8) we have cn = cos(nπ) + O(n−1). The eigenvalues µn are in a
vertical strip and for large enough n, the distance between their imaginary parts is
bounded from below by a positive number. Thus, the admissibility of Cm follows
from the simple version of the Carleson measure criterion applicable for diagonal
operator groups, see [28, Proposition 5.3.5]. □

Remark 3.2. By Lemma 3.1, all the eigenvalues of A have positive real parts. So, if
the values h(x) in (1.1) are non-negative or if its sup norm is sufficiently small, then
also the eigenvalues of Ah have positive real parts. This is why we call the system
(1.1) anti-stable. This situation is different from the unstable case in [6], where there
are at most finitely many unstable eigenvalues for the system to be controlled. The
system (1.1) is different also from the one in [17], where the Schrödinger equation
is essentially exponentially stable when the disturbance vanishes.

Proposition 3.3. The operators Bl, Br are admissible control operators for T.
Therefore, for any initial state z(0) = z0 ∈ H and any d2, u ∈ L2

loc[0,∞), the first
equation in (3.4) admits a unique solution in H−1 (in the sense of [28, Definition
4.1.1]) and z ∈ C([0,∞);H).

Moreover, if d2, u ∈ H1
loc(0,∞) are such that Az0 + Bld2(0) + Bru(0) ∈ H, then

the solution z satisfies
(3.9) z ∈ C([0,∞);Z) ∩ C1([0,∞);H) .

In this case, the functions y and ym can be defined by the second equation in (3.4)
and (z, [ d2u ] , [ y

ym ]) is a classical solution of (3.4) and also of (1.2).

Recall that Z appearing above is given by (3.3). We remark that the condition
Ahz0 +Bld2(0) +Bru(0) ∈ H appearing above is equivalent to

z0 ∈ H2(0, 1) ,
d

dx
z0(0) = − iqz(0) + d2(0) ,

d

dx
z0(1) = u(0) .

This can be verified using the techniques of boundary control systems in [28,
Sect. 10.1].

Proof. We prove the admissibility of Bl for T. For this, recall from [28, Theorem
4.4.3] that it suffices to show that B∗

l an admissible observation operator for the

adjoint semigroup T∗. This is equivalent to showing that (i) B∗
l A

∗−1 is a bounded
operator on H and (ii) for each T > 0 there exists MT > 0 such that for every initial
state, the output signal η of the system (defined for t ≥ 0)

(3.10)

 zt(x, t) = izxx(x, t), x ∈ (0, 1),
zx(0, t) = iqz(0, t), zx(1, t) = 0,
η(t) = z(0, t),

satisfies ∫ T

0
|η(t)|2dt ≤ MTE(0), where E(t) =

1

2
∥z(·, t)∥2H .
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A simple computation shows that A∗ has bounded inverse on H and
A∗−1ϕ =

(−i+ qx)
∫ 1
0 ϕ(y)dy

−iq
− i

∫ x

0
(x− y)ϕ(y)dy,

B∗
l A

∗−1ϕ = − i

q

∫ 1

0
ϕ(y)dy.

Hence B∗
l A

∗−1 is bounded on H. We differentiate E with respect to t along the

solution of (3.10) to obtain Ė(t) = q|η(t)|2, which, together with Lemma 3.1, gives∫ T

0
|η(t)|2dt = 1

q
[E(t)− E(0)] ≤ 1

q
[1 + LeωT ]E(0),

where ω,L are as in the proof of Lemma 3.1. Thus, Bl is admissible.
The proof of the fact that Br is an admissible control operator for T is similar.

The statement about unique and continuous solutions of (3.4) follows from [28,
Proposition 4.2.5]. Finally, the statement for d2, u ∈ H1

loc(0,∞) follows from [28,
Proposition 4.2.10]. □

There is a similar statement for the original system (1.1), formulated abstractly
in (3.2):

Corollary 3.4. The operator Ah from (3.1) generates an operator group (eAht)t∈R
on H and Bl, Br are admissible control operators for this operator group. Therefore,
for any initial state z(0) = z0 ∈ H and any d1, d2, u ∈ L2

loc[0,∞), the first equation
in (3.2) admits a unique solution in H−1 (in the sense of [28, Definition 4.1.1]) and
z ∈ C([0,∞);H).

Moreover, if d1, d2, u ∈ H1
loc(0,∞) are such that Ahz0 + Bld2(0) + Bru(0) ∈ H,

then the solution z satisfies (3.9). In this case, the functions y and ym can be defined

by the second equation in (3.2) and (z,
[
d1
d2
u

]
, [ y

ym ]) is a classical solution of (3.2),

and also of (1.1).

Proof. By Lemma 3.1 and the boundedness of h, it is clear that Ah generates a
strongly continuous operator group on H (this follows, for instance, by applying
[28, Theorem 2.11.2] to Ah and also to −Ah). Since Ah is a bounded perturbation
of A, according to [28, Corollary 5.5.1], Bl and Br are admissible control operators
also for (eAht)t≥0. The end of the proof is now the same as for Proposition 3.3. □

Proposition 3.5. The compatible system node (Ah, [g(·) Bl Br],
[
Ce
Cm

]
, 0) (which

corresponds to the equations (3.2)) is well-posed. Similarly, the compatible system

node (A, [Bl Br],
[
Ce
Cm

]
, 0) (which corresponds to the equations (3.4)) is well-posed.

If we replace Ce with CeΛ (defined as in (2.1)), then both of these system nodes
become strictly proper (hence, all these systems are regular).

Proof. We start with the compatible system node (A, [Bl Br],
[
Ce
Cm

]
, 0), whose con-

trol operator B = [Bl Br] is known to be admissible from Proposition 3.3 and whose

observation operator C =
[
Ce
Cm

]
is known to be admissible from our assumption on

Ce in Sect. 1 and from Lemma 3.1. We know from (3.8) that A satisfies the assump-

tions of Corollary 2.10. Hence, according to this corollary, (A, [Bl Br],
[
Ce
Cm

]
, 0) is

well-posed. According to Proposition 2.5, (Ah, [Bl Br],
[
Ce
Cm

]
, 0) is also well-posed.
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The well-posedness of this system node will not be affected if we add another
bounded component to its control operator, changing it to [g(·) Bl Br].

For the operator Cm it is not difficult to show that its extension CmΛ, when
restricted to Z, is again Cm. However for Ce, which has not been specified, we do
not know if this is the case. However, after having replaced Ce with CeΛ, we can

apply Corollary 2.10 to (A, [Bl Br],
[
CeΛ
Cm

]
, 0) to conclude that its transfer function

G is strictly proper. For the transfer function GP of (Ah, [Bl Br],
[
CeΛ
Cm

]
, 0) we use

the identity (2.6), with P being the operator of pointwise multiplication with the
function h, so that Ah = A + P . Since the functions C(sI − A)−1 and (sI − A −
P )−1B (with C =

[
Ce
Cm

]
and B = [Bl Br]) are known to be strictly proper, see for

instance [28, Theorem 4.3.7 and Proposition 4.4.6], it follows that GP is strictly
proper. Finally, when adding the extra component to B, replacing the earlier B
with [g(·) Bl Br], then the transfer function remains strictly proper, because the
new component g(·) is a bounded control operator. □

4. State feedback regulation

In this section we will construct a state feedback operator that solves the regulator
problem. We denote Ω = {(x, ξ) ∈ R2 | 0 ≤ ξ ≤ x ≤ 1}. First we introduce the
backstepping transformation

(4.1) v(x, t) = F [z(·, t)](x, t) := z(x, t)−
∫ x

0
k(x, ξ)z(ξ, t)dξ,

where the kernel function k : Ω → R satisfies, for some fixed cs > 0,

(4.2)


kxx(x, ξ)− kξξ(x, ξ) = (h(ξ) + cs)ik(x, ξ),

kξ(x, 0) + qik(x, 0) = 0,

k(x, x) = − i

2

∫ x

0
(h(ξ) + cs)dξ − qi.

By [26, Theorem 2.1], the above system of equations has a unique solution k ∈
C2(Ω). It can be shown [26, Theorem 2.2] that this transformation is boundedly
invertible, and

F−1[v(·, t)](x, t) = v(x, t) +

∫ x

0
K(x, ξ)v(ξ, t)dξ ,

where the kernel function K is also in C2(Ω). It is easy to see from (4.1) and the
above formula that F and F−1 leave C1 and H2 functions invariant:

FC1[0, 1] ⊂ C1[0, 1], F−1C1[0, 1] ⊂ C1[0, 1],

FH2(0, 1) ⊂ H2(0, 1), F−1H2(0, 1) ⊂ H2(0, 1) .

The proposed state feedback law (applied to classical solutions of (1.1)) is given
by a continuous linear functional F defined on H2(0, 1) plus a term applied to the
exosystem state w:

(4.3) u(t) = F [z(·, t)] +m⊤
ww(t) = k(1, 1)z(1, t) +

∫ 1

0
kx(1, ξ)z(ξ, t)dξ +m⊤

ww(t),
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where m⊤
w is a constant vector to be determined later. With this feedback, the first

equation in (3.2) becomes

(4.4) ż(·, t) = (Ah +BrF )z(·, t) + g(·)d1(t) +Bld2(t) +Brm
⊤
ww(t) .

Under the state feedback (4.3), the classical solutions of (4.4) must satisfy the
following equations (which are obtained by substituting (4.3) into (1.1)):

(4.5)



zt(x, t) = − izxx(x, t) + h(x)z(x, t) + g(x)d1(t),

zx(0, t) = − iqz(0, t) + d2(t),

zx(1, t) = k(1, 1)z(1, t) +

∫ 1

0
kx(1, ξ)z(ξ, t)dξ +m⊤

ww(t),

z(x, 0) = z0(x), y(t) = Ce [z(·, t)] , ym(t) = z(1, t) .

Using the transformation (4.1) and omitting ym, the system (4.5) becomes

(4.6)


vt(x, t) = − ivxx(x, t)− csv(x, t) + F [g](x)d1(t)− k(x, 0)d2(t),

vx(0, t) = d2(t), vx(1, t) = m⊤
ww(t),

v(x, 0) = z0(x)−
∫ x

0
k(x, ξ)z0(ξ)dξ , y(t) = CeF−1 [v(·, t)] .

In order to find the constant vector mw in (4.3), we introduce the error transfor-
mation

(4.7) ṽ(x, t) = v(x, t)−m(x)⊤w(t).

We are searching for a function m ∈ C2([0, 1];Rnw) for the transformation (4.7)
so that the first three equations in (4.6) can be converted into the following (with
x ∈ (0, 1) and t ≥ 0):

(4.8)

{
ṽt(x, t) = − iṽxx(x, t)− csṽ(x, t),

ṽx(0, t) = 0, ṽx(1, t) = 0 .

In other words, ˙̃v = (A− csI) ṽ, where A is the following skew-adjoint operator:
(4.9) Af = − if ′′ with D(A) = {f ∈ H2(0, 1) | f ′(0) = f ′(1) = 0} .
This A is a simplified version of A from (1.3) that corresponds to q = 0. Thus, the
differential equation of ṽ is exponentially stable in H.

Substituting (4.7) into the first part of (4.8), we get
(4.10)
0 = ṽt(x, t) + iṽxx(x, t) + csṽ(x, t)

= vt(x, t)−m(x)⊤Sw(t) + ivxx(x, t)− im′′(x)⊤w(t) + csv(x, t)− csm(x)⊤w(t)

= −
[
im′′(x)⊤ +m(x)⊤S + csm(x)⊤ −F [g](x)p⊤1 + k(x, 0)p⊤2

]
w(t).

Here we have used p1, p2 from (1.5). Substituting (4.7) into the second part of (4.8),
we get (using (4.6))
(4.11) 0 = ṽx(0, t) = vx(0, t)−m′(0)⊤w(t) =

[
p⊤2 −m′(0)⊤

]
w(t).

Substituting (4.7) into the third part of (4.8), we have (using (4.6))

(4.12) 0 = ṽx(1, t) = vx(1, t)−m′(1)⊤w(t) =
[
m⊤

w −m′(1)⊤
]
w(t).
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Recall from Sect. 1 that D(Ce) = H2(0, 1). By (4.1) and (4.7), for any classical
solution of the closed-loop system, the output tracking error is, for every t ≥ 0,

(4.13)
ey(t) = y(t)− r(t) = Ce[z(·, t)]− p⊤r w(t) = CeF−1[v(·, t)]− p⊤r w(t)

= CeF−1[ṽ(·, t)] +
(
CeF−1[m]− p⊤r

)
w(t).

It follows from (4.10)-(4.13) that if the function m satisfies the following regulator
equations:

(4.14)

{
im′′(x)⊤ +m(x)⊤S + csm(x)⊤ = F [g](x)p⊤1 − k(x, 0)p⊤2 ,

m′(0)⊤ = p⊤2 , CeF−1[m] = p⊤r ,

and we choose mw in (4.3) so that mw = m′(1), provided that the equation (4.14)
is solvable, then the system (4.6) is reduced to (4.8), and the output tracking error
for classical solutions of the closed-loop system becomes, according to (4.13),

(4.15) ey(t) = y(t)− r(t) = CeF−1[ṽ(·, t)] .

Remark 4.1. The state feedback operator from (4.3) can be written in the form
(4.16) F = k(1, 1)Cm +K ,

where K is a bounded linear functional on H. This shows (using Proposition 3.5)
that F is an admissible observation operator for the semigroups generated by A and
Ah. We have from (4.2)

k(1, 1) = − i

2

∫ 1

0
h(ξ)dξ − i

[cs
2

+ q
]
,

and clearly Cm = −iB∗
r . Thus, we can write

F = −
[
cs
2

+ q +

∫ 1

0
h(ξ)dξ

]
B∗

r +K ,

which shows that the dominant component of this feedback is collocated.

Remark 4.2. The compatible system node Σ = (Ah, [g(·) Bl Br],
[
Ce
Cm

]
, 0) repre-

sents the systems (3.2) and also (1.1), see Corollary 3.4. This is a regular linear
system, according to Proposition 3.5. Since F satisfies (4.16), it follows that also

the system node Σf = (Ah, [g(·) Bl Br],
[

Ce
Cm
F

]
, 0) is regular (with input and output

space C3). This Σf has been obtained by adding a third output to Σ, namely,
uf (t) = FΛz(t) (for classical solutions we may write uf (t) = Fz(t)). Now the state
feedback law (4.3) can be written in the abstract output feedback form that fits
Proposition (2.8):
(4.17)d1(t)d2(t)

u(t)

 = Kf

 y(t)
ym(t)
uf (t)

+ ρ(t) , where Kf =

0 0 0
0 0 0
0 0 1

 , ρ(t) =

 d1(t)
d2(t)

m⊤
ww(t)

 ,

and ρ is the new input signal of the closed-loop system.

Proposition 4.3. With the notation of Remark 4.2, define Acl : D(Acl)→H as
follows:

Acl = Ah +BrFΛ , D(Acl) =
{
x ∈ H2(0, 1) | Ahx+BrFΛx ∈ X

}
.
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The closed-loop system Σcl obtained from Σ with the feedback law (4.3) (described
by the equations (4.4) and the second line of (3.2)) is a regular linear system Σcl

with semigroup generator Acl, control operator B = [g Bl Br], observation operator

C =
[
Ce
Cm

]
(restricted to D(Acl)) and its feedthrough operator D is the same as for

the open-loop system Σ.

Proof. We know from Proposition 3.5 that the compatible system node

(Ah, [g(·) Bl Br],
[
CeΛ
Cm

]
, 0) is well-posed and strictly proper. Since F satisfies (4.16),

it follows that also
Σf0 =

(
Ah, [g(·) Bl Br],

[
CeΛ
Cm
F

]
, 0

)
is well-posed and strictly proper. This regular system node differs from Σf in
Remark 4.2 only in its feedthrough operator: the feedthrough operator of Σf0 is
zero, while for Σf it is of the form

D0 =

0 D1 D2

0 0 0
0 0 0

 , where
D1 = limλ→∞,λ∈RCe(λI −Ah)

−1Bl ,

D2 = limλ→∞,λ∈RCe(λI −Ah)
−1Br .

The limits D1 and D2 could be any numbers in C, because Ce has not been specified.
According to the last part of Proposition 2.7, the system Σf is equivalent to

Σf =

(
Ah, [g(·) Bl Br],

[
CeΛ
Cm
F

]
, D0

)
in the sense that these systems have the same system operator and the same trans-
fer function. (According to the theory of system nodes, having the same system
operator means that they are the same system.) We denote by G and G0 the
transfer functions of Σf and Σf0 respectively, so that G(s) = G0(s) +D0. We see
that I−KfG(s) has a uniformly bounded inverse on some right half-plane, because
KfG(s) = KfG0(s) and G0 is strictly proper. Note that KfD0 = 0. Thus, we can
apply Proposition 2.8 to conclude that Σf with the feedback law (4.3), which is
equivalent to (4.17), leads to a well-posed and regular closed-loop system Σcl,f .

According to Proposition 2.8, after a little computation, we find that

Σcl,f =

(
Acl, [g(·) Bl Br],

[
CeΛ+D2F

Cm
F

]
, D0

)
,

where Acl is defined in the proposition. Another short computation shows that the
above system node Σcl,f is equivalent to

Σcl,f =
(
Acl, [g(·) Bl Br],

[
Ce
Cm
F

]
, 0
)
.

If we ignore the third output of this system, uf introduced in Remark 4.2, then
we obtain the closed-loop system Σcl stated in the proposition. We remark that D
consists of the first two lines of D0 and that the restrictions of CeΛ +D2F and of
Ce to D(Acl) are equal. □
Proposition 4.4. We use the notation of Proposition 4.3. Assume that the regu-
lator equations (4.14) have a solution m and mw = m′(1), so that (4.8) and (4.15)
hold.

Then CeF−1 is an admissible observation operator for the group generated by A
from (4.9).
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Proof. Consider the cascade connection of the closed-loop system Σcl with the ex-
osystem from (1.5) according to (4.4), so that all three inputs of Σcl come from the
finite-dimensional exosystem. Since Σcl is well-posed, it follows that this cascade
connection is again well-posed, implying that for any T > 0 there exists an mT > 0
such that ∫ T

0
∥y(t)∥2 ≤ mT

∥∥∥∥[z(·, 0)w(0)

]∥∥∥∥2 .
Clearly a similar estimate holds for the signal r, and using (4.15) it follows that a
similar estimate holds for ey: for some m̃T > 0,∫ T

0
∥ey(t)∥2 ≤ m̃T

∥∥∥∥[z(·, 0)w(0)

]∥∥∥∥2 .
Now consider the special case w(0) = 0. Then according to (4.1) and (4.7), we

have ṽ = Fz and according to (4.8) and (4.15) we have ˙̃v(t) = (A − csI)ṽ(t) and
ey(t) = CeF−1ṽ(t). From∫ T

0
∥ey(t)∥2 ≤ m̃T ∥z(0)∥2 ≤ m̃T ∥F−1∥2∥ṽ(0)∥2 .

This shows that CeF−1 is an admissible observation operator for the group gener-
ated by A− csI (equivalently, for the group generated by A). □

Remark 4.5. Let ṽ satisfy (4.8) and denote v̂(·, t) := F−1[ṽ(·, t)]. Then v̂(x, t) is
governed by

v̂t(x, t) = − iv̂xx(x, t) + h(x)v̂(x, t),

v̂x(0, t) = −iqv̂(0, t),

v̂x(1, t) = K(1, 1)ṽ(1, t) +

∫ 1

0
Kx(1, ξ)ṽ(ξ, t)dξ = K(1, 1)

[
v̂(1, t)

−
∫ 1

0
k(1, ξ)v̂(ξ, t)dξ

]
+

∫ 1

0
Kx(1, ξ)

(
v̂(ξ, t)−

∫ 1

0
k(ξ, ζ)v̂(ζ, t)dζ

)
)dξ .

We state a lemma which describes the solvability condition of the regulator equa-
tion (4.14). This lemma is related to [22, Theorem 5.2].

Lemma 4.6. The regulator equation (4.14) has a unique solution if and only if

CeF−1[cosh(
√

−i(λ+ cs)·)] ̸= 0, for all λ ∈ σ(S).

Proof. Since S is diagonalizable, there exists a square matrix

V = [v1, v2, . . . vnw ] , vj ∈ Rnw ,

such that V −1SV = diag(λ1, λ2, . . . λnw), where λj , j = 1, 2, . . . nw are the eigenval-
ues of S. Multiply with vj from the right in (4.14) to obtain

(4.18)

{
m̄′′

j (x)− iλjm̄j(x)− icsm̄j(x) = − i[F [g](x)p⊤1 vj − k(x, 0)p⊤2 vj ],

m̄′
j(0) = p⊤2 vj , CeF−1[m̄j ] = p⊤r vj , j = 1, 2, . . . nw,

where m̄j = m(x)⊤vj , j = 1, 2, . . . , nw. If λj + cs ̸= 0, the general solution of the
first equation of (4.18) is of the following form (with the coefficients γ1, γ2 to be
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determined):

m̄j(x) = γ1 cosh(
√

−i(λj + cs)x) + γ2
sinh(

√
−i(λj + cs)x)√

−i(λj + cs)

−i

∫ x

0

[
F [g](ξ)p⊤1 vj − k(ξ, 0)p⊤2 vj

]sinh(√−i(λj + cs)(x− ξ))√
−i(λj + cs)

dξ .

Substituting this into the boundary conditions in (4.18), we get

(4.19)



γ2 = p⊤2 vj ,

γ1CeF−1[cosh(
√
−i(λj + cs)·)] + γ2CeF−1

[
sinh(

√
−i(λi + cs)x)√

−i(λj + cs)

]
+CeF−1

[
− i

∫ ·

0

[
F [g](ξ)p⊤1 vi − k(ξ, 0)p⊤2 vj

]
×
sinh(

√
−i(λj + cs)(· − ξ))√
−i(λj + cs)

dξ

]
= p⊤r vj .

It is obvious that the coefficients γ1, γ2 can be uniquely determined by equation
(4.19) if and only if CeF−1[cosh(

√
−i(λj + cs)·)] ̸= 0.

If λj + cs = 0, then the solutions of the first equation in (4.18) are of the form

(4.20) m̄j(x) = γ1 + γ2x− i

∫ x

0
(x− ξ)[F [g](ξ)p⊤1 vj − k(ξ, 0)p⊤2 vj ]dξ,

where γ1, γ2 are the coefficients to be determined. Substituting (4.20) into the
boundary conditions in (4.18), we get γ2 = p⊤2 vi and, denoting by η the identity
function, η(x) = x,

(4.21)

γ1CeF−1[1] = −γ2CeF−1[η] + p⊤r vj

−CeF−1

[
− i

∫ ·

0
(· − ξ)[F [g](ξ)p⊤1 vj − k(ξ, 0)p⊤2 vj ]dξ

]
.

It is clear that γ1 can be uniquely determined from this equation if and only if
CeF−1[1] ̸= 0. □

Now, with the state feedback, we turn to the closed-loop system which is com-
posed of (1.1), (1.5), (4.3) and (4.15), that is

(4.22)



zt(x, t) = − izxx(x, t) + h(x)z(x, t) + g(x)p⊤1 w(t),

zx(0, t) = − iqz(0, t) + p⊤2 w(t),

zx(1, t) = k(1, 1)z(1, t) +

∫ 1

0
kx(1, ξ)z(ξ, t)dξ +m⊤

ww(t),

z(·, 0) = z0(·) ∈ L2[0, 1],

ẇ(t) = Sw(t), w(0) = w0 ∈ Rnw ,

ey(t) = y(t)− r(t) = Ce[z(·, t)]− pr(t)
⊤w(t).

The following is the main result of this section.
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Theorem 4.7. Let cs > 0 and let the functions k and m be solutions of (4.2) and
(4.14). Suppose that

CeF−1[cosh(
√

−i(λ+ cs)·)] ̸= 0 ∀ λ ∈ σ(S) .

Then the state feedback law (4.3) with m⊤
w = m′(1)⊤ solves the output regulation

problem for the system (4.22), i.e., ey ∈ Lα[0,∞) for some α < 0. If Ce is bounded,
then there exist M,µ > 0 such that |ey(t)| ≤ Me−µt holds for all t ≥ 0.

Proof. We have seen after (4.8) that ˙̃v(·, t) = (A − csI)ṽ(·, t), where A is skew-
adjoint. Clearly A − csI generates an exponential stable operator group, which,
jointly with the admissibility of the observation operator CeF−1 (see Proposition
4.4) implies that ey = CeΛF−1[ṽ] ∈ L2

α[0,∞) with α ∈ (−cs, 0), see [28, Proposition
4.3.6]. If the observation operator Ce is bounded, then by the boundedness of the
transformation F−1, there exist three constants C0,M, µ > 0 such that

|ey(t)| = |CeF−1[ṽ](·, t)| ≤ C0∥ṽ(·, t)∥ ≤ C0Me−µt∥ṽ(·, 0)∥. □

5. Observer design

The full states w(t) and z(·, t) used in (4.3) are not always available (as mea-
surements) to the controller. Thus, to implement the feedback law (4.3), we need
to design an observer for the combined system (1.1) and (1.5), to recover its state
from the output measurement ym(t) = z(1, t) and from the reference r(t). Since
(q⊤r , Sr) is observable, there exists an observer gain lr ∈ Rnr such that Sr + lrq

⊤
r is

Hurwitz. So, we can use the finite dimensional reference observer

(5.1) ˙̂wr(t) = Srŵr(t) + lr(q
⊤
r ŵr(t)− r(t)),

where ŵr(t) is the estimate of wr(t) in (1.5). In order to estimate z(·, t) and wd in
(1.1) and (1.5), we design the following observer:
(5.2)

˙̂wd(t) = Sdŵd(t) + ld(ẑ(1, t)− ym(t)),

ẑt(x, t) = − iẑxx(x, t) + h(x)ẑ(x, t) + g(x)q⊤d1ŵd(t) + l(x) [ẑ(1, t)− ym(t)] ,

ẑx(0, t) = − iqẑ(0, t) + q⊤d2ŵd(t),

ẑx(1, t) = u(t) + l0(ẑ(1, t)− ym(t)),

where l(·), l0 are observer gains, to be designed later. It should be noted that the
above observer (5.2) is implemented based on the boundary measurement ym(t) and
the input signal u(t). Let

w̃r(t) = ŵr(t)− wr(t), w̃d(t) = ŵd(t)− wd(t), z̃(x, t) = ẑ(x, t)− z(x, t)

be the observer errors. Then, by (1.1), (5.1) and (5.2), w̃d(t), w̃r(t) and z̃(x, t)
satisfy

(5.3)


˙̃wr(t) = (Sr + lrq

⊤
r )w̃r(t), ˙̃wd(t) = Sdw̃d(t) + ldz̃(1, t),

z̃t(x, t) = − iz̃xx(x, t) + h(x)z̃(x, t) + g(x)q⊤d1w̃d(t) + l(x)z̃(1, t),

z̃x(0, t) = − iqz̃(0, t) + q⊤d2w̃d(t), z̃x(1, t) = l0z̃(1, t),
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which has to be exponentially stabilized. In order to find the observer gains l(·), l0
that ensure that (5.3) is exponentially stable, we look for the backstepping transfor-
mation

(5.4) z̃(x, t) = Fo[e](x, t) := e(x, t)−
∫ 1

x
p(x, ξ)e(ξ, t)dξ,

that transforms (5.3) into the following system:

(5.5)



˙̃wr(t) = (Sr + lrq
⊤
r )w̃r(t), ˙̃wd = Sd w̃d(t) + lde(1, t),

et(x, t) = − iexx(x, t)− coe(x, t) + g̃(x)⊤w̃d(t) + l̃(x)e(1, t), x ∈ (0, 1),

ex(0, t) = q⊤d2w̃d(t), ex(1, t) = 0,

e(x, 0) = e0(x) = F−1
o [z̃0](x),

where g̃(x)⊤ is given by g̃(x)⊤ = F−1
o [g](x)q⊤d1 and l̃(x) is needed as an additional

degree of freedom for the subsequent design.
By the third equations of (5.3) and (5.5), and the transformation (5.4), through

integration by parts we obtain

g(x)q⊤d1w̃d(t) + l(x)e(1, t) = g(x)q⊤d1w̃d(t) + l(x)z̃(1, t)

= z̃t(x, t) + iz̃xx(x, t)− h(x)z̃(x, t)

= et(x, t)−
∫ 1

x
p(x, ξ)et(xi, t)dξ + i

[
e(x, t)−

∫ 1

x
p(x, ξ)e(ξ, t)dξ

]
xx

−h(x)

[
e(x, t)−

∫ 1

x
p(x, ξ)e(ξ, t)dξ

]
= −iexx(x, t)− coe(x, t) + g̃(x)⊤w̃d(t) + l̃(x)e(1, t)

−h(x)

[
e(x, t)−

∫ 1

x
p(x, ξ)e(ξ, t)dξ

]
+

∫ 1

x
p(x, ξ)coe(ξ, t)dξ

+i

∫ 1

x
pξξ(x, ξ)e(ξ, t)dξ − i

∫ 1

x
pxx(x, ξ)e(ξ, t)dξ

−
∫ 1

x
p(x, ξ)g̃(ξ)⊤dξw̃d(t)−

∫ 1

x
p(x, ξ)l̃(x)dξe(1, t)

+i

[
exx(x, t) +

d

dx
p(x, t)e(x, t) + p(x, x)ex(x, t) + px(x, x)e(x, t)

]
+i[p(x, 1)ex(1, t)− p(x, x)ex(x, t)− pξ(x, 1)e(1, t) + pξ(x, x)e(x, t)]

=

[
2i

d

dx
p(x, t)e(x, t)− h(x)− co

]
e(x, t)

+[Fo[l̃(x)]− ipξ(x, 1)]e(1, t) + Fo[g̃(x)
⊤]w̃d(t)

+

∫ 1

x
[−ipxx(x, ξ) + ipξξ(x, ξ) + h(x)p(x, ξ) + cop(x, ξ)]e(ξ, t)dξ .(5.6)
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By the fourth equations of (5.3) and (5.5), and the transformation (5.4), we obtain

0 = ex(0, t)− q⊤d2w̃d(t) = z̃x(0, t)− p(0, 0)e(0, t) +

∫ 1

0
pξ(0, ξ)e(ξ, t)dξ

− q⊤d2w̃d(t)

= − iq[e(0, t)−
∫ 1

x
p(0, ξ)e(ξ, t)dξ]− p(0, 0)e(0, t) +

∫ 1

0
pξ(0, ξ)e(ξ, t)dξ

= − [p(0, 0) + qi]e(0, t) +

∫ 1

0
[pξ(0, ξ) + qip(0, ξ)]e(ξ, t)dξ.

By the fifth equations of (5.3) and (5.5) and the transformation (5.4),

(5.7) 0 = ex(1, t) = z̃x(1, t)− p(1, 1)e(1, t) = l0z̃(1, t)− p(1, 1)e(1, t)

= [l0 − p(1, 1)]e(1, t) .

It follows from (5.6)-(5.7) that the kernel function p(x, ξ) in (5.4) should satisfy
pξξ(x, ξ)− pxx(x, ξ) = (h(x) + co)ip(x, ξ), co > 0,

px(0, ξ) + qip(0, ξ) = 0,

p(x, x) = − i

2

∫ x

0
(h(ξ) + co)dξ − qi,

and that we should choose the observer gains l(·) and l0 in (5.2) so that

l(x) = Fo[l̃](x)− ipξ(x, 1), l0 = p(1, 1) .

By [26, Theorem 2.2], the above equations in p have a unique solution p ∈ C2(Ω).
We note that we have still not obtained the final expression of the observer gain

l(·), because l̃(·) is a new design function. In order to find l̃(·) in (5.5) so that the
“e-part” of the system (5.5) is exponentially stable in L2[0, 1], we further introduce
the error transformation

(5.8) ẽ(x, t) = e(x, t)− n(x)⊤w̃d(t).

It is expected that under the above transformation, the system (5.5) can be trans-
formed into

(5.9)



˙̃wr(t) = (Sr + lrq
⊤
r )w̃r(t),

˙̃wd = (Sd + ldn(1)
⊤)w̃d(t) + ldẽ(1, t),

ẽt(x, t) = − iẽxx(x, t)− coẽ(x, t),

ẽx(0, t) = 0, ẽx(1, t) = 0.

Substituting (5.8) into the third equation of (5.9), we derive
(5.10)

0 = ẽt(x, t) + iẽxx(x, t) + coẽ(x, t)

= et(x, t)− n(x)⊤Srw̃d(t)− n(x)⊤lde(1, t)

+i[exx(x, t)− n′′(x)⊤w̃d(t)] + coe(x, t)− con(x)
⊤w̃d(t)

= [l̃(x)− n(x)⊤ld]e(1, t) + [g̃(x)T − n(x)⊤Sd − in′′(x)⊤ − con(x)
⊤]w̃d(t) = 0.
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Substituting (5.8) into the fourth equation of (5.9), we have

(5.11) 0 = ẽx(0, t) = ex(0, t)− n′(0)w̃d(t) = [q⊤d2 − n′(0)⊤]w̃d(t) = 0.

Substituting (5.8) into the fifth equation of (5.9), we obtain

(5.12) 0 = ẽx(1, t) = ex(0, t)− n′(1)⊤w̃d(t) = − n′(1)⊤w̃d(t) = 0.

It follows from (5.10)-(5.12) that n(·) must satisfy the following equations:

(5.13)

{
in′′(x)⊤ + n(x)⊤Sd + con(x)

⊤ = g̃(x)⊤,

n′(0)⊤ = q⊤d2 , n′(1)⊤ = 0.

If we choose l̃ so that l̃(x) = n(x)⊤ld, provided that the equation (5.13) is solvable,
then the system (5.5) becomes (5.9). Thus, the observer gains l(·) and l0 in (5.2)
are designed as follows:

(5.14) l(x) = Fo(n(x)
⊤ld)− ipξ(x, 1), l0 = p(1, 1) ,

provided that the equation (5.13) has a solution.

Lemma 5.1. The equations (5.13) have a unique solution if and only if σo∩σ(Sd) =
∅, where σo = {−j2π2i− co} is the eigenvalue set of the “ẽ-part” of (5.9).

Proof. Since S is diagonalizable, there exists a matrix V = [v1, v2, . . . vnd
], vj ∈ Rnw ,

j = 1, 2, . . . nd, such that V −1SV = diag(λ1, λ2, . . . λnd
), where λj , j = 1, 2, . . . nd

are the eigenvalues of Sd. Multiply by vj from the right in (4.14) to obtain

(5.15)

{
in̄′′

j (x) + λjn̄j(x) + con̄j(x) = g̃(x)⊤vj ,

n̄′
j(0) = q⊤d2vj , n̄′

j(1) = 0, j = 1, 2, . . . nd,

where n̄j = n(x)⊤vj , j = 1, 2, . . . , nd. If λj + co ̸= 0, the solutions of the first
equation in (5.15) are of the form

(5.16)

n̄j(x) = γ1 cosh

(√
−i(λj + cos)x

)
+ γ2

sinh(
√
−i(λj + co)x)√

−i(λj + co)

+

∫ x

0

[
− ig̃(ξ)⊤vj

]sinh(√−i(λj + co)(x− ξ))√
−i(λj + co)

dξ,

where γ1, γ2 are coefficients to be determined. Substituting (5.16) into the boundary
conditions in (5.15) yields

γ2 = q⊤d2vj ,

γ1

√
−i(λj + co) sinh

√
−i(λj + co) + γ2 cosh

√
−i(λj + co)

=

∫ 1

0
ig̃(ξ)⊤vj cosh(

√
−i(λj + co)(1− ξ))dξ.

It is obvious that the coefficients γ1, γ2 are uniquely determined if and only if
sinh

√
−i(λj + co) ̸= 0. It is easy to see that sinh

√
−i(λj + co) ̸= 0 is equivalent to

σo ∩ σ(Sd) = ∅.
If λj + co = 0, the solutions of the first equation in (5.15) are of the form

(5.17) n̄j(x) = γ1 + γ2x+

∫ x

0
(x− ξ)

[
− ig̃(ξ)⊤vj

]
dξ,
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where γ1, γ2 are the coefficients to be determined. Substituting (5.17) into the

boundary conditions in (5.15), we get γ2 = q⊤d2vj and γ2 =
∫ 1
0 ig̃(ξ)⊤vjdξ. It is

obvious that the γ1 cannot be uniquely determined and that there is no solution γ2
if q⊤d2vj ̸=

∫ 1
0 ig̃(ξ)⊤vjdξ. Therefore, (5.13) admits a unique solution if and only if

σo ∩ σ(Sd) = ∅. □
The next result confirms the existence, uniqueness and the exponentially stability

of the solutions of the observer error system (5.3). Rewrite the system (5.9) in the
form

d

dt
(w̃r(t), w̃d(t), ẽ(·, t))⊤ = A(w̃r(t), w̃d(t), ẽ(·, t))⊤

where the operator A : D(A) → is defined as follows:
A(Xr, Xd, ϕ(x))

= ((Sr + lrq
⊤
r )Xr, (Sd + ldn(1)

⊤)Xd + ldϕ(1),−iϕ′′(x)− coϕ(x)),

D(A) = {(Xr, Xd, ϕ(x)) ∈ Rnr × Rnd ×H2(0, 1) | ϕ′(0) = 0, ϕ′(1) = 0}.

Theorem 5.2. Let σo ∩ σ(Sd) = ∅. Suppose that the observer gains l(x), l0 are
given by (5.14) and the gain lr ∈ Rnr is chosen so that Sr + lrq

⊤
r is Hurwitz.

Suppose that Sd + ldn(1)
⊤ is also Hurwitz. Moreover, assume that Sr + lrq

⊤
r has

simple and stable eigenvalues λrj with the corresponding eigenvectors Xrj ∈ Rnr ,

j = 1, 2, . . . nr, and Sd + ldn(1)
⊤ has simple and stable eigenvalues λdj with the

corresponding eigenvectors Xdj ∈ Rnd, j = 1, 2, . . . nd, and λrj1 ̸= λdj2 for 1 ≤ j1 ≤
nr, 1 ≤ j2 ≤ nd. Let cs, co > 0. Then (5.1) with (5.2) is an observer for the system
(1.1). Moreover, the observer error dynamics (5.3) is exponentially stable in the
sense that for some M ≥ 1, µ > 0,

(5.18) ∥(w̃d(t), w̃r(t), z̃(·, t))∥ ≤ Me−µt∥(w̃d(0), w̃r(0), z̃(·, 0))∥.

Proof. We compute the eigenvalues and the corresponding eigenfunctions of A. We
solve A(Xr, Xd, ϕ(x)) = λ(Xr, Xd, ϕ(x)), where λ ∈ σ(A) and (Xr, Xd, ϕ(x)) ∈
D(A), to obtain

(5.19)

{
(Sr + lrq

⊤
r )Xr = λXr, (Sd + ldn(1)

⊤)Xd + ldϕ(1) = λXd,

−iϕ′′(x)− coϕ(x) = λϕ(x), ϕ′(0) = 0, ϕ′(1) = 0.

There are two cases:
Case I: ϕ ≡ 0. In this case (5.19) becomes

(Sr + lrq
⊤
r )Xr = λXr, (Sd + ldn(1)

⊤)Xd = λXd,

which has nontrivial solutions (λrj , [Xrj , 0nd×1]), j=1, 2, . . . nr and (λdj , [0nr×1, Xdj ]),
j = 1, 2, . . . nd. Hence, (λrj , F1j) = (λrj , [Xrj , 0nd×1, 0]), j = 1, 2, . . . nr, together
with (λdj , F1(j+nr)) = (λdj , [0nr×1, Xdj , 0]), j = 1, 2, . . . nd are eigen-pairs of A.
Case II: ϕ ̸= 0. Now

− iϕ′′(x)− coϕ(x) = λϕ(x), ϕ′(0) = 0, ϕ′(1) = 0 ,

which has nontrivial solutions (λj , ϕj(x)):

λj = j2π2i− co, ϕj(x) = cos(jπx), j = 0, 1, 2, . . . .

Substituting (λj , ϕj(x)) into the first and the second equation of (5.19), we get

Xj
r = 0nr×1, Xj

d = − [(Sd + ldn(1)
⊤)− (j2π2i− co)Ind×nd

]−1ld cos(jπ) .
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Thus we have found for A the eigen-pairs (λj , F2j), for j = 0, 1, 2, . . . , where

F2j = [0nr×1,−[(Sd + ldn(1)
⊤)− (j2π2i− co)Ind×nd

]−1ld cos(jπ), cos(jπ·)].

Now we prove that the set {F1j1(x), F2j2(x) | j1 = 1, 2, . . . nw, j2 = 0, 1, 2, . . .} is
a Riesz basis for Rnw × L2[0, 1]. Indeed, let us denote by Gj the first part of F1j ,
so that Gj ∈ Rnw and F1j = [Gj , 0]. Since the set {Gj | j = 1, 2, . . . nw} and the set
{cos(jπ·) | j = 0, 1, 2, . . .} form Riesz bases for Rnw and for L2[0, 1], respectively,
{F1j | j = 1, 2, . . . nw} ∪ {F ∗

2j = [0nw×1, cos(jπ·)] | j = 1, 2, . . .} is a Riesz basis in
Rnw×H. Moreover, the set that we want to prove to be a Riesz basis is quadratically
close to the Riesz basis that we have just found:

(5.20)
∞∑
j=0

∥F2j − F ∗
2j∥2Rnw×H

=

∞∑
j=0

∥[(Sd + ldn(1)
⊤)− (j2π2i− co)Ind×nd

]−1ld∥2Rnd

=
∞∑
j=0

1

|j2π2i− co|2
∥[(Sd + ldn(1)

⊤)/(j2π2i− co)− Ind×nd
]−1ld∥2Rnd .

Since

lim
j→∞

∥[(Sd + ldn(1)
⊤)/(j2π2i− co)− Ind×nd

]−1ld∥2Rnd = ∥ld∥2Rnd ,

it follows from (5.20) that
∑∞

j=0 ∥F2j − F ∗
2j∥2Rnw×H < ∞. By the classical theorem

of Bari, {F1j}nw
j=1 ∪ {F2j}+∞

j=0 forms a Riesz basis for Rnw × H. This shows that A
generates an operator semigroup on Rn × H, for which the spectrum determined
growth assumption holds. As a consequence, the system (5.9) admits a unique
solution. Since sup{Reλ | λ ∈ σ(A)} < 0, eAt is an exponentially stable operator
semigroup, which, together with the boundedness of the transformations (5.4) and
(5.8), implies (5.18). □

6. Output feedback regulation

By Theorem 5.2 we have obtained the estimated states ŵ and ẑ(x, t) for w and
z(x, t), respectively. Since the state feedback control (4.3) achieves the output
regulation, we naturally propose the following output feedback control law:

(6.1) u(t) = k(1, 1)ẑ(1, t) +

∫ 1

0
kx(1, ξ)ẑ(ξ, t)dξ +m⊤

wŵ(t).

Here we can see that the terms k(1, 1)ẑ(1, t) +
∫ 1
0 kx(1, ξ)ẑ(ξ, t)dξ are to stabilize

the system (1.1) and the term m⊤
wŵ(t) is to track the reference signal r(t) = p⊤r w(t).

Now we turn to the closed-loop system composed of (1.1), (1.5), (5.1), (5.2) and
(6.1), that is

(6.2)


zt(x, t) = − izxx(x, t) + h(x)z(x, t) + g(x)d1(t),

zx(0, t) = − iqz(0, t) + d2(t),

zx(1, t) = k(1, 1)ẑ(1, t) +

∫ 1

0
kx(1, ξ)ẑ(ξ, t)dξ +m⊤

wŵ(t),
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(6.3)



ẇ(t) = Sw(t),

˙̂wr(t) = Srŵr(t) + lr(q
⊤
r ŵr(t)− r(t)),

˙̂wd(t) = Sdŵd(t) + ld(ẑ(1, t)− ym(t)),

ẑt(x, t) = − iẑxx(x, t) + h(x)ẑ(x, t) + g(x)q⊤d1ŵd(t)

+l(x) [ẑ(1, t)− ym(t)] ,

ẑx(0, t) = − iqẑ(0, t) + q⊤d2ŵd(t),

ẑx(1, t) = k(1, 1)ẑ(1, t) +

∫ 1

0
kx(1, ξ)ẑ(ξ, t)dξ +m⊤

wŵ(t)

+l0 [ẑ(1, t)− ym(t)] ,

where the gains l(·), l0 are given by (5.14) and the gain lr is chosen so that Sr+ lrq
⊤
r

is Hurwitz. The following is the main result of this section.

Theorem 6.1. Suppose that the conditions in Theorems 4.7 and 5.2 hold.
Then for any initial state (z0(x), w(0), ẑ0(x), ŵ(0)) ∈ H × Rnw × H × Rnw , the

closed-loop system (6.2)-(6.3) admits a unique solution (z(·, t), w(t), ẑ(·, t), ŵ(t)) ∈
C([0,∞);H× Rnw ×H× Rnw). Moreover, there exist M ≥ 1, µ > 0 such that

∥(ŵr(t)− wr(t), ŵd(t)− wd(t), ẑ(·, t)− z(·, t))∥

≤ Me−µt∥(ŵr(0)− wr(0), ŵd(0)− wd(0), ẑ0 − z0)∥.

The observer based controller (with internal loop) (5.1), (5.2) and (6.1) solves the
output feedback regulator problem for the plant (1.1) with the exosystem (1.5). This
means that the output error ey(t) = y(t)−r(t) = CeΛ[z(·, t)]−p⊤r w(t) for the closed-
loop system (6.2)-(6.3) satisfies ey ∈ L2

α[0,∞) for some α < 0. If Ce is bounded,
then there exist m0, µ0 > 0 (m0 depends on the initial state mentioned above) such
that we have |ey(t)| ≤ m0e

−µ0t for all t ≥ 0.

Proof. Using the error variables w̃ and z̃ defined before (5.3), we can write an
equivalent system to (6.2)-(6.3) as follows:

(6.4)



zt(x, t) = − izxx(x, t) + h(x)z(x, t) + g(x)d1(t),

zx(0, t) = − iqz(0, t) + d2(t),

zx(1, t) = k(1, 1)[z(1, t) + z̃(1, t)] +m⊤
w [w(t) + w̃(t)]

+

∫ 1

0
kx(1, ξ)[z(ξ, t) + z̃(ξ, t)]dξ,

ẇ(t) = Sw(t), w(0) = w0 ∈ Rnw ,

(6.5)


˙̃wr(t) = (Sr + lrq

⊤
r )w̃r(t), ˙̃wd = Sdw̃d(t) + ldz̃(1, t),

z̃t(x, t) = − iz̃xx(x, t) + h(x)z̃(x, t) + g(x)q⊤d1w̃d(t) + l(x)z̃(1, t),

z̃x(0, t) = − iqz̃(0, t) + q⊤d2w̃d(t), z̃x(1, t) = l0z̃(1, t).
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The “(w̃r, w̃d, z̃)-part” in (6.5) has been shown to be exponentially stable in Theorem
5.2. Now we only need to consider the “(w, z)-part” in (6.4), which we rewrite as

(6.6)



zt(x, t) = − izxx(x, t) + h(x)z(x, t) + g(x)d1(t),

zx(0, t) = − iqz(0, t) + d2(t),

zx(1, t) = k(1, 1)[z(1, t) + z̃(1, t)] +m⊤
w [w(t) + w̃(t)]

+

∫ 1

0
kx(1, ξ)[z(ξ, t) + z̃(ξ, t)]dξ,

ẇ(t) = Sw(t), w(0) = w0 ∈ Rnw .

Under the backstepping transformation (4.1), the “z-part” of system (6.6) can be
converted into the following equivalent system:

vt(x, t) = − ivxx(x, t)− csv(x, t) + F [g](x)d1(t)− k(x, 0)d2(t),

vx(0, t) = d2(t),

vx(1, t) = k(1, 1)z̃(1, t) +

∫ 1

0
kx(1, ξ)z̃(ξ, t)dξ +m⊤

w [w(t) + w̃(t)].

Further, by the transformation (4.7), the above system is equivalent to

(6.7)


ṽt(x, t) = − iṽxx(x, t)− csṽ(x, t),

ṽx(0, t) = 0,

ṽx(1, t) = k(1, 1)z̃(1, t) +

∫ 1

0
kx(1, ξ)z̃(ξ, t)dξ +m⊤

ww̃(t).

Note that this is different from the system (4.8), that was derived for the case of
state feedback.

Now we show that ∥ṽ(·, t)∥ ≤ M0e
−µ0t for some M0, µ0 > 0. To do this, first

we show that ẽ(1, ·) in (5.9) belongs to L2
−αo

[0,∞) for some αo ∈ (0, co/2), where

L2
−αo

[0,∞) is defined after (1.7). Define the sequence (cj)j∈N by cj = cos(jπ).
Obviously, this sequence satisfies the Carleson measure criterion, see [28, Definition
5.3.1]. Define the observation operator Cz =

∑∞
j=0 cjzj , where z =

∑∞
j=0 zj cos(jπx)

with (zj)
∞
j=0 ∈ l2. From the proof of Theorem 5.2 (Case II) we have that (i) system

(5.9) is associated with a diagonal group T with (Ttz)j = zje
(jπ2i−co)t (∀j ∈ N) on

l2; (ii) the generator A0 of the diagonal group T satisfies A0 cos(jπx) = λj cos(jπx)
with λj = jπ2i− co; (iii) ẽ(1, t) = Cẽ(x, t). Moreover, it is easy to verify that∑

Imλj∈[n,n+1)

|cj |2 ≤ 1 ∀ n ∈ Z .

It follows from [28, Proposition 5.3.5.] that C is an admissible observation operator
for T. With [28, Proposition 4.3.6] we get that ẽ(1, ·) ∈ L2

−αo
[0,∞) for some αo ∈

(0, co/2):

(6.8)

∫ ∞

0
|eαosẽ(1, s)|2ds := C1 < ∞ .

By (5.4) and (5.8), we get z̃(1, t) = ẽ(1, t) + n(1)⊤w̃d(t). From Theorem 5.2 and
(6.8) we know that
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k(1, 1)z̃(1, t) +

∫ 1

0
kx(1, ξ)z̃(ξ, t)dξ +m⊤

ww̃(t) := η1(t) + η2(t).

with η1(t) = k(1, 1)ẽ(1, t),

η2(t) = k(1, 1)n(1)⊤w̃d(t) +

∫ 1

0
kx(1, ξ)z̃(ξ, t)dξ +m⊤

ww̃(t),

which satisfies

(6.9)

∫ ∞

0
|eαosη1(s)|2ds := k2(1, 1)C1 < ∞, |η2(t)| ≤ M1e

−µ1t ∀t ≥ 0,

for some M1, µ2 > 0. Using the operator A from (4.9), we write the system (6.7) as

d

dt
ṽ(·, t) = (A− csI)ṽ(·, t) +B [η1(t) + η2(t)] ,

where B = iδ(· − 1). Clearly e(A−csI)t is exponentially stable. As in the proof

of Proposition 3.3, we have that B is an admissible control operator for e(A−csI)t.
Thus, it follows from [28, Proposition 4.2.5] that the solution ṽ is a continuous
L2[0, 1]-valued function of t given by

(6.10) ṽ(·, t) = e(A−csI)tṽ(·, 0) +
∫ t

0
e(A−csI)(t−s)B[η1(s) + η2(s)]ds.

Moreover, from the exponential stability of e(A−csI)t and [35, Lemma 2.1], we have
that ∥ṽ(·, t)∥ ≤ M0e

−µ0t for some M0, µ0 > 0. Noting the formula (4.15) for ey and
Proposition 4.4, the admissibility of the observation operator Ce implies that the
tracking error system is exponentially stable in the sense that ey = CeΛF−1[ṽ] ∈
L2
α[0,∞) with α ∈ (−µ1, 0). In particular, if the observation operator Ce is bounded,

then by the boundedness of the transformation F−1 there exists a constant C2 > 0
such that |ey(t)| = |CeF−1[ṽ](·, t)| ≤ C2∥ṽ(·, t)∥ ≤ C2M0e

−µ0t, so that (1.6) holds.
The inequality in this theorem follows from Theorem 5.2. By (4.1) and (4.7), we

have
z(x, t) = F−1[ṽ +mw](x, t).

Since limt→∞ ∥ṽ(·, t)∥ = 0, w(t) is bounded for all t ≥ 0 and the transformation
F−1 is bounded, we know that ∥z(·, t)∥ is bounded for all t ≥ 0. It follows from
the inequality in this theorem that all internal signals z(·, t), w(t), ẑ(·, t), ŵ(t) are
bounded. □
Remark 6.2. A very concise version of this paper, with weaker results and missing
proofs, was presented at a conference [36].
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