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GLOBAL SOBOLEV PERSISTENCE FOR THE FRACTIONAL
BOUSSINESQ EQUATIONS WITH ZERO DIFFUSIVITY

IGOR KUKAVICA AND WEINAN WANG

ABSTRACT. We address the persistence of regularity for the 2D a-fractional
Boussinesq equations with positive viscosity and zero diffusivity in general Sobolev
spaces, i.c., for (uo, po) € W*9(R?) x W*?(R?), where s > 1 and ¢ € (2,00). We
prove that the solution (u(t), p(t)) exists and belongs to W*4(R?) x W*4(R?) for
all positive time t for ¢ > 2, where a € (1,2) is arbitrary.

1. INTRODUCTION

In this paper, we address the persistence of regularity for the 2D fractional Boussi-
nesq equations

uy + Ay +u - Vu+ V= pes
pr+u-Vp=0
V-u=0

in Sobolev spaces. Here, u is the velocity satisfying the 2D Navier-Stokes equations
[8, 13, 17, 32, 35, 36] driven by p, which represents the density or temperature of
the fluid, depending on the physical context. Also, e; = (0, 1) is the unit vector in
the vertical direction and 1 < a < 2.

The global existence and persistence of regularity has been a topic of high interest
since the seminal works of Chae [5] and of Hou and Li [21], who proved the global
existence of a unique solution in the case of Laplacian, a = 2. Namely, the global
persistence holds for (ug, po) in H* x H*~! for integers s > 3 [21], while we have the
global persistence in H® x H? for integers s > 3 by [5]. The global existence and
uniqueness in the low regularity space H' x L? was established by Lunasin et al
in [30]. The persistence in H* x H*"! for the intermediate values 1 < s < 3 was
then settled in [22, 23]. For other results on the global existence and persistence of
solutions, cf. [1, 3, 4, 7,9, 10, 11, 12, 14, 15, 16, 18, 19, 24, 25, 28, 29, 31, 33, 34].

The main difficulty when studying the persistence of regularity in the Sobolev
spaces W4 x W14 when ¢ > 2 is the lack of availability of the energy equation,
which is one of the essential features of the Boussinesq system. This problem was
studied in [29], where it was proven that the persistence holds if (s — 1)g > 2.
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In the present paper, we consider the fractional dissipation in the range 1 <
o < 2, addressing the persistence in W%4(R?) x W*49(R?). Namely, we prove that
if (ug,po) € W4(R?) x W*4(R?), then (u(,t),p(-,t)) € W*9(R?) x W*4(R?) for
all t > 0. The main result is contained in Theorem 2.1 and asserts the global
persistence for all s > 1. The main device in the proof is the generalized vorticity

(1.1) C=w—01(I—A)"%?,

This change of variable is inspired by the one introduced by Jiu et al in [25], (cf. also
[33]), which in turn drew from the work of Hmidi, Keraani, and Rousset [20]. Here
we need to modify it to avoid problems with low frequencies as our data are not
square integrable. We show in (2.6) below that the modified vorticity ¢ defined in
(1.1) satisfies the equation

(1.2) G+u-VC+AC=[S,u-V]p— (A"“A* —1)01p
where S = 9, (I — A)~*/2 with A = (~A)"/2 and A = (I — A)Y/2. Compared to the

original change of variable in [25], we obtain a new term Np = (A~*A® — I)d1p,
for which however we show in Lemma 2.2 below that it is smoothing of degree 1.
The reason why this change of variable is suitable for low frequencies is due to the
inhomogeneity in the second term of (1.1).

Also, an important part of the proof of Sobolev persistence is based on the ob-
servation that a fractional derivative of the commutator term in (1.2) is a sum of
two terms, which are also of commutator type and are thus suitable for the use of
a Kato-Ponce type inequality; cf. (4.7) and Remark 4.1 below.

The paper is organized as follows. In Section 2, we state the main theorem on
the persistence and introduce the change of the vorticity variable. We also prove
the smoothing property of the operator N. The next section contains a variant
of a Kato-Ponce lemma suitable for the operator S arising in (1.2). Lemma 3.3
contains the bounds for the vorticity and its modified version {. The proof of the
main theorem for the case s < « is then provided in Section 4. Finally, the last
section contains the proof of the main theorem for s > «. This part of the proof
requires the case s < o when we establish a bound on ||AY?u||z~ in (5.8) below.

2. NOTATION AND THE MAIN RESULT ON GLOBAL PERSISTENCE

We consider solutions of the Boussinesq system

(2.1) ur + A%u~+u - Vu+ Vr = pes
(2.2) pt+u-Vp=0
(2.3) V-u=0,

where the operator A“ is defined by

AY = (A2, 1<a<?2,
or, using the Fourier transform,
(24) (A f) (@) =[g]f(e),  ¢eR”

The following is the main result of the paper.
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Theorem 2.1. Let g € (2,00) and s > 1. Assume that ||ug||ws.a < 0o with V-ug =0

and ||pol|wsa < 00. Then there exists a unique solution (u, p) to the equations (2.1)—
(2.3) such that uw € C ([0, T], W*4(R?)) and p € C ([0, T], W*4(R?)) for all T > 0.

Applying the curl operator to (2.1), we obtain the vorticity equation
(2.5) wt + A% +u - Vw = 01p.

Define A = (I — A)'/2 and set
¢=w-—>5p,
where
S = A"=0,(I—A)"2
The equation satisfied by ¢ is obtained by replacing w with ¢ + Sp in (2.5) and
combining the resulting equation with (2.2). We get
G+HAC+u-V(=—=Sps—u-VSp—A*Sp+ 0ip

(2.6) = [S,u-V]p— (A"AY — I)d1p.

Therefore, the equation for the generalized vorticity ¢ reads

(2.7) G+HAC+u-V(=[S,u-V]p— Np,
where we set

(2.8) N = (A"°A® — 1)d,.

The operator N is a Fourier multiplier with the symbol

(EEEOTE

It is possible to check that the symbol satisfies the assumptions of the Hérmander-
Mikhlin theorem and thus ||Npl|/ps < C||p|lra for 1 < § < co. However, as asserted
in the next lemma, a stronger statement holds. Namely, the operator N defined in
(2.8) is smoothing of order 1.

Lemma 2.2. Consider the Fourier multiplier T with the symbol

(&) = (1€ +1)*m(9).

Then Ty, is a Hormander-Mikhlin operator satisfying

(2.9) 1 Tafllze S I fllpas  f € L7,
for 1 < q < oo.

An equivalent way of stating (2.9) is
INfllza + IVNfllza S fllza,  fELT, g€ (1,00).
Proof of Lemma 2.2. Tt suffices to prove that the symbol
(1+[g%)/2 — fg|

ﬁ/L p—
O =8 ey
satisfies the Hormander-Mikhlin condition
C
e <UD e cer?\ (o

[
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Since &1 /(1 + |€]?)Y/? is of Hormander-Mikhlin type, it is sufficient to prove that
(&) = (1+ €)1 2((L+ €2 — [¢])

satisfies the Hormander-Mikhlin condition. In order to check this, we write

o [Pt g
m(§) = 2/0 (t+ ’§‘2)1—a/2 dt

and then verify that the condition holds for the low and high frequencies, i.e., when
€] <1 and || 2 1 respectively. O

Next, we recall a version of the Kato-Ponce inequality from [29].

Lemma 2.3 ([29]). Let s € (0,1) and f,g € S(R?). For1 < q < oo and j € {1,2},
the inequality

11405, g1f s < Cllf Lo A gl oy + CUIA® fllzo2 [ Ag]l s

holds, where q1,q1,G2 € [q, 0] and g2 € [q,00) satisfy 1/q =1/q1+1/q = 1/q2+1/Go
and C = C(Q17q~17q~27q278)'

Finally, we recall from [6, 26] an inequality useful for treating the fractional
coercive term.

Lemma 2.4 ([6, 26]). Consider the operator A defined in (2.4) on R2. If §,A%0 €
LP, where p > 2, then

(2.10) 0P-20A%0 dz > 2 / (A/2(10P/2))2 da,
R2 D Jr2
for all s € (0,2).

3. AN L7 INEQUALITY FOR THE VORTICITY AND A KATO-PONCE TYPE
COMMUTATOR ESTIMATE

The following lemma provides an L? bound for the modified vorticity .

Lemma 3.1. Assume that ug, pg € W*9(R?), where s > 1 and ¢ > 2. Then we

have

(3.1) IClle < Ce®, t>0
and

(3.2) |wljre < CeCt, t>0,
where C = C(|lwol|Ls, ||pol|ze). Moreover, we have

(3-3) /Ot 1A°72(1¢19%) 172 da < Ce,
for all t > 0.

Above and in the sequel, the exponent ¢ > 2 and the parameter s > 1 are
considered fixed, so we do not indicate dependence of constants on these parameters.

The main step in the proof of Lemma 3.1 and Theorem 2.1 is an inhomogeneous
Kato-Ponce type commutator estimate, which is stated next.
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Lemma 3.2. Denote
= |V|(I —A)/2
Then, for j € {1,2} and 0 < u < o, we have
I[A*S0;, g1 flza < ClIVgllLrilIA*S fll e + CIAPT S gl|zea || fll 7
where 11,71, 72 € [q,00] and rg € [q,00) satisfy 1/q =1/r1+1/71 = 1/ra+1/72 and
where C = C(ry,71,72,72,q).

Proof of Lemma 3.2 (sketch). We follow the strategy from [27] (cf. also [29]) and
consider the commutator in three regions defined by the supports of ®; below.
Namely, we write

i (e €+ +m)&+m) M6 )
(A%S50;,9] *602// M( AT lErnP)e? AP

(3.4) < F(€)am)s (ﬁ) dn de

3
—eY / / e Ay (¢, ) dn d,
k=1

where ®.: R — [0, 1] are C*° cut-off functions such that

3
Z@kzlon [0, 00)

k=1
with
supp @1 C [-1/2,1/2],  supp®2 C[1/4,3],  supp ®3 C [2,00]
and
~(1EF P&+ m) (&G + ) [HIEStS; ) R (!f\)
A = — D, [ = |.
W) ( e ) K ) s (1

Thus, the commutator (3.4) may be rewritten as

3
[As_lsajauj]p = Z// elI(f+n)Ak(£’n) d77 dg.
k=1

We write A7 as

Ay(En) = €+l (& +m) (& +m) L+ [nH)2 |€rag;(1 + [n*)/?
" (14 [€ + n[2)a/2|n|n+2 (14 [€[2)e/2|n|n+2

< F(€) (A" Sg) (n) ) (ﬂ)

= 01(&,m) f(§)(A*T1Sg) ().
It is elementary to show that

‘0—1’ S Cv
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as well as more generally

C(lal,18])
(1&] =+ [n])led+1A1
By the Coifman-Meyer theorem, we get

/ / S A, (€, ) di df‘

where 1/q¢ = 1/r + 1/7;. For A3, we write

|0°0%0| < a, B € N2.

S Il A1 S g 7,
La

(€M +m) (& +my) €]€1€; ) TP <|€!)
A = _ P [ 2L
(L g <|§ G +m)& ) Mg )
[+t (1 + €+ n|?)>/? (14 [¢]2)o/?
< (AR5 L) (€)(Vg) () B <|§'|)
— oy(€, ) (AMEF) (€)(Tg) () Bs (|'f7'|) .
Setting
&+t (& + tm) (& + tny)
we have
() = MEHITE L )&+ ) &+ tny) €+ tnlm(& + )
(14 |€+ tn]?)o/? (14 €+ tn[2)/?
€ +tnFn; (&1 +tm) | af§ + " (§ + tm) (&5 + ;) (€ + tn)n
(1+ |€ + tn|?)o/2 (1+ [¢ + tn[2)o/2+ '
Note that in the region ®3 > 0, we have |{| > 2|n|. Therefore,
|O-3’ S C7

as well as more generally

C(lal,181)
(I&] + [n)le AT
By the Coifman-Meyer theorem, we get

/ / €& Ay (¢, ) dp de

where 1/¢ =1/q1+1/q2. For As, we use the complex interpolation inequality. Since
the argument is the same as in [27], we omit the proof. By combining the estimates
for Ay, Ao, and As, we get

I1A*885, g f e S IVgllLan |A#Sfllze + |A*SV gl pas]| £ Las

where the parameters ¢i1, 2, g3, q1 € [q,00] satisfy 1/g = 1/q1 +1/q2 = 1/q3 + 1/qu
and the implicit constant depends on q1, g2, q3, g4, and u. O

|0%0P o3| < a, € N2,

SAIVgllza |A*S | e,
La
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Proof of Lemma 3.1. Since s > 1, we have W*4(R?) C L*(R?), and thus
po € LY, q € [q, 0.

Using the L? conservation property for the density equation (2.2), we get

(3.5) le@)llLa < llpollce 1, 7 € [g,00],

where we assume that all the constants depend on ||po||ze and ||wo||ze. In order to
estimate ||C||za, we multiply the equation (2.7) with |¢|972¢ and integrate obtaining

1d

Sl + [ @eoigrEds
(3.6)

—— [ Npldl 2+ (8. VIple o = 1+ B

For I;, we have

(3.7) L <INl zalllS1 ¢l garia—n S llpllzallClEe" S NICHTa

where we used Hoélder’s inequality and (3.5). Since u is divergence-free, we may
rewrite the commutator as

[S,u- V]p = Su;0;p — u;0;Sp = (9;5)(u;p) — u;(0;5)p
= 055, ujlp.

Observe that ;S is an operator of order 2 — . Thus, by Lemma 3.2 with u = 0,
we have

L < ||[S,u- VplrallCIfat = 11058, ujlpllall¢lfa"
S (ISpllzer [1Vull oy + 1ol ez 1SV ull oo 1€

< (ISpllzes lwll or + ol oz 15wl o) ICNES
with the Lebesgue exponents above satisfying 1/¢ = 1/a; + 1/by = 1/aa + 1/bs
and ai,az,b1,b2 € (q,00). Therefore, choosing a1 = as = q/(a — 1) and by = by =
Q/(2 - Oé),
= = -1
I S (I1Spll para-v @l Lare-a) + ol Lara- 15wl pase-a) IS Tq
Now, by the fractional Gagliardo-Nirenberg inequality applied to |¢ |q/ 2 we have
2r+2q) 4
(3:8) IICller SN2 20 0m a2 (|25, g <r < 2¢/(2- ),
from where (-a)) b
1l aramey S NCHE @1 A%/2 (192 3,
Also, using the triangle inequality
lwll Lasz-a) < ICI pare-a) + 18Pl Lascz-) S ¢l pare-ar + 0l pare-o
(2— 1
S 1€l para-ay + 1 ST 1A2 (¢35 +1
we get,
G -1
I S (lwll pore-a + 1Sl Lare-a) IS T
-1
(3.9) S lwll pae-o 1K1 1

< |GG/t per2 (¢ /2y Ao e

IS +I¢IIZa
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Replacing (3.7) and (3.9) in (3.6) and using (2.10) on the coercive term, we obtain

li q g /2 q/2\\2
Sl 2 [ el da

! 2-a)/a+q-1 4(a—1
< Gl Gt A/ g/ e
Since 4(a — 1) /ag < 2, we may use Young’s inequality with exponents ag/(ag —
2a 4 2) and agq/2(a — 1) to get

d _
(3.10) SICIE + [ (A7) do 5 IG5 + <1

where the implicit constant depends on the initial data. The inequality (3.1) then
follows by applying the Gronwall inequality, while (3.2) is a consequence of (3.1) and
the triangle inequality. Finally, (3.3) holds by using (3.1) in (3.10) and integrating. O

It is important that we may bootstrap the above statement and obtain the con-
clusion on the behavior of the L4 norm of ¢, and thus of w, for all ¢ > gq.

Lemma 3.3. Assume that ug, pg € WS9(R?), where s > 1 and q € (2,00). Then
for every G € (q,00) and tg > 0 we have

¢l < Ce“t, t >t
and
(3.11) |w||za < Cet, t > to,

where C' = C(||wol|La, [|pol|La, @, to). Moreover, we have
t
| IR e as < o
0

for all t > 0 where C' = C(||wo||La, || pollza, G, to)-

Proof of Lemma 3.2. We first prove that the statement holds for all g € [q,2¢/(2 —
«)], and the rest follows by an iteration argument. Using (3.3) with ¢t =ty = 1, we

obtain .
{te .t a2 @12 < €| 2 5

for C' > 0 sufficiently large. It is easy to deduce then that there exists ¢ € (0, o)
such that
A2 (1C2) (@) 2 < C.

Since also

IC@)lze < C,
we get by (3.8)

IC@)lla < C
since ¢ < ¢ < 2¢/(2 — «). Applying Lemma 3.1 but with ¢ replaced with g, we
obtain the statement for ¢ in this range. Continuing by induction, we get then the
conclusion for all g € [¢,00), and the lemma is established. O
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4. THE SOBOLEV PERSISTENCE FOR 1 < s <

In this section, we prove our main result, Theorem 2.1, in the case when s < a.

Proof of Theorem 2.1 for s < a. For j = 1,2, we multiply the j-th velocity equation
of (2.1) with |u;|7"2u;, integrate the resulting equation with respect to z, and sum
for j = 1,2 obtaining

2 2

1d . _

S Sl Y [ (Al da
i=1 j=1

2 2
= — Z/ajﬂ' : ‘u]"q_QUj dx + Z/,O@Q : ]uj]q_Quj dx
j=1 j=1

since due to the divergence-free condition for u we have [(u- Vu;)|u;j|9%ujdz =0
for j = 1,2. By Lemma 2.4 and Holder’s inequality, we get

2 2

1d 2 . .

@0 Ml + = ST IA sl e S IV sallullf, + s
j=1 j=1

where, as above, ¢ is considered fixed (i.e., the constants are allowed to depend on
q). Using the Calderén-Zygmund and Sobolev embedding theorems, we obtain

1-1 1 1-1
42)  (|Vallze S Jullpzallwll zze S Nullpe YNl el 2e S Celullzy e,

~

where we also used Lemma 3.3 in the last step. Applying (4.2) on the first term of
the right hand side of (4.1) gives

2 2

d C -1 -1

2 sl + S IAA ()22 S e lulfat? +
j=1 Jj=1

and thus
Jullpe S e

by the Gronwall inequality.

Next, we consider the L? norm of higher order derivatives. Applying A*~! to
(2.7), multiplying the resulting equation by |[AS~1¢|972A%~1(, and integrating, we
get

1 d §— « S— S— — S—
SIAL + [ Al i
= —/As_l(u-V()]As_qu_zAs_lgdx

(43) 4 [ A i Vi) A2 A e d

o /A81NP|A81€|(12A81€ dax
=Ji+ o+ Js.
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By Lemma 2.3, we estimate
J=— /(Asl(u VE) —u- ATIVE) AT TN Cd
(4.4) <A (- V¢) —u- ATV AT

2
< D I9A T (1) — wid AT e AT

where we used the divergence-free condition and the triangle inequality in the last
step. Therefore,

Ji S (ISl A wllzra + 1wl zra | A ) [ASTHC T
S (ISl (1A ¢l re + A Spllra) + wllzra |A* T Cllzma ) 1A NS

for any r1,re,r3, 74 € (q,00) such that 1/qg = 1/r1 + 1/re = 1/r3 + 1/r4. Choose
r1 =ry =13 = ry = 2q and note that

1A Spll 20 S llpllzze S
by s < a. Therefore, using Lemma 3.3,
Ji S SN g2 + DAL
By (3.8), have
a a a 2/
(4.5) €l S Nl A2 (o)1,
and thus we obtain
TS AT A (AT R + e AT
For J,, we write
A8, u-V]p) = AH(S((w-V)p)) — A ((u- V)Sp)
= ATH(S((- V)p)) — u- V(ATH(Sp))
(4.6) +u- V(A L(Sp) ) AT 1((u V)Sp)
1
(

= A*7180; (ujp) — u;0;(A1(Sp))
+u;0; (A I(SP))—AS 10;(u;Sp),

where we used the divergence-free condition (2.3) in the last step. The first two and
the last two terms on the far right side of (4.6) form commutators, as we may write

(4.7) A TH([S,u- V]p) = [A57180;,ujlp — [A°710;, u;]Sp.
For the second commutator in (4.7), we apply Lemma 2.3 and obtain

1IA*05, w1Spllza < ISpllzon [A%ul o + [A* Splles [ Vullz,

~
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where 1/q =1/p1 +1/p2 = 1/p3s + 1/ps and p; € (q,0) for ¢ = 1,2,3,4. Thus, by
Lemma 3.2,

To < |[A*MS u- Vil al AT
< IVl g2l |A° 7 Spll 20 + A7 SVul| 2ol 20 [ A€

1 .g—1
+ (1Sl p2a | A°ull p2a + [|pll p2a | SA®ul g2a) [ A1),
= Jo1 + Joo.

(4.8)

Now, we use the conservation property (3.5) for the density and the fact that the
operator A*~1S is of Hérmander-Mikhlin type, and we get

(4.9) Tt S IVl 2 |A T S ol AT S e IA TR

where we applied Lemma 3.1 in the last step. For Jas, we choose po = py = 2q.
Then by the conservation of density and (4.5) we have

oz S (1IN wll p2a + [lwllz20) [A*CNTS
S (I1A°71C N p2a + [1AT 1SpHL2q+6Ct)HA5_1CH%ZI

N

(4.10) . . _

S (1A 2o + ) A1)

< HAs 1CH a—1)/atq— 1HAa/2(|A571qq/2)Hi/2aq _’_eCtHAsflcu%gl.
From (4.8), (4.9), and (4.10), we conclude

1
IIA“/2(|AS )17 + CIAST NG, + Ce“H A ¢,
For Js, we use Lemma 2.2 and obtain
- - - - -1 - -1
T3 <A Npllza AT T S Mlollall AT S 1AL
Combining the estimates of Ji, Jo, and J3, using Young’s inequality, we get
d _ 1 _ - -1
(4.11) priliy Clga+ 5||Aa/2(|/\5 KT S AT + e
Setting

X = [|A I,
X = AN )7,

we may rewrite (4.11) as

%X+CX< eCtx 1711 4 1),
Therefore, by the Gronwall lemma,
IASTIC e S e©F, t>0.
Similarly to Lemma 3.3, we also obtain
AN S €, t20,

for all g € [¢,00), where the constant C' depends on ¢. Consequently, we get
(4.12) 1A wllza < [ATC|pa + A Splla S €' g€ g,00).
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Next, we consider the evolution of ||[A®p||rs. We apply A® to the equation (2.2),
multiply it by |A®p|9=2A%p, and integrate obtaining

1d, . s . 09
Sl + [ A% VA%l pds =0,
Therefore, using Lemma 2.3,

1d .
Pl = —/As(u'Vp)IAqu 2N%p dx

— [ (A% Vp) —u V) AN p

SIA*(u-Vp) = u- AV pal|A%p|
S (1A%l 1V pl o + | Aullz= [ A®pllza) [ A%p] 70"
under the conditions s1,s2 € (¢,00) and 1/¢ = 1/s; + 1/s2. Now, choose

where Cj is a positive constant. Note that s1, s9 € (q,00). If Cp is sufficiently large,
we may use the fractional Gagliardo-Nirenberg inequality to write

A
IVpllze < ol 1A%l
with A € (0,1). Therefore, using (4.12),

1d
— 1A%l 70 S (HAS twllz A APl 20 + HAUIlellAspHLq) 1A%l e

(4.13) qdt
A1

S NPT+ ([ Aul e | A%pl| -

Let q € [q,00) be sufficiently large so that we have
1— —
[Aullzee S | Aull " 1A (Au) |4
where p € (0,1). Then we get
1
1Az S IAull " A (Aw) g S llwll " A wly S e

Lad ~
by (3.11) and (4.12). Hence, continuing from (4.13), we get
d
LAl S €1+ A%,

The proof of persistence for s € (1,«] is then concluded by an application of the
Gronwall lemma.

It remains to prove the uniqueness of solutions. Consider two solutions
(™, pM pMY and (u®,p®), p) of the system (2.1)-(2.3), and set

U=u® _ @
R=p1) — @
P=p1 _p?,

Subtracting the equations for (u(l), (1),/)(1)) and (u(2),p(2), p(2), we get
(4.14) Uy + AU + U - Vu) + 4@ . VU + VP = Rey
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and
(4.15) R4+ U -V +u® . VR =0.
We shall establish uniqueness in the space L?(R?) x L"(R?) where
__ Y
2q —qa+4

Note that 1 < r < oo and (U(0), R(0)) = (0,0) € L*(R?) x L"(R?). From (4.14),
we get,

1d

(4.16) 2dt‘

SIVu [T 72 + [A*2U | 2| Rl or + 1T 22| R] £

where we used

U2 + [|[A2U)22 S IVu® || |U 22 + |U]] prso—n || Rl e

r 4
< ’
r—17-"2-a«a
which follows from r > 4/(2 4+ «) and this holds by ga > 2. Also, (4.15) implies

HRIILr SNUNpare-o IVo e | BRI,

~

from where
d (0%
(17 SR S 100w 196V el Rl S 1A 26D -l Rl

Now, u®) € L ((0,00)([0,T]), W*I(R?)) for all ¢ € [g,00), and WI(R?) C
W1 (R?) for all g sufficiently large. Thus (4.16) and (4.17) imply U(t) = 0 and
R(t) =0 for all t > 0. O

Remark 4.1. Note that the identity (4.7) only uses the additivity of A*~! and
the fact that it commutes with the differential operators. Thus, for any multiplier
operator T', we have

T([S,u-V]p) = [T'S0;,u;]p — [T0;,u;]Sp.
The proof of this identity uses the fact that u is divergence-free.

5. THE SOBOLEV PERSISTENCE FOR § > «
We now consider the persistence of regularity when s > .

Proof of Theorem 2.1 for the case s > «. Let Jy, Jo, and J3 be as in (4.3). For Jj,
(4.4) and Lemma 2.3 imply

Ji S (I e [Nl o+ 1€ s A el o) AT
G1 S (ATl wlizr + 1€l ATz + (1€l [A* 7 Spllze ) 1A CIIT,
S eCH N T L + A pll ) AT,
for any r1,79 € (¢,00) such that 1/q = 1/r1 + 1/ro. We restrict

r2 € (¢,2¢/(2 — @)
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so that we may use the inequality (3.8) obtaining
(5.2) A2 e S AT ™ A2 (A2 | 5/
where 61 = 2(r9 — q)/ars. Also, we have
(5-3) 1A pllzra S ol za1A%pl 7 S A1 7
with 03 = (2/q —2/re + s — a)/s. Thus, by (5.1) and (5.2), we obtain
TS A A A ) 20 1Al A

The term Jo is rewritten using (4.7) as
Ja= [187180; 0ol 1[0 ¢ da

- [1a 10, u)pla g A o
= Jo1 + Joa.
For the first term, we have

Jo1 S (IVullr A Spllprs + AT SVl s |l ) [A* N

(5.4)
< e IATpll e 4 A wl| L) |41

~

where r3,74 € (q,00) are such that 1/r3+1/ry = 1/q. For ||[A>~%p||pr2, we use (5.3),
while for ||A*"“w||rrs, we have by the triangle inequality

A wllzrs S IA°TCllLrs + [|A**Spl|Lrs
1—6- 1 .16 _
S CIZ = 1A CNE + [ACT22 D4 p]
S AT T H 1A s,

where 03 = (2/q¢—2/r3+s—a)/(s—1), as long as r3 is sufficiently close to ¢. From
(5.4) we thus obtain

(5.5) Jor < e (1A% + 1A + 1) AT g
if s <2a—1, and
Jon < e (I18%pl%, + AR + [Apll /o) as—ig o,

if s > 2a — 1, where ¢g > 0 is arbitrarily small if r3 is sufficiently close to q. Since
02 > (s —2a+ 1) /s, we obtain that (5.5) holds even if s > 2o — 1 as long as 3 > ¢
is sufficiently close to g. For Jaa, we recall (4.8), by which

Jo2 S (ISpllcri Al Lr + [lpll e | SA ull Lo )Ilf\s‘lcll‘};1
S e IAullzra + [SA*u] o) |A*HCNTs
S e UA T + A5 Spl e + 1S A%l o) | AN TS
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and thus

T S eCHINT e + IS pl|zra + [|SA%ula) [A* ¢,
e (AT + A pllre + [ISA ™ w]| o) [|A 1¢I5
e IATIC L + Al 2o

+ | SA* e + [|SA° S| o) |4 195"

Note that the last two terms inside the parentheses are lower order compared to the
first two. Therefore,

Jar S e IAT I L + Al e + (1€l
— -1
+I¢llza + llollze + ol lA* N1
S e AT e 4 A5 pll e + DA

The right hand side does not lead to any new terms compared to the estimate for
Jy in (5.1), except for the lower order third term inside the parentheses.
Next, we treat J3. When s < 2, we have

T3 SIAT Npllall A 5" S lollzallA* %" S 1A%,
while if s > 2,
Ty SN Nplla | AT S Aol pall AN
2/s s s—2)/s s— —1 s s—2)/s s— -1
S Pl i PN g N i e i
We thus conclude
d s— 1 a s—
A g+ ol PN )13
(56) S AT T+ AT T+ e IApl AT
S s—2)/s S— —
+ (A%l 2 A
Next, we consider ||[A®p||rs. First, we have by Sobolev embedding, with ¢* =
max{2/(a - 1)7 q} +1,
(5.7) [Au|poe S A Awl o + | Aul| o
(5.8) S A o + 1A Sl o + [l o S 6(8),
where we used Theorem 2.1 in the third inequality and where
¢(t) = Cexp (Cexp(Ct))

with a sufficiently large C. (The dependence on ¢ can be improved, but we do not
optimize the dependence in this paper.) Thus, by Lemma 2.3,

S
S

1d _
Sl == (A% 9p) — e AV APl p
< 185(u - Vo) — u- AVpll1a|Apll%5"
S (Al [Vl es + 8wl o A%l 20) 1A%0l1%: "
< (1Al s [ Vplliea + SEIAplILa) 1A°0]%5"

(5.9)
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where s1, s9 € (g, 00) are such that 1/s1 + 1/s9 = 1/q. At this point, we employ an
inequality from [2], which gives

1-1 1 1
(5.10) 1Vplle2 S lpll s 1Al S A%l

where 1/s9 = 1/sq¢+ (1/52)(1 — 1/s), assuming that sy < gs, which is equivalent to

qs
> .
1= gs —1
From (5.9) and (5.10) we then obtain
(5.11) ||ASP||Lq S 1A wl e A%l + (B |Ap -
If
2q
12 <
512 .

we may apply (3.8) and obtain
1A wllzor < [JA*TH 2o + AT Spl o
S AT R A2 (AL )5 + [|A=2 p] o
S AT B A2 (A )57 + [l o 1A% 7
S A ™ A2 (AL )5 + Al

where 03 = 2(s; — ¢)/as; and 04 = (s — a — 2/s1 + 2/q)/s. Therefore, by (5.11),

s s « s— [ s s
(5.13) 1A% plle S 1A A2 (A 25 A%l

S 0. 1/s S
APl ST 4+ b(8) | A%p 1o

Now, in order to conclude the proof, let v > 0, and denote

= 1A%
= (1A%l 2a + 1),
Z = |IA2 (A1) [
Then (5.6) and (5.13) may be rewritten as

(5.14) %X 4 éZ < Otx 4 Ctx(a-1)/a 4 Ctyb2v/ax(a-1)/q

+ Y ((s=2)/s)+v/a x(a-1)/q
and

(5.15) %y < xU=0s)/az0s/ay1tv/sa=y/a . y0a/aty/satl=v/a o 4y,
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respectively. (We use here that if (d/dt)|[A®p|re < f, then Y < fY1=7/2) Adding
(5.14) and (5.15), we obtain

%(X +Y)+ %Z < Ot 4 Ctx a1/ 4 Ctytar/ax(a=1/a

+ Y ((=2)/s)+v/ax(a=1)/q 4 x(1-03)/a z03/ay 1+7/sa=7/q
+ y0a/at/sati=a/a o gy,

In order to apply the Gronwall lemma, it is sufficient that the conditions

0 -1
q q

2 1
<S ) Ti4o <
s Joa  q

1
,_i_l_ZSO
qa 39 4
0
Wi
q sq g

hold. The first three conditions may be summarized as

(5.16)

if s > 2 and as

if s < 2. The last condition in (5.16) is equivalent to

1
1-064
Setting s1 = gs/(gs — 1), it is easy to verify that we may simply take v = s/(s — 1)
as we have s/(s — 1) < 1/65. The condition (5.12) can also be checked easily. The
proof is concluded by a simple application of a Gronwall lemma. O

s 2>
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