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solution x(τi) of equation (1.1) is inaccurately measured. The measurement results
are elements {ξh1i, ξhi } ∈ V ∗ × V ∗ such that

(1.3) |ξh1i − x(τi)|V ∗ ≤ νhi , |ξhi − ẋ(τi)|V ∗ ≤ νhi ,

where νhi ∈ (0, 1) is the measurement error at the moment τi and the number
h ∈ (0, 1) is the measurement accuracy. We assume that the initial condition is also
known with some error. Namely, we know elements ξh10 ∈ V and ξh0 ∈ H satisfying
the inequalities

(1.4) |ξh10 − x10|V ≤ h, |ξh0 − x0|H ≤ h.

The problem under consideration consists in constructing an algorithm of approx-
imate reconstruction of the unknown disturbance v(·) through results of inaccurate
measurements of the states x(·). We estimate the reconstruction quality by two
criteria; first, by the deviation value for the solutions of equation (1.1) correspond-
ing to the real disturbance v(·) and its approximation vh(·), and second, by the
difference of mean-square norms of the functions vh(·) and v(·) on corresponding
intervals. The choice of these two criteria is explained by the fact that if they are
small (under appropriate conditions) then the approximation vh(·) is close to the
disturbance v(·) in the mean-square norm on every bounded time interval.

The problem described above belongs to the class of inverse problems [17]. The
analogous problems for systems with distributed parameters attract a great atten-
tion in recent time (see, for example, [2, 3, 4, 25, 16] and their bibliography). In
particular, the attention was paid to dynamical inverse problems [23, 24]. Note that
there is a strong connection between inverse problems and optimal control problems
[1, 6, 7]. The method of dynamic programming [9, 10], which is known in control
theory, is also applied to inverse problems. One of approaches to solving dynamical
reconstruction problems for systems described by ordinary differential equations was
developed in [12, 15, 18]. (Here, we mention only monographs, where it is possible
to find corresponding references.) This approach is based on methods of the theory
of guaranteed control [11] and the method of smoothing functional [17]. Then, this
approach was extended to systems with distributed parameters [8, 19, 21]. In these
papers, algorithms oriented to reconstructing a disturbance on a bounded time in-
terval were suggested. With increase in the length of this interval, computational
and measurement errors are accumulated and, if the length tends to infinity then
the approximation quality infinitely deteriorates. Algorithms that do not have this
drawback were designed in [23, 24], where systems described by ordinary differential
equations were considered. In this paper, we give a modification of algorithms from
[13, 14] for differential equation (1.1).

In [22], the problem of reconstructing the right-hand part of an equation of form
(1.1) was considered at a finite time interval. The measurements of the phase state
were performed continuously, at every moment of time. In the present work, such
measurements are carried out at discrete times. In addition, in contrast to [22], there
are “instantaneous” constraints on disturbances, and the reconstruction process is
considered at an infinite time interval.
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2. Statement of the problem

Before the statement of the problem, we define a solution of equation (1.1). Any
function x(·) ∈ C(Tϑ;V ), ẋ(·) ∈ W (Tϑ;V ) = {y(·) ∈ C(Tϑ;H) : ẏ(·) ∈ L2(Tϑ;V

∗)}
satisfying the relation

ẍ(t)−∆x(t) +mx(t) + γẋ(t) = g(x(t)) + (Bu)(t) + f(t) in V ∗ a.a. t ∈ Tϑ,

is called a solution of equation (1.1) on the time interval Tϑ = [0, ϑ], ϑ > 0, and
is denoted by x(·) = x(·;x10, x0, v(·)). A function x(t), t ∈ T , is called a solution
of equation (1.1) on the interval T if x(·) is a solution of equation (1.1) on every
interval Tϑ, ϑ > 0.

Let P (·) be the set of all Lebesgue measurable functions v(·) : [0,+∞) → P ; this
set is called the set of admissible disturbances.

Condition 2.1. There exist numbers K ≥ 0 and K1 such that the inequalities
K1 < λ+m−KL and xg(x)−Kσ(x) ≤ K1x

2 ∀x ∈ R are fulfilled. Here,

σ(x) =

x∫
0

g(y) dy, λ = inf{|∇x(η)|H : x ∈ V, |x|H = 1}.

Condition 2.2. 2L < λ+m.

The next lemma is a direct consequence of Theorem 8.4.5 [5, p. 139].

Lemma 2.3. Let Conditions 2.1 and 2.2 be fulfilled. Then, for any v(·) ∈ P (·),
there exists a unique solution x(·) = x(·;x10, x0, v(·)) of equation (1.1) on the time
interval T .

For every h ∈ (0, 1), we fix a family (∆h)h>0 of uniform partitions of semiaxis
[0,+∞) by times τh,i:

(2.1) ∆h = {τh,i}∞i=0, τh,0 = 0, τh,i+1 = τh,i + δi(h), δi(h) ∈ (0, 1).

Consider two cases. In the first case, we assume that noises implemented in the
observation channel are subject to the constraints of “smallness” of their values at
every time. In the second one, they are subject to the requirements of “smallness”
of their mean values over the entire time interval (the “smallness” of their integral
errors).

Condition 2.4. δi(h) = δ(h), νhi = h for all i = 0, 1, . . ..

Condition 2.5. The family of partitions ∆h and the values of measurement errors
νhi satisfy the relations

νhi ∈ [0, 1] for all i and h ∈ (0, 1),

+∞∑
i=0

δi(h)ν
h
i ≤ φ1(h) → 0 + as h→ 0 + .

Thus, under Condition 2.4, the partitions ∆h are uniform.
Along with equation (1.1), we need one more equation of the form

(2.2) ÿh(t)−∆yh(t) +myh(t) + γẏh(t) =
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= g(yh(t)) + (Bvh)(t) + f(t) in V ∗ for a.a. T,

with the initial condition yh(0) = ξh10, ẏ
h(0) = ξh0 and a control vh(·) ∈ P (·). We call

equation (2.2) a model. This equation is a “copy” of equation (1.1). The difference
is only in the control vh(·) in the right-hand part of (2.2); this control should be
formed.

Note that, by virtue of the continuity of the embedding of the space V into the
space H, the following inequalities

(2.3) |x|H ≤ c0|x|V ∀x ∈ V,

(2.4) |x|V ∗ ≤ c1|x|H ∀x ∈ H

take place. Here, c0 and c1 are some positive constants.
Any piecewise constant function Ξh(·) : [0,+∞) 7→ V ∗ × V ∗, Ξh(t) = Ξh

i =
{ξh1i, ξhi } ∈ V ∗ × V ∗ for t ∈ [τh,i, τh,i+1), ξ

h
10 ∈ V , ξh0 ∈ H, satisfying relations (1.3),

(1.4) is called an admissible measurement of x(·) with accuracy h, and any Lebesque
measurable function v(·) : [0,+∞) 7→ P is called an admissible disturbance. Anal-
ogously, we define an admissible measurement of yh(·) with accuracy h. Let Ψh(·)
be a piecewise constant function such that Ψh(t) = Ψh

i = {ψh
1i, ψ

h
i } ∈ V ∗ × V ∗ for

t ∈ [τh,i, τh,i+1), where Ψh
i , i ≥ 1, are results of measurements of yh(τi) and ẏ

h(τi),

respectively: |ψh
1i − yh(τi)|V ∗ ≤ h, |ψh

i − ẏh(τi)|V ∗ ≤ h, τi = τh,i, Ψ
h
0 = {ψh

10, ψ
h
0},

ψh
10 = ξh10, ψ

h
0 = ξh0 .

We assume that the solution yh(t), t ≥ 0, of equation (2.2) (solution of equation
(1.1)) is inaccurately observed at the discrete times τh,i and is influenced by the

action of some feedback V(t,Ψh,Ξh) ∈ P . Therefore, the solution of equation (2.2)
satisfies the following differential equations and initial conditions:

(2.5) ÿh(t)−∆yh(t) +myh(t) + γẏh(t) = g(yh(t)) + f(t) +

+ (BV(τi,Ξh
i ,Ψ

h
i ))(t) in V ∗ for a.a. t ∈ δi = [τi, τi+1), i ≥ 0,

yh(0) = ξh10, ẏh(0) = ξh0 .

For any v(·) and vh(·) from P (·), we introduce the following two criteria for the
deviation of vh(·) from v(·) on some bounded time interval [0, ϑ]:

ω1(v
h(·), v(·)|ϑ) = max

t∈[0,ϑ]

{ ∣∣∣ẏh(t; ξh10, ξh0 , vh(·))− ẋ(t;x10, x0, v(·))
∣∣∣
H
+

+
∣∣∣yh(t; ξh10, ξh0 , vh(·))− x(t;x10, x0, v(·))

∣∣∣
V

}
,

ω2(v
h(·), v(·), h|ϑ) =

ϑ∫
0

|vh(t)|2U dt− ϱ0(h)

ϑ∫
0

|v(t)|2U dt.

Here, ϱ0(·) : (0, 1) → R+ = {r ∈ R : r > 0} is a function with the property:
ϱ0(h) → 1 as h → +0, x(·;x10, x0, v(·)) and yh(·; ξh10, ξh0 , vh(·)) are the solutions of
equations (1.1) and (2.2) induced by the inputs v(·) and vh(·), respectively.

Any function V(·, ·, ·, ·, ·) : T × V ∗ × V ∗ × V ∗ × V ∗ 7→ P . is called an admissible
feedback (for model (2.2)). For any admissible feedback V(·, ·, ·, ·, ·), any admissible
measurements Ξh(·) of x(·) with accuracy h, and any admissible measurements Ψ(·)
of yh(·) with accuracy h, the solution yh(·) of Cauchy problem (2.5) defined on
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[0,∞) is called a trajectory of the model corresponding to the admissible feedback
V(·, ·, ·, ·, ·) and admissible measurements Ξh(·) and Ψh(·).

A controlled process corresponding to an admissible feedback V(·, ·, ·, ·, ·), an ad-
missible disturbance v(·), and a measurement accuracy h (h > 0) is any quin-
tuple (x(·),Ξh(·), yh(·),Ψh(·), vh(·)), where x(·) = x(·;x10, x0, v(·)) is the solution
of equation (1.1), Ξh(·) is the admissible measurement of x(·) with accuracy h,
yh(·) = yh(·; ξh10, ξh0 , vh(·)) is the solution of equation (2.5), Ψh(·) is the admissible
measurement of yh(·) with accuracy h, the function vh(·) : [0,+∞) 7→ P is defined
by the rule

vh(t) = V(τi,Ξh
i ,Ψ

h
i ) for t ∈ δi = δh,i = [τi, τi+1), τi = τh,i, i ≥ 0.

The function vh(·) is called a realization of the admissible feedback V(·, ·, ·, ·, ·)
corresponding to the admissible disturbance v(·) and admissible measurement with
accuracy h.

Following [13], the family of admissible feedbacks (Vh(·, ·, ·, ·, ·))h>0 is called stable
with respect to time moment ϑ if there exist functions γ1(·) and γ2(·) : (0,+∞) 7→
[0,+∞) such that γ1(h) → 0, γ2(h) → 0 as h → 0 and for any admissible distur-
bance v(·), any number h ∈ (0, 1), any realization vh(·) of the admissible feedback
Vh(·, ·, ·, ·, ·),

(2.6) vh(t) = Vh(τh,i,Ξ
h
i ,Ψ

h
i ) for t ∈ δh,i,

any trajectory of model (2.5) yh(·) = yh(·; ξh10, ξh0 , vh(·)) corresponding to the func-
tion vh(·) of form (2.6), and any admissible measurements Ξh(·) and Ψh(·) of accu-
racy h ∈ (0, 1), the inequalities

(2.7) sup
ϑ≥0

ω1(v
h(·), v(·)|ϑ) ≤ γ1(h),

(2.8) sup
ϑ≥0

ω2(v
h(·), v(·), h|ϑ) ≤ γ2(h)

are fulfilled; i.e., inequalities (2.7) and (2.8) hold for the controlled process
(x(·),Ξh(·), yh(·),Ψh(·), vh(·)). Such a pair (γ1(·), γ2(·)) is called an accuracy es-
timate of the family (Vh(·, ·, ·, ·, ·))h>0.

The problem considered in this paper consists in constructing a family of admis-
sible feedbacks Vh that is stable with respect to the time ϑ.

3. Solution algorithm

We present two conditions to be used in what follows.

Condition 3.1. inf{|u|U : u ∈ P} ≥ 1.

Condition 3.2. The family of partitions ∆h has the property

+∞∑
i=0

δ2i (h) ≤ φ2(h), φ2(h) → 0 as h→ 0.
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Remark 3.3. Conditions 2.5 and 3.2 are fulfilled if, for example,

δi(h) = νhi = dh/(i+ 1)µ ≤ 1, µ ∈ (0.5; 1], i = 0, 1, . . . , d = const > 0.

In this case,

φ1(h) = φ2(h) = 2h2d2
∞∑
i=1

i−2µ.

For any ε > 0, we introduce the functional

(3.1) Eε(x(t)− yh(t), ẋ(t)− ẏh(t)) =

= E1(x(t)− yh(t), ẋ(t)− ẏh(t)) + ε(x(t)− yh(t), ẋ(t)− ẏh(t)),

where
E1(x(t)− yh(t), ẋ(t)− ẏh(t)) = 0.5{|x(t)− yh(t)|2V +

+m|x(t)− yh(t)|2H + |ẋ(t)− ẏh(t)|2H}.
Hereinafter, the symbol (·, ·) stands for the inner product in the space H. Note that
if m > −λ then the space X = V ×H is possible to be equipped by the following
scalar product:

(3.2) ({x1, y1}, {x2, y2})1 =
∫
Ω

{∇x1(η)∇x2(η) +m.x1(η)x2(η) + y1(η)y2(η)} dη.

This scalar product generates the norm, which is equivalent to the norm in the
space V ×H (see [5, p. 29])

2E1(x, y) = |x, y|2X .
Here, the symbol | · |X stands for the norm in X corresponding to scalar product
(3.2).

Using Lemma 8.4.1 [5, p. 138], proposition 6.1.1 [5, p. 78], proposition 8.4.2 [5,
p. 138] (see also proposition 6.2.3 [5, p. 83]), we derive

(3.3)
dE1(x(t)− yh(t), ẋ(t)− ẏh(t))

dt
= −γ|ẋ(t)− ẏh(t)|2H+

+(B(v(t)− vh(t)), ẋ(t)− ẏh(t)) + (g(x(t))− g(yh(t)), ẋ(t)− ẏh(t)).

As well, the equality

(3.4)
d(x(t)− yh(t), ẋ(t)− ẏh(t))

dt
= |ẋ(t)− ẏh(t)|2H − |x(t)− yh(t)|2V −

−m|x(t)− yh(t)|2H − γ(x(t)− yh(t), ẋ(t)− ẏh(t)) + (g(x(t))−
− g(yh(t)), x(t)− yh(t)) + (B(v(t)− vh(t)), x(t)− yh(t))

takes place for a.a. t. In this case, by virtue of (3.1), (3.3),(3.4), for a.a. t ∈ T , the
equality

(3.5)
dEε(x(t)− yh(t), ẋ(t)− ẏh(t))

dt
= Lε(x(t), y

h(t)) +

+ (ε(x(t)− yh(t)) + ẋ(t)− ẏh(t), B(v(t)− vh(t))),

holds. Here,

Lε(x(t), y
h(t)) = (−γ + ε)|ẋ(t)− ẏh(t)|2H + (g(x(t))−
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− g(yh(t)), ẋ(t)− ẏh(t) + ε(x(t)− yh(t)))− ε|x(t)− yh(t)|2V −
− εm|x(t)− yh(t)|2H − εγ(x(t)− yh(t), ẋ(t)− ẏh(t)).

Let symbol ⟨·, ·⟩ denote the duality between V and V ∗, d(P ) = sup{|u|U : u ∈ P}.
Let us describe the algorithm for solving the problem under consideration. Before

the algorithm starts, we fix a value h ∈ (0, 1), a function

α = α(h) ∈ (0, 1), α(h) → 0 as h→ 0,

and a partition ∆h = {τh,i}∞i=0(2.1). The work of the algorithm is decomposed into
identical steps. During the i-th step performed on the time interval δi = [τi, τi+1),
τi = τh,i, the following actions are fulfilled. First, at the moment τi, we find the
element

(3.6) Vh(τi,Ξ
h
i ,Ψ

h
i ) = argmin{2(B∗[(ψh

i − ξhi ) +

+ ε(ψh
1i − ξh1i)], v)U + α(h)|v|2U : v ∈ P},

where Ξh
i = {ξh1i, ξhi }, Ψh

i = {ψh
1i, ψ

h
i }. Then, control (2.6), (3.6) is fed onto the

input of model (2.2) for all t ∈ δi. As a result, under the action of this control,
the model passes from the state {yh(τi), ẏh(τi)} to the state {yh(τi+1), ẏ

h(τi+1)}. In
addition, under the action of some unknown disturbance v(t), t ∈ δi, in equation
(1.1), the system described by this equation passes from the state {x(τi), ẋ(τi)} to
the state {x(τi+1), ẋ(τi+1)}. Similar actions are repeated at the (i+ 1)th step.

Condition 3.4. There exist numbers ε > 0 and c ∈ (0, ε) such that the inequality

Lε(x(t), y
h(t)) ≤ −cEε(x(t)− yh(t), ẋ(t)− ẏh(t)) for a.a. t ∈ T

is fulfilled.

Theorem 3.5. Let Conditions 2.1, 2.2, and 3.4 be satisfied, ε < min{1,m+ c−1
0 },

(h + δ(h))α(h)−1 → 0 as h → 0, and (x(·),Ξh(·), yh(·),Ψh(·), vh(·)), h ∈ (0, 1), be
the controlled process corresponding to the admissible feedback Vh(·, ·, ·, ·, ·) of form
(3.6), the admissible disturbance v(·), and the measurement accuracy h. Let also
Conditions 2.4, 3.1 (in the first case) and 2.5, 3.2 (in the second one) be satisfied.
Then, the inequality

(3.7)

t∫
0

|vh(τ)|2U dτ ≤ ϱ0(h)

t∫
0

|v(τ)|2U dτ + ϱ1(h)

holds for all t ∈ T , if h ∈ (0, h∗). Here,

ϱ0(h) =
α(h) + b1(h+ δ(h))

α(h)− b1(h+ δ(h))
, ϱ1(h) =

d0h
2

α(h)− b1(h+ δ(h))

in the first case and

ϱ0(h) = 1, ϱ1(h) =
d0h

2 + b3(φ1(h) + φ2(h))

α(h)

in the second one. In addition, the inequality

(3.8) |yh(t)− x(t)|2V + |ẏh(t)− ẋ(t)|2H ≤ ν(t, h, α), t ∈ T,
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holds, where d0 = 1 + c0 + 0.5mc20,

ν(t, h, α) = 2max{1, (m− ε)−1}
[
d0h

2e−ct + b2(h+ δ(h)) +
2d2(P )

c
α(h)

]
in the first case and

ν(t, h, α) = 2max{1, (m− ε)−1}
[
d0h

2e−ct +

+
2d2(P )

c
α(h)) + b4(φ1(h) + φ2(h))

]
in the second one.

Here, b1, b2, b3, and b4 are some constants that can be written explicitly; in the
first case, the number h∗ ∈ (0, 1) is such that the inequality α(h)− b1(h+ δ(h)) > 0
holds for all h ∈ (0, h∗) and, in the second case, h∗ = 1.

Proof. In the beginning, we consider the first case. By virtue of (1.1) and (2.2), we
deduce that the difference

z(·) = yh(·)− x(·)
satisfies the relation

(3.9) z̈(t)−∆z(t) +mz(t) + γż(t) =

= g(yh(t))− g(x(t)) +B(vh(t)− v(t)) in V ∗ for a.a. t ∈ T,

where z(0) = ξh10 − x10, ż(0) = ξh0 − x0. In what follows, we need some estimates
of the differences |z(t) − z(τi)|H and |ż(t) − ż(τi)|V ∗ for t ∈ δi, i = 0, 1, . . .. Due
to Conditions 1 and 2 (see [5, Theorem 8.4.5, p.139]), there exists a number c1 ∈
(0,+∞) such that the inequalities

(3.10) sup
t∈T

|{ẋ(t), x(t)}|H×V ≤ c1, sup
t∈T

|{ẏh(t), yh(t)}|H×V ≤ c1.

hold uniformly with respect to all h ∈ (0, 1), v(·) ∈ P (·), and vh(·) ∈ P (·).
Let us fix some element v ∈ V . Then, using (3.9), (2.3) and (2.4), we obtain

|⟨ż(t+∆t)− ż(t), v⟩| ≤
t+∆t∫
t

{|z(τ)|V + c0(m|z(τ)|H +

+ γ|ż(τ)|H + L|z(τ)|H + c2)|v|V } dτ.
Therefore, by virtue of (3.10), we have the estimates

(3.11) |ż(t+∆t)− ż(t)|V ∗ ≤ c3∆t, |z(t+∆t)− z(t)|H ≤ c4∆t,

which hold for any t, t+∆t ∈ T , ∆t > 0.
Consider the variation of the variable

(3.12) εh(t) = Eε(t) + α

t∫
0

{|vh(τ)|2U − |v(τ)|2U} dτ, α = α(h)

on the time interval T . Here, Eε(t) = Eε(x(t) − yh(t), ẋ(t) − ẏh(t)). Finding the
derivative of εh(t), for a.a. t ∈ [τi, τi+1), τi = τh,i, we have

(3.13) ε̇h(t) ≤ (ż(t) + εz(t), B(vh(t)− v(t)))− cEε(t) + α{|vh(t)|2U − |v(t)|2U}
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(see (3.5) and Condition 3.4). Then, using (3.13), we obtain the estimate

(3.14) ε̇h(t) ≤ −cEε(t)+(ż(t)− ż(τi)+ε(z(t)−z(τi)), B(vh(t)−v(t)))+χt
i(v

h, v)+

+ µti(v
h, v) + ⟨ξhi − ẋ(τi), B(vh(t)− v(t))⟩+ ⟨ẏh(τi)− ψh

i , B(vh(t)− v(t))⟩+
+ ε(ξh1i − x(τi), B(vh(t)− v(t))) + ε(yh(τi)− ψh

1i, B(vh(t)− v(t))) for a.a. t ∈ δi,

where

χt
i(v

h, v) = −(vh(t), B∗(ξhi − ψh
i ))U + α|vh(t)|2U + (v(t), B∗(ξhi − ψh

i ))U − α|v(t)|2U ,

µti(v
h, v) = −ε(vh(t), B∗(ξh1i − ψh

1i))U + ε(v(t), B∗(ξh1i − ψh
1i))U .

Relations (2.6) and (3.6) imply the inequality

χt
i(v

h, v) + µti(v
h, v) ≤ 0.

In this case, for a.a. t ∈ [τi, τi+1), the following relation

(3.15) ε̇h(t) ≤ −cEε(t) + (ż(t)− ż(τi), B(vh(t)− v(t))) +

+ ⟨ξhi − ẋ(τi), B(vh(t)− v(t))⟩+ ⟨ẏh(τi)− ψh
i , B(vh(t)− v(t))⟩+

+ ε(ξh1i − x(τi), B(vh(t)− v(t))) + ε(yh(τi)− ψh
1i, B(vh(t)− v(t))) +

+ ε(z(t)− z(τi), B(vh(t)− v(t)))

is valid. By (1.3) and (3.11), we conclude that

(3.16) (ż(t)− ż(τi), B(vh(t)− v(t))) ≤ c5δ(h){|vh(t)|U + |v(t)|U},

(z(t)− z(τi), B(vh(t)− v(t))) ≤ c6δ(h){|vh(t)|U + |v(t)|U}.
In addition, by taking into account (1.3) for a.a. t ∈ [τi, τi+1), we have

⟨ξhi − ẋ(τi), B(vh(t)− v(t))⟩ ≤ c7h{|vh(t)|U + |v(t)|U},

⟨ẏh(τi)− ψh
i , B(vh(t)− v(t))⟩ ≤ c7h{|vh(t)|U + |v(t)|U},

ε(ξh1i − x(τi), B(vh(t)− v(t))) ≤ c8h{|vh(t)|U + |v(t)|U},
ε(yh(τi)− ψh

1i), B(vh(t)− v(t))) ≤ c8h{|vh(t)|U + |v(t)|U}.
By using (3.15) and (3.16) for a.a. t ∈ [τi, τi+1), we derive the inequality

(3.17) ε̇h(t) ≤ b1(h+ δ(h)){|vh(t)|U + |v(t)|U} − cEε(t).

Then, by virtue of the inequality ε < min{1,m+ c−1
0 }, we get

0 ≤ Eε(t) for t ∈ T.

From this inequality (see Condition 3.1) and (3.17), we obtain the inequality

(3.18) εh(t) ≤ εh(0) + b1(h+ δ(h))

t∫
0

{|vh(τ)|2U + |v(τ)|2U} dτ, t ∈ T.

In its turn, from (3.18) we conclude that

α(h)

t∫
0

{|vh(τ)|2U − |v(τ)|2U} dτ ≤ εh(0) +
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+ b1(h+ δ(h))

t∫
0

{|vh(τ)|2U + |v(τ)|2U} dτ for t ∈ T.

Thus, for all t ∈ T , the estimate
(3.19)

{α(h)− b1(h+ δ(h))}
t∫

0

|vh(τ)|2U dτ ≤ εh(0) + {α(h) + b1(h+ δ(h))}
t∫

0

|v(τ)|2U dτ

takes place. Note that from (1.4), (2.3), and the inclusion ε ∈ (0, 1) the inequality

(3.20) Eε(0) ≤ (1 + c0 + 0.5c20m)h2

follows. Inequality (3.19), together with the equality εh(0) = Eε(0), implies (for
h ∈ (0, ha)) the relation

t∫
0

|vh(τ)|2U dτ ≤ α(h) + b1(h+ δ(h))

α(h)− b1(h+ δ(h))

t∫
0

|v(τ)|2U dτ +

+
d0h

2

α(h)− b1(h+ δ(h))
, t ∈ T.

The existence of a number ha > 0 with the property from theorem’s conditions is
evident. This implies inequality (3.7).

Now, let us show that inequality (3.8) is also true. By taking into account (3.6)
for a.a. t ∈ [τi, τi+1), we obtain the estimate

(3.21) (B∗[ψh
i − ξhi + ε(ψh

1i − ξh1i)], v
h(t))U ≤

≤ inf{(B∗[ψh
i − ξhi + ε(ψh

1i − ξh1i)], v)U : v ∈ P}+ d2(P )α(h).

By virtue of this estimate, by analogy with (3.17), we derive the inequality

Ėε(t) ≤ −cEε(t) + c9(h+ δ(h)){|vh(t)|U + |v(t)|U}+ 2d2(P )α(h) for a.a. t ∈ T ;

i.e.,
Ėε(t) = −cEε(t) + c10(h+ δ(h)) + 2d2(P )α(h) + ψ0(t),

where ψ0(t) ≤ 0, t ∈ T . In this case, we deduce that

Eε(t) ≤ Eε(0)e
−ct + 2d2(P )α(h)

t∫
0

e−c(t−τ) dτ + c10

t∫
0

e−c(t−τ)(h+ δ(h)) dτ.

Then, we have
t∫

0

e−c(t−τ) dτ

From the last two inequalities and (3.20), it follows that

(3.22) Eε(t) ≤ d0h
2e−ct +

2d2(P )

c
α(h) + b2(h+ δ(h))), b2 =

c10
c

for all t ∈ T . Note that the following inequality

(3.23) Eε(t) ≥ 0.5{|z(t)|2V +m|z(t)|2H + |ż(t)|2H} − 0.5ε{|z(t)|2H + |ż(t)|2H} ≥
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≥ 0.5{c−1
0 |z(t)|2H + 0.5(m− ε)|z(t)|2H + (1− ε)|ż(t)|2H}

is true. It follows from (3.22) and (3.23) that inequality (3.8) is satisfied.
Consider the second case. It is easily seen that in this case relations (3.9)–(3.15)

also take place. Then, we get the estimates

(3.24)

(z(t)− z(τi), B(vh(t)− v(t))) ≤ c11ν
h
i ,

(ż(t)− ż(τi), B(vh(t)− v(t))) ≤ c11ν
h
i ,

⟨ξhi − ẋ(τi), B(vh(t)− v(t))⟩ ≤ c11ν
h
i ,

⟨ẏh(τi)− ψh
i , B(vh(t)− v(t))⟩ ≤ c11ν

h
i ,

ε(ξh1i − x(τi), B(vh(t)− v(t))) ≤ c11ν
h
i ,

ε(yh(τi)− ψh
1i), B(vh(t)− v(t))) ≤ c11ν

h
i .

Using (3.15) and (3.24), we derive for a.a. t ∈ [τi, τi+1)

(3.25) ε̇h(t) ≤ b3(ν
h
i + δi(h))− cEε(t).

From (3.25), we have the inequality

(3.26) εh(t) ≤ εh(0) + b3Σ
i
j=0(ν

h
j + δj(h))δj(h) for t ∈ [τi, τi+1).

In this case, by virtue of Conditions 2.5 and 3.2, inequalities (3.20) and (3.26), we
obtain the estimate

εh(t) ≤ d0h
2 + b3(φ1(h) + φ2(h)), t ∈ T.

Inequality (3.7) follows from this estimate.
Let us verify inequality (3.8). Using inequality (3.21), by analogy with (3.25), we

obtain

Ėε(t) ≤ −cEε(t) + b4(ν
h
i + δi(h)) + 2d2(P )α(h) for a.a. t ∈ [τi, τi+1);

i.e., for a.a. t ∈ [τi, τi+1) the equality

Ėε(t) = −cEε(t) + b4(ν
h
i + δi(h)) + 2d2(P )α(h) + ψ1(t)

takes place. Here, ψ1(t) ≤ 0, t ∈ T . In this case, for a.a. t ∈ [τi, τi+1), the inequality

(3.27) Eε(t) ≤ Eε(0)e
−ct + 2d2(P )α(h)

t∫
0

e−c(t−τ) dτ +

+ b4Σ
i−1
j=0(ν

h
j + δj(h))δj(h) + b4(t− τi)δi(h)(ν

h
i + δi(h))

is fulfilled. From (3.27), we derive the inequality

(3.28) Eε(t) ≤ d0h
2e−ct +

2d2(P )

c
α(h) + b4(φ1(h) + φ3(h)).

Using (3.28) and (3.23), we get (3.8). The proof of the theorem is complete. □

We give one sufficient condition providing the fulfillment of Condition 3.4.

Theorem 3.6. Let 3L < m, γ > {2(m− L)}1/2 and let Conditions 2.1 and 2.2 be
fulfilled. Then, Condition 3.4 is also satisfied.
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Let q1 =
m−3L

m and

φγ(q) =
m(1− q)− L−

√
(m(1− q)− L)2 − 4L2

2γ
.

Note that the radicand is nonnegative if q ∈ (0, q1).
The conclusion of Theorem 3.6 follows from Lemma 3.7 given below.

Lemma 3.7. Let the conditions of Theorem 3.6 be fulfilled. Then, for any number
q ∈ (0, q1), if c = 2qε and ε = φγ(q) the inequality

(3.29) Lε(x(t), y
h(t)) ≤ −cEε(x(t)− yh(t), ẋ(t)− ẏh(t))

takes place almost everywhere on T .

Proof. By virtue of the Lipschitz property of the function g, we have the inequality

(g(x(t))− g(yh(t)), ẋ(t)− ẏh(t) + ε(x(t)− yh(t))) ≤
≤ L|x(t)− yh(t)|H {|ẋ(t)− ẏh(t)|H + ε|x(t)− yh(t)|H} ≤

≤ (Lε+
L2

2γ1
)|x(t)− yh(t)|2H +

γ1
2
|ẋ(t)− ẏh(t)|2H

for every γ1 > 0. Moreover, for c∗ ∈ (0, γ), the inequality

−εγ(x(t)− y(t), ẋ(t)− ẏh(t)) ≤ −εc∗(x(t)− yh(t), ẋ(t)− ẏh(t))+

+
ε2(γ − c∗)

2

2γ1
|x(t)− yh(t)|2H +

γ1
2
|ẋ(t)− ẏh(t)|2H

is also fulfilled. We fix any numbers γ1 > 0, ε ∈ (0, γ), and c∗ ∈ (0, ε) in such a way
that the relations

(3.30) (−γ +
γ1
2

+
γ1
2

+ ε)|ẋ(t)− ẏh(t)|2H ≤ −c∗|ẋ(t)− ẏh(t)|2H ,

(3.31) −ε|x(t)− yh(t)|2V ≤ −c∗|x(t)− yh(t)|2V ,

(3.32) (Lε+
L2

2γ1
− εm+

ε2(γ − c∗)
2

2γ1
)|x(t)− yh(t)|2H ≤ −mc∗|x(t)− yh(t)|2H

are valid for a.a. t ∈ T . Let c∗ = qε and q ∈ (0, q1). Then, inequality (3.31) takes
place. Moreover, inequality (3.30) is also fulfilled if the equality

−γ + γ1 + ε = −c∗
takes place; i.e.,

(3.33) γ1 = γ − ε− c∗ = γ − (1 + q)ε > 0.

In its turn, inequality (3.32) is fulfilled if the inequalities

(3.34)
L2 + ε2(γ − qε)2

2γ1
≤ [m(1− q)− L]ε

and

(3.35) m(1− q)− L ≥ 0

hold. Note that, for q ∈ (0, q1), inequality (3.35) takes place. Let

(3.36) (1 + q)ε ≤ γ/2.
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Then, relation (3.33) is fulfilled and

1

2γ1
≤ 1

γ
.

In this case, inequality (3.34) is fulfilled if the inequality

(3.37)
L2 + ε2(γ − qε)2

γ
≤ [m(1− q)− L]ε

takes place. By virtue of (3.36), we have qε ∈ (0, γ) and

(γ − qε)2 ≤ γ2.

Therefore, relation (3.37) and, consequently, (3.34) are valid if the number ε ∈ (0, 1)
satisfies the inequality

(3.38) γ2ε2 − γ[m(1− q)− L]ε+ L2 ≤ 0.

It is easily seen that the roots ε1q and ε2q of the quadratic equation

γ2ε2 − γ[m(1− q)− L]ε+ L2 = 0

are found by the formulas

ε1q = φγ(q), ε2q =
m(1− q)− L+

√
(m(1− q)− L)2 − 4L2

2γ
.

Therefore,

ε1q < γ/4,

if q ∈ (0, q1). Consequently, inequality (3.38) is fulfilled if ε = φγ(q) and q ∈ (0, q1).
Note that, for q ∈ (0, q1), inequalities (3.33), (3.35), and (3.36) take place. So, for
ε = φγ(q), q ∈ (0, q1), c∗ = qε, and γ1 of form (3.33), inequalities (3.30)–(3.32) are
fulfilled. From these inequalities, we conclude that the inequality

Lε(x(t), y
h(t)) ≤ −2c∗Eε(x(t)− yh(t), ẋ(t)− ẏh(t))

holds. This inequality implies inequality (3.29) if c = 2c∗ . The lemma is proved. □

From Theorem 3.5 we obtain the main statement providing the solution of the
above-posed problem of the stable dynamical inversion of system (1.1).

Theorem 3.8. Let the conditions of Theorem 3.5 hold. Let also h2/α(h) → 0 in
the first case and (φ1(h) + φ2(h))/α(h) → 0 in the second one. Then, the family
(Vh(·, ·, ·, ·, ·))h>0 of admissible feedbacks of form (2.6), (3.6) is stable with respect
to time moment ϑ, and the pair (γ1(·), γ2(·)), where

γ1(h) = ν(0, h, α(h)), γ2(h) = ϱ1(h),

is an accuracy estimate for this family.

Proof. First, note that γ1(h) → 0 and γ2(h) → 0 as h → 0. Let h ∈ (0, 1) and
(x(·),Ξh(·), yh(·),Ψh(·), vh(·)) be the controlled process corresponding to the admis-
sible feedback Vh(·, ·, ·, ·, ·), the admissible disturbance v(·), and the measurement
accuracy h. Then, by Theorem 3.5, inequalities (3.7) and (3.8) are true for all t ≥ 0;
this implies the statement of the theorem. The theorem is proved. □
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Let the symbol Uϑ(x(·)) mean the set of all admissible disturbances compatible
with some output x(t), t ∈ Tϑ; i.e.,

Uϑ(x(·)) = {u(·) ∈ L2(Tϑ;U) : u(t) ∈ P, (Bu(t), z) = (ẍ(t) + γẋ(t)−
− g(x(t)) +mx(t)− f(t), z) + (∇x(t),∇z) for a.a. t ∈ Tϑ and all z ∈ V }.

Note that the set Uϑ(x(·)) is convex, bounded, and closed in L2(Tϑ;U). Therefore,
it contains a unique element vϑ∗ (·) of minimal L2(Tϑ;U)-norm.

Remark 3.9. It is easily seen that, for any ϑ ∈ T and for all t ∈ Tϑ, inequality
(3.7) is true if we replace the function v(·) by the function vϑ∗ (·).

Theorem 3.10. Let the conditions of Theorem 3.8 hold. Then, for every ϑ ∈ T ,
the convergence

vh(·) → v∗(·) = vϑ∗ (·) in L2 = L2(Tϑ;U) as h→ 0

takes place.

Proof. We establish that, for any sequence hj → 0+ as j → ∞, any number ϑ ∈ T ,
any family {∆hj

} = {τhj ,i}∞i=0 of partitions of the interval T , and any admissible

measurements Ξhj (·) and Ψhj (·) of accuracy hj , the convergence

vhj (·) → v∗(·) in L2 as j → ∞
takes place. Here and below, the controls vhj (·) are defined by rule (2.6), (3.6),
where h = hj . Assuming the contrary, we conclude that there exists a subsequence

of the sequence vhj (·) (we denote it for simplicity by the same symbol vhj (·)) such
that

(3.39) vhj (·) → v0(·) weakly in L2 as j → ∞,

(3.40) v0(·) ̸= v∗(·).

Let whj (t) = yhj (t) − y0(t), where y
hj (·) = yhj (·; ξhj

1i , ξ
hj

i , v
hj (·)) and y0(·) is the

solution of the equation

ÿ(t)−∆y(t) +my(t) + γẏ(t) =

= g(y(t)) +Bv0(t) + f(t) in V ∗ for a.a. t ∈ T, y(0) = x0, ẏ(0) = x10.

Then, we have

(3.41) ẅhj (t)−∆whj (t) +mwhj (t) + γẇhj (t) =

= g(yhj (t))− g(y0(t)) +B(vhj (t)− v(t)) in V ∗ for a.a. t ∈ T,

whj (0) = ξ
hj

0 − x0, ẇhj (0) = ξ
hj

10 − x10.

Multiplying the right-hand and left-hand parts of equality (3.41) by ẇhj (t), inte-
grating, and taking into account inequality (1.3), we conclude that

0.5{|ẇhj (t)|2H +m|whj (t)|2H + |whj (t)|2V }+ γ

t∫
0

|ẇhj (τ)|2H dτ ≤

≤ 0.5{|ẇhj (0)|2H +m|whj (0)|2H + |whj (0)|2V }+
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+

t∫
0

{B(vhj (τ)− v0(τ)), ẇ
hj (τ)) + (g(yhj (τ))− g(y0(τ)), ẇ

hj (τ))} dτ.

From this inequality, using (1.3) and (1.4), we obtain

(3.42) |ẇhj (t)|2H +m|whj (t)|2H + 2γ

t∫
0

|whj (τ)|2H dτ + |whj (t)|2V ≤

≤ ν(hj) + 2

t∫
0

(B(vhj (τ)− v0(τ)), ẏ
hj (τ)− ẋ(τ)) dτ +

+ 2L

t∫
0

|whj (τ)|H |ẇhj (τ)|H dτ +

t∫
0

(B(vhj (τ)− v0(τ)), ẋ(τ)− ẏ0(τ)) dτ,

where

(3.43) ν(hj) = |ẇhj (0)|2H + |whj (0)|2V +m|whj (0)|2H → 0 as j → ∞.

The second term in the right-hand part of inequality (3.42) tends to zero as j → ∞.
This follows from Theorem 3.5. The convergence to zero of the latest term follows
from the weak convergence of vhj (·) to v0(·) (see (3.39)). Therefore, by virtue of
(3.43) and Theorem 3.5 (see (3.8)), we deduce that

y0(t) = x(t), t ∈ Tϑ.

Hence, v0(·) ∈ Uϑ(x(·)) and, consequently,
(3.44) |v0(·)|L2 ≥ |v∗(·)|L2 .

The symbol | · |L2 stands for the norm in the space L2(Tϑ;U). As well, by virtue of
the known property of the weak limit, from (3.39) we derive

(3.45) lim
j→∞

|vhj (·)|L2 ≥ |v0(·)|L2 .

In its turn, by virtue of (3.7), the following inequality

|vhj (·)|2L2
≤ ϱ0(hj)|v∗(·)|2L2

+ ϱ1(hj)

is valid. This implies

(3.46) lim
j→∞

|vhj (·)|L2 ≤ |v∗(·)|L2 ,

and (see (3.44)–(3.46))

(3.47) lim
j→∞

|vhj (·)|L2 ≤ |v∗(·)|L2 ≤ |v0(·)|L2 ≤ lim
j→∞

|vhj (·)|L2 .

The set Uϑ(x(·)) possesses a unique element of minimal L2-norm (namely, v∗(·)).
Therefore, from (3.47) we obtain

(3.48) v0(·) = v∗(·).
Using (3.39) and (3.48), we conclude that

(3.49) vhj (·) → v∗(·) in L2 as j → ∞.
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Convergence (3.49) contradicts (3.39) and (3.40). The theorem is proved. □

4. Convergence rate of the algorithm

Under some additional conditions, on every bounded time interval Tϑ = [0, ϑ],
one can rewrite the convergence rate of the algorithm (see Theorem 4.2 below). Let
us obtain this estimate. In what follows, we need the following lemma.

Lemma 4.1. ([18, p. 47]) Let ũ(·) ∈ L∞(T∗;V
∗) and ṽ(·) ∈ W (T∗;V ), T∗ = [a, b],

−∞ < a < b < +∞,

|
t∫

a

ũ(τ) dτ |V ∗ ≤ ε∗, |ṽ(t)|V ≤ K ∀ t ∈ T∗.

Then, for all t ∈ T∗, the inequality∣∣∣ t∫
a

⟨ũ(τ), ṽ(τ)⟩ dτ
∣∣∣ ≤ ε∗(K + var(T∗; v(·)))

is valid. Here, the symbol var(T∗; v(·)) means the variation of the function v(·) over
the segment T∗, and the symbol W (T∗;V ) means the set of functions y(·) : T∗ → V
of bounded variation.

Theorem 4.2. Suppose that the conditions of Theorem 3.8 hold. Let also U = V ,
B be the operator of canonical embedding of the space V into the space H and v(·) ∈
W (Tϑ;V ). Then, the following estimate of the convergence rate of the algorithm is
valid:

|v(·)− vh(·)|2L2(Tϑ;H) ≤ K(α, h){2d(P ) + var(Tϑ; v(·))}+

+ ϱ1(h) + |1− ϱ0(h)|ϑd2(P ),
where

K(α, h) = c(0)ν1/2(0, α, h), c(0) = c
(0)
ϑ is some constant.

Proof. Note (see (3.9)) that, for every t1, t2 ∈ Tϑ, t1 < t2, the inequality
(4.1)∣∣∣ t2∫
t1

B(v(t)− vh(t)) dt
∣∣∣
V ∗

= sup
|v|V ≤1

∣∣∣⟨ t2∫
t1

{ẍ(τ)− ÿh(τ) +m(x(τ)− yh(τ))− g(x(τ)) +

+ g(yh(τ)) + γ(ẋ(τ)− ẏh(τ))−∆(x(τ)− yh(τ))) dτ}, v⟩
∣∣∣ ≤

≤ |ż(t2)− ż(t1)|V ∗ + c(1)
t2∫

t1

{|z(τ)|V + |z(τ)|H} dτ + γ|z(t2)− z(t1)|V ∗

is fulfilled. Here, as above, z(t) = yh(t) − x(t), and c(1) is some constant. As well,
by virtue of (3.8), for t ∈ Tϑ the estimate

(4.2) |ż(t)|H + |z(t)|V ≤ ν1/2(0, α, h)
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takes place. From (4.1) and (4.2), we get∣∣∣ t2∫
t1

B(v(t)− vh(t)) dt
∣∣∣
V ∗

≤ c(2)K(α, h).

Using Lemma 4.1 and (3.7), we derive

|v(·)− vh(·)|2L2(Tϑ;H) ≤ 2|v(·)|2L2(Tϑ;H) − 2

ϑ∫
0

(v(τ), vh(τ)) dτ +

+ ϱ1(h) + |1− ϱ0(h)|ϑd2(P ) ≤ 2

ϑ∫
0

|B(v(τ)− vh(τ))|V ∗ |v(τ)|V dτ +

+ ϱ1(h) + |1− ϱ0(h)|ϑd2(P ) ≤ K(α, h){2d(P ) + var(Tϑ; v(·))}+
+ ϱ1(h) + |1− ϱ0(h)|ϑd2(P ).

The theorem is proved. □

5. Conclusion

In the paper, the algorithm of stable reconstruction of the right-hand part of the
dynamical system described by the Klein–Gordon differential equation is specified.
In contrast to previously suggested algorithms with the property of accumulating
numerical and informational errors when the time interval (Tϑ = [0, ϑ]) of the
system operation grows, the algorithm designed in the paper is free of such a lack.
Its peculiarity is in the fact that the values of criteria for the deviation of the
reconstructed right-hand part v(·) from its approximation vh(·) do not depend on
the value of ϑ (see (3.1) and (3.2)).
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