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dependence on f we write wf or uf . We shall also need to examine uncontrolled
systems, i.e. f = 0. In this case we use respectively ψ and ϕ in the place of w and
u.

We are going to study controllability (in the space discussed below) under the
action of square integrable controls. More precisely, we are going to prove that
controllability of the associated wave equation can be lifted to the system with
memory. This fact is similar to the corresponding property when the control acts
in the Dirichlet boundary condition, but the proof is more delicate for a reason we
shall see below.

The assumptions in this paper are as follows:

(1) Γ0 and Γ1 are relatively open subsets of Γ = ∂Ω such that Γ0∪Γ1 = ∂Ω and
Γ0 ∩ Γ1 = ∅ in order to avoid the difficulties examined in [3]. We assume
also Γ0 ̸= ∅.

(2) The memory kernel K(t) is continuous.
(3) we define:

T0 = 2 inf
x0∈IRd

{
sup
x∈Ω

|x− x0|
}
.

(4) the part Γ1 of the boundary is chosen in such a way that Theorems 1.1
and 1.2 below hold. The existence of Γ1 with this property has been proved
in [8, 6], after the preliminary results in [12]. We don’t need to describe
the geometric properties of Γ1 which are used to prove controllability since
the idea in this paper is as follows: the already estabilished property of
controllability of the associated wave equation is inherited by the equation
with memory.

Among the many results in [8], we single out the following one which deals with
square integrable controls (see also [6, Theorems 4.8 and 6.19] for the control time
T0):

Theorem 1.1. Let

H1
Γ0
(Ω) =

{
ϕ ∈ H1(Ω) : γ0ϕ = 0 on Γ0

}
.

When Γ1 is a suitable part of ∂Ω, for every T > T0 and for every w0, ξ in H1
Γ0
(Ω)

and every w1, η in L2(Ω) there exists a control f ∈ L2
(
0, T ;L2(Γ1)

)
such that

uf (T ) = ξ, u′f (T ) = η (u is the solution of (1.3) with the initial/boundary conditions

as in (1.2)).

This result has to be properly interpreted, as explained below in Sect. 2, since
(uf (t), u

′
f (t)) does not evolve in H1

Γ0
(Ω)× L2(Ω) (unless dimΩ = 1).

We recall also the following result on controllability of the system with memory,
but controlled via the deformation, i.e. with control in the Dirichlet boundary
condition (see [15, 16, 17]):

Theorem 1.2. Let us consider Eq. (1.1) but now the boundary condition is

(1.4) γ0w(x, t) = 0 on Γ0 , γ0w(x, t) = f(x, t) on Γ1 .

Let T > T0 and let Γ1 be as in Theorem 1.1. For every w0, ξ in L2(Ω) and every
w1, η in H−1(Ω) there exists a control f ∈ L2

(
0, T ;L2(Γ1)

)
such that wf (T ) = ξ,
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w′
f (T ) = η (here w solves (1.1) with the initial conditions w(0) = w0, w

′(0) = w1

and the boundary conditions (1.4)).

Remark 1.3. We note:

• Theorem 1.2 holds in particular if b = 0 and K = 0, i.e. it holds for
the associated wave equation (1.3) controlled by the boundary deformation
(see [6, Theorem 6.5]).

• we repeat that it is possible to choose Γ0 and Γ1 so that both the theo-
rems 1.1 and 1.2 hold.

• when the deformation, instead of the traction is controlled, as in Theo-
rem 1.2, the computation of wf (T ) and w′

f (T ) is not a difficulty, since in

this case (w(t), w′(t)) ∈ C
(
[0, T ];L2(Ω)×H−1(Ω)

)
.

The result we are going to prove is:

Theorem 1.4. Let K be continuous, T > T0 and let Γ0 and Γ1 be such that both
the theorems 1.1 and 1.2 hold. For every w0, ξ in H1

Γ0
(Ω) and every w1, η in L2(Ω)

there exists a control f ∈ L2
(
0, T ;L2(Γ1)

)
such that wf (T ) = ξ, w′

f (T ) = η.

Remark 1.5. As usual when proving controllability, we can assume null initial
conditions: w0 = 0, w1 = 0. This will be done in this paper.

The definition of wf (T ) and w′
f (T ) is explained in Sect. 3 since, similar to the

solution of the wave equation, (wf (t), w
′
f (t)) does not evolve in H1

Γ0
(Ω) × L2(Ω).

This observation does not apply to the case dimΩ = 1. In this case controllability
has been studied in [13].

The organization of the paper is as follows. We need to be very precise on the
definition of the operators which are involved in the analysis of controllability of
the associated wave equation. This is done in Sect. 2. The solutions and the
corresponding operators for the system with memory are introduced in Sect. 3 while
controllability is proved in Sect. 4. Notations are in Sect 1.1.

1.1. Notations and operators. We introduce the following notation:

Hα
Γ0
(Ω) =


{ϕ ∈ Hα(Ω) : γ0ϕ = 0 on Γ0} if α > 1/2
Hα(Ω) if α ∈ (0, 1/2)(
H−α

Γ0
(Ω)
)′

if α < 0 α ̸= −1/2

(the case α = ±1/2 is not encountered in this paper).
We introduce the operator A in L2(Ω):

(1.5) domA =
{
ϕ ∈ H2

Γ0
: γ1ϕ = 0 on Γ1

}
Aϕ = ∆ϕ

(note that the condition ϕ ∈ H2
Γ0

does not impose conditions to the normal deriva-
tives γ1 on Γ0). The operator A is selfadjoint negative with compact resolvent
(regularity of ∂Ω is crucial for this property, see [4]) and it is boundedly invertible
since Γ0 ̸= ∅. Let {φn(x)} be an orthonormal basis of L2(Ω) whose elements are
eigenvectors of A:

Aφn(x) = −µ2nφn(x) .

Note that the eigenvalues are not simple in general, but have finite multiplicity.
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We introduce

A = i (−A)1/2 , R+(t) =
eAt + e−At

2
, R−(t) =

eAt − e−At

2
.

In fact, the operator A generates a C0-group of operators.
It turns out that (see [8, Sect. 2.1])

domA = H1
Γ0
(Ω) .

Finally we introduce the operator G ∈ L
(
L2(Γ1), L

2(Ω)
)

u = Gf ⇐⇒
(
∆u = 0 and

{
γ0u = 0 on Γ0

γ1u = f on Γ1

)
It is known that G takes values in H

3/2
Γ0

(Ω) ⊆ dom (−A)(3/4)−ϵ (ϵ > 0) which

is compactly embedded in L2(Ω). In particular we have imG ⊆ domA (see [10,
p. 195]). Furthermore we note (see [8, Lemma 3.2]):

(1.6) −G∗Aϕ = γ0ϕ|Γ1
for every ϕ ∈ domA .

2. Preliminaries on the wave equation

Here we report known properties on the wave equation with Neumann boundary
conditions (see [7, 9]). We consider the wave equation

(2.1) u′′ = ∆u+ F ,

 u(0) = u0 , u′(0) = u1
γ0u = 0 on Γ0

γ1u = f on Γ1 .

We assume F ∈ L2
(
0, T ;L2(Ω)

)
, f ∈ L2

(
0, T ;L2(Γ1)

)
for every T > 0. It is known

that there exists α ∈ (0, 1) such that for every (u0, u1) ∈ Hα
Γ0
(Ω)×Hα−1

Γ0
(Ω) prob-

lem (2.1) admits a unique solution u ∈ C
(
[0, T ];Hα

Γ0
(Ω)
)
∩ C1

(
[0, T ];Hα−1

Γ0
(Ω)
)

and the transformation (u0, u1, F, f) 7→ u is continuous in the specified spaces. It
is known that we can take α = (3/5)− ϵ (any ϵ > 0); in particular α > 1/2 and so
1 − α < 1/2). The values of α can be improved for special geometries but in any
case it will be α < 1, unless dimΩ = 1 (see [9] and [11, p. 739-740]).

We need also an additional information on the special case f = 0. If f = 0 then
it turns out that2 the map (w0, w1, F ) 7→ ϕ:

H1
Γ0
(Ω)× L2(Ω)× L2

(
0, T ;L2(Ω)

)
7→ C

(
[0, T ];H1

Γ0
(Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
is linear and continuous.

We shall use the following representation of the solutions, from [7]:

(2.2) u(t) = R+(t)u0 +A−1R−(t)u1 +A−1

∫ t

0
R−(t− s)F (s) ds

−A
∫ t

0
R−(t− s)Gf(s) ds

2recall that the solution in this case is denoted ϕ instead of u.
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and so

(2.3) u′(t) = AR−(t)u0 +R+(t)u1 +

∫ t

0
R+(t− s)F (s) ds

−A

∫ t

0
R+(t− s)Gf(s) ds .

We repeat:

imG ⊆ H
3/2
Γ0

(Ω) ⊆ H1
Γ0
(Ω) = domA so that AG ∈ L

(
L2(Γ1), L

2(Ω)
)
.

An integration by parts (justified in [14]) shows:

Lemma 2.1. Let u0 = 0, u1 = 0, F = 0 and f ∈ C1
(
[0, T ];L2(Γ1)

)
. Then

(u, u′) ∈ C
(
[0, T ];H1

Γ0
(Ω)× L2(Ω)

)
and

uf (t) = Gf(t)−R+(t)Gf(0)−
∫ t

0
R+(t− s)Gf ′(s) ds ,

u′f (t) = −AR−(t)Gf(0)−A
∫ t

0
R−(t− s)Gf ′(s) ds(2.4)

so that t 7→
(
uf (t), u

′
f (t)

)
∈ C

(
[0, T ];H1

Γ0
(Ω)× L2(Ω)

)
.

Hence, when f ∈ C1 we can define both the maps

(2.5)

{
Λ : f 7→ (u(T ), u′(T )) L2

(
0, T ;L2(Γ1)

)
→ H1

Γ0
(Ω)× L2(Ω) ,

Λ̂ : f 7→ (Au(T ), u′(T )) L2
(
0, T ;L2(Γ1)

)
→ L2(Ω)× L2(Ω) .

These maps (with values in the spaces specified in (2.5)) cannot be defined if f
is square integrable since in this case the function (u(t), u′(t)) evolves in a larger
space. We prove:

Theorem 2.2. The maps Λ and Λ̂ on L2
(
0, T ;L2(Γ1)

)
to respectively H1

Γ0
(Ω) ×

L2(Ω) and to L2(Ω)× L2(Ω), originally defined when f is smooth, are closable.

Proof. It is sufficient that we prove closability of Λ since A is bounded and bound-
edly invertible from H1

Γ0
(Ω) to L2(Ω).

Let fn → 0 in L2
(
0, T ;L2(Γ1)

)
, and fn ∈ C1

(
[0, T ];L2(Γ1)

)
so that(

ufn(T ), u
′
fn
(T )
)
∈ H1

Γ0
(Ω)× L2(Ω) is well defined.

The sequence
{(
ufn(T ), u

′
fn
(T )
)}

in general does not converge inH1
Γ0
(Ω)×L2(Ω).

We must prove that if it converges then it converges to 0. We consider the sequence
{ufn(T )} of the first components. The sequence of the velocities is treated analo-
gously.

Let ufn(T ) → y ∈ H1
Γ0
(Ω) (the convergence is in the norm of H1

Γ0
(Ω)). We

noted already that f 7→ uf (T ) is continuous from L2
(
0, T ;L2(Γ1)

)
to the larger

space Hα
Γ0
(Ω), and so ufn(T ) → 0 in Hα

Γ0
(Ω); The space H1

Γ0
(Ω) is continuously

embedded in Hα
Γ0
(Ω) and so we see that ufn(T ) → y in Hα

Γ0
(Ω) too. And so it must

be y = 0. □
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This result allows to extend Λ and Λ̂ as closed operators to a certain dense
subspace F of L2

(
0, T ;L2(Γ1)

)
: f ∈ F when there exists a sequence of smooth

functions fn which converges to f and such that {Λfn} is convergent in H1
Γ0
(Ω)×

L2(Ω). The limit is by definition Λf (the operator Λ̂ is defined similarly).
The extension is unique since smooth controls are dense in L2

(
0, T ;L2(Γ1)

)
and

of course the vector Λf ∈ H1
Γ0
(Ω)× L2(Ω) does not depend on the chosen approxi-

mating sequence.

Definition 2.3. From now on, Λ and Λ̂ will denote these closed extensions of the
operators in (2.5), originally defined for smooth f .

The result in Theorem 1.1 (reported from [8, 6]) states that the operators Λ and

Λ̂ (defined on F) are surjective for every T > T0.

We need the computation of the adjoints, and it is sufficient that we compute Λ̂∗,
which is closed and has dense domain, since Λ̂ is closed. So we can compute the
adjoint in a dense subset of its domain, and then extend with the maximal closed
extension (see [5, p. 167]). Moreover, the computation of the adjoint can be done

by restricting Λ̂ to C1 functions f which are zero for t = 0 and for t = T . Then,
from (2.4), we have

u(T ) = −
∫ T

0
R+(T − s)Gf ′(s) , u′(T ) = −A

∫ T

0
R−(T − s)Gf ′(s) ds .

Let ξ, η belong to domA . Then (see also [8, Lemma 3.3]):

(2.6) Λ̂∗(ξ, η) = −G∗A
[
R+(T − s)ξ +A−1R−(T − s) (Aη)

]︸ ︷︷ ︸
ϕ(T−s)

.

For example we compute

(2.7)

∫
Ω
Au(T )η dx = −

∫
Ω

[
A
∫ T

0
R+(T − s)Gf ′(s) ds

]
η dx

= −
∫ T

0

∫
Γ1

f ′(s) [G∗AR+(T − s)η] dΓ ds

= −
∫ T

0

∫
Γ
f(s)G∗AR−(T − s)η dΓ ds .

The right hand side is a continuous function of f ∈ L2
(
0, T ;L2(Γ1)

)
. Hence, this

equality proves that if η ∈ domA then (0, η) belongs to the domain of the adjoint.
We rewrite (2.7) as

(2.8)

∫
Ω
Au(T )η dx = −

∫ T

0

∫
Γ1

f(s)
[
G∗A

(
A−1R−(T − s)Aη

)]
dΓ ds .

Analogously

(2.9)

∫
Ω
u′(T )ξ dx = −

∫ T

0

∫
Γ1

f(s)G∗AR+(T − s)ξ dΓ ds .

We sum (2.8) and (2.9) and we get the equality (2.6).
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Using (1.6), formula (2.6) is easily interpreted: ϕ(t) in (2.6) solves

(2.10) ϕ′′ = ∆ϕ ϕ(0) = ξ , ϕ′(0) = Aη ,
{
γ0ϕ = 0 on Γ0

γ1ϕ = 0 on Γ1 .

Hence, when ξ, η belong to domA then Λ̂∗(ξ, η) = −G∗Aϕ = γ0ϕ|Γ1
. And so

(ξ, η) ∈ dom Λ̂∗ when there exists a sequence of smooth elements (ξN , ηN ) such
that {

(ξ, η) = lim(ξN , ηN ) in L2(Ω)× L2(Ω)

lim Λ̂∗(ξN , ηN ) = lim
[
−G∗AϕN (·)

]
exists in L2

(
0, T ;L2(Γ1)

)
(here ϕN solves (2.10) with data ξN and ηN ).

By definition Λ̂∗(ξ, η) = lim Λ̂∗(ξN , ηN ).

Now we recall that (ξ, η) ∈ dom Λ̂∗ when the function

f 7→ ⟨Λ̂f, (ξ, η)⟩L2(Ω)×L2(Ω)

is continuous on L2
(
0, T ;L2(Γ1)

)
. Looking at (2.8) and using imG ⊆ domA we

see that ∫
Ω
ηAu(T ) dx =

∫ T

0

∫
Ω
(AGf)AR−(T − s)η dx ds

is a continuous function of f ∈ L2
(
0, T ;L2(Γ1)

)
when η ∈ domA. Treating (2.9)

analogously we get the first statement in the next lemma:

Lemma 2.4. Let ξ ∈ domA and η ∈ domA then:

(1) (ξ, η) ∈ domΛ∗ = dom Λ̂∗.

(2) The transformation (ξ, η) 7→ Λ̂∗(ξ, η) restricted to H1
Γ0
(Ω) × H1

Γ0
(Ω) =

domA×domA is continuous from H1
Γ0
(Ω)×H1

Γ0
(Ω) (with the product H1-

norm) to L2
(
0, T ;L2(Γ1)

)
.

Proof. The first statement was noted already.
The proof of the second statement is as follows: Let {(ξN , ηN )} ∈ domA×domA

and let

∥ξN − ξ∥domA → 0 , ∥ηN − η∥domA → 0 .

We know from the first statement that (ξ, η) ∈ dom Λ̂∗. We must prove that

lim
N→+∞

Λ̂∗ (ξN , ηN) = Λ̂∗ (ξ, η) in the norm of L2
(
0, T ;L2(Γ1)

)
.

Note from (2.6):

Λ̂∗ (ξN , ηN) = −G∗A
[
R+(T − s)ξN +R−(T − s)ηN

]
= −G∗A

[
R+(T − s)

(
AξN

)
+R−(T − s)

(
AηN

)]
.

The condition
(
ξN , ηN

)
→ (ξ, η) in domA × domA is equivalent to the condition(

AξN ,AηN
)
→ (Aξ,Aη) in L2(Ω)× L2(Ω) (here we use 0 ∈ ρ(A), i.e. Γ0 ̸= ∅) and
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G∗A is continuous on L2(Ω). So,

lim
N→+∞

Λ̂∗ (ξN , ηN) = −G∗A
[
R+(T − s)ξN +R−(T − s)ηN

]
= − lim

N→+∞
G∗A

[
R+(T − s)

(
AξN

)
+R−(T − s)

(
AηN

)]
= −G∗A [R+(T − s)Aξ +R−(T − s)Aη] = Λ̂∗(ξ, η) .

□

Remark 2.5. The second statement of the lemma can be interpreted as follows:
the map (ξ, η) 7→ γ0ϕ(·) (defined as a transformation on domA×domA with values
in L2

(
0, T ;L2(Γ1)

)
) admits a continuous extension to domA× domA.

2.1. Fourier expansions. We shall need the expansion of Λ̂ and Λ̂∗ in series of
the φn, the orthonormal basis of L2(Ω) we already fixed, whose elements are eigen-
functions of A.

In order to find an expansion of Λ we write

u(x, t) =

+∞∑
n=1

φn(x)un(t)

and it is easily seen that un(t) solves

u′′n = −µ2nun +

∫
Γ1

γ0φnf dΓ

so that

un(t) =
1

µn

∫ t

0

∫
Γ1

(γ0φn sinµns) f(x, T − s) dΓ ds ,

u′n(t) =

∫ t

0

∫
Γ1

(γ0φn cosµns) f(x, T − s) dΓ ds .

It follows that

(2.11) Λ̂f =
+∞∑
n=1

φn(x)

[(∫ T

0

∫
Γ1

(γ0φn sinµns) f(x, T − s) dΓ ds

)
,(∫ T

0

∫
Γ1

(γ0φn cosµns) f(x, T − s) dΓ ds

)]
and the domain of Λ̂ (i.e. also that of Λ) is the set of the functions f ∈L2

(
0, T ;L2(Γ1)

)
such that the elements in the bracket constitute an l2 sequence. This statement has
to be precisely justified from the definition of the operators, and the justification is
as follows. Let {fK} be a sequence of smooth functions, fK → f̃ ∈ dom Λ̂. Then

(
{
αK
n

}
and {α̃n} are the brackets in (2.11), computed with fK and f̃)

Λ̂fK =

+∞∑
n=1

φn(x)α
K
n → Λ̂f̃ =

+∞∑
n=1

φn(x)α̃n .
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Using the fact that {φn} is an orthonormal sequence, we see that
{
αK
n

}
and {α̃n}

belong to l2 and
{
αK
n

}
→ {α̃n} in l2. In particular for every n we have

α̃n = lim
K→+∞

αK
n .

From (2.11) (with f̃ in the place of f) we see that

{α̃n} =

{(∫ T

0

∫
Γ1

(γ0φn sinµns) f̃(x, T − s) dΓ ds

)
,(∫ T

0

∫
Γ1

(γ0φn cosµns) f̃(x, T − s) dΓ ds

)}
∈ l2

(and conversely). It is convenient to introduce the following operator M̂:
L2
(
0, T ;L2(Γ1)

)
→ l2

M̂f =

{∫ T

0

∫
Γ1

(γ0φn cosµns) f(x, T − s) dΓ ds

+i

∫ T

0

∫
Γ1

(γ0φn sinµns) f(x, T − s) dΓ ds

}
=

{∫ T

0

∫
Γ1

(
γ0φne

iµns
)
f(x, T − s) dΓ ds

}
.

The operator M̂, which is the moment operator of the control problem for the wave
equation, is surjective since the system is controllable. Unfortunately, it is not
continuous and so we cannot conclude that the sequence

{
γ0φne

iµnt
}
is a Riesz se-

quence in L2
(
0, T ;L2(Γ1)

)
, as it is the case for the analogous sequence encountered

when the deformation (instead of the traction) is controlled. When the moment
operator is (non continuous but) surjective the sequence

{
γ0φne

iµnt
}
is said to be

a Riesz-Fisher sequence (see [18]) and of course this property is equivalent to the

adjoint Λ̂∗ being coercive. So now we expand the adjoint operator Λ̂∗. Let (with
{ξn} ∈ l2, {ηn} ∈ l2)

ξ =
+∞∑
n=1

ξnφn(x) , η =
+∞∑
n=1

ηnφn(x) so that Aη =
+∞∑
n=1

µnηnφn(x) .

The representation of the solution ϕ of (2.10) is

(2.12) ϕ(x, t) =

+∞∑
n=1

φn(x) [ξn cosµnt+ ηn sinµnt]

= lim
N

N∑
n=1

φn(x) [ξn cosµnt+ ηn sinµnt] .

We observe that

ξN =

N∑
n=1

ξnφn(x) , ηN =

N∑
n=1

ηnφn(x)
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both belong to domA and can be used in the definition of Λ̂∗. So, from (2.6) with
T − s replaced by t,

Λ̂∗(ξ, η) = lim
N

N∑
n=1

(−G∗Aφn(x)) [ξn cosµnt+ ηn sinµnt] :

we have that (ξ, η) ∈ dom Λ̂∗ when the limit exists in L2
(
0, T ;L2(Γ1)

)
and then

(2.13) Λ̂∗(ξ, η) = lim
N

N∑
n=1

(−G∗Aφn(x)) [ξn cosµnt+ ηn sinµnt]

=

+∞∑
n=1

(−G∗Aφn(x)) [ξn cosµnt+ ηn sinµnt] .

Furthermore we note:

Lemma 2.6. Let (ξ, η) ∈ dom Λ̂∗. The series

+∞∑
n=1

(G∗Aφn(x))

[
ξn
µn

sinµnt−
ηn
µn

cosµnt

]
belongs to H1

(
0, T ;L2(Γ1)

)
and the convergence of the series is in this space.

Proof. The convergence of the series is clear from Lemma 2.4, since the series cor-
respond to

(
−A−1η,A−1ξ

)
∈ dom Λ̂∗. The formal termwise computation of the

derivative gives the series of (ξ, η) which converges in the space L2
(
0, T ;L2(Γ1)

)
,

since (ξ, η) ∈ dom Λ̂∗ by assumption. So, the series belongs to H1
(
0, T ;L2(Γ1)

)
and the partial sums converge in this space. □

3. The solution of the system with persistent memory

We define the solutions of the problem (1.1)-(1.2) and of the corresponding prob-
lem for ψ, when f = 0. In order to have a unified treatement, we assume that the
initial conditions for w are possibly non zero, as in (1.2): w(0) = w0, w

′(0) = w1.
Then, formally solving the wave equation (1.1) perturbed by the affine term

F (t) = bw(t) +

∫ t

0
K(t− s)w(s) ds

we find

(3.1)


w(t) = u(t) +A−1

∫ t

0
R−(t− s)

[
bw(s) +

∫ s

0
K(s− r)w(r) dr

]
ds

w′(t) = u′(t) +

∫ t

0
R+(t− s)

[
bw(s) +

∫ s

0
K(s− r)w(r) dr

]
ds

where

u(t) = R+(t)w0 +A−1R−(t)w1 −A
∫ t

0
R−(t− s)Gf(s) ds
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solves the associated wave equation with the same initial and boundary data. Note
that the equation of w′(t), i.e. the second line in (3.1), can also be written

(3.2) w′(t) = u′(t) +A−1

[
R−(t)bw0 +

∫ t

0
R−(t− s)K(s)w0 ds

]
+A−1

∫ t

0
R−(t− s)

[
bw′(s) +

∫ s

0
K(s− r)w′(r) dr

]
ds .

We noted that u ∈ C
(
[0, T ];Hα

Γ0
(Ω)
)
∩ C1

(
[0, T ];Hα−1

Γ0
(Ω)
)

for α > 0 small

enough. So, from [11, p. 739-740], we have also (α > 0 small)(
uf , u

′
f

)
∈ C

(
[0, T ]; dom (A)α ×

(
dom (A)1−α

)′)
.

The Volterra integral operators in (3.1) leave these spaces invariant. So we have
also, for α ∈ (0, 1) small enough,(

w,w′) ∈ C
(
[0, T ]; dom (A)α ×

(
dom (A)1−α

)′)
(continuous dependence on w0, w1 and f).

We repeat that in order to get this property we use α > 0 small, in particular
α < 1 and so (w(t), w′(t)) does not evolve in H1

Γ0
(Ω)× L2(Ω).

When f = 0 we get the solution ψ which evolves in the same spaces as the
solution ϕ of the associated wave equation according to the regularity of the initial
conditions.

Now we define the operators ΛV and Λ̂V , which are analogous to the operators
Λ and Λ̂.

When f ∈ D (Γ× (0, T )) the following definition makes sense:

ΛV f =
(
w(T ), w′(T )

)
∈ H1

Γ0
(Ω)× L2(Ω) ,

Λ̂V f =
(
Aw(T ), w′(T )

)
∈ L2(Ω)× L2(Ω) .

As in Theorem 2.2, we can see that these operators are closable and by defini-
tion their closures are the operators ΛV and Λ̂V used in the following definition of
controllability.

Definition 3.1. Controllability of the system with memory is surjectivity of ΛV

from L2
(
0, T ;L2(Γ1)

)
to H1

Γ0
(Ω) × L2(Ω). Equivalently, the system with memory

is controllable when Λ̂V is surjective from L2
(
0, T ;L2(Γ1)

)
to L2(Ω)× L2(Ω).

We note:

Lemma 3.2. The following properties hold:

(1) the operators Λ and ΛV have the same domain (and so also Λ̂ and Λ̂V have
the same domain).

(2) The operators (ΛV − Λ) and
(
Λ̂V − Λ̂

)
are compact from L2

(
0, T ;L2(Γ1)

)
to, respectively, H1

Γ0
(Ω)× L2(Ω) and to L2(Ω)× L2(Ω) .

(3) the operators Λ∗ and Λ∗
V have the same domain (and so also Λ̂∗ and Λ̂∗

V
have the same domain).
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Proof. We see from (3.1) and (3.2) that (here w0 = 0, w1 = 0)

(3.3) ΛV f = Λf +Kf
where

Kf =

(
A−1

∫ T

0
R−(T − s)

[
bwf (s) +

∫ s

0
K(s− r)wf (r) dr

]
ds,

A−1

∫ T

0
R−(T − s)

[
bw′

f (s) +

∫ s

0
K(s− r)w′

f (r) dr

]
ds

)
.

We noted that the transformation f 7→
(
wf , w

′
f

)
is linear continuous from

L2
(
0, T ;L2(Γ1)

)
to C

(
[0, T ]; domAα ×

(
domA1−α

)′)
for a number α ∈ (0, 1).

Hence f 7→ Kf is linear continuous and compact from L2
(
0, T ;L2(Γ1)

)
toH1

Γ0
(Ω)×

L2(Ω), since A−1 is a compact operator. The statements in the items 1 and 2 follow.
The statement in item 3 follows since Λ∗

V = ΛV +K∗ and K∗ is continuous. □
Remark 3.3. Note that here we used compactness of the resolvent of A.

It follows from Lemma 2.4 that domΛ∗
V = dom Λ̂∗

V ⊇ domA× domA.
Now we compute the adjoint and its expansions in series of the eigenvectors {φn}.
In order to compute the adjoints we can again assume f ∈ D (Γ1 × (0, T )) and ξ,

η smooth. Formulas (2.6) and (2.10) and the representation (3.3) suggest that we
consider

(3.4) ψ′′ = ∆ψ + bψ +

∫ t

0
K(t− s)ψ(s) ds

with initial and boundary conditions

(3.5) ψ(0) = ξ , ψ′(0) = Aη , γ0ψ = 0 on Γ0 , γ1ψ = 0 on Γ1 .

We assume that ξ, η have finite expansions in series of the eigenfunctions φn and
we compute Λ̂∗

V (ξ, η) in this case. Then we extend to the domain of the minimal
closure of the operator.

We multiply both the sides of (1.1) with ψ(T − t) and we integrate on Ω× [0, T ].
We integrate by parts in time and space and (using w(0) = 0, w′(0) = 0) we get the
equality:

(3.6)

∫ T

0

∫
Γ1

(γ0ψ(x, T − s)) f(x, s) dΓ ds =

∫
Ω
ξw′(T ) dx+

∫
Ω
(Aη)w(T ) dx

= ⟨
(
Aw(T ), w′(T )

)
, (η, ξ)⟩L2(Ω)×L2(Ω) .

So,

(3.7) Λ̂∗
V (ξ, η) = γ0ψ(T − ·) = −G∗Aψ(T − ·)

provided that ψ solves (3.4) with conditions (3.5) and (ξ, η) ∈ L2(Ω) × L2(Ω) are
smooth, for example if they have finite Fourier expansions.

We computed Λ̂∗
V with smooth data but adjoint operators are closed and Λ̂∗

V is

the closed extension obtained as follows: the elements of dom Λ̂∗ are those (ξ, η) for
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which
{
−G∗AψN

}
, computed with smooth initial conditions (ξN , ηN ) → (ξ, η), is

L2
(
0, T ;L2(Γ1)

)
-convergent and the limit is by definition Λ̂∗

V (ξ, η).

The computation of Λ∗, defined on L2(Ω) ×
(
H1

Γ0
(Ω)
)′

is similar, but we don’t
need the details.

We repeat that as approximating sequences
{
(ξN , ηN )

}
we can use sequences

whose elements have finite expansions in series of the eigenfunctions φn, but the
definition of the operators does not depend on the special sequence used.

Remark 3.4. The equality Λ̂∗
V (ξ, η) = γ0ψ(T−·) holds if ξ, η have finite Fourier ex-

pansions. It holds also if they belong to domA since in this case ψ ∈ C ([0, T ]; domA)
and, as we noted, γ0 is continuous on domA.

Finally we need the expansion of ψ in series of the eigenfunctions φn. We consider
the solution of (3.4) with conditions (3.5). As ξ ∈ L2(Ω), Aη ∈ (domA)′ we have

ξ(x) =

+∞∑
n=1

ξnφn(x) , Aη(x) =
+∞∑
n=1

µnηnφn(x) , {ξn} , {ηn} ∈ l2 .

Hence:

ψ(t) =

+∞∑
n=1

φn(x)ψn(t)

ψ′′
n = −µ2nψn + bψn +

∫ t

0
K(t− s)ψn(s) ds

ψn(0) = ξn , ψ′
n(0) = µnηn .

So we have the following Volterra integral equation for ψn(t):

(3.8) ψn(t) = ξn cosµnt+ ηn sinµn(t)

+
1

µn

∫ t

0

[
bψn(s) +

∫ s

0
K(s− r)ψn(r) dr

]
sinµn(t− s) ds .

Hence we have the following equality if (ξ, η) ∈ dom Λ̂∗
V (we replace T − s with t):

(3.9) Λ̂∗
V (ξ, η) = lim

N

[
−G∗A

(
N∑

n=1

φn(x)ψn(t)

)]

= lim
N

N∑
n=1

(−G∗Aφn(x))ψn(t) =

+∞∑
n=1

(−G∗Aφn(x))ψn(t)

(convergence in L2
(
0, T ;L2(Γ1)

)
).

Finally, also the analogous of the last statement in Lemma 2.4 holds, with anal-
ogous proof:

Lemma 3.5. The map (ξ, η) 7→ Λ̂∗(ξ, η) restricted to domA× domA = H1
Γ0
(Ω)×

H1
Γ0
(Ω) (as a map with value in L2

(
0, T ;L2(Γ1)

)
) is continuous.
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Remark 3.6. Gronwall inequality applied to (3.8) shows that for every T > 0 there
exists M =MT such that for every t ∈ [0, T ] and every n we have

|ψn(t)| ≤M
(
∥ξ∥L2(Ω) + ∥η∥L2(Ω)

)
.

The number M does not depend on n.

4. The proof that the system with memory is controllable

Let us put

RV = imΛV , R̂V = im Λ̂V

The fact that Λ is surjective and Λ− ΛV is compact implies

Lemma 4.1. RV and R̂V are closed with finite codimension (respectively in H1
Γ0
(Ω)×

L2(Ω) and in L2(Ω)× L2(Ω)).

Hence, in order to prove controllability it is sufficient to prove approximate con-
trollability i.e. that the subspace RV is dense in H1

Γ0
(Ω) × L2(Ω), or that R̂V is

dense in L2(Ω) × L2(Ω). We prove
[
R̂V

]⊥
= 0, i.e. we prove that if Λ̂∗

V (ξ, η) = 0

then (ξ, η) = 0.

Using (3.9) we see that Λ̂∗
V (ξ, η) = 0 is the condition

(4.1)
+∞∑
n=1

(G∗Aφn(x))ψn(t) = 0 (convergence in L2
(
0, T ;L2(Γ1)

)
) .

Our goal is the proof that condition (4.1) implies ξ = 0, η = 0.
The proof relies on the following corollary to Theorem 1.2. Note that in this

corollary the space H1
0 (Ω), and not H1

Γ0
(Ω), is used:

Corollary 4.2. Let T > T0 and let Γ0 and Γ1 be as in Theorem 1.2. Let ψ
solve (3.4) with conditions

ψ(0) = ψ0 ∈ H1
0 (Ω) , ψ′(0) = ψ1 ∈ L2(Ω) ,

{
γ0ψ = 0 on Γ = ∂Ω
γ1ψ = 0 on Γ1.

Then ψ(t) = 0 and so also ψ0 = 0, ψ1 = 0.

The proof is in [15, 16, 17].

Remark 4.3. The assumptions on ψ in Corollary 4.2 is the condition that (ξ, η)
annihilates the reachable set (in L2(Ω)×H−1(Ω)) when the square integrable control
acts on the deformation (i.e. in the Dirichlet boundary condition). It is also true
that (when T > T0) the converse implication holds, thanks to a compactness/unicity
argument, but we are not going to use the converse implication.

Furthermore, we shall use the following result, whose proof is postponed:

Lemma 4.4. Let T > T0. If (ξ, η) ∈ L2(Ω)× L2(Ω) and (ξ, η) ⊥ R̂V then (ξ, η) ∈
domA× domA.
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Granted this result, it is easy to see that ξ = 0 and η = 0 if (ξ, η) ⊥ R̂V . In fact,
Eq. (3.4) has now initial conditions ψ(0) = ξ ∈ H1

Γ0
(Ω) (improved to ξ ∈ H1

0 (Ω)

below) and ψ′(0) = Aη ∈ L2(Ω). Hence ψ evolves in H1
Γ0
(Ω) and satisfies the

following boundary conditions:

(4.2)


{
γ0ψ = 0 on Γ0 from (3.5)
γ0ψ = 0 on Γ1 orthogonality condition

γ1ψ = 0 on Γ0 from (3.5).

These properties are the conditions that (ξ,Aη) annihilates the reachable set in
L2(Ω) × H−1(Ω) of the control system (1.1) with square integrable control in the
Dirichlet boundary condition, see Remark 4.3.

Theorem 1.2 implies (via Corollary 4.2) ψ0 = ξ = 0, ψ1 = Aη = 0 and so[
R̂V

]⊥
= 0, as we wished to prove.

In fact, there are two points to clarify:

• if (ξ,Aη) annihilates the reachable set in L2(Ω) × H−1(Ω) of the system
controlled via the Dirichlet boundary condition then it must be ξ ∈ H1

0 (Ω),
i.e. it must be γ0ξ = 0 on the entire Γ = ∂Ω. Instead, we know from
Lemma 4.4 that ξ ∈ domA = H1

Γ0
(Ω). The property γ0ξ = 0 on the entire

boundary of Ω follows since ψ(t) → ψ(0) = ξ in H1
Γ0
(Ω), hence in the norm

ofH1(Ω). We use again continuity of the trace γ0 fromH1(Ω) to L2(∂Ω) and
γ0ψ(t) = 0 on ∂Ω (from (4.2)). Passing to the limit we get 0 = γ0ψ(0) = γ0ξ
on ∂Ω.

• the orthogonality condition (4.1) has been written (γ0ψ)|Γ1
= 0 thanks to

Lemma 4.4 and Remark 3.4.

In conclusion, in order to complete the proof of Theorem 1.4 we must prove
Lemma 4.4. The proof relies on the following result, whose proof is similar to the
proof of Lemma 3.4 in [15]. It is reported for completeness.

Lemma 4.5. Let K be a Hilbert space and let {µn} be a sequence of real numbers.
Assume that

{
kne

iµnt
}
is a Riesz-Fisher sequence in L2(0, T ;K) and that {αn} ∈ l2

is a sequence of complex numbers such that

H(t) =
∑

αnkne
iµnt ∈ H1 ([0, T + h];K) , h > 0 .

Then, {µnαn} ∈ l2.

Proof. We know from [2, Proposition IX.3]: letH ∈ H1(0, T+h0;K) and 0 < h < h0
then there exists C = C(H) > 0 independent of h such that

(4.3)

∣∣∣∣∣
+∞∑
n=1

αnµn
eiµnh − 1

µnh
eiµntkn

∣∣∣∣∣
2

L2(0,T ;K)

=

∣∣∣∣H(t+ h)−H(t)

h

∣∣∣∣2
L2(0,T ;K)

≤ C .

The proof in this reference is for real valued functions, but it is easily adapted to
Hilbert valued functions.

Using the fact that
{
eiµntkn

}
is a Riesz-Fisher sequence in L2(0, T ;K) we see

that
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+∞∑
n=1

∣∣∣∣αnµn
eiµnh − 1

µnh

∣∣∣∣2 ≤ 1

m0

∣∣∣∣∣
+∞∑
n=1

αnµn
eiµnh − 1

µnh
eiµntkn

∣∣∣∣∣
2

L2(0,T ;K)

=
1

m0

∣∣∣∣H(t+ h)−H(t)

h

∣∣∣∣2
L2(0,T ;K)

≤ C/m0 .

The last equality holds for h “small”, say if |h| < h0/2.
We fix any s0 > 0 and we note that∣∣∣∣eis − 1

s

∣∣∣∣2 = (cos s− 1

s

)2

+

(
sin s

s

)2

>
1

2
for 0 < s < s0.

Then we have, for every h ∈ (0, h0/2),

∑
µn<s0/h

|αnµn|2 ≤ 2
+∞∑
n=1

∣∣∣∣αnµn
eiµnh − 1

µnh

∣∣∣∣2 ≤ 2
C

m0
.

So, {αnµn} ∈ l2 as wanted. □

The proof of Lemma 4.4 and so of Theorem 1.4. We introduce the following nota-
tions:

f (∗0) ∗ g = g , f (∗1) ∗ g = f ∗ g =

∫ t

0
f(t− s)g(s) ds ,

f (∗n) ∗ g = f ∗
(
f (∗(n−1)) ∗ g

)
kn = G∗Aϕn ∈ L2(Γ1) ,

Sn = sinµnt , Cn = cosµnt , En = eiµnt .

The right hand side of (3.8) is

(4.4) ψn = ξnCn + ηnSn︸ ︷︷ ︸
ϕn

+
1

µn
(bSn +K ∗ Sn) ∗ ψn .

Remark 4.6 (On the notations). We use φn = φn(x) to denote the eigenfunctions
of A while ϕn = ϕn(t) denotes the function in (4.4), which is the n-th component
of the solution ϕ = ϕ(x, t) of (2.10),

ϕ(x, t) =

+∞∑
n=1

φn(x)ϕn(t)

(see (2.12)). Note also that for simplicity we write kn in the place of G∗Aφn, since
we shall use Lemma 4.5.

It is convenient to rewrite (4.4) in the form

(4.5) ψn = cnEn + c̄nE−n︸ ︷︷ ︸
ϕn

+
1

µn
(bSn +K ∗ Sn)︸ ︷︷ ︸

Gn

∗ψn cn =
ξn − iηn

2
.
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N steps of the Picard iteration give the following formula for ψn(t):

(4.6) ψn = ϕn +
1

µn
Gn ∗ ϕn + · · ·+ 1

µNn
G(∗N)

n ∗ ϕn +
1

µN+1
n

G∗(N+1)
n ∗ ψn .

We introduce the notations

Z′ = Z \ {0} , µ−n = −µn k−n = kn , c−n = c̄n .

In order to prove Lemma 4.4 we must prove that cn = c̃n/µn, {c̃n} ∈ l2 (Z′).
Using (4.6), the condition of orthogonality (4.1) can be written as follows:

(4.7)
∑
n∈Z′

knEn(t)cn +

+∞∑
n=1

kn

[
N∑
k=1

1

µkn
[bSn +K ∗ Sn](∗k) ∗ ϕn

]

= −
+∞∑
n=1

kn
1

µN+1
n

[bSn +K ∗ Sn]∗(N+1) ∗Ψn .

The reasons why it is correct to distribute the series as above, provided that N is
large enough, are as follows:

• the series (4.1) converges in L2
(
0, T ;L2(Γ1)

)
since (ξ, η) ∈ domΛ∗

V ;
• the series on the right side of (4.7) converges if N is sufficiently large, since:

– the sequence {ψn(t)} is bounded on [0, T ], see Remark 3.6.
– there exists a contant C, which depends on Ω such that (see [1])

(4.8) ∥kn∥L2(Γ) = ∥γ0φn∥L2(Γ) ≤ C 3
√
µn .

– µn > cn1/d where d = dimΩ, see [4] and note that we denoted −µ2n
the eigenvalues. Note that the (piecewise) regularity of ∂Ω is crucial
for this estimate (see [4]).

Thanks to this property, this series even converges to a C1 function,
provided that N is large enough.

• The first series on the left of (4.7) converges in L2
(
0, T ;L2(Γ1)

)
, since

(ξ, η) ∈ domΛ∗
V = domΛ∗.

From now on, the number N of the steps of the Picard iteration is fixed, so large
that the series on the right side of (4.7) converges to a C1 function. We prove that
the intermediate series can be distributed on its addenda, and converges to an H1

function. The critical case is the case k = 1. Using

Sn ∗ Cn =
t

2
Sn , Sn ∗ Sn =

1

2µn
Sn − t

2
Cn
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it is easily seen that

+∞∑
n=1

kn
1

µn
[bSn +K ∗ Sn] ∗ ϕn

= b


t

2

(
+∞∑
n=1

kn

[
−Cn

ηn
µn

+ Sn
ξn
µn

])
︸ ︷︷ ︸

1

+
+∞∑
n=1

knSn
ηn
2µ2n︸ ︷︷ ︸

2


+K ∗

(
1 + 2

)
.

In fact, the series in 1 converges since
∑+∞

n=1
ξn
µn
φn and

∑+∞
n=1

ηn
µn
φn belong to

domA, hence to domΛ∗ (this is the first statement in Lemma 2.4). So, from
Lemma 2.6, it converges to anH1(0, T ;L2(Γ)) function because we are using (ξ, η) ∈
dom Λ̂∗. For a stronger reason also the series 2 converges to an H1 function too.
In fact, {ηn/µ2n} are the Fourier coefficients of an element in domA2 = domA. And
so, the last term, which is the convolution of K with an H1-function, is of class H1

too.
The terms with k ≥ 2 are treated analogously.
Hence,

∑
n∈Z′ knEn(t)cn ∈ H1

(
0, T ;L2(Γ1)

)
and we know that {knEn(t)} is a

Riesz-Fisher sequence in this space. Hence,

cn =
c̃n
µn

, {c̃n} ∈ l2
(
Z′)

from Lemma 4.5. This is the result we wanted to achieve, see the statement of
Lemma 4.4, and completes the proof of controllability.
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