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step in the analysis. After 2010, with the involvement of the present author and
the development of Chueshov and Lasiecka’s theory of quasi-stability (Section 4.2),
a variety of new results and approaches appeared [14, 17, 15, 50, 36, 37]. The
surveys [16] and [19] provide a mathematical discussion of previous results, while
[18] provides a discussion of the connections between engineering and mathematical
analyses of this and related models.

The principal purpose of this paper is to rigorously explore notions of asymptotic
finite dimensionality for the flow-plate model in the absence of mathematically
helpful terms (i.e., as it is given in classical engineering references [3, 23]). That the
model below is well-posed is established [50, 14, 15]—see [19]. Here, we ask after the
qualitative properties of the dynamics in the non-transient regime—including the
possibility of unstable, post-flutter type behaviors. This includes, for instance, the
possibility of chaotic dynamics or convergence to equilibrium, in addition to LCO
behaviors. We show in the work at hand that the non-transient regime is truly finite
dimensional.

It is well-established in the engineering literature that flutter is a low dimensional
phenomenon [22, 25, 47, 48]. This is to say that engineers only utilize small numbers
of “modes” to describe the asymptotic-in-time behaviors of the flow-plate system,
and justify this empirically, in an a posteriori fashion. In line with the above
discussion, we rigorously examine this claim for a specific flutter model. This is to
say that we begin from the fully infinite dimensional PDE flow-plate system as it
appears in the engineering literature, and we rigorously demonstrate (in a variety of
ways) that the essential, long-time dynamics are finite dimensional. In particular,
this will be done with attracting sets and sets of determining functionals, described
precisely below in Section 4.

We also take the opportunity to point out a classic pair of mathematically-
oriented papers, motivating much of what is here: [28, 29]. These papers study
a 1-D, simplified version of the structural model given here in (3.2) (with q ≡ 0);
the former, [28], makes an a priori truncation of the PDE system and studies the
dynamical system properties of the low dimensional systems (as is common in en-
gineering [47, 48, 24], for instance). The sequel, [29], studies attractors and inertial
sets (with the available technology of the time), giving a rigorous justification that
the model can be studied from a finite dimensional (albeit with N large) point of
view—a sort of vindication of the earlier work.

1.1. Goals of the Paper. With the above established, we assert that the main
goals of this paper are: (i) To demonstrate quantitatively what engineers often
state qualitatively—that flutter is a finite dimensional phenomenon. (ii) To es-
tablish a robust set of results concerning the asymptotic-in-time behavior of the
flow-plate system in the absence of mathematically helpful terms (imposed damp-
ing or regularizations) ; some of these are novel, and some that are not have novel
proofs here. (iii) To showcase the power and ease of applicability of the recent
quasi-stability theory of Chueshov and Lasiecka [13, 11] as the main tool for most
of our principal results here.
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Below, we provide a complete exposition of the steps between the full flow-
structure model to various notions of finite dimensional end behavior. This “re-
duction” is accomplished without any imposed damping whatsoever in the model.
We will prove the main points, and, when we omit proofs, we provide explicit refer-
ences and discussion of the underlying theory. Also, some results/proofs herein are
not novel, but are included for self-containedness and to show the reader precisely
how finite dimensionality cuts in in as many ways as possible.

1.2. Flow-plate Interactions in Application. The interactive dynamics be-
tween a fluid flow and a solid embedded in a lower dimensional interface has been a
topic of immense activity for 50 years [25, 18, 19, 16] (and many references therein).
Theoretical, numerical, and experimental scientists are interested in characteriz-
ing, predicting, and controlling flow-structure behavior. Here, we consider model
that specifically captures aeroelastic flutter [3, 25, 23, 47, 48]: flutter is a self-
excitation instability that occurs through a feedback between displacements of an
elastic structure and dynamic pressure changes of a surrounding fluid flow. Certain
flow velocities bring about a bifurcation in the structural dynamics [28, 29]—stable
dynamics may become oscillatory, in the form of limit cycle oscillations (LCOs),
or even chaotic [24]. Flutter can occur in a multitude of applications, including:
buildings and bridges in wind, aircraft structures and paneling, pipes conveying
fluid, and even in the human respiratory system—see [18].

With respect to flight, flutter instabilities are of paramount concern in the su-
personic and transonic flight regimes; from a design point of view, flutter cannot
be overlooked due to its potential effects on the structure due to fatigue and/or
large amplitude response. The standard panel flutter system shown in the next
section has been utilized in a large body of work, and was originally introduced to
describe projectile paneling [3, 23]. A majority of corresponding scholarly work has
been computational in nature [25, 22, 23]. Indeed, given the difficulty of model-
ing and analyzing coupled PDEs at an interface [38], theoretical results have been
comparatively few. While numerical studies are incredibly important, and provide
vital qualitative information, they are based on finite dimensional approximations of
continuum models fundamentally described by PDEs. Ad hoc, a priori truncations
of infinite dimensional models should be justified in some rigorous sense.

Being dictated by physics, flow-plate interaction models do not typically yield
straightforward functional setups. Serious PDE problems include: (i) the mismatch
of regularity between dynamics and/or hyperbolic-hyperbolic coupling, (ii) the ap-
pearance of ill-defined boundary traces, and/or (iii) time-evolving domains. And,
while linear theory is viable to predict the onset of instability [47], capturing post-
flutter dynamics requires structural nonlinearity [23, 19], and constitutes a challeng-
ing analytical task. With respect to the latter point, consistent with engineering
literature [23, 29], we employ the theory of large deflections [21, 34]. Beginning
with von Karman theory, we invoke the Berger simplification [2, 27, 49, 43], widely
accepted, and often used, for the panel configuration [43].

1.3. Mathematical Model and Energies. The classic flutter model [23] takes
a inviscid, irrotational flow of compressible gas in R3

+ = {x = (x, y, z) : z > 0},
with an elastic panel embedded in the flow boundary ∂R3

+. The unperturbed flow
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velocity has magnitude U ∈ R in the x-direction; we have scaled U = 1 to Mach 1,
so 0 ≤ U < 1 corresponds to subsonic flow. The equilibrium position of the plate
is modeled by a bounded domain Ω ⊂ {x : z = 0}, with smooth boundary ∂Ω = Γ
and associated unit outward normal ν = ν(x, y).

The scalar function u : Ω × R+ → R represents the transverse, Lagrangian dis-
placement of the plate in the z-direction at (x, y) at the moment t. The flow is of
potential type, with ϕ : R3

+ × R+ → R the perturbation velocity potential [3, 25],
so the flow field v on R3

+ is given by v = Ue1 + ∇ϕ. The strong coupling occurs

(i) in the dynamic pressure term p(x, t) = p0(x) + [ϕt +Uϕx]
∣∣
Ω
, which contains the

static pressure and the acceleration potential of the flow, and (ii) in the Neumann
condition (the downwash) of the flow; the latter includes the material derivative
of the structure which accounts for the Eulerian-to-Lagrangian change of variables
[3, 25].

(1.1)



utt +∆2u+ kut + f(u) = p0(x) + rΩ
[
tr(ϕt + Uϕx)

]
in Ω× (0, T ),

u(t = 0) = u0; ut(t = 0) = u1,

u = ∂νu = 0 on Γ× (0, T ),

(∂t + U∂x)
2ϕ = ∆ϕ in R3

+ × (0, T ),

ϕ(t = 0) = ϕ0; ϕt(t = 0) = ϕ1,

∂zϕ =
[
(∂t + U∂x)u

]
ext

on R2
(x,y) × (0, T ).

The notation tr(·) corresponds to the trace operator H1(R3
+) 7→ L2(R2), while rΩ :

L2(R2) → L2(Ω) corresponds to the restriction to Ω, with corresponding extension
by zero. For functions in H2

0 (Ω) we denote that extension by uext ∈ H2(R2) (this
action is regularity preserving in this configruation).

Remark 1.1. It is immediately obvious from (1.1) that, if ϕt ∈ L2(R3
+) only, the

dynamic pressure p(x, t) = p0 + rΩtr(ϕt + Uϕx) cannot be interpreted through the
standard trace theorem here; as we will see, hidden regularity to interpret this trace
will be necessary.

The nonlinearity of principal interest here is that of Berger, of extensible, cubic
type [34, 21, 23]1:

(1.2) f(u) = fB(u) = [b1 − b2||∇u||2]∆u.
The parameter b1 ∈ R is a pre-stressing parameter [24, 49], corresponding to equi-
librium in-plane forces, while b2 > 0 scales the strength of the nonlinear restoring
force, the term itself depending on local stretching; when b2 = 0 the model is linear.
The parameter k ≥ 0 corresponds to weak (or viscous) structural damping, and for
most of the paper will be taken to be zero.

Denoting standard L2 norms on a domain O by || · ||L2(O), and using (·, ·)R3 and
⟨·, ·⟩Ω as the inner product notations, the plate energy is defined as usual [13, 34]:

Epl(u) =
1

2

[
∥ut∥2L2(Ω) + ∥∆u∥2L2(Ω)

]
+Π(u).(1.3)

1In the case of beams, this type of nonlinearity is often referred to as Krieger-Woinowsky or
even Kirchhoff—see [32, 30] and [40, 41] for more discussion
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Π(u) is a potential of the nonlinear and nonconservative forces, given by

(1.4) Π(u) = ΠB(u) =
b2
4
||∇u||4L2(Ω) −

b1
2
||∇u||2L2(Ω) − ⟨p0, u⟩Ω.

The natural energies associated with subsonic flow and interactive dynamics are
given below:

Efl(ϕ) =
1

2

[
∥ϕt∥2L2(R3

+) − U2∥∂xϕ∥2L2(R3
+) + ∥∇ϕ∥2L2(R3

+)

]
,(1.5)

Eint(u, ϕ) = 2U⟨tr[ϕ], ux⟩Ω, 0 ≤ U < 1.(1.6)

The total (unsigned) energy is then defined to be

(1.7) E(u(t), ϕ(t)) = E(t) = Epl(u(t)) + Efl(ϕ(t)) + Eint(u(t), ϕ(t)).

Notation: From this point onward, we often denote L2 norms with no subscript,
with the meaning clear from the context; Sobolev norms on the standard space
Hs(O) will be written ||f ||Hs(O) = ||f ||s, and we identify ||f ||L2(O) = ||f ||0 = ||f ||,
with O = Ω or R3

+ and the meaning clear from the context.

Remark 1.2. It is clear that with U > 1 the above energy degenerates; we then
define a supersonic energy

Esup
fl (ϕ(t)) ≡ 1

2

[
||∇ϕ(t)||2 + ||ϕt + Uϕx||2

]
, with Esup

int ≡ 0.

This modified topological measure of solutions is the correct one for supersonic
well-posedness [15], though this is not critical to our discussions here.

We will also need to consider positive energies, so we define

Π∗(u) =
b2
4
||∇u||4,(1.8)

E∗(u) =
1

2
[||ut||2 + ||∆u||2] + Π∗(u),(1.9)

E∗(u, ϕ) =E∗(u) + Efl(ϕ).(1.10)

According to these norms, the natural energy space for the dynamics (u, ut;ϕ, ϕt)
is then2:

(1.11) Y = Ypl × Yfl ≡
(
H2

0 (Ω)× L2(Ω)
)
×
(
W 1(R3

+)× L2(R3
+)

)
,

defined through the norm

(1.12) ||(u, v;ϕ, ψ)||2Y = ||∆u||2 + ||v||2 + ||∇ϕ||2 + ||ψ||2.

We will also consider a stronger space below:

(1.13) Ys ≡
(
H2

0 (Ω)× L2(Ω)
)
×
(
H1(R3

+)× L2(R3
+)

)
.

2W 1(R3
+) is a homogeneous Sobolev space given as the subspace of L2

loc(R3
+) with finite gradient

norm as in (1.12).
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1.4. Outline of the Remainder of the Paper. Section 2 provides a discussion
of well-posedness and basic notions about the solution semigroup and associated
bounds. Section 3 gives the main results in this paper, with narrative structure;
this section also precisely discusses the previous mathematical work on the model
(1.1) (and the associated reduced model (3.2)). Section 4 gives the technical tools
needed used in proving the main theorems, including an overview of quasi-stability
theory. Section 5 gives the rigorous reduction of the flow-plate system in (1.1) to a
delayed plate equation (3.2). Section 6 establishes the main estimates (observability,
absorbing ball, and quasi-stability) supporting the main theorems’ proofs. After
this supporting work, Section 7 provides the proofs of each of the main theorems,
in short subsections. The final section, Section 8, describes conjectures and open
problems when structural damping is imposed.

2. Well-posedness and fundamental notions

The above flow-plate dynamics, cast in the appropriate framework, are well-posed
[4, 13, 14, 15, 50]. For precise definitions of strong, generalized (semigroup), and
weak solutions consult [14, 15, 50]. The following result is established in [50, 14] for
0 ≤ U < 1 and in [15] for U > 1:

Theorem 2.1 (Nonlinear Semigroup). Assume U ̸= 1, p0 ∈ L2(Ω). Take b1 ∈ R
with k ≥ 0 and b2 > 0. Then for any T > 0, (1.1) has a unique strong (resp.
generalized, weak) solution on [0, T ], denoted by St(y0), for y0 = (u0, u1;ϕ0, ϕ1) ∈ Y .
In the case of strong solutions, the natural compatibility condition must be in force:
∂zϕ0 = [u1 + U∂xu0]ext. Moreover, (St, Y ) and (St, Ys) are dynamical systems.

In the subsonic case, 0 ≤ U < 1, more can be said.

Theorem 2.2 (Subsonic Flows). In addition to the hypotheses of Theorem 2.1, take
U ∈ [0, 1). Then all solutions satisfy the following energy equality:

(2.1) E(t) + k

∫ t

s
||ut(τ)||2L2(Ω)dτ = E(s)

for t > s. Moreover, there exists a constant C(||y0||Y ) such that for all t ≥ 0 we
have:

(2.2) ∥St(y0)∥Y ≤ C (∥y0∥Y ) .
In addition, the semigroup St is locally Lipschitz on Y

(2.3) ||St(y1)− St(y2)||Y ≤ C(R, T )||y1 − y2||Y , ∀ ||yi||Y ≤ R, t ≤ T

For the above semigroup we introduce the dynamics operator T : D(T) ⊂ Ys →
Ys. For its precise structure, we give reference to [14, 15, 50]. We do have:

(2.4) D(T) ⊂ (H4 ∩H2
0 )(Ω)×H2

0 (Ω)×H2(R3
+)×H1(R3

+).

Remark 2.3. The natural invariance of the dynamics is with respect to the norm
|| · ||Y . However, via

(2.5) ||ϕ(t)||L2(R3
+) ≤ ||ϕ0||L2(R3

+) +

∫ t

0
||ϕt(τ)||L2(R3

+)dτ,

invariance in Ys can be recovered on finite time intervals.
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In order to describe the dynamics of the flow in the context of long-time behavior
it is necessary to introduce local spaces, denoted by Yfl,ρ:

∥(ϕ0, ϕ1)∥Yfl,ρ ≡
∫
Kρ

|∇ϕ0|2 + |ϕ1|2dx,

where Kρ ≡ {x ∈ R3
+; |x| ≤ ρ}. We denote by Yρ ⊂ Y the space Ypl × Yfl,ρ. By

virtue of the Hardy inequality [13, p.301]:

∥(ϕ0, ϕ1)∥2Yfl,ρ
≤ ∥(ϕ0, ϕ1)∥2H1(Kρ)×L2(Kρ)

≤ ∥(ϕ0, ϕ1)∥2Yfl
.

We now highlight the boundedness (from below) of E . Such a bound is necessary
to obtain the semigroup stability in Theorem 2.1. First, we have [50, Lemma 5.2,
p. 3136]:

Lemma 2.4. Let the hypotheses of Theorem 2.2 be in force. Then for generalized
solutions to (1.1), there exist positive constants c, C, and M positive such that

(2.6) cE∗(t)−Mp0,b1,b2 ≤ E(t) ≤ CE∗(t) +Mp0,b1,b2

The proof of Lemma 2.4 given in [50] relies on two estimates controlling lower
frequencies. The first estimate controls interactive energy Eint, on the strength of
Hardy inequality.

Lemma 2.5. For ϕ ∈W 1(R3
+) and u ∈ H1(Ω).

(2.7) |Eint(t)| ≤ δ∥∇ϕ(t)∥2L2(R3
+) + CU2δ−1∥ux(t)∥2L2(Ω), δ > 0,

The next critical estimate controls low frequencies [13, p. 49] by exploiting su-
perlinearity:

Lemma 2.6. For any u ∈ H2(Ω) ∩H1
0 (Ω) and η, ϵ > 0 there exists Mϵ,η such that

∥u∥2H2−η(Ω) ≤ ϵ[∥∆u∥2L2(Ω) +Π∗(u)] +Mη,ϵ

From the above lemmata and energy inequality we have [14, 50]:

Corollary 2.7. Take the hypotheses of Theorem 2.2. Then any generalized solution
to (1.1) satisfies
(2.8)

sup
t≥0

{
∥ut∥2L2(Ω) + ∥∆u∥2L2(Ω) + ∥ϕt∥2L2(R3

+) + ∥∇ϕ∥2L2(R3
+)

}
≤ C

(
∥y0∥Y

)
< +∞.

In addition, if k > 0, then the dissipation integral is finite: we have

(2.9)

∫ ∞

0
∥ut(t)∥2L2(Ω)dt ≤ K(y0) <∞.

3. Main results and discussion

There are four main results in this paper, which we first describe informally.
The first main result shown here is that we can reduce the dynamical system

(St, Y ), associated to solutions of (1.1), to a delayed plate system (Tt,H). The re-
duction also brings with it some natural damping from the flow-plate coupling. The
proof of this result was shown earlier with rotational inertia in the plate dynam-
ics [5, 13], and given in [17] for the model here, albeit with minimal details. The
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remaining three results concern the long-time behavior of the plate component of
the flow-plate system. Namely, without imposing any structural damping, we have
three notions of finite dimensional end behavior for the plate component (St, Y ).

First, we show that a compact global attractor exists—this is a compact set in
the phase space that also happens to be smooth and finite dimensional; it is fully
invariant and uniformly attracts all bounded sets. This result was first shown in
[17], but the proof at hand is streamlined by taking advantage of the structure
of Berger’s nonlinearity. Secondly, we show that by “fattening” the attractor, we
obtain a forward invariant set in the phase space that attracts all bounded sets with
exponential rate, though the finite dimensionality of this set may be in a weaker
topology than Ypl. Both of these results produce “nice” sets which somehow fully
capture the essential non-transient behavior of the flutter system in (1.1), while
also being fundamentally finite dimensional. This is to say that LCOs associated
to flutter, as non-stationary end behaviors, are contained in the attractor. These
results are implied by abstract statements in [13], but are not written out explicitly,
as we do here. Moreover, the proofs here rely critically on obtaining the quasi-
stability estimate on a bounded, forward invariant set—not the approach given in
[13] (and references therein).

Finally, the last result concerns determining functionals. The existence of such
functionals gives a practical means of uniquely characterizing time-asymptotic be-
havior of solutions. Indeed, as the structure of the attractor can be quite complex,
and finite dimensionality estimates are often inflated, making direct use of the at-
tractor’s finite dimensionality is difficult. We show that, through the stabilizability
estimate, finite sets of nodal values, modal coefficients, or local volume averages,
provide determining functionals. That is, these practical, finite collections uniquely
determine trajectories, providing a sufficient set of statistics for characterizing global
end behaviors. This is a new result for this system and is not directly implied
by previous work, and we explicitly provide the construction.

All three results on finite dimensionality, presented here, have proofs which crit-
ically rely on the notion of a quasi-stable dynamical system. In fact, one might say
that the results and proofs here provide a clear advertisement for the clarity and
power of quasi-stability theory—specifically, when one can obtain the quasi-stability
estimate on an absorbing ball.

3.1. Definition of Main Objects. Let H be a Hilbert space with (St,H) an
associated dynamical system.

The fractal (box-counting) dimension of a set A ⊂ H, denoted dimfA, is defined
by

dimfA = lim sup
ϵ→0

lnn(A, ϵ)

ln(1/ϵ)
,

where n(M, ϵ) is the minimal number of closed balls in H of the radius ϵ covering the
setM . By Mañé’s Theorem, a set that has finite fractal dimension can be embedded
into some Rn, and thus can be injected as a subset of some higher dimensional
Euclidean space [7].

We recall that (see, e.g., [1, 10, 33]) for the system (St,H), a compact global
attractor A ⊂⊂ H is an invariant set (i.e., StA = A for all t ≥ 0) that uniformly
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attracts bounded sets B ⊂ H:

(3.1) lim
t→+∞

dH{StB|A} = 0, where dH{StB|A} ≡ sup
y∈B

distH(y,A),

As we will see, often the compact attractorA is more regular thanH, with dimfA <
∞.

A generalized fractal exponential attractor for the dynamics (St,H) is a for-
ward invariant, compact set, Aexp ⊂ H with finite fractal dimension that attracts
bounded sets (as above) with uniform exponential rate in H. The word “general-
ized” is included to indicate that the finite dimensionality is perhaps in a weaker
topology (|| · ||

H̃
) than that of state space (|| · ||H).

Lastly, let L = {lj : j = 1, ..., N} be a finite set of continuous, linear functionals
on H (or some component of H, if it is a product space). We say that L is a (an
asymptotically) determining set of functionals for (St,H) if the following condition
holds:(

lim
t→∞

|lj(Sty1)− lj(Sty2)| = 0
)
(∀ j = 1, ..., N) =⇒ lim

t→∞
||Sty1 − Sty2||H = 0.

3.2. Delayed Dynamical System. Below, we make use of the notation ut =
{u(t+ s) : s ∈ (−t∗, 0)} for some fixed time of delay, t∗ > 0.

Theorem 3.1 (Delayed Dynamical System). Let the hypotheses of Theorem 2.1 be
in force, and (u0, u1;ϕ0, ϕ1) ∈ H2

0 (Ω) × L2(Ω) ×H1(R3
+) × L2(R3

+). Assume there
exists a ρ0 > 0 such that supp(ϕ0), supp(ϕ1) ⊂ Kρ0. Then the there exists a time

t#(ρ0, U,Ω) > 0 such that for all t > t# any weak solution u(t) in (1.1) satisfies the
following equation (in a weak sense):

(3.2) utt +∆2u+ kut + f(u) = p0 − (∂t + U∂x)u− q(ut),

with

(3.3) q(ut) =
1

2π

∫ t∗

0

∫ 2π

0
M2

θ [uext(x(U, θ, s), t− s)]dθds.

Here, Mθ ≡ sin(θ)∂x + cos(θ)∂y, x(U, θ, s) =
(
x − (U + sin θ)s, y − s cos θ

)
⊂ R2,

and

(3.4) t∗ ≡ inf{t : x(U, θ, s) /∈ Ω for all x ∈ Ω, θ ∈ [0, 2π], and s > t}.

The structure of the delay potential q(·) comes from the explicit solver for the
potential flow equation (with Neumann data [ut + Uux]ext) on R3

+.

Remark 3.2. The system given in (3.2)–(3.3) (taken with appropriate initial con-
ditions) is independently well-posed [17]. This is to say that the (3.5) below is
well-posed in the appropriate delay sense, and generates a delay dynamical system.
(This is discussed at length in Section 5.4.)

(3.5)


utt +∆2u+ k0ut + fB(u) = p0 + Lu+ q(ut, t) in Ω× (0, T ),

u = ∂νu = 0 on Γ× (0, T ),

u(0) = u0, ut(0) = u1,

u|t∈(−t∗,0) = η ∈ L2(−t∗, 0;H2
0 (Ω)).
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The delay potential q(ut, t) on the RHS is given by the function
q : L2(−t∗, 0;H2

0 (Ω)) × R 7→ R. The scalar k0 > 0 is a damping coefficient that
includes imposed structural damping, and damping through the flow via Theorem
3.1. The continuous, linear operator L : Hσ(Ω) → L2(Ω), σ < 2 encompasses
spatial lower order terms that need not have conservative structure (e.g., the term
−Uux in (3.2)).

In application, we will consider an initial datum y0 ∈ Y corresponding to the
dynamics St(y0) in (1.1) (the full flow-plate dynamics). We employ the reduction
result Theorem 3.1, and we may consider the “initial time” (t = t0) for the delay
dynamics corresponding to any time after the reduction time t#(ρ0, U,Ω) above. At
such a time, the data which is fed into (3.2) is x0 = (u(t0), ut(t0), u

t0), where this
data is determined by the full dynamics of (1.1) on (t0−t∗, t0). Thus, given a trajec-
tory St(y0) = y(t) = (u(t), ut(t);ϕ(t), ϕt(t)) ∈ Y , we may analyze the corresponding
delay evolution (Tt,H), with H ≡ H2

0 (Ω)×L2(Ω)×L2
(
−t∗, 0;H2

0 (Ω)
)
, with given

data x0 ∈ H. We then have that Tt(x0) =
(
u(t), ut(t);u

t
)
with x0 = (u0, u1, η).

The norm is taken to be

||(u, v; η)||2H ≡ ||∆u||2 + ||v||2 +
∫ 0

−t∗
||∆η(t+ s)||2ds.

3.3. Attractors. In this section we refer to the delay dynamical system (Tt,H)
corresponding to the previous section. We emphasize that, for all of these results,
we need not impose any structural damping, i.e., k can be taken to be zero since
the damping is inherited from the flow via (3.2).

Theorem 3.3 (Smooth, Finite Dimensional Global Attractor). Let b2, k ≥ 0, U ̸=
1, p0 ∈ L2(Ω), and b1 ∈ R in (1.1). Also assume the flow data ϕ0, ϕ1 ∈ Y are
localized (as in Theorem 3.1). Then the corresponding delay system (Tt,H) has a
compact global attractor A of finite fractal dimension. Moreover, A has additional
regularity: any full trajectory y(t) = (u(t), ut(t), u

t) ⊂ A, t ∈ R, has the property
that u ∈ L∞(R;H4(Ω) ∩H2

0 (Ω)), ut ∈ L∞(R;H2
0 (Ω)), and utt ∈ L∞(R;L2(Ω)).

This can be rephrased for the non-delay system (St, Y ), by taking the previous
result with Theorem 3.1 and using projection onto the first two components of H:

Corollary 3.4. With the same hypotheses as Theorem 3.3, there exists a compact
set U ⊂ H2

0 (Ω)×L2(Ω) of finite fractal dimension such that for any weak solution
(u, ut;ϕ, ϕt) to (1.1) with initial data (u0, u1;ϕ0, ϕ1) ∈ Y that have a localized flow
component supp(ϕ0), supp(ϕ1) ⊂ Kρ0 for some ρ0 > 0:

lim
t→∞

dYpl

(
(u(t), ut(t)),U

)
= lim

t→∞
inf

(ν0,ν1)∈U

(
||u(t)− ν0||22 + ||ut(t)− ν1||2

)
= 0.

We also have the additional regularity U ⊂
(
H4(Ω) ∩H2

0 (Ω)
)
×H2

0 (Ω).

Lastly, without imposing any damping, we have a generalized fractal exponential
attractor:

Theorem 3.5 (Generalized Fractal Exponential Attractor). With the same hy-
potheses as Theorem 3.3, the evolution (Tt,H) has a generalized fractal exponential
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attractor Aexp of finite dimension in the space

H̃ ≡ Ỹpl × L2(−t∗, 0;L2(Ω)) = L2(Ω)×H−2(Ω)× L2(−t∗, 0;L2(Ω)).

3.4. Determining Functionals. Given a set of continuous, linear functionals L
on H2

0 (Ω), the completeness defect of εL between H2
0 (Ω) and L

2(Ω) is defined by:

(3.6) εL (H2
0 (Ω), L

2(Ω)) ≡ sup
{||∆w||≤1}

{
||w||L2(Ω) : lj(w) = 0 ∀ j = 1, ..., L

}
.

With this notion in hand, we can present our main theorem on determining func-
tionals.

Theorem 3.6 (Finite Number of Determining Functionals). Take the hypotheses
from Theorem 3.3 and consider (Tt,H) as above. Then there exists a number ε∗ > 0
such that if L is any set of functionals on H2

0 (Ω) with εL (H2
0 (Ω), L

2(Ω)) ≤ ε∗, then
L is a determining set of functionals for (Tt,H).

There is one situation where the completeness defect εL (H2
0 (Ω), L

2(Ω)) can be
estimated straightforwardly. For a given set of functionals L on H2

0 (Ω) and a given
set of linearly independent functions {ϕj}Nj=1 ⊆ H2

0 (Ω), define the interpolation

operator RL : H2
0 (Ω) → H2

0 (Ω), given by the formula

RL (w) =
N∑
j=1

lj(w)ϕj .

We say RL approximates “well” when there exists C,α > 0 such that

||w −RLw||L2(Ω) ≤ Chα, ∀||∆w|| ≤ 1

for any h(N) > 0 sufficiently small. It is immediate, then, that εL ≤ Chα; see [11,
Section 3.3] for details.

We now provide some concrete examples from the discussion above; this discus-
sion is found in [10], and see also [11]. These examples, in conjunction with Theorem
3.6, show that the structural dynamics have finite determining nodes, modes, and
local volume averages. Below, c > 0 does not depend on N .

Nodes: Let T h be a triangulation of Ω with triangles of side-length less than h; let
{xj : j = 1, ..., Nh} be all vertices in T h. Then the set

L = {lj : lj(w) = w(xj), j = 1, ..., Nh}
has completeness defect εL (H2

0 (Ω), L
2(Ω)) ≤ ch2.

Modes: Let {ej} be the eigenfunctions of the clamped biharmonic operator ∆2

acting on H2
0 (Ω). Then the set

L = {lj : lj(w) = (w, ej)L2(Ω), j = 1, ..., N}

has completeness defect εL (H2
0 (Ω), L

2(Ω)) ≤ c/N .

Averages: Assume that λ ∈ L∞(R2) with compact support and
∫
R2 λ(x)dx = 1.

For h > 0, define

L = {lj : lj(w) =
1

h2

∫
Ω
w(x)λ(x/h− j)dx, j = (j1, j2) ∈ J },
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where J ≡{(j1, j2)∈Z2 : (j1h, j2h)∈Ω} has completeness defect εL (H2
0 (Ω), L

2(Ω))≤
ch2.

3.5. Discussion of Literature in Relation to Results. We begin by noting that
a majority of works on flow-plate interactions consider the plate to be of scalar von
Karman type. That nonlinearity is more formidable, and we direct the reader to
the monograph [13] for discussion, as well as the papers [15, 17, 31] for comparative
discussion between von Karman and Berger dynamics plates. We consider f = fB
primarily to clarify exposition, since the scalar von Karman system has additional
technicalities that cloud the discussion; our focus here is on the essential nature
of finite dimensionality in the system. We assert that many of the results below
hold for the von Karman system, perhaps adjusting the size and type of damping
mechanism—see [16, 19].

We know that the nature of (in)stability for the dynamics depend critically on
structural boundary conditions, and the flow parameter U . To expound the role of
U , we note that the flow energy in (1.5) degenerates as U 7→ 1; this necessitates
treating the subsonic [50, 14] and supersonic cases independently [15]. Long-time
behavior results for the full flow-plate system with U > 1 seem untenable, owing
to the lack of a “good” energy identity. On the other hand, invoking the reduction
result Theorem 3.1—only possible after establishing the results in [15]—allow one
to consider all values of U ̸= 1, so long as only the plate dynamics are considered.

The earliest mathematical approaches to the flow-plate dynamics at hand invoke
an ad hoc, piston-theoretic [10, 13] simplification (q ≡ 0 in (3.2)), or operate directly
on the reduced system [6, 20] without first establishing the reduction in Theorem
3.1. These works often provide well-posedness proofs, as well as constructions of
compact global attractors, albeit without the quasi-stability technology utilized
here. The more recent work [31] investigates attractors and exponential attractors
for a piston-theoretic model (both von Karman and Berger), using the modern
quasi-stability framework.

Next, we note that all early works on the flow-plate dynamics or reduced dynamics
typically utilize velocity regularization, i.e., some mechanism to boost the plate
velocity ut ∈ L2(Ω) → H1(Ω). Such an improvement has many benefits, discussed
in more detail below. The most common means of doing this is through the inclusion
of rotational inertia effects α > 0 (the so called Rayleigh correction):

(3.7) (1− α∆)utt + k(1− α∆)ut +∆2u+ f(u) = p(x, t)

The damping mechanism above has been adjusted to reflect the strength of the
inertial term (see [32]).

The papers [44, 45] do not consider inertia, but invoke plate thermoelasticity [38],
providing velocity regularization and dissipative effects. In general, [13] provides a
rather complete review for the above scenarios when f(u) is given by the Berger
or von Karman nonlinearity. We stress that, even with beneficial thermal coupling
or α > 0, flow-plate problems are still challenging due to the coupling, and reduced,
delayed dynamics are challenging due to the intrinsically non-gradient character.

3.5.1. Previous Results with Velocity Regularization. Well-posedness for flow-plate
dynamics (1.1) in past literature (before 2010) involved one of the aforementioned
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regularizations, resulting in wt ∈ H1. Here, one is still faced with the low regular-
ity of traces (the failure of the Lopatinski condition [42]) for the Neumann wave
equation. The α > 0 well-posedness method in [4, 5, 13] relies on sharp microlo-
cal estimates for the wave equation driven by [wt + Uwx] ∈ H1(Ω) Neumann data,

yielding rΩtr[ϕt] ∈ L2
(
0, T ;H−1/2(Ω)

)
[13]. With an explicit 3-D wave solver, and a

Galerkin approximation, one constructs a solution via a fixed point argument. The
method fundamentally decouples flow and plate dynamics, and limit passage on
approximate solutions obtains through compactness of the Neumann lift, available
when α > 0.

The primary physical model [21, 25, 34] takes α = 0, but von Karman type
nonlinearities and interactive flow terms do not act compactly in this case. More-
over, for long-time behavior studies with α > 0, plate damping must be tailored
to −α∂2xwtt to effectively control of kinetic energies. On the other hand, frictional
damping, kwt, is of the same strength as reduced flow damping in (3.2), and thus
there is a disparity between including rotational inertia α > 0 and aerodynamic
and natural damping. The long-time behavior results in [13] are the most recent
for the system (1.1) with α > 0; these results include attractors, determining func-
tionals, and subsonic convergence to equilibrium with imposed damping (k > 0 in
(3.7)). In the references [44, 45] U < 1, a thermoelastic panel stabilizes without
additional mechanical damping. Again, both scenarios rely on compactness of the
boundary-to-flow map, conspicuously absent when α = 0.

3.5.2. Previous Results for (1.1) without Regularizations. We now turn to previous
results for the system as presented in (1.1), with no regularizations.

In [50], well-posedness of the α = 0 panel (1.1) was established for U < 1 using
semigroup methods to treat the entire system. The approach is distinct from [5, 4],
since corresponding component-wise estimates there are singular as α ↘ 0. An
alternative proof was given in [14], where a viscosity approach through an absorbing
boundary condition obtains solutions for (1.1). With the established viability of
semigroup techniques for subsonic flows, the supersonic U > 1 problem was recast
in the abstract framework for the challenging α = 0, U > 1 case. The reference
[15] provides the well-posedness result, critically utilizing hyperbolic theory, where
traces behave better than the standard theory predicts [42]. This recent resolution
of well-posedness for all U ̸= 1 with α = 0 opened the door to long-time behavior
studies for (1.1)—in particular, all of the Theorems 3.3–3.6 here.

With the reduction result, Theorem 3.1, established for the first time in [17] (on
the strength of the well-posedness above), one can also study end behaviors of the
structural component of the system without imposing any mechanical damping. The
paper [17] considers the reduced system in (3.5) (with α = 0), with a nonlinearity
of Berger, von Karman, or Kirchhoff type. The analysis provides the construction
of compact global attractors that are smooth and finite dimensional. The proof
we provide here is fundamentally different: by focusing on the Berger nonlinearity,
we do not need to utilize the compactness of the attractor in order to obtain the
quasi-stability estimate.
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Lastly, with the strong stabilization results for (1.1) with U < 1 ([13] for α > 0
and [44, 45] for included thermal effects), the papers [36, 37] provide analogous re-
sults for Berger and von Karman plates. (Precise results depend on the nonlinearity
in force, and the size of the damping k > 0.)

4. Technical tools

4.1. Dissipative Dynamical Systems. We recall notions and results from the
theory of dissipative dynamical systems (see, e.g., [1, 10, 33, 13]).

We say (St,H) is asymptotically smooth if for any bounded, forward invariant
set D there exists a compact set K ⊂ D such that limt→+∞ dH{StD|K} = 0. A
closed set B ⊂ H is absorbing if for any bounded set D ⊂ H there exists a t0(D)
such that StD ⊂ B for all t > t0. If (St,H) has a bounded absorbing set it is said
to be ultimately dissipative.

We will use a key theorem from [13, Chapter 7] to establish the attractor and its
characterization.

Theorem 4.1. A dissipative and asymptotically smooth dynamical system (St,H)
has a unique compact global attractor A ⊂ H that is connected, characterized by the
set of all bounded, full trajectories.

4.2. Quasi-stability. Quasi-stability is the primary tool in our long-time behav-
ior analysis. A quasi-stable dynamical system is one where the difference of two
trajectories can be decomposed into uniformly stable and compact parts, with con-
trolled scaling of powers. The theory of quasi-stable dynamical systems has been
developed thoroughly in recent years by Chueshov and Lasiecka [11, 13], including
more general definitions [11] than what we present and use below.

Informally, we mention that:

• Having the quasi-stability property on the global attractor A yields addi-
tional smoothness and finite dimensionality of A. This follows from the so
called “squeezing property” and one of Ladyzhenskaya’s theorems (see [13,
Theorems 7.3.2 and 7.3.3]).

• Having the quasi-stability estimate on an absorbing ball implies the exis-
tence of an exponentially attracting set; uniform in time Hölder continuity
(in some topology) yields finite dimensionality of this attracting set in said
topology.

We now proceed more formally.

Condition 1. Consider second order (in time) dynamics (St,H) where H = X×Z
with X,Z Hilbert, and X compactly embedded into Z. Further, suppose y =
(x, z) ∈ H with Sty = (x(t), xt(t)) where the function x ∈ C(R+, X) ∩ C1(R+, Z).

Condition 1 restricts our attention to second order, hyperbolic-like evolutions.

Condition 2. Suppose the evolution operator St : H → H is locally Lipschitz,
with Lipschitz constant a(t) ∈ L∞

loc([0,∞)):

(4.1) ||Sty1 − Sty2||2H ≤ a(t)||y1 − y2||2H .
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Definition 4.2. With Conditions 1 and 2 in force, suppose that the dynamics
(St,H) admit the following estimate for y1, y2 ∈ B ⊂ H:

(4.2) ||Sty1−Sty2||2H ≤ e−γt||y1−y2||2H+Cq sup
τ∈[0,t]

||x1−x2||2Z∗ , for some γ, Cq > 0,

where Z ⊆ Z∗ ⊂ X, and the last embedding is compact. Then we say that (St,H)
is quasi-stable on B.

Remark 4.3. As mentioned above, the definition of quasi-stability in the key refer-
ences [11, 13] is much more general; specifically, the estimate in (4.2) can be replaced
with:

(4.3) ||Sty1 − Sty2||2H ≤ b(t)||y1 − y2||2H + c(t) sup
τ∈[0,t]

[µH(Sty1 − Sty2)]
2,

where: (i) b(·) and c(·) are nonnegative scalar functions on R+ such that c(t) is
locally bounded on [0,∞) and b ∈ L1(R+) and lim

t→∞
b(t) = 0; (ii) µH is a compact

seminorm on H.

We now run through a handful of consequences of the type of quasi-stability
described by Definition 4.2 above for dynamical systems (St,H) satisfying Condition
1 [13, Proposition 7.9.4].

Theorem 4.4. If a dynamical system (St,H) satisfying Conditions 1 and 2 is quasi-
stable on every bounded, forward invariant set B ⊂ H, then (St,H) is asymptotically
smooth. Thus, if in addition, (St,H) is ultimately dissipative, then by Theorem 4.1
there exists a compact global attractor A ⊂⊂ H.

The theorems in [13, Theorem 7.9.6 and 7.9.8] provide the following result con-
cerning improved properties of the attractor A if the quasi-stability estimate can
be shown on A. If Theorem 4.4 is used to construct the attractor, then Theorem
4.5 follows immediately; this is not always possible [17, 31].

Theorem 4.5. If a dynamical system (St,H) satisfying Conditions 1 and 2 pos-
sesses a compact global attractor A ⊂⊂ H, and is quasi-stable on A, then A has
finite fractal dimension in H, i.e., dimH

f A < +∞. Moreover, any full trajectory
{(x(t), xt(t)) : t ∈ R} ⊂ A has the property that

xt ∈ L∞(R;X) ∩ C(R;Z); xtt ∈ L∞(R;Z),
with bound

||xt(t)||2X + ||xtt(t)||2Z ≤ C,

where the constant C above depends on the “compactness constant” Cq in (4.2).

Elliptic regularity can then be applied to the equation itself generating the dynamics
(St,H) to recover regularity for x(t) in a norm higher than that of the state space
X.

The following theorem relates generalized fractal exponential attractors to the
quasi-stability estimate [13, p. 388, Theorem 7.9.9]:

Theorem 4.6. Let Conditions 1 and 2 be in force. Assume that the dynamical
system generated by solutions (St,H) is ultimately dissipative and quasi-stable on a

bounded absorbing set B. Also assume there exists a space H̃ ⊃ H so that t 7→ Sty
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is Hölder continuous in H̃ for every y ∈ B; this is to say there exists 0 < α ≤ 1
and CB,T>0 so that

(4.4) ||Sty − Ssy||H̃ ≤ CB,T |t− s|α, t, s ∈ [0, T ], y ∈ B.

Then the dynamical system (St,H) possesses a generalized fractal exponential at-

tractor Aexp whose dimension is finite in the space H̃, i.e., dimH̃
f Aexp < +∞.

Remark 4.7. We forgo using boldface to describe Aexp (in contrast to the global
attractor A) precisely because exponential attractors are not unique.

Remark 4.8. In addition, owing to the abstract construction of the set Aexp ⊂ X,
boundedness of Aexp in any higher topology is not addressed by Theorem 4.6.

The proofs of Theorems 4.5 and 4.6 can be found in [11, 13], and rely fundamen-
tally on the technique of “short” trajectories or “l” trajectories (see, e.g., [39]).

5. Reduction to delayed dynamical system

In this section, we present the proof of Theorem 3.1, which has multiple com-
ponents. We remark that this theorem has been shown and used before, namely
in [17]. We include the proof here because it relies critically on the well-posedness
results for the system (1.1) holding for all U ̸= 1, and these are relatively recent.
We note that analogous the result was shown earlier when velocity regularization
(as discussed in Section refregularization) was present—see [4, 5, 44, 45].

5.1. Flow Potentials with Given Neumann Data; Decomposition. In what
follows it will be necessary to consider the hyperbolic-like flow equation with given
Neumann data. Consider the problem:

(5.1)


(∂t + U∂x)

2ϕ = ∆ϕ in R3
+

∂zϕ
∣∣∣
z=0

= h(x, t) in R2

ϕ(t0) = ϕ0; ϕt(t0) = ϕ1

We have the following theorem from [5, 13, 42]:

Theorem 5.1. Assume U ≥ 0, U ̸= 1; take (ϕ0, ϕ1) ∈ H1(R3)× L2(R3). If

h ∈ C
(
[t0,∞);H1/2(R2)

)
then (5.1) is well-posed (in the weak sense) with

ϕ ∈ C
(
[t0,∞);H1(R3

+)
)
, ϕt ∈ C

(
[t0,∞);L2(R3

+)
)
.

Now, we decompose the flow problem above:

(5.2)


(∂t + U∂x)

2ϕ∗ = ∆ϕ∗ in R3
+ × (0, T )

ϕ∗(0) = ϕ0; ϕt(0) = ϕ1

∂zϕ
∗ = 0 in ∂R3

+ × (0, T )

(5.3)


(∂t + U∂x)

2ϕ∗∗ = ∆ϕ∗∗ in R3
+ × (0, T )

ϕ∗∗(0) = 0; ϕ∗∗t (0) = 0

∂zϕ
∗∗ = h(x, t) in ∂R3

+ × (0, T )
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We focus on the case where the flow comes from the coupled system (1.1), so:

(5.4) h(x, t) ≡ [ut + Uux]ext

Then, the full flow solution ϕ coming from (1.1) has the form

ϕ(t) = ϕ∗(t) + ϕ∗∗(t),

where ϕ∗(t) solves (5.2) and ϕ∗∗(t) solves (5.3), and ϕ∗∗ depends on ut +Uux on Ω.

Remark 5.2. In fact, a stronger regularity result is available. Finite energy
(H1(Ω) × L2(Ω)) solutions are obtained with h ∈ H1/3((0, T ) × R2) [38, 46], but
the corresponding estimate doesn’t provide control of T -dependence, and hence is
of limited applicability in the long-time behavior context.

The analysis of ϕ∗ is identical to that given in [13, 44, 5]. However, the treatment
of ϕ∗∗(t), corresponding to the hyperbolic Neumann map, is very different owing
to the aforementioned loss of regularity. But here we are treating an a priori,
existing finite energy solution (ϕ, ϕt) ∈ Yfl corresponding to Theorem 2.1. As
explained in Remark 5.4, treating the problem “component-wise,” as in [5, 8, 44, 45],
would not be possible here.

We do have the following theorem from [15] concerning the a posteriori trace
regularity of ϕt corresponding to a solution (u, ut;ϕ, ϕt) to (1.1), as in Theorem 2.1:

Theorem 5.3. Let the hypotheses of Theorem 3.3 be in force. Then a generalized
solution (u, ut;ϕ, ϕt) ∈ C([0, T ];Y ) with flow component as in (5.1) driven by h =
[ut + Uux]ext has the trace regularity:

(5.5) (∂t + U∂x)tr[ϕ] ∈ L2(0, T ;H−1/2(R2)),

where T is arbitrary.

Remark 5.4. With rotational inertia in force (α > 0 in (3.7)), one would have for
finite energy solutions to (1.1) h = [ut + Uux]ext ∈ C([0, T ];H1(R2)). On the other
hand, from [42],

h ∈ L2(0, T ;H1/2(R2)) 7→ ϕ∗∗ ∈ C([0, T ];H1(R3
+) ∩ C1([0, T ];L2(R3

+)).

So the recovery of finite energy solutions is seen, and the Neumann mapping is in
fact compact in this case. When α = 0, one has only h ∈ C([0, T ];L2(R2)), which
produces a maximal regularity of

ϕ∗∗ ∈ C([0, T ];H2/3(R3
+)) ∩ C1([0, T ];H−1/3(R3

+)),

yielding the loss of 1/3 derivative [38, 17, 46]. This underscores that the component-
wise analysis of finite energy solutions to (1.1), successful in past literature [13, 44,
45], cannot be utilized for α = 0.

5.2. Proof of Theorem 3.1. The analysis of ϕ∗ uses classical tools. For the term
ϕ∗∗ we have the following theorem that provides us with an explicit form of the
solution. The proof makes use of Fourier-Laplace transform methods; for a detailed
proof of the representation, see for instance [13, Theorem 6.6.10].

Below, we utilize the notations:

f †(x, t, s, θ) = f (x− κ1(θ, s, z), y − κ2(θ, s, z), t− s) ,(5.6)
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κ1(θ, s, z) = Us+
√
s2 − z2 sin θ, κ2(θ, s, z) =

√
s2 − z2 cos θ.(5.7)

Theorem 5.5. Considering the problem in (5.3) with h(x, t) = −[ut(x, y, t) +
Uux(x, y, t)]ext, there is a time t∗(Ω, U) such that we have the following representa-
tion for a weak solution ϕ∗∗(t) for t > t∗:

(5.8) ϕ∗∗(x, t) = −χ(t− z)

2π

∫ t∗

z

∫ 2π

0

(
[ut]

†
ext(x, t, s, θ) + U [ux]

†
ext(x, t, s, θ)

)
dθds.

where χ(s) is the Heaviside function. The time t∗ is given by:

t∗ = inf{t : x(U, θ, s) /∈ Ω for all (x, y) ∈ Ω, θ ∈ [0, 2π], and s > t},

with x(U, θ, s) = (x− (U + sin θ)s, y − s cos θ) ⊂ R2.

Moreover, we have the following point-wise formula for the derivative in t [45, p.
480] (which is justified for smooth data in D(T), and can be taken distributionally
for data in Y ). Differentiation of (5.8) in (x, y) is straightforward.

Corollary 5.6. Under the same hypotheses as Theorem 5.5, we have:

ϕ∗∗t (x, t) =
1

2π

{∫ 2π

0
[ut]

†
ext(x, t, t

∗, θ)dθ −
∫ 2π

0
[ut]

†
ext(x, t, z, θ)dθ(5.9)

+ U

∫ t∗

z

∫ 2π

0
[∂xut]

†
ext(x, t, s, θ)dθds

+

∫ t∗

z

∫ 2π

0

s√
s2 − z2

[Mθut]
†
ext(x, t, s, θ)dθds

}
with Mθ = sin(θ)∂x + cos(θ)∂y.

Therefore, to obtain the representation of rΩtr[ϕt+Uϕx] on the RHS of the plate
equation in (1.1), we explicitly compute derivatives and restrict—this makes explicit
the Neumann-to-Dirichlet map here. Indeed, the Kirchhoff representation for the
solution ϕ∗(x, t) in R3

+ (see, e.g., [13, Theorem 6.6.12]), shows that, with ϕ0 and
ϕ1 localized in Kρ, then Huygen’s principle, gives ϕ∗(x, t) ≡ 0 for all x ∈ Kρ and
t ≥ tρ. Thus we have that(

∂t + U∂x
)
tr[ϕ∗] ≡ 0, x ∈ Ω, t ≥ tρ.

Thus ϕ∗ tends to zero in the sense of the local flow energy, i.e.,

(5.10) ∥∇ϕ∗(t)∥2L2(Kρ)
+ ∥ϕ∗t (t)∥L2(Kρ) → 0, t→ ∞, for any fixed ρ > 0.

It remains to consider flow variable ϕ∗∗, whose aeroelastic potential on the bound-
ary coincides with that of ϕ, and hence it displays trace regularity as in (5.5) for
t > tρ. This allows one to perform calculations with Corollary 5.6 on smooth
solutions in order to obtain the representation

(∂t + U∂x)γ[ϕ
∗∗] =− h(x, y, t)

+
1

2π

∫ t

0

∫ 2π

0
[Mθh](x− (U + sin θ)s, y − s cos θ, t− s) dθds,

for h(x, t) = −[ut + Uux]ext, yielding Theorem 3.1.
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5.3. Estimates on the Delay Potential q(ut). We now look at the structure of
the delay potential q(ut) appearing in Theorem (3.1).

Lemma 5.7. Let q(ut) be given by (3.3). Then

(5.11) ||q(ut)||2H−1(Ω) ≤ ct∗
∫ t

t−t∗
||u(τ)||2H1(Ω)dτ

for any u ∈ L2(t− t∗, t;H1
0 (Ω)). If u ∈ L2

loc(−t∗,∞;H2 ∩H1
0 )(Ω)) we also have

(5.12) ||q(ut)||2 ≤ ct∗
∫ t

t−t∗
||∆u(τ)||2dτ, ∀t ≥ 0,

and

(5.13)

∫ t

0
||q(uτ )||2dτ ≤ c[t∗]2

∫ t

−t∗
||u(τ)||22dτ, ∀t ≥ 0.

Moreover, if u ∈ C
(
(−t∗,+∞); (H2 ∩H1

0 )(Ω)
)
, we have that

q(ut) ∈ C1(R+;H
−1(Ω)), and for all t ≥ 0

(5.14) ∥∂t[q(ut)]∥H−1(Ω) ≤ C
{
||u(t)||H1(Ω)+||u(t−t∗)||H1(Ω)+

∫ 0

−t∗
||∆u(t+τ)||dτ

}
.

Proof. The proof of the bounds (5.11)–(5.13) can be found in [8] and [13], and are
straightforward. Thus we need to check (5.14) only. Without loss of generality
we can assume u ∈ C ((−t∗,∞);C∞

0 (Ω)). The following point-wise formula for the
time derivative of q(ut) appearing above in (3.3) is direct:

∂t[q(u
t)] =

∫ 2π

0

1

2π
[M2

θ u]ext
(
x(U, θ, 0), t

)
dθ(5.15)

−
∫ 2π

0

1

2π
[M2

θ u]ext
(
x(U, θ, t∗), t− t∗

)
dθ

+

∫ t∗

0

∫ 2π

0
(U + sin θ)

1

2π
[M2

θ ux]ext
(
x(U, θ, s), t− s

)
dθds

+

∫ t∗

0

∫ 2π

0
(cos θ)

1

2π
[M2

θ uy]ext
(
x(U, θ, s), t− s

)
dθds.

Recall that x(U, θ, s) = (x − (U + sin θ)s, y − s cos θ), and consider for any ψ ∈
H1

0 (Ω) the quantity
⟨
∂t[q(u

t)], ψ
⟩
. In all the associated integrals, we extend the

integration over Ω to all of R2 and, recalling the definition of Mθ = sin(θ)∂x +
cos(θ)∂y, integrate by parts once in Mθ in the first and second terms, and integrate
by parts once in space in the third and fourth terms. This leaves us with:

|⟨∂t[q(ut)], ψ⟩| ≤ C
{
||u(t)||1 + ||u(t− t∗)||1 +

∫ 0

−t∗
||u(t+ τ)||2dτ

}
||ψ||1.

This implies the conclusion in (5.14). (Detailed calculations are found in the Ap-
pendix of [17].) □
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5.4. General Nonlinear Plates with Delay. We now consider the delay system
given through Theorem 3.1 as a standalone system. We have shown estimates
corresponding to the delay potential in the previous section, and we now state some
results for the general delay system. In analyzing the long-time behavior of the
structural component (u, ut) of a trajectory St(y0) we will use multiplier methods
on the system (3.2).

We use the notation as in Section 3.2. The parameter 0 < t∗ < +∞ is the time
of delay and ut(·), for a function on s ∈ (−t∗, 0), is of the form s 7→ u(t + s). We
need to impose an initial condition of the form u|t∈(−t∗,0) = η(x, t), where η is a

given function on Ω × (−t∗, 0), specifically, η ∈ L2(−t∗, 0;H2
0 (Ω)). Thus we have

the system

(5.16)


utt +∆2u+ (k + 1)ut + fB(u) = p0 − Uux + q(ut) in Ω× (0, T ),

u = ∂νu = 0 on ∂Ω× (0, T ),

u(0) = u0, ut(0) = u1,

u|t∈(−t∗,0) = η ∈ L2(−t∗, 0;H2
0 (Ω)).

As mentioned in Section 3.2, the general delay plate equation (3.5) can host a
broad class of delay potentials, q(ut, t), for instance encompassing q(ut) is given in
(3.3). The scalar k ≥ 0 is an imposed damping coefficient, and represents structural
weak damping across the full interior of the plate. The operator term Uux can be
replaced by any spatial lower order terms which do not have gradient structure (as
demarcated by Lu in (3.5)).

Long-time behavior analysis of the delayed system depends on the well-posedness
of suitably defined weak solutions which generate a dynamical system on the phase
space H ≡ H2

0 (Ω) × L2(Ω) × L2(−t∗, 0;H2
0 (Ω)). Well-posedness of weak solutions

has been addressed [8] and [13, Section 3.3.1] via the Galerkin method, see also
[6, 20]. In what follows we summarize and complement relevant results.

A weak solution to (5.16) on [0, T ] is a function

u ∈ L∞(0, T ;H2
0 (Ω)) ∩W 1,∞(0, T ;L2(Ω)) ∩ L2(−t∗, 0;H2

0 (Ω))

such that the variational relation corresponding to (5.16) holds (see, e.g., [13,
(4.1.39), p.211]).

Lemma 5.8. Consider (5.16) with q(ut) as in (3.3) with initial data

(u0, u1, η) ∈ H = H2
0 (Ω)× L2(Ω)× L2(−t∗, 0;H2

0 (Ω)).

Then (5.16) has a unique weak solution on [0, T ] for any T > 0. This solution be-
longs to the class C

(
0, T ;H2

0 (Ω)
)
∩C1

(
0, T ;L2(Ω)

)
, and satisfies the energy identity

(5.17) Epl(t) + (k + 1)

∫ t

s
||ut(τ)||2dτ = Epl(s) +

∫ t

s
⟨q(uτ )− Uux(τ), ut(τ)⟩dτ

where the expression Epl is as before in (1.3).

Careful analysis of the estimates in Lemma 5.7 yield the estimates below.
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Lemma 5.9. For q(ut) as in (3.3), we have ∀ϵ > 0

∣∣∣ ∫ t

0
⟨q(uτ ), ut(τ)⟩dτ

∣∣∣ ≤ Cϵ−1t∗
∫ t

−t∗
||u(τ)||22dτ + ϵ

∫ t

0
||ut(τ)||2dτ, 0 ≤ t ≤ T,

(5.18)

for any u ∈ L2(−t∗, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)). Also, there exists η∗ > 0 such
that for every ϵ > 0 we have the estimate:

∣∣∣ ∫ t

0
⟨q(ut, τ), ut(τ)⟩dτ

∣∣∣ ≤ ϵ

∫ t

−t∗
||u(τ)||22dτ + C(t∗, ϵ) · (1 + T ) sup

[0,t]
||u(τ)||22−η∗ ,

(5.19)

for any u ∈ L2(−t∗, T ;H2(Ω)) ∩ C(0, T ;H2−η(Ω)) ∩ C1(0, T ;L2(Ω)).

We can now introduce the operator Tt : H 7→ H by the formula

(5.20) Tt(u0, u1, η) ≡ (u(t), ut(t), u
t),

where u(t) solves (5.16). Lemma 5.8 implies the following conclusion:

Corollary 5.10. Tt is a strongly continuous semigroup on H.

Proof. Strong continuity is stated in Lemma 5.8. The semigroup property follows
from uniqueness. Continuity with respect to initial data follows from the stronger
Lipschitz property given below. □
Lemma 5.11. Suppose ui(t) for i = 1, 2 are weak solutions to (5.16) with different
initial data and z = u1 − u2. Additionally, assume that

(5.21) ||uit(t)||2 + ||∆ui(t)||2 ≤ R2, i = 1, 2

for some R > 0 and all t ∈ [0, T ]. Then there exists C > 0 and aR ≡ aR(t
∗) > 0

such that

||zt(t)||2 + ||∆z(t)||2 ≤

CeaRt
{
||∆(u10 − u20)||2 + ||u11 − u21||2 +

∫ 0

−t∗
||η1(τ)− η2(τ)||22dτ

}
(5.22)

for all t ∈ [0, T ].

We omit the details of these proofs here and refer to [17]. It suffices to say that
energy methods are used, along with Lemma 5.9 and an application of Grönwall.
We conclude this section with a remark about the case when additional velocity
smoothing is present—namely, when rotary inertia or thermal effects are included
in the model and ut ∈ H1

0 (Ω).

Remark 5.12. A priori, when ut is in H
1
0 (Ω), it is clear from (5.11) that

(5.23)

∫ T

0
⟨q(uτ ), ut(τ)⟩dτ ≤ ϵ

∫ T

0
||ut(τ)||21 + C(ϵ, T ) sup

τ∈[−t∗,T ]
||u(τ)||21.

This is not at all apparent when ut ∈ L2(Ω) only, as ||q(ut)||20 has no a priori
bound from above like (5.11). Hence, the critical component which allows us a
transition from rotational inertia (α > 0) to the non-rotational case (α = 0) is the
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hidden compactness of the aforementioned term displayed by (5.14) obtained from
integrating by parts under time integration in the LHS of (5.23).

6. Supporting technical results

6.1. Basic Estimates. Consider the difference of two weak solutions ui, i = 1, 2
to (5.16), satisfying:

(6.1)


ztt +∆2z + (k + 1)zt + fB(u

1)− fB(u
2) = q(zt)− Uzx,

z = ∂νz = 0 on ∂Ω ,

z(0) = z0 ∈ H2
0 (Ω), zt(0) = z1 ∈ L2(Ω), z|(−t∗,0) ∈ L2(−t∗, 0;H2

0 (Ω)).

We take this equation with the notations:

(6.2) z = u1 − u2; Ez(t) ≡
1

2

{
||∆z(t)||2 + ||zt(t)||2

}
; F(z) = f(u1)− f(u2).

We will utilize (in several places) a key decomposition of the term ⟨F(z), zt⟩Ω
for the Berger nonlinearity fB. The results stated in the following theorem can be
found in [12, 27], though we provide the key details below:

Theorem 6.1. Let ui ∈ BR(H
2
0 (Ω)), i = 1, 2. Then we have:

(6.3) ||f(u1)−f(u2)||−δ ≤ Cδ

(
||u1||2, ||u2||2

)
||z||2−δ ≤ C(δ,R)||z||2−δ, ∀ δ ∈ [0, 1].

In addition, for u1, u2 ∈ C((s, t); (H2 ∩H1
0 )(Ω)) ∩ C1((s, t);L2(Ω)), then we have:⟨

F(z), zt
⟩
Ω
=

1

2

d

dt
Q1(z) + P1(z)

where
Q1(z) = b2||∇u1||2||∇z||2 − b1||∇z||2

and

(6.4) P1(z) = b2⟨∆u1, u1t ⟩||∇z||2 − b2
(
||∇u1||2 − ||∇u2||2

)
⟨∆u2, zt⟩.

Proof. Letting z = u1 − u2, and letting B(u) = (b1 − b2||∇u||2), we note two facts
immediately:

B(u1)∆u1 −B(u2)∆u2 = b1∆z − b2
[
||∇u1||2∆u1 − ||∇u2||∆u2

](6.5)

= b1∆z − b2
[
||∇u1||2∆z + (||∇u1||2 − ||∇u2||2)∆u2

]
∣∣ ||∇u1||2 − ||∇u2||2

∣∣ = ∣∣∣||∇u1|| − ||∇u2||
∣∣∣ (||∇u1||+ ||∇u2||

)
(6.6)

≤
(
||∇u1||+ ||∇u2||

)
||∇u1 −∇u2|| ≤ C(R)||z||1,

From here, note that

||F(z)||L2(Ω) = ||B(u1)∆u1 −B(u2)∆u2||
≤ b1||∆z||
+ b2

∣∣∣∣[||∇u1||2∆u1 − ||∇u1||2∆u2 + ||∇u1||2∆u2 − ||∇u2||2∆u2]
∣∣∣∣

≤ b1||∆z||+ b2||∇u1||2||∆z||+ ||∆u2||
[
||∇u1||2 − ||∇u2||2

]



ASYMPTOTIC FINITE DIMENSIONALITY FOR FLUTTER MODELS 107

≤ C(b1, b2, R)||z||H2
0 (Ω).

The result then follows for all δ ∈ [0, 1] through transposition.
Now, for the decomposition, we have:

⟨F(z), zt⟩ = b1⟨∆z, zt⟩ − b2⟨||∇u1||2∆z, zt⟩ − b2
⟨
∆u2[||∇u1||2 − ||∇u2||2], zt

⟩
=

1

2

d

dt

[
− b1||∇z||2 + b2||∇u1||2||∇z||2

]
− b2

2
||∇z||2 d

dt
||∇u1||2

− b2[||∇u1||2 − ||∇u2||2]⟨∆u2, zt⟩.

Above, we have freely integrated by parts (invoking the boundary conditions on
each u1, u2 ∈ H2

0 (Ω)). The result follows via one more time differentiation and
integration by parts. □

Lemma 6.2. Let ui ∈ C(0, T ;H2
0 (Ω)) ∩ C1(0, T ;L2(Ω)) ∩ L2(−t∗, T ;H2

0 (Ω)) solve
(5.16) with appropriate initial conditions on [0, T ] for i = 1, 2. Then the following
estimate holds for all ϵ > 0, for some η > 0, and 0 ≤ t ≤ T :∫ t

0

(
||∆u||2 − ||ut||2

)
dτ ≤ ϵ+ ϵ

∫ t

0
||u||22dτ + C

∫ 0

−t∗
||u(τ)||22dτ

−
∫ t

0
⟨f(u), u⟩dτ + |⟨ut(t), u(t)⟩|+ |⟨ut(0), u(0)⟩|(6.7)

+ C(ϵ, t∗, T ) sup
τ∈[0,t]

||u(τ)||22−η.

Moreover, in the case where we are considering the difference z = u1−u2 of solutions
solving (6.1) with (ui(t), uit(t)) ∈ BR(Ypl) for all t ∈ [0, T ], we may utilize the
estimates in Theorem 6.1 to obtain∫ t

s

(
||∆z||2 − ||zt||2

)
dτ ≤ ϵ

∫ t

s
||z||22dτ + C

∫ t

s−t∗
||z(τ)||22−σdτ

+ C(ϵ, T,R) sup
τ∈[0,t]

||z(τ)||22−η + Ez(t) + Ez(s),(6.8)

where Ez(t) is given by (6.2).

The final class of estimates we need are energy estimates for the (z, zt) terms
defined as the solution to (6.1). The energy relation on [s, t] for z in (6.1) is given
by

Ez(t) + (k + 1)

∫ t

s
||zt||2dτ = Ez(s)−

∫ t

s
⟨F(z), zt⟩dτ +

∫ t

s
⟨q(zτ ), zt(τ)⟩dτ(6.9)

− U

∫ t

s
⟨zx(τ), zt(τ)⟩dτ

From the above two estimates, (6.8) and (6.9), making use of Young’s inequality
and Sobolev inequalities, we have for 0 ≤ s < t ≤ T , some η > 0, and all ϵ > 0:

Ez(t) + (k + 1)

∫ t

s
||zt||2dτ ≤ Ez(s) + Cϵ,T sup

τ∈[s,t]
||z||22−η + ϵ

∫ t

s

(
||z||22 + ||zt||2

)
dτ



108 J. T. WEBSTER

−
∫ t

s
⟨f(u1)− f(u2), zt⟩dτ +

∣∣∣ ∫ t

s
⟨q(zτ ), zt(τ)⟩dτ

∣∣∣
For all k ≥ 0, (6.8) taken with the above implies that

1

2
Ez(t) + c0

∫ t

s
Ezdτ ≤ Ez(s) + C(T,R) sup

τ∈[s,t]
||z||22−η + C

∫ t

s−t∗
||z(τ)||22−σdτ

(6.10)

−
∫ t

s
⟨f(u1)− f(u2), zt⟩dτ +

∣∣∣ ∫ t

s
⟨∂t[q(zτ )], z(τ)⟩dτ

∣∣∣
+
∣∣⟨q(zt), z(t)⟩∣∣+ ∣∣⟨q(zs), z(s)⟩∣∣.

Above, we integrated by parts in the integral with the delayed term. Therefore
there exist ai > 0 and C(T,R) > 0 such that

Ez(t) +

∫ t

s
Ezdτ ≤ a0

(
Ez(s) +

∫ s

s−t∗
||z(τ)||22−σdτ

)
+ C(T,R) sup

τ∈[s,t]
||z||22−η∗

(6.11)

− a1

∫ t

s
⟨f(u1)− f(u2), zt⟩dτ.

Taking t = T and integrating over s in [0, T ] we arrive at (possibly rescaling ai and
C(T,R)):

TEz(T )+

∫ T

0

∫ T

s
Ezdτds ≤ a0

(
Ez(0) +

∫ 0

−t∗
||z(τ)||22−σdτ

)
+ CT,R sup

τ∈[0,T ]
||z||22−η∗

− a1

∫ T

0
ds

∫ T

s
⟨f(u1)− f(u2), zt⟩dτ − a2

∫ T

0
⟨f(u1)− f(u2), zt⟩dτ.

Since ∫ T

0
ds

∫ T

s
Ezdτ ≥ T

2

∫ T

T−t∗
Ezdτ for T ≥ 2t∗,

we arrive to the following assertion:

Lemma 6.3 (Delayed Observability). Let

ui ∈ C(0, T ;H2
0 (Ω)) ∩ C1(0, T ;L2(Ω)) ∩ L2(−t∗, T ;H2

0 (Ω))

solve (5.16) with appropriate initial conditions on [0, T ] for i = 1, 2, T ≥ 2t∗.
Additionally, assume (ui(t), uit(t)) ∈ BR(Ypl) for all t ∈ [0, T ]. Then the following
observability estimate on z holds:

T

2

[
Ez(T ) +

∫ T

T−t∗
Ez(τ)dτ

]
≤ a0

(
Ez(0) +

∫ 0

−t∗
||z(τ)||22dτ

)
(6.12)

+ C(T,R) sup
τ∈[0,T ]

||z||22−η∗

− a1

∫ T

0

∫ T

s
⟨f(u1)− f(u2), zt⟩ dτds
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− a2

∫ T

0
⟨f(u1)− f(u2), zt⟩dτ,

with the ai independent of T and R.

6.2. Ultimate Dissipativity: Construction of an Absorbing Ball. In order
to make use of Theorem 4.1 (or any other abstract theorems presented in Section
4.2), we must show that the non-gradient dynamical system (Tt,H) is ultimately
dissipative. To show this, we consider the delayed, Lyapunov-type function (with
Epl as in (1.3) and with Π∗(u) given by (1.8)):

V (Tt(x)) ≡ Epl(u(t), ut(t))− ⟨q(ut), u(t)⟩+ ν
(
⟨ut, u⟩+

(1 + k)

2
||u||2

)
(6.13)

+ µ
(∫ t

t−t∗
Π∗(u(s))ds+

∫ t∗

0

∫ t

t−s
Π∗(u(τ)) dτds

)
,

where Tt(x) ≡ x(t) = (u(t), ut(t), u
t) for t ≥ 03 and µ, ν are some positive numbers

to be specified below. Recall the notation as in (1.8):

E∗ ≡
1

2
[||∆u||2 + ||ut||2] + Π∗(u).

From Lemma 2.4 and the inequality∫ t∗

0

∫ t

t−s
Π∗(u(τ))dτds ≤ t∗

∫ t

t−t∗
Π∗(u(τ))dτ,

we have that there exists a ν0 > 0 such that for all 0 < ν ≤ ν0 there are
c0(ν), c1, c(ν), C > 0

(6.14) c0E∗ − c ≤ V (Tt(x)) ≤ c1E∗ + µCt∗
∫ 0

−t∗
Π∗(u(t+ τ))dτ + c.

A careful but direct calculation of
d

dt
V (Tt(x)), coupled with the estimates on the

nonlinear potential energy Lemma 2.6 and the estimate on q(ut) at the L2 level
in Lemma 5.7, produces, for 0 < ν < min {ν0, 1}, and for µ sufficiently small, the
following lemma:

Lemma 6.4. For all k ≥ 0, there exist µ, ν > 0 sufficiently small, and c(µ, ν, t∗, k, b2),
C(µ, ν, p0, b1, b2) > 0 such that

d

dt
V (Tt(x)) ≤ C − c

{
||ut||2 + ||∆u||2 + ||∆v(u)||2(6.15)

+ Π∗(u(t− t∗)) +

∫ 0

−t∗
Π∗(u(t+ τ))dτ

}
.

From this lemma and the upper bound in (6.14), we have for some δ > 0 (again,
depending on µ and ν) and a C (independent of the damping coefficient k):

(6.16)
d

dt
V (Tt(x)) + δV (Tt(x)) ≤ C, t > 0.

3without loss of generality, take t0 = 0
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The estimate above in (6.16) implies (via an integrating factor) that

(6.17) V (Tt(x)) ≤ V (x)e−δt +
C

δ
(1− e−δt).

Hence, the set

B ≡
{
x ∈ H : V (x) ≤ 1 +

C

δ

}
,

is a bounded forward invariant absorbing set. This gives that (Tt,H) is ultimately
dissipative.

6.3. Quasi-stability on the Absorbing Ball. We adopt the approach here of
showing the quasi-stability estimate (4.2) on the absorbing ball constructed in the
previous section.

Remark 6.5. We note that for other non-dissipative flow-plate systems (for in-
stance involving the von Karman nonlinearity), the approach may differ; indeed, it
is not always possible to show quasi-stability on the absorbing ball [13, 31]—this is
a rather strong property.

Here, quasi-stability will follow directly from the observability inequality (6.12),
the nonlinear decomposition Theorem (6.1), and the absorbing bound (6.17). In
fact, the proof below demonstrates the quasi-stability estimate on any bounded,
forward invariant set.

Consider the decomposition in Theorem (6.1):

⟨F(z), zt⟩ =
1

2

d

dt

[
− b1||∇z||2 + b2||∇u1||2||∇z||2

]
+ b2||∇z||2⟨∆u1, u1t ⟩

− b2[||∇u1||2 − ||∇u2||2]⟨∆u2, zt⟩.
At this point, restricting to any bounded, forward-invariant set BR (radius denoted
by R)

||u1(t)||2 + ||u1t (t)||0 + ||u2(t)||2 + ||u2t (t)||0 ≤ C(R), t > 0,

and taking into the Lipschitz-type bound (6.6), it follows immediately that, for
0 < η < 1/2:∣∣∣ ∫ t

s

⟨
F(z), zt

⟩
Ω
dτ

∣∣∣ ≤ C(R, ϵ) sup
τ∈[s,t]

||z||22−η + ϵ

∫ t

s
Ez(t)dτ, ∀ ϵ > 0,(6.18)

provided ui(τ) ∈ BR(H
2
0 (Ω)) for all τ ∈ [s, t]. In particular, this bound holds on

the invariant, absorbing ball B from Section 6.2.
Considering (6.12), and taking T sufficiently large, we have from the observability

inequality that:

Ez(T ) +

∫ T

T−t∗
||z(τ)||22dτ ≤ α

(
Ez(0) +

∫ 0

−t∗
||z(τ)||22dτ

)
+ C sup

τ∈[0,T ]
||z(τ)||22−η

with α < 1 and C = C(B, T, k, t∗). By the standard iteration argument via the
semigroup property, we conclude that

(6.19) ||z(t)||2H ≤ C(σ,B)e−σt||z(0)||2H + C(B, t∗, k) sup
τ∈[0,t]

||z(τ)||22−η,

for z(t) = (z(t), zt(t), z
t), and thus (Tt,H) is quasi-stable on B.
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7. Proofs of main theorems

7.1. Proof of Theorem 3.3: Global Compact Attractor. On the strength of
Theorem 4.4, applied with B = B and H = H2

0 (Ω)×L2(Ω)×L2(−t∗, 0;H2
0 (Ω)), we

deduce the existence of a compact global attractor from the quasi-stability property
of (Tt,H) given by (6.19) and (5.11). In addition, Theorem 4.5 guarantees A has
finite fractal dimension and that

||utt(t)||2 + ||ut(t)||22 ≤ C for all t ∈ R.

Since ut ∈ H2(Ω) ⊂ C(Ω), standard elliptic regularity with clamped boundary
conditions for

∆2u = p0 − utt − (1 + k)ut − f(u)− Uux + q(ut) ∈ L2(Ω)

gives that ||u(t)||24 ≤ C for all t ∈ R. Thus, we can conclude additional regularity
of the trajectories from the attractor A ⊂ H stated in Theorem 3.3. We have now
completed the proof of Theorem 3.3.

Corollary 3.4 follows immediately by considering the dynamical system for the
full flow-plate system (St, Y ) that generates the reduced dynamical system (Tt,H)
(possible for sufficiently large times by Theorem 3.1). For A ⊂ H, we then take U
to be the projection of A on Ypl, concluding the proof.

7.2. Proof of Theorem 3.5: Generalized Fractal Exponential Attractor.
With the quasi-stability estimate established on the absorbing ball, we need only

establish the Hölder continuity in time of Tt in some weaker space H̃ to finish the
proof of Theorem 3.5. This is accomplished through lifting via the operator A−1/2

for A the clamped, biharmonic operator with domain D(A) = (H4 ∩ H2
0 )(Ω) and

Au = (−∆)2u. Via the standard construction, we have that for u ∈ L2(Ω), we

obtain A−1/2u ∈ H2
0 (Ω) = D(A1/2) [13, 38].

From the previous section, we note that we can restrict our attention to the
absorbing ball (for t > t(x(0))): ||x(t)||H ≤ C(B). In particular, for any x(t) =
(u(t), ut(t), u

t), t sufficiently large, we have global-in-time bounds:

||∆u(t)|| ≤ C(B), ||ut(t)|| ≤ C(B), ||ut||L2(−t∗,0;H2
0 (Ω)) ≤ C(B, t∗).(7.1)

The latter follows from the dissipativity estimate in (6.14) and the global-in-time
bound of V (Tt(x)):

E∗(t) ≤
1

c0

[
V (Tt(x)) + c

]
≤ C(B).

And thus we have from the equation (3.2) and linearity of q(·)

A−1/2utt = A1/2u+ q(A−1/2ut) +A−1/2
[
p0 − Uux − (k + 1)ut − fB(u)

]
.(7.2)

From this it follows that

||A−1/2utt||L2(Ω) ≤ C||∆u||+ t∗
∫ t

t−t∗
||A−1/2∆u||ds

+ C||p0||H−2(Ω) + C(U)||u||H−1(Ω) + C(k)||ut||H−1(Ω)

≤ C(t∗, U)||u||H2(Ω) + C(k)||ut||L2(Ω) + C||p0||L2(Ω)

≤ C(t∗, U, p0,B).
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From here, we note ut(t)− ut(s) =
∫ t
s utt(τ)dτ, and thus

||ut(t)− ut(s)||H−2(Ω) ≤ C||A−1/2[ut(t)− ut(s)]||L2(Ω)

≤
∫ t

s
||A−1/2utt(τ)||dτ ≤ C(t∗, U, k,B)|t− s|.(7.3)

Lastly, we note

||u(t)− u(s)|| ≤
∫ t

s
||ut(τ)||dτ ≤

(
sup
t

||ut||
)
|t− s| ≤ C(B)|t− s|,∫ 0

−t∗
||u(t+ τ)− u(s+ τ)||dτ ≤

∫ 0

−t∗

∫ t+τ

s+τ
||ut(σ)||dσdτ ≤ C(t∗,B)|t− s|.

From the above estimates, we see that

||Tt(x)− Ts(x)||H̃ ≤ C|t− s|, H̃ = L2(Ω)×H−2(Ω)× L2(−t∗, 0;L2(Ω)).

Thus we note that (Tt,H) is uniformly Hölder continuous (in fact, Lipschitz) on

the absorbing ball B in the topology H̃ = Ỹpl × L2(−t∗, 0;L2(Ω)). The proof of
Theorem 3.5 is concluded on the strength of Theorem 4.6.

7.3. Proof of Theorem 3.6: Construction of Determining Functionals. In
this proof we adapt [13, Section 7.9.4] to show that having quasi-stability estimate
for the dynamics (Tt,H) on B is sufficient to produce a finite set of determining
functionals (of sufficiently small completeness defect).

For this proof, let L = {li}Ni=1 be a finite set of functionals on H2
0 (Ω). Recall the

notion of completeness defect for L (3.6) measured between H2
0 (Ω) and any Hs(Ω)

(0 ≤ s < 2):
(7.4)
εL (H2

0 (Ω),H
s(Ω)) = εL ,s ≡ sup

{||∆w||≤1}

{
||w||Hs(Ω) : lj(w) = 0 ∀ j = 1, ..., N

}
.

Secondly, we note the relation between εL ,2−η and εL ,0 through Sobolev interpo-
lation [11, p.123]:

(7.5) ||u||2−η ≤ ||u||η/2||u||1−η/2
2 =⇒ εL ,0 ≤ [εL ,2−η]

2/(2−η).

Now, let us prove a critical lemma.

Lemma 7.1. Let L and εL ,2−η for η > 0 as above. Then, for v ∈ H2
0 (Ω)

(7.6) ||v||2−η ≤ εL ,2−η||v||H2
0 (Ω) + C(L , η) max

j=1,...,N
|lj(v)|.

Proof of Lemma 7.1. Let {ej : j = 1, ..., N} be an orthonormal system for L—
so lj(ei) = 0, i ̸= j and lj(ej) = 1. Now, for any v ∈ H2

0 (Ω), we can write

w ≡ v −
∑N

j=1 lj(v)ej , and this w has the property that lj(w) = 0 for j = 1, ..., N .
By the definition of εL ,2−η, we have

||w||2−η ≤ εL ,2−η||w||H2
0 (Ω).

Substituting v = w +
∑N

j=1 lj(v)ej , we obtain (7.6). □
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Let Tt(x1) and Tt(x2) be two trajectories for x1, x2 ∈ B ⊆ H (and let us retain
the notation that Tt(x1) − Tt(x2) = z(t) = (z(t), zt(t), z

t)). We want to show, if
εL ,2−η is sufficiently small, then:

(7.7) lim
t→∞

|lj(Tt(x1)− Tt(x2)))|2 = 0, ∀ j = 1, ..., N,

implies that

lim
t→∞

||Tt(x1)− Tt(x2)||2H2
0 (Ω) = 0.

So, suppose (7.7). Note that this convergence is equivalent to

(7.8) S (t) ≡ sup
s∈[t,t+τ ]

max
j

|lj(u1(s)− u2(s))|2 = 0, t→ ∞.

From the quasi-stability estimate (6.19) and the semigroup property, we obtain
(7.9)
||Tt+τ (x1)− Tt+τ (x2)||2H ≤ C(σ,B)e−στ ||Tt(x1)− Tt(x2)||H + C sup

t≤s≤t+τ
||z(t)||22−η

With Young’s inequality, we have from (7.6)

||v||22−η ≤ (1 + δ)ε2L ,2−η||v||2H2
0 (Ω) + C(L , δ, η) max

j=1,...,N
|lj(v)|2.

With the Lipschitz estimate on Tt in (5.22), we obtain from above

sup
t≤s≤t+τ

||z(s)||22−η ≤ [(1 + δ)εL ,2−ηCe
aRτ ]||Tt(x1)− Tt(x2)||2H + C(L , δ, η)S (t).

From this estimate, we invoke (7.9) to obtain

||Tt+τ (x1)− Tt+τ (x2)||2H ≤ β||Tt(x1)− Tt(x2)||2H + C(L , δ, η)S (t),

with β = C (σ,B)[(1+δ)εL ,2−ηe
aRτ +e−στ ]. For δ > 0, and τ > 0 sufficiently large,

by taking εL ,2−η < ε∗ sufficiently small, we guarantee β < 1. Then, again from the
semigroup property, we can iterate on intervals of size τ to obtain

||Tt0+nτ (x1)− Tt0+nτ (x2)||2H ≤ βn||Tt0(x1)− Tt0(x2)||2H

+ C

n−1∑
m=0

βn−m−1S (t0 +mτ).

From here, taking n→ ∞, we obtain from (7.8) the desired conclusion in (7.7) and
the proof of Theorem 3.6 is complete, noting that εL ,2−η controls εL ,0 as in (7.5).

8. Final comments

In this concluding section, we make a few remarks. The main item is: what
happens in the system when there is imposed damping, k > 0? We quote a variety
of results (whose proofs are beyond the scope here) that apply to our main models
of interest (1.1) (the full flow-plate system) and (3.2) (the reduced plate). We then
propose some open questions regarding the results and analysis here.
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8.1. Known Results for Imposed Damping. In this section we allow the im-
posed damping k > 0, which leads to dissipation in the full flow-plate system (1.1),
and additional damping in the reduced, delayed plate system (3.2). We make the
distinction here between some damping—k > 0—and large damping—k > k∗ for k∗
chosen based on intrinsic properties of the model. In the results below, we need
large damping.

Remark 8.1. In this result, and all other results below, the minimal damping
coefficient k∗ depends on the loading p0 and b1, b2, as well as the domain Ω, the flow
support parameter ρ0, and the unperturbed flow velocity U , but k∗ is independent
of the particular initial data of the system.

The first result concerns the improvement of the generalized fractal exponential
attractor in Theorem 3.5. Namely, there exists a k∗ such that for all k > k∗, a
proper fractal exponential attractor exists (also called an inertial set [13, 11]). This
set is exponentially attracting and finite dimensional in the state space.

Theorem 8.2 (Fractal Exponential Attractor). With the same hypotheses as The-
orem 3.3 and k > k∗ (depending on the intrinsic parameters in (1.1)) the evolution
(Tt,H) has a fractal exponential attractor Aexp of finite dimension in the space H.

The improvement uses the recent criterion by Chueshov in [17], which itself makes
use of the transitivity of exponential attraction described in [26]. The proof of the
above theorem is a simple adaptation of the argument found in [31].

The next known result concerns the entire flow-plate system, (1.1). A major
hurdle in the long-time behavior analysis of the system is the transference of stability
properties of the plate back to the (hyperbolic) flow through the Neumann mapping;
at present, when α = 0, this is only possible in the subsonic case U < 1, when the
flow equation is truly hyperbolic (a perturbed wave equation). In this scenario,
we have a “good” energy relation, and the presence of damping with the energy
relation provide finiteness of the dissipation integral. In this case, sufficiently large
damping k > k∗ is enough provide convergence to equilibrium for the entire flow-
plate trajectories. From a physical point of view, this says that flutter is excluded
as an end behavior when the flow is subsonic. This is a well-known phenomenon to
aeroelasticians: subsonic panels do not flutter.

To state this result precisely, we present the stationary problem associated to
(1.1), of the form:

(8.1)


∆2u+ fB(u) = p0(x) + UrΩtr[∂xϕ] x ∈ Ω

u = ∂νu = 0 x ∈ Γ

∆ϕ− U2∂2xϕ = 0 x ∈ R3
+

∂zϕ = U∂xuext x ∈ ∂R3
+

The following theorem is shown for subsonic flows (this is given as [13, Theorem
6.5.10]):

Theorem 8.3. Suppose 0 ≤ U < 1, k ≥ 0, with p0 ∈ L2(Ω). Then weak solutions
(u(x), ϕ(x)) to (8.1) exist and satisfy the additional regularity property

(u, ϕ) ∈ (H4 ∩H2
0 )(Ω)×W 2(R3

+).
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We denote the set of all stationary solutions (weak solutions to (8.1) above) as N ,
that is

N ≡ {(û, ϕ̂) ∈ H2
0 (Ω)×W 1(R3

+) : (û, ϕ̂) satisfy (8.1) variationally}.

Then we have the following theorem for the entire flow-plate system, when k is
large and 0 ≤ U < 1:

Theorem 8.4. Let 0 ≤ U < 1 and assume p0 ∈ L2(Ω) and b1 ∈ R. Assume
y0 = (u0, u1;ϕ0, ϕ1) ∈ Y . Then there is a minimal damping coefficient k∗ > 0 (not
depending on the particular solution) so that for k ≥ k∗ > 0 any generalized solution
(u(t), ϕ(t)) to the system with localized initial flow data (i.e., supp(ϕ0), supp(ϕ1) ⊂
Kρ0 for some ρ0 > 0) has the property that for any ρ > 0

lim
t→∞

inf
(û,ϕ̂)∈N

{
∥u(t)− û∥2H2(Ω) + ∥ut(t)∥2L2(Ω)

+∥ϕ(t)− ϕ̂∥2H1(Kρ)
+∥ϕt(t)∥2L2(Kρ)

}
= 0.

8.2. Open Questions and Conjectures. Let us now provide a few conjectures/
open questions for further research along the lines in this paper.

Improving the Exponential Attractor Further: As commented on in the
conclusion of [32], it seems that the decomposition presented there is viable for the
delay system. Indeed, with large damping and finiteness of the dissipation integral,
we make the following conjecture:

Conjecture 1 (Fractal Exponential Attractor). With the same hypotheses as The-
orem 3.3 and k > k∗ (depending on the intrinsic parameters in (1.1)) the evolu-
tion (Tt,H) has a fractal exponential attractor (as in Theorem 8.2) and Aexp ⊂
(H4 ∩H2

0 )(Ω)×H2
0 (Ω)× L2(−t∗, 0; (H4 ∩H2

0 (Ω)))—bounded in that topology.

Determining Functionals for the Entire System: We note that in the reference
[13] the determining functionals produced for the system (Tt,H) are extended to a
set of determining functionals for the entire dynamics (St, Y ), albeit when rotational
inertia is present in the plate—[13, p.690]. In this case, with α > 0, the necessary
damping is of the form k(1 − α∆)ut, but the only requirement is that k > 0.
Moreover, the result there is valid for f(u) being the von Karman nonlinearity (as
well as others with similar properties, including fB(u)). We point out that in this
case, the Neumann (plate to flow-mapping) is compact, and thus the transference
of stability properties of the plate to the flow is more direct and natural.

With respect to our model, namely with no inertia α = 0, we speculate that the
approaches in [36, 37] are amenable here (for f = fB) with k > k∗. Thus we believe
the following holds:

Conjecture 2. Let the hypotheses of Theorem 8.4 be in force—notably, k > k∗.
Then there exists a set L which is a finite determining set for the entire dynamics
(St, Y ).

Results for Some Damping: While many results in the rotary inertia scenario
hold for some damping, i.e., when the principal linear portion of the plate has the
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form
(1− α∆)utt +∆2w + k(1− α∆)ut + f(u) = p(x, t),

we do not currently see a means of circumventing the need for large damping in
the results and conjectures presented above. All results for imposed damping above
represent an improvement of existing results through some form of decomposition
of the plate dynamics into a smooth and exponentially decaying part—the latter
portion unavoidably requires large damping. Physically, we would like results (e.g.,
subsonic convergence to equilibria or full system determining functionals) to hold
for any amount of imposed damping, as there is some structural damping present
in every elastic structure. Unfortunately, our methods do not seem to yield this at
present.

Von Karman Nonlinearity: As the Berger nonlinearity is a simplification—a
physically accepted one for panels—of the scalar von Karman equations, one might
naturally ask if the above results hold when f(u) = fV (u)? The answer is, in
general, complicated. We refer the reader to [31] where these issues are discussed at
length, and comparisons between von Karman and Berger dynamics in the absence
of rotational inertia are the main theme. Two succinct comments are in order:

(i) For von Karman’s dynamics with (k + 1) > 0, showing the quasi-stability
property is more difficult; in general, it can only be done on the attractor itself,
rather than on the absorbing ball. If one assumes the damping is large, i.e., k > k∗,
then one can obtain the quasi-stability estimate on the absorbing ball B; this is in
contrast to the situation here, where quasi-stability for the Berger system is shown
for on the absorbing ball with only the damping coming from the flow (i.e., k = 0),
and its size does not matter.

(ii) The second comment is that working in higher topologies for f = fV , for
instance in trying to construct smooth exponentially attracting sets, is far more
difficult than the Berger dynamics. This leads to critical problems in most results
presented in this section—see [37] for more discussion.

Other Plate Boundary Conditions: Unfortunately, while other boundary con-
ditions are very interesting to us in the context of this model, the questions of
modeling, well-posedness, and stability are very complicated. First, the modeling
changes dramatically (i.e., von Karman/Berger) when free boundary conditions are
utilized (see [27]). Secondly, extension by zero is utilized in many arguments above,
and this is not possible for hinged or free boundary conditions. We posit that this
could be circumvented using other types of extensions, but the free boundary con-
ditions are quite challenging and open for this type of coupled flow-plate model. In
general, for non-homogeneous plate boundary conditions, there has been some work
on the Berger flow-plate interaction with boundary damping through moments [35],
but this question is also largely open. The survey type references [16, 18, 19] provide
more detailed discussion, especially with regards to the free boundary condition.
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