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system. The problem is to find a feedback control law that optimizes certain per-
formance objectives which is described by the expected value of certain nonlinear
functional of the state and output trajectories. Fully observed control problems are
well studied in the literature as seen in [2, 3] and the references therein. There,
using the Bellman’s principle of optimality, one obtains an HJB equation which is
a nonlinear partial differential equation on infinite dimensional Hilbert or Banach
spaces depending on the original state space. The optimal control law is then given
in terms of the solution of the HJB (Hamilton-Jacobi-Bellman) equation; see [3] for
details. Solving HJB equations on infinite dimensional spaces and then constructing
the feedback control law using the solution is a formidable task. In the literature
on partially observed control problems, one uses a control law which is a function of
the estimated state which is adapted to the available information or observed pro-
cess. This leads to a filtering problem requiring the solution of Zakai equation for
conditional un-normalized measure valued functions [2]. Using this measure valued
function one obtains the so called filtered (or estimated) version of the state. The
optimal control is given by some function of this estimated state. This certainly
is an indirect approach requiring solution of partial differential equations on Rn in
case of finite dimensional control problems [2, Chapter 15] while, in case of infinite
dimensional control problems, one is required to solve partial differential equations
defined on infinite dimensional Hilbert or Banach space [3]. Clearly this is also a
formidable problem.

Here in this paper we formulate the original infinite dimensional control problem
in a natural and direct way where one is required to find the optimal control law as
a map from the output space of the monitor to the input space of the system to be
controlled. This gives rise to interesting topologies and topological questions such
as continuity and compactness.

The rest of the paper is organised as follows. In section 2, we present the system
model and formulate the control problem. Basic assumptions are presented in sec-
tion 3. In section 4, we present existence, uniqueness and regularity properties of
solutions of the system equations. In section 5, we consider control problems. Here
we introduce a general class of admissible feedback operators and a suitable topol-
ogy on the space of such operator valued functions. Then we prove the continuity
of solutions with respect to control operators in the given topology (Theorem 5.2).
Using the topological properties of the admissible class, existence of optimal feed-
back control laws (operator valued functions) is proved (Theorem 5.3). In section
6, we introduce the attainable set of measures induced by the family of solutions
corresponding to the admissible set of Control operators. We prove its weak com-
pactness in the space of probability measures and present several interesting results
on optimal controls involving the measures. In section 7, we present the necessary
conditions of optimality (Theorem 7.1) whereby one can construct the optimal pol-
icy. The last section (Section 8), is devoted to the question of convergence of an
algorithm based on the necessary conditions of optimality giving Theorem 8.1.

2. Basic formulation of the system model

Let X,Y be a pair of real Banach spaces and consider the system governed by
a pair of interconnected stochastic evolution equations on the Cartesian product
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X × Y ≡ Z as follows:

dx = Axdt+ F (t, x)dt+B(t)ydt+G(t, x)dW, x(0) = x0, t ∈ I,(2.1)

dy = A0ydt+ F0(t, x)dt+G0(t, y)dW0, y(0) = y0, t ∈ I ≡ [0, T ].(2.2)

The spaceX denotes the state space of the system to be controlled given by equation
(2.1). The process x is not accessible and so not observable. The space Y denotes
the state space of the system described by equation (2.2) called the observer, whose
state is accessible and so observable. The observable process y is monitored in the
presence of noise and used to control the stochastic system defined by equation (2.1).
Both W and W0 are H and H0-cylindrical Brownian motions defined on a complete
probability space with a filtration (Ω,F ,Ft≥0, P ). Both the systems are noisy since
their initial states {x0, y0} are random and they are driven by Brownian motions
which we assume to be mutually independent. Let (L(Y,X), τso) denote the space
of bounded linear operators L(Y,X) furnished with the strong operator topology
τso and let Bad denote the set of admissible operator valued functions defined on
the interval I ≡ [0, T ] and taking values in Λ ⊂ (L(Y,X), τso), a bounded set with
bound b < ∞. The problem is to find an element B ∈ Bad that minimizes the cost
functional

J(B) ≡ E

{∫
I
ℓ(t, x, y)dt+Φ(x(T ), y(T ))

}
.(2.3)

More characterization of the set Bad will follow shortly. This is the natural setting
of many real world problems where there is an underlying large scale distributed
system whose state is either not physically accessible or its dimension is so large
that it is prohibitively costly to monitor the full state and use the data to control the
system. However, the system is partially observable in the sense that the state of
the main system affects the state of another dynamic system ( monitor or observer)
whose state is completely accessible. On the basis of this available and possibly
imperfect information, one must control the main system in order to realize certain
objectives, for example, minimize the cost functional (2.3).

3. Basic assumptions

Throughout the paper, we assume that the Banach spaces X and Y are UMD Ba-
nach spaces. This assumption is essential for stochastic integration of X and /or Y
valued random processes with respect to Brownian motions. Let {H,H0} be a pair
of real separable Hilbert spaces and {W (t),W0(t), t ∈ I} a pair of H-cylindrical and
H0-cylindrical Brownian motions respectively and that they are stochastically inde-
pendent. Let L(H,X) and L(H0, Y ) denote the spaces of bounded linear operators
from the Hilbert H to the Banach space X, and from the Hilbert space H0 to the
Banach space Y respectively. Let γ(H,X) ⊂ L(H,X) and γ(H0, Y ) ⊂ L(H0, Y ) de-
note the spaces of γ-Radonifying operators. Here we present the basic assumptions
used in the paper.

(A1): The operator A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0,
on a UMD-type2 Banach space X,
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(A2): F : I×Ω×X −→ X is a Borel measurable map, and there exist constants
C1, C2 > 0 such that

(i): ∥ F (t, x) ∥X≤ C1(1+ ∥ x ∥X), ∀ x ∈ X,

(ii): ∥ F (t, x1)− F (t, x2) ∥X≤ C2(∥ x1 − x2 ∥X) ∀ x1, x2 ∈ X.

(A3): G : I × Ω × X −→ γ(H,X) ⊂ L(H,X) is a Borel measurable map, and
there exist constants C3, C4 > 0 such that

(i): ∥ G(t, x) ∥2γ(H,X)≤ C2
3 (1+ ∥ x ∥2X), ∀ x ∈ X,

(ii): ∥ G(t, x1)−G(t, x2) ∥2γ(H,X)≤ C2
4 ∥ x1 − x2 ∥2X ∀ x1, x2 ∈ X,

(A4): The operator A0 is the infinitesimal generator of a C0-semigroup S0(t), t ≥
0, on a UMD-type2 Banach space Y,

(A5): F0 : I×Ω×X −→ Y is a Borel measurable map and there exist constants
C5, C6 > 0 such that

(i): ∥ F0(t, x) ∥Y ≤ C5(1+ ∥ x ∥X), ∀ x ∈ X,

(ii): ∥ F0(t, x1)− F0(t, x2) ∥Y ≤ C6 ∥ x1 − x2 ∥X ∀ x1, x2 ∈ X,

(A6): G0 : I × Ω× Y −→ γ(H0, Y ) ⊂ L(H0, Y ) is a Borel measurable map and
there exist constants C7, C8 > 0 such that

(i): ∥ G0(t, y) ∥2γ(H0,Y )≤ C2
7 (1+ ∥ y ∥2Y ), ∀ y ∈ Y,

(ii): ∥ G0(t, y1)−G0(t, y2) ∥2γ(H0,Y )2≤ C2
8 ∥ y1 − y2 ∥2Y ∀ y1, y2 ∈ Y.

4. Existence and uniqueness of solutions

In this section we consider briefly the question of existence and uniqueness of
mild solutions of the stochastic evolution equations (2.1)-(2.2). By definition, the
mild solutions of these equations are given by the solutions (if any) of the following
integral equations defined on the Cartesian product Z ≡ X × Y of the Banach
spaces X and Y as follows:

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds+

∫ t

0
S(t− s)B(s)y(s)ds(4.1)

+

∫ t

0
S(t− s)G(s, x(s))dW (s), t ∈ I,

y(t) = S0(t)y0 +

∫ t

0
S0(t− s)F0(s, x(s))ds(4.2)

+

∫ t

0
S0(t− s)G0(s, y(s))dW0, t ∈ I.

We introduce the operators Γ1,Γ2 defined on the Banach space Z and given by the
following expressions:

Γ1(x, y)(t) ≡ S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds(4.3)
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+

∫ t

0
S(t− s)B(s)y(s)ds+

∫ t

0
S(t− s)G(s, x(s))dW (s), t ∈ I,

Γ2(x, y)(t) ≡ S0(t)y0 +

∫ t

0
S0(t− s)F0(s, x(s))ds(4.4)

+

∫ t

0
S0(t− s)G0(s, y(s))dW0, t ∈ I.

Thus the question of existence of solutions of the integral equations (4.1)-(4.2) is
equivalent to the question of existence of a fixed point of the operator Γ given by
z = Γ(z) where

z =

[
x
y

]
=

[
Γ1(x, y)
Γ2(x, y)

]
≡ Γ(z).

Let Ba
∞(I, L2(Ω, X)) and Ba

∞(I, L2(Ω, Y )) denote the Banach spaces of
Ft-adapted processes defined on the interval I, taking values in the Banach spaces
X and Y respectively and having finite second moments. An element x ∈
Ba

∞(I, L2(Ω, E)) has the norm ∥ x ∥∞ given by

∥ x ∥2∞≡ sup{E ∥ x(t) ∥2E , t ∈ I},
for E = X, or Y. For convenience of notation, we set

Ba
∞(I, L2(Ω, X))×Ba

∞(I, L2(Ω, Y )) ≡ Ba
∞(I, L2(Ω,Z)).

We present the following result which we need later in the paper.

Theorem 4.1. Consider the stochastic systems (2.1)-(2.2) and suppose the basic
assumptions (A1)-(A6) hold. Then, for every pair of F0-measurable initial states
x0 ∈ L2(Ω, X) and y0 ∈ L2(Ω, Y ), and feedback operator B ∈ Bad, the system
(2.1)-(2.2) has a unique Ft-adapted mild solution with x ∈ Ba

∞(I, L2(Ω, X)) and
y ∈ Ba

∞(I, L2(Ω, Y )).

Proof. The proof is standard and it follows from Banach fixed point theorem applied
to the operator Γ.We present only some major points. First consider the stochastic
integrals in (4.4) and (4.5). We recall the fact that the γ-Radonifying operators
form two sided ideal in the space of bounded linear operators. Thus, considering
the stochastic integral in (4.4) and defining

V1(t) ≡
∫ t

0
S(t− s)G(s, x(s))dW, t ∈ I,(4.5)

it is easy to verify that

E ∥ V1(t) ∥2X=

∫ t

0
E ∥ S(t− s)G(s, x(s)) ∥2γ(H,X) ds(4.6)

≤M2C2
3

∫ t

0
(1 +E ∥ x(s) ∥2)ds.

Similarly, considering equation (4.5) and denoting the stochastic integral term by
V2 we obtain

E ∥ V2(t) ∥2Y =
∫ t

0
E ∥ S0(t− s)G0(s, y(s)) ∥2γ(H0,Y ) ds(4.7)
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≤M2
0C

2
7

∫ t

0
(1 +E ∥ y(s) ∥2Y )ds.

Now using the expressions (4.4) and (4.5) and standard triangle and Hölder inequal-
ities one can verify that there exist positive constants k1, k2 depending on constants
{(C1)− (C6),M0,M} such that

E ∥ Γ1(x, y)(t) ∥2X≤ k1

{
E ∥ x0 ∥2X +(1 + t)

∫ t

0
E ∥ x(s) ∥2X ds(4.8)

+t

∫ t

0
E ∥ y(s) ∥2Y ds

}
and

E ∥ Γ2(x, y)(t) ∥2Y ≤ k2

{
E ∥ y0 ∥2Y +(1 + t)

∫ t

0
E ∥ x(s) ∥2X ds(4.9)

+

∫ t

0
E ∥ y(s) ∥2Y ds

}
.

From the above estimates we obtain the following inequality

sup{E ∥ Γ(z)(t) ∥2Z , t ∈ I} ≤ αE ∥ z0 ∥2Z +β sup{E ∥ z(t) ∥2Z , t ∈ I}(4.10)

where the constants α, β are dependent on the basic parameters {(C1) − (C6),
M,M0, T}. Clearly, it follows from the above inequality that the operator

Γ : Ba
∞(I, L2(Ω,Z)) −→ Ba

∞(I, L2(Ω,Z)).

Using similar computations one can verify that for all t ∈ I,

E ∥ (Γ(z1)− Γ(z2))(t) ∥2Z(4.11)

≤
{
(4M2(tC2

2 + C2
4 ) + 2tM2

0C
2
6 )

∫ t

0
E ∥ x1(s)− x2(s) ∥2X ds

+(4tM2b2 + 2M2
0C

2
8 )

∫ t

0
E ∥ y1(s)− y2(s) ∥2Y ds

}
.

It follows from this that there exists a constant C̃ dependent on the parameters as
displayed Ĉ ≡ C̃(M,M0, b, C2, C4, C6, C8, T ), such that

E ∥ (Γ(z1)− Γ(z2))(t) ∥2Z≤ C̃2

∫ t

0
E ∥ z1(s)− z2(s) ∥2Z ds, t ∈ I.(4.12)

Hence, for any t1 ∈ I, it follows from the above inequality that

sup
0≤t≤t1

E ∥ (Γ(z1)− Γ(z2))(t) ∥2Z≤ (C̃2t1) sup
0≤t≤t1

E ∥ z1(t)− z2(t) ∥2Z .(4.13)

From here, one can follow either of two ways to prove the existence and uniqueness
of solution. Using the inequality (4.12) and considering the iterates of the operator
Γ, in particular the n-th iterate Γn, one can easily verify that

sup
t∈I

{E ∥ (Γn(z1)− Γn(z2))(t) ∥2Z(4.14)

≤ ((C̃2T )n/n!) sup
t∈I

E ∥ z1(t)− z2(t) ∥2Z .
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Hence we conclude that

∥ Γn(z1)− Γn(z2) ∥Ba
∞(I,L2(Ω,Z))≤ αn ∥ z1 − z2 ∥Ba

∞(I,L2(Ω,Z)),(4.15)

where αn = ((C̃2T )n/n!)1/2. Clearly, for n sufficiently large, αn < 1 and hence the
operator Γn is a contraction and consequently it follows from Banach fixed point
theorem that Γn has a unique fixed point say zo ∈ Ba

∞(I, L2(Ω,Z)). Hence one
can easily verify that zo is also a unique fixed point of the operator Γ. This is one
approach. The second method is based on the inequality (4.13). Here one chooses

t1 ∈ I, sufficiently small, so that C̃2t1 = γ < 1. This implies that the operator Γ
restricted to the Banach space Ba

∞(I1, L2(Ω,Z)), where I1 ≡ (0, t1], is a contraction
and hence has a unique fixed point ζ ∈ Ba

∞(I1, L2(Ω,Z)). Considering the interval
I2 ≡ (t1, t2] and starting with the state ζ(t1), again one chooses a t2 ∈ (t1, T ] so that

C̃2(t2 − t1) = γ, which implies that the operator Γ, restricted to the Banach space
Ba

∞(I2, L2(Ω,Z)), is a contraction and hence has a unique fixed point. This process
can be continued till the interval I = [0, T ] is covered. By concatenation of the
pieces one obtains a unique solution. This completes the outline of our proof. □
Remark 4.2. Under an additional assumption, following the well known Da-Prato
Zabczyk factorization technique [11, Theorem 1.1, p144], one can easily verify that
the solution process z = (x, y) has continuous modifications. In other words, z ∈
La
2(Ω, C(I,Z)).

5. Optimal output feedback control laws

Admissible Set of Feedback Control Operators: To prove existence of optimal
output feedback control laws (operators), we use continuous dependence of solutions
with respect to such operators. For this we must define appropriate topology on
the space of operator valued functions. Consider the space of bounded linear op-
erators L(Y,X) endowed with the strong operator topology τso and denote this by
Lso(Y,X). It is well known that Lso(Y,X) is a locally convex sequentially complete
Hausdorff topological vector space. We choose a τso compact set Λ ⊂ Lso(Y,X)
and let Bad ≡ B0(I,Λ) denote the class of strongly measurable operator valued
functions defined on I and taking values from the set Λ. Here we can use the well
known Tychonoff product topology [13] denoted by ττπ. Endowed with the Ty-
chonoff product topology, Bad is also a compact Hausdorff space. We choose this as
the set of admissible feedback operators.

Remark 5.1. Since the set Λ, defining the admissible set of feedback operators
Bad ≡ B0(I,Λ), is compact in the strong operator topology τso, it follows from
uniform boundedness principle (Banach-Steinhaus theorem) that it is bounded in
the uniform operator norm topology. Hence the solution set

S ≡ {z(B) : z(B) ∈ Ba
∞(I, L2(Ω,Z)), B ∈ Bad}

is a bounded subset of Ba
∞(I, L2(Ω,Z)).

We prove the following continuity result.

Theorem 5.2. Consider the system (2.1)-(2.2) with the admissible control op-
erators Bad, and suppose the assumptions of Theorem 4.1 hold. Then, the map
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B −→ (x, y) ≡ z is continuous with respect to the Tychonoff product topology ττπ
on Bad and the natural norm topology on Ba

∞(I, L2(Ω,Z)).

Proof. Let {Bn, Bo} ∈ Bad and suppose Bn
ττπ−→ Bo (in the Tychnoff product topol-

ogy). Let {zn} ≡ {(xn, yn)} ∈ Ba
∞(I, L2(Ω,Z)) denote the mild solutions of the

system (2.1)-(2.2) corresponding to the sequence {Bn} and {zo} ≡ {(xo, yo)} ∈
Ba

∞(I, L2(Ω,Z)) denote the mild solution of equations (2.1)-(2.2) corresponding to

Bo. To prove continuity we must show that zn
s−→ zo in Ba

∞(I, L2(Ω,Z)). Sub-
tracting the expressions (4.1) and (4.2) corresponding to {Bo, xo, yo} from the same
corresponding to {Bn, xn, yn} we have, for all t ∈ I,

xo(t)− xn(t) =

∫ t

0
S(t− s)[F (s, xo(s))− F (s, xn(s))]ds(5.1)

+

∫ t

0
S(t− s)(Bo(s)yo(s)−Bn(s)yn(s))ds

+

∫ t

0
S(t− s)[G(s, xo(s))−G(s, xn(s))]dW (s),

yo(t)− yn(t) =

∫ t

0
S0(t− s)[F0(s, xo(s))− F0(s, xn(s))]ds(5.2)

+

∫ t

0
S0(t− s)[G0(s, yo(s))−G0(s, yn(s))]dW0(s).

Considering the second term of the expression on the righthand side of equation
(5.1) and denoting it by (T2) we can rearrange it as

(T2)(t) ≡
∫ t

0
S(t− s)[Bo(s)−Bn(s)]yo(s)ds(5.3)

+

∫ t

0
S(t− s)Bn(s)[yo(s)− yn(s)]ds

≡ en(t) +

∫ t

0
S(t− s)Bn(s)[yo(s)− yn(s)]ds, t ∈ I.

Considering the third term and denoting it by

(T3)(t) ≡
∫ t

0
S(t− s)[G(s, xo(s))−G(s, xn(s))]dW (s), t ∈ I,

we note that

E ∥ (T3)(t) ∥2X= E

∫ t

0
∥ S(t− s)[G(s, xo(s))−G(s, xn(s))] ∥2γ(H,X) ds,(5.4)

where ∥ · ∥γ(H,X) denotes the γ-Radonifying norm. Using the assumptions (A1),
(A2)(ii) and (A3)(ii) and the equations (5.1), (5.3) and (5.4) and computing the
expected value of the square of the X norm of xo(t)− xn(t), we find that

E ∥ xo(t)− xn(t) ∥2X(5.5)

≤ 4
{
(MC2)

2t+ (MC4)
2
}∫ t

0
E ∥ xo(t)− xn(t) ∥2X ds
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+4(Mb)2t

∫ t

0
E ∥ yo(s)− yn(s) ∥2Y ds+ 4E ∥ en(t) ∥2Y , t ∈ I.

Similarly, considering the expression given by (5.2) and using the assumptions (A4),
(A5(ii) and (A6)(ii) and computing the expected value of the square of the Y norm,
one can easily verify that

E ∥ y0(t)− yn(t) ∥2Y ≤ 2(M0C6)
2t

∫ t

0
E ∥ x0(s)− xn(s) ∥2X ds(5.6)

+2(M0C8)
2

∫ t

0
E ∥ y0(s)− yn(s) ∥2Y ds, t ∈ I.

Defining ξn(t) ≡ E ∥ xo(t)− xn(t) ∥2X and ηn(t) ≡ E ∥ y0(t)− yn(t) ∥2Y for t ∈ I, we
can rewrite the inequalities (5.5)-(5.6) as follows:

ξn(t) ≤ C9

∫ t

0
ξn(s)ds+ C10

∫ t

0
ηn(s)ds+ 4E ∥ en(t) ∥2X(5.7)

ηn(t) ≤ C11

∫ t

0
ξn(s)ds+ C12

∫ t

0
ηn(s)ds, t ∈ I,(5.8)

where the constants C9, C10, C11, C12 are dependent on T and the basic parameters
{M,C2, C4} and {M0, C6, C8} appearing in the assumptions (A1)-(A6). Defining
ζn(t) = ξn(t) + ηn(t), t ∈ I, and summing the above inequalities we obtain

ζn(t) ≤ Ĉ

∫ t

0
ζn(s) ds+ 4E ∥ en(t) ∥2X , t ∈ I,(5.9)

where Ĉ > is a constant dependent on the parameters {C9, C10, C11, C12}. It follows
from Gronwall inequality applied to the above expression that

ζn(t) ≤ 4E ∥ en(t) ∥2X +4Ĉ exp(ĈT )

∫ t

0
E ∥ en(s) ∥2X ds, t ∈ I.(5.10)

Recall that en is given by

en(t) ≡
∫ t

0
S(t− s)[Bo(s)−Bn(s)]yo(s)ds, t ∈ I.(5.11)

Computing the square of the X norm of en(t) we obtain the following inequality,

∥ en(t) ∥2X≤M2t

∫ t

0
∥ [Bo(s)−Bn(s)]yo(s) ∥2X ds(5.12)

≤M2T

∫ T

0
∥ [Bo(s)−Bn(s)]yo(s) ∥2 ds P − a.s.

Since Bn
ττπ−→ Bo (in Tychonoff product topology) and yo ∈ Ba

∞(I, L2(Ω, Y )), it
is clear that the integrand converges P -a.s to zero for almost all t ∈ I. By our
assumption, the elements of Bad are uniformly norm bounded by a positive number
b. Thus the integrand is dominated by the following integrable process

∥ [Bo(t)−Bn(t)]yo(t) ∥2≤ 4b2 ∥ yo(t) ∥2Y .
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Hence it follows from Lebesgue dominated convergence theorem that

lim
n→∞

E

∫ T

0
∥ [Bo(s)−Bn(s)]yo(s) ∥2 ds = 0.

Thus we conclude that supt∈I E ∥ en(t) ∥2X−→ 0 as n → ∞, and hence it follows
from the inequality (5.10) that

lim
n→∞

sup{ζn(t), t ∈ I} = 0.

This proves that both ξn and ηn converges to zero uniformly on I and hence zn
s−→

zo in Ba
∞(I, L2(Ω,Z)). This proves the continuity of the map B −→ z with respect

to the topologies stated. □

Using the above result we can prove the existence of optimal policy (an output
feedback operator valued function). This is presented in the following theorem.

Theorem 5.3. Consider the system (2.1)-(2.2) with the objective (cost) functional
(2.3) and admissible output feedback control policies Bad and suppose the assump-
tions of Theorem 5.2 hold. Further, suppose the cost integrands {ℓ,Φ} are real
valued Borel measurable functions on I×X×Y and X×Y respectively and that for
all t ∈ I, they are lower semicontinuous on X × Y satisfying the following growth
conditions:

|ℓ(t, x, y)| ≤ α(t) + β{∥ x ∥2X + ∥ y ∥2Y }, |Φ(x, y)| ≤ γ{∥ x ∥2X + ∥ y ∥2Y }
for certain α ∈ L+

1 (I) and real numbers β, γ ≥ 0. Then, there exists a Bo ∈ Bad at
which J(B) attains its minimum.

Proof. For convenience, we write J(B) ≡ J1(B) + J2(B) where

J1(B) ≡ E

∫
I
ℓ(t, x, y) dt, J2(B) ≡ EΦ(x(T ), y(T )).

We show that these functionals are lower semicontinuous with respect to the Ty-

chonoff product topology. Suppose Bn
ττπ−→ Bo, and let zn ≡ (xn, yn) denote the

(mild) solution of the system (2.1)-(2.2) corresponding to the sequence Bn and
zo ≡ (xo, yo) denote the solution corresponding to Bo. Then it follows from Theo-
rem 5.2 that zn converges to zo ≡ (xo, yo) in the norm topology of Ba

∞(I, L2(Ω,Z)).
Since ℓ and Φ are lower semicontinuous on X × Y , we have, for all t ∈ I,

ℓ(t, xo(t), yo(t)) ≤ lim
n→∞

ℓ(t, xn(t), yn(t)) P − a.s(5.13)

and

Φ(xo(T ), yo(T )) ≤ lim
n→∞

Φ(xn(T ), yn(T )) P − a.s.(5.14)

It follows from Remark 5.1 that the solution set S is a bounded subset of
Ba

∞(I, L2(Ω,Z)). Consequently, it follows from our assumption on the quadratic
growth property of the integrands {ℓ,Φ} that they are bounded from below by
integrable process. Thus it follows from generalized Fatou’s Lemma that

E

∫
I
lim ℓ(t, xn(t), yn(t))dt ≤ limE

∫
I
ℓ(t, xn(t), yn(t))dt,(5.15)
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and hence it follows from (5.13) and (5.15) that J1(Bo) ≤ lim J1(Bn). It follows from
similar argument that J2(Bo) ≤ lim J2(Bn). Thus the sum J(B) = J1(B) + J2(B)
is also lower semicontinuous with respect to the Tychonoff product topology ττπ.
Since Bad is compact in this topology, J attains its minimum on it. This proves the
existence of an optimal policy. □
Remark 5.4. Since the map B −→ J(B) is rarely convex, we cannot claim unique-
ness of the optimal policy Bo. However, it is easy to verify that the set of optimals

Op ≡ {B ∈ Bad : J(B) = J(Bo)}
is a closed subset of Bad and hence, being a closed subset of a compact set, it is
compact.

Remark 5.5. Considering the admissible set of (output feedback) control operators
Bad = B0(I,Λ), with Λ ⊂ Lso(Y,X), we note that we have only admitted linear
operator valued functions. We believe that this can be extended to a large class of
nonlinear operators contained in XY . We leave it for future work.

6. Attainable set of measures and related control

It is interesting, both theoretically and practically, to study the properties of
measures induced by the solutions of the stochastic evolution equations (2.1)-(2.2).
We have seen that for each B ∈ Bad, the solution process z(B) ∈ Ba

∞(I, L2(Ω,Z)).
Let B(Z) denote the class of Borel sets in the product space Z ≡ X × Y. For any
B ∈ Bad and t ∈ I, let

mB
t (·) ≡ Pr{z(B)(t) ∈ ·}

denote the probability measure induced by the random element z(B)(t) on B(Z).
We are more interested in the probability measures induced by the state process
{x(B)(t), t ∈ I}, not the observable process. This is given by the marginal

µBt (Γ) ≡ mB
t (Γ× Y ),Γ ∈ B(X).

For each t ∈ I, the attainable set of measures induced by the state process {x(B), B ∈
Bad} is then given by

A(t) ≡ {µBt : B ∈ Bad}

Theorem 6.1. Suppose the assumptions of Theorem 5.2 hold. Then, for each t ∈ I,
the attainable set of measures A(t) is a weakly compact subset of the space of regular
Borel probability M0(X).

Proof. Let (D,≥) be a directed set and µα ∈ A(t), α ∈ D, be a net. Then by

definition there exists a net Bα ∈ Bad so that µα = µBα
t . Since Bad is compact in

the Tychonoff product topology ττπ, there exists a subnet, relabeled as the original

net, and a Bo ∈ Bad such that Bα
ττπ−→ Bo. Let zα ∈ Ba

∞(I, L2(Ω,Z)) denote the
mild solution of the pair of evolution equations (2.1)-(2.2) corresponding to Bα

and zo ∈ Ba
∞(I, L2(Ω,Z)) the mild solution corresponding to Bo. Let xα and xo

denote the projections of zα and zo respectively to their X components. That is,
projection of Ba

∞(I, L2(Ω,Z)) to Ba
∞(I, L2(Ω, X)). By Theorem 5.2, along a subnet

if necessary, zα
s−→ zo in Ba

∞(I, L2(Ω,Z)). Thus xα
s−→ xo in Ba

∞(I, L2(Ω, X)) and
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hence, for each t ∈ I, xα(t)
s−→ xo(t) in L2(Ω, X). It follows from classical measure

theory and probability theory that convergence in the mean implies convergence
in measure which in turn implies convergence in distribution. It is known that
convergence in distribution is equivalent to weak convergence of the corresponding

measures. Thus µαt
w−→ µot , that is, for each φ ∈ BC(X),∫

X
φ(x)µαt (dx) −→

∫
X
φ(x)µot (dx).

This proves that µot ∈ A(t) and hence the attainable set is a weakly compact subset
of the space of probability measures M0(X). This completes the proof. □

Here we present some interesting applications. Suppose a desired (probability)
measure ν ∈ M0(X) is given. The problem is to find a output feedback control
law B ∈ Bad so that, at the terminal time T, we have µBT = ν. In order that this
problem has a solution, it is necessary that ν ∈ A(T ). If this is true for every given
ν ∈ M0(X), the system is globally controllable and, in that case, A(t) is weakly
dense in M0(X). If this is not satisfied, we can still try to find one that comes close
to the desired ν. This requires a metric on the space of probability measures and
it is well known that Prokhorov metric ρ is one that serves the purpose. For any
G ∈ B(X), define the ε-neighbourhood of G by Gε ≡ {x ∈ X : d(x,G) < ε} where d
is the metric induced by the norm topology of X. Recall that the Prokhorov metric
between any two elements µ1, µ2 ∈ M0(X) is given by

ρ(µ1, µ2) ≡ inf

{
ε > 0 : µ1(G) ≤ µ2(G

ε) + ε,

and µ2(G) ≤ µ1(G
ε) + ε,G ∈ B(X)

}
.

It is known that the metric topology on M0(X) induced by the Prokhorov metric
ρ is equivalent to the weak topology if and only if X is separable. Thus assuming
separability of X we can formulate the problem stated above as follows: Find B ∈
Bad that minimizes the following (cost) functional

J1(B) ≡ ρ(ν, µBT ), B ∈ Bad.

Clearly this is equivalent to minimizing the functional f(µ) given by

f(µ) ≡ ρ(ν, µ), µ ∈ A(T ).

Corollary 6.2. Consider the cost functional J1 and suppose the assumptions of
Theorem 6.1 hold and that X is separable. Then there exists an optimal feedback
law Bo ∈ Bad at which J1(B) attains its minimum.

Proof. Under the separability assumption of the state space X, the metric topology
on M0(X) induced by the Prokhorov metric ρ, is equivalent to the weak topology.
Hence, if µn converges weakly to µo, we have ρ(ν, µn) −→ ρ((ν, µo). Thus the
functional

µ −→ f(µ) ≡ ρ(ν, µ)

is weakly continuous on M0(X). By Theorem 6.1, A(T ) is weakly compact. Thus
the functional f(µ) attains its minimum on A(T ). Hence there exists a Bo ∈ Bad at
which J attains its minimum. This proves the Corollary. □
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Another problem of practical interest is tracking a moving target. Let K(t), t ∈ I,
be a set valued function with closed values in the state space X. The problem is to
find a control law B ∈ Bad so that the functional

J2(B) ≡
∫ T

0
µBt (K(t))dt

is maximized.

Corollary 6.3. Consider the payoff functional J2 and suppose the assumptions of
Theorem 6.1 hold. Then there exists a feedback control law B∗ at which J2 attains
its maximum.

Proof. Let {Bn, Bo} ∈ Bad be a sequence and {µn, µo} the corresponding sequence
of measure valued functions. It follows from Theorem 6.1, that for each t ∈ I, along

a subsequence if necessary, µnt
w−→ µot . Since, for each t ∈ I, the set valued map

K(t) has closed values, it follows from well known properties equivalent to weak
convergence of probability measures that limµnt (K(t)) ≤ µot (K(t)). As this holds for
each t ∈ I, we conclude that

lim J2Bn) = lim

∫
I
µnt (K(t))dt ≤

∫
I
limµnt (K(t))dt ≤

∫
I
µot (K(t))dt ≡ J2(Bo).

This shows that J2 is upper semicontinuous with respect to the Tychonoff prod-
uct topology ττπ. Since Bad is compact with respect this topology, J2 attains its
maximum on Bad. Thus there exists an optimal feedback control law in Bad. This
completes the proof. □

Another interesting problem is related to obstacle avoidance. Let D be an open
set in X. The problem is to find a control law that steers the system in such a way
that it minimizes the contact probability with the obstacle D. One can approxi-
mately formulate this problem as an optimization problem. Find a B ∈ Bad that
minimizes the functional

J3(B) ≡
∫ T

0
µBt (D)λ(dt),

where λ is any finite positive Borel measure.

Corollary 6.4. Consider the cost functional J3 and suppose the assumptions of
Theorem 6.1 hold. Then there exists a feedback control law B∗ at which J3 attains
its minimum.

Proof. Since D is an open set, following similar steps as in the proof of Corollary
6.3, one can verify that the functional B −→ J3(B) is lower semicontinuous in the
Tychonoff product topology ττπ on Bad. Thus compactness of Bad in this topology
implies the existence of a B∗ ∈ Bad at which the functional J3 attains its minimum.
This completes proof. □

Another related problem is concerned with the avoidance of multiple obstacles,
different obstacles at different occasions during the time interval I. Let {Di, i =
1, 2, . . . ,m} be any family of disjoint open sets in the state space X and {ti ∈ I, i =
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1, 2, . . . ,m} a set of specified instants of time. Let Ψ : Rm
+ −→ R. The problem is

to find a control law B that minimizes the functional

J4(B) ≡ Ψ(µBt1(D1), µ
B
t2(D2), . . . , µ

B
tm(Dm)).

Theorem 6.5. Consider the functional J4 and suppose the assumptions of Theorem
6.1 hold and that Ψ : Rm

+ −→ R is a continuous and increasing function of its
arguments and bounded away from −∞. Then there exists a feedback control law B∗
at which J4 attains its minimum.

Proof. We show that J4 is lower semicontinuous. Let {Bn} be any sequence in Bad

and suppose Bn
ττπ−→ Bo. Let {µn} and µo denote the corresponding sequence of

induced measure valued functions. It follows from Theorem 6.1 that for each t ∈ I,

µnt
w−→ µot . Since each set Di is open, it follows from properties equivalent to weak

convergence that µoti(Di) ≤ limµnti(Di) for each i = {1, 2 . . . ,m}. Clearly, it follows
from the above inequality and the monotone increasing property of Ψ that

Ψ(µot1(D1), µ
o
t2(D2), . . . , µ

o
tm(Dm))

≤ Ψ(limµnt1(D1), limµnt2(D2), . . . , limµntm(Dm)).

By definition of lower semicontinuity, for any ε > 0, there exists an integer nε such
that, for all indices i ∈ {1, 2, . . . ,m}, limk→∞ µkti(Di) ≤ µnti(Di) + ε for all n > nε.
Since Ψ is an increasing function of its arguments, it follows from the previous
inequality that

Ψ(µot1(D1), µ
o
t2(D2), . . . , µ

o
tm(Dm))

≤ Ψ(µnt1(D1) + ε, µnt2(D2) + ε, . . . , µntm(Dm) + ε),

for all n > nε. Hence, it is evident that

Ψ(µot1(D1), µ
o
t2(D2), . . . , µ

o
tm(Dm))

≤ limΨ(µnt1(D1) + ε, µnt2(D2) + ε, . . . , µntm(Dm) + ε).

Since the choice of ε > 0 is (otherwise) arbitrary, and Ψ is continuous, it follows
from the above inequality that

Ψ(µot1(D1), µ
o
t2(D2), . . . , µ

o
tm(Dm)) ≤ limΨ(µnt1(D1), µ

n
t2(D2), . . . , µ

n
tm(Dm)).

Thus J4(Bo) ≤ lim J4(Bn). In other words, J4 is lower semicontinuous on Bad with
respect to the ττπ topology. Since Bad is compact with respect to this topology and
Ψ is bounded away from −∞, J4 attains its minimum on it and hence an optimal
policy exists. This completes the proof. □

Another interesting problem is the escape time problem from a given set. Let
µ0 = L(x0) denote the probability law of the initial state and C0 ≡ supp(µ0) its
support and suppose it is a closed bounded subset of X. Let Br ≡ Br(X) be a
closed ball of radius r in X containing the set C0 in its interior. For any B ∈ Bad

and δ ∈ (0, 1), define

J5(B) ≡ inf{t ≥ 0 : µBt (Br) < 1− δ}.
If the underlying set is empty, we set J5(B) = T. Otherwise, the problem is to find a
B ∈ Bad that maximizes the escape time. This is somewhat equivalent to choosing
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feedback control law to prevent finite time blowup (or equivalently increasing the
life span of solution residing in the ball Br.)

Theorem 6.6. Consider the objective functional J5 and suppose the assumptions
of Theorem 6.1 hold. Then there exists a feedback control law B∗ ∈ Bad at which J5
attains its maximum.

Proof. It suffices to prove that B −→ J5(B) is upper semicontinuous with respect
to the Tychonoff product topology ττπ. Let Bn ∈ Bad and suppose Bn converges to
Bo in the Tychonoff product topology ττπ. Let {µn}, µo} denote the corresponding
induced (probability) measure valued functions. Since Br is a closed ball, we have
limµnt (Br) ≤ µot (Br). Thus it follows from a moment’s reflection that

{t ≥ 0 : limµnt (Br) < 1− δ} ⊃ {t ≥ 0 : µot (Br) < 1− δ}.
Further, it is not difficult to verify that there exists an integer no ∈ N such that

{t ≥ 0 : limµnt (Br) < 1− δ} ⊂ {t ≥ 0 : µno+k
t (Br) < 1− δ}

for all k ∈ N. From these inclusions we obtain the following inequality

inf{t ≥ 0 : µot (Br) < 1− δ} ≥ inf{t ≥ 0 : µno+k
t (Br) < 1− δ}

for all k ∈ N. By definition of J5, this is equivalent to J5(Bno+k) ≤ J5(Bo) for all
k ∈ N. Hence limk J5(Bno+k) ≤ J5(Bo) proving upper semicontinuity of J5. Since
Bad is compact in ττπ topology, upper semicontinuity of J5 in the same topology
implies the existence of a control law B∗ ∈ Bad at which J5 attains its maximum.
This proves the existence. □

7. Necessary conditions of optimality

In this section we present necessary conditions of optimality for the control prob-
lem related to equations (2.1)-(2.3) whereby one can construct the optimal policy.
We use the concept of Weak Radon Nikodym Property (WRNP). Let σ(I) denote
the sigma algebra of Lebesgue measurable subsets of the interval I and λ(dt) ≡ dt
denote the classical Lebesgue measure on σ(I). A Banach space E is said to sat-
isfy the weak Radon Nikodym property if, for every finitely additive measure µ
defined on σ(I) with values in E, there exists a Henstock-Kurzweil-Pettis integrable
function g such that

µ(D) = HKP

∫
D
g(t) λ(dt)

for every D ∈ σ(I). For detailed characterization of RNP and WRNP see [9,12,14].

Theorem 7.1. Consider the system (2.1)-(2.2) with the objective (cost) functional
(2.3) and admissible feedback policies Bad ≡ B0(I,Λ) with Λ assumed to be a com-
pact convex subset of the locally convex space Lso(Y,X). Suppose the assumptions of
Theorem 5.3 hold and further, {F,G, F0, G0, ℓ,Φ} are all once continuously Gâteaux
differentiable with respect to the state and observation variables {x, y} satisfying,
along the trajectories, the properties (P1)-(P2):

(P1): {DF,DG,DF0, DG0} are strongly measurable bounded operator valued func-
tions,

(P2): ℓx∈L1(I, L2(Ω, X
∗)), ℓy∈L1(I, L2(Ω, Y

∗)),Φx∈L2(Ω, X
∗),Φy∈L2(Ω, Y

∗).
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Let Bo ∈ Bad and zo ≡ (xo, yo) ∈ Ba
∞(I, L2(Ω,Z)) the corresponding mild solu-

tion of the system (2.1)-(2.2). Then, in order for Bo ∈ Bad to be optimal, it is
necessary that there exists ψ ≡ (ψ1, ψ2) ∈ Ba

∞(I, L2(Ω, X
∗))× Ba

∞(I, L2(Ω, Y
∗)) ≡

Ba
∞(I, L2(Ω,Z∗)) such that the triple {Bo, zo, ψ} satisfies the inequality (7.1), the

system equations (2.1)-(2.2) corresponding to Bo, and the adjoint evolution equa-
tions (7.2)-(7.3) as presented below:

E

∫ T

0
< (B −Bo)yo, ψ1 >X,X∗ dt ≥ 0, ∀ B ∈ Bad,(7.1)

−dψ1 = A∗ψ1dt+DF ∗(t, xo)ψ1dt+Q∗(t, xo)ψ1dt+DF ∗
0 (t, x

o)ψ2dt(7.2)

+ℓx(t, x
o, yo)dt+DG∗(t, xo;ψ1)dW,

ψ1(T ) = Φx(x
o(T ), yo(T )),

−dψ2 = A∗
0ψ2dt+ (Bo)∗ψ1dt+Q∗

0(t, y
o)ψ2dt+ ℓy(t, x

o, yo)dt(7.3)

+DG∗
0(t, y

o;ψ2)dW0,

ψ2(T ) = Φy(x
o(T ), yo(T )),

where the operators {Q,Q0} are identified in the course of proof.

Proof. By our assumption, Λ is a closed convex subset of Lso(Y,X) and hence the
set of admissible control operator Bad is also closed and convex. Thus, in order for
Bo ∈ Bad to be optimal, it is necessary that

J(Bo) ≤ J(Bo + ε(B −Bo)) ∀ B ∈ Bad and ε ∈ [0, 1].

Hence, the Gâteaux differential dJ of J at Bo in the direction (B−Bo) must satisfy
the following inequality,

dJ(Bo, B −Bo) ≥ 0 ∀ B ∈ Bad.(7.4)

Let zo = (xo, yo) ∈ Ba
∞(I, L2(Ω,Z)) denote the mild solutions of the system (2.1)-

(2.2) corresponding to Bo ∈ Bad and zε ≡ (xε, yε) ∈ Ba
∞(I, L2(Ω,Z)) denote the

mild solution corresponding to Bε ≡ Bo+ε(B−Bo). Clearly, these are the solutions
of the integral equations (4.1)-(4.2). Define v ≡ (v1, v2) with v1 = limε↓0(1/ε)(x

ε −
xo) and v2 ≡ limε↓0(1/ε)(y

ε − yo). It follows from continuity of the map, B −→
z (Theorem 5.2), and continuous Gâteaux differentiability of {F,G, F0, G0} (with
respect to the state variables (x, y)) that the limit v is well defined and it belongs to
Ba

∞(I, L2(Ω,Z)) and it is the solution of the following system of integral equations:

v1(t) =

∫ t

0
S(t− s)DF (s, xo(s); v1(s))ds+

∫ t

0
S(t− s)Bo(s)v2(s)ds(7.5)

+

∫ t

0
S(t− s)(B(s)−Bo(s))yo(s)ds

+

∫ t

0
S(t− s)DG(s, xo(s); v1(s))dW (s), t ∈ I,

v2(t) =

∫ t

0
S0(t− s)DF0(s, x

o(s); v1(s))ds(7.6)
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+

∫ t

0
S0(t− s)DG0(s, y

o(s); v2(s))dW0(s), t ∈ I,

where DF,DG;DF0, DG0 denote the Gâteaux derivatives of {F,G, F0, G0} in the
directions as indicated. In other words v ≡ (v1, v2) ∈ Ba

∞(I, L2(Ω,Z)) is the mild
solution of the following system of linear stochastic differential equations on the
Banach space Z ≡ X × Y,

dv1 = Av1dt+DF (t, xo(t); v1)dt+Bo(t)v2dt(7.7)

+(B −Bo)yodt+DG(t, xo(t); v1)dW, v1(0) = 0,

dv2 = A0v2dt+DF0(t, x
o(t); v1)dt+DG0(t, y

o(t); v2)dW0, v2(0) = 0.(7.8)

It is clear from the above equations that if B(t) = Bo(t), t ∈ I, the system (7.7)-
(7.8) reduces to a pair of homogeneous linear stochastic differential equations with
zero initial condition. Hence it has only the trivial solution v(t) ≡ (v1(t), v2(t)) ≡
(0, 0), t ∈ I. For convenience of presentation we denote

DF (t, xo(t); v1) ≡ DF o(t)v1, DF0(t, x
o(t), v1) ≡ DF o

0 (t)v1,

DG(t, xo(t); v1) ≡ DGo(t, v1), DG0(t, y
o(t); v2) ≡ DGo

0(t, v2)

and note that they are all linear in v1 and v2. Writing the equations (7.7)-(7.8) in
the form of a system,

dv =

[
A 0
0 A0

]
vdt+

[
DF o Bo

DF o
0 0

]
vdt+(7.9)

+

[
(B −Bo)yo

0

]
dt+

[
DGo 0
0 DGo

0

] [
dW
dW0

]
,

with initial value v(0) = 0, one observes that the system (7.9) is subject to the in-

put ((B−Bo)yo, 0)
′
. By our assumptions, the operators DF o and DF o

0 are strongly
measurable bounded operator valued functions with values in L(X) and L(X,Y )
respectively. Similarly, the operators DGo and DGo

0 are also operator valued func-
tions taking values from L(X, γ(H,X)) and L(Y, γ(H0, Y )) respectively. Note that
equation (7.9) is a linear stochastic differential equation on the (UMD) Banach
space Z ≡ X × Y, and that the solution v ∈ Ba

∞(I, L2(Ω,Z)). It is also clear that
the map

(B −Bo)yo, 0)
′ −→ v

is a continuous linear map from Ba
∞(I, L2(Ω,Z)) to Ba

∞(I, L2(Ω,Z)). Considering
the cost functional J and computing its Gâteaux derivative at Bo in the direction
(B −Bo), we obtain

dJ(Bo;B −Bo)(7.10)

= E

∫ T

0

{
< ℓox(t), v1(t) >X∗,X + < ℓoy(t), v2(t) >Y ∗,Y

}
dt

+E
{
< Φo

x(T ), v1(T ) >X∗,X + < Φo
y(T ), v2(T ) >Y ∗,Y

}
where

ℓox(t) = ℓx(t, x
o(t), yo(t)), ℓoy(t) = ℓy(t, x

o(t), yo(t)), t ∈ I,
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Φo
x(T ) = Φx(x

o(T ), yo(T )),Φo
y(T ) = Φy(x

o(T ), yo(T )).

Denote the expression on the right hand side of equation (7.10) by

L(v) ≡ E

∫ T

0

{
< ℓox(t), v1(t) >X∗,X + < ℓoy(t), v2(t) >Y ∗,Y

}
dt(7.11)

+E
{
< Φo

x(T ), v1(T ) >X∗,X + < Φo
y(T ), v2(T ) >Y ∗,Y

}
.

Using the properties (P2) and Hölder inequality applied to (7.11), it is easy to verify
that there exists a finite positive number C such that

|L(v)| ≤ C ∥ v ∥Ba
∞(I,L2(Ω,Z)) .

Hence v −→ L(v) is a continuous linear functional on Ba
∞(I, L2(Ω,Z)). Thus the

composition map

((B −Bo)yo, 0)
′ −→ v −→ L(v) ≡ L̃(((B −Bo)yo, 0)

′
)(7.12)

is a continuous linear functional on Ba
∞(I, L2(Ω,Z)). The topological dual of this

space is given by the space of Ft-adapted L2(Ω,Z∗)-valued finitely additive vec-
tor measures which we denote by Ma

fa(I, L2(Ω,Z∗)) where I denotes the sigma
algebra of Lebesgue measurable subsets of the interval I. In other words, for every
continuous linear functional ℓ on the Banach space Ba

∞(I, L2(Ω,Z)), there exists a
unique

µ ∈ (Ba
∞(I, L2(Ω,Z)))∗ =Ma

fa(I, L2(Ω,Z∗))

such that ℓ(f) has the following representation

ℓ(f) = E

∫
I
< f(t), µ(dt) > .

Thus it follows from continuity of the map (7.12) and the above duality pairing that
there exists a µ ∈Ma

fa(I, L2(Ω,Z∗)) such that

L(v) = L̃(((B −Bo)yo, 0)
′
) = E

∫
I
< (B −Bo)yo, 0)

′
, µ(dt) >Z,Z∗ .

Since, by assumption, both X and Y are UMD Banach spaces, they are reflexive
and hence Z ≡ (X × Y ) is a reflexive Banach space and therefore it contains no
isomorphic copy of ℓ1. Thus it follows from a theorem due to Janicka [18], also
reported in Musail and Ryll-Nardzewski [?, Theorem 6, p83][14] including its con-
verse, that Z∗ satisfies weak Radon-Nikodym property (WRNP). Hence it follows
from a result due to Bongiorno-DiPazza-Musial [9, Theorem 4.5, p481], that there
exists an Ft-adapted Henstock-Kurzweil-Pettis integrable function ψ = (ψ1, ψ2) ∈
La
HKP (I, L2(Ω,Z∗)) such that the above expression can be rewritten as

L(v) = L̃(((B −Bo)yo, 0)
′
) = E

∫
I
< (B −Bo)yo, 0)

′
, µ(dt) >Z,Z∗(7.13)

= E

∫
I
< ((B −Bo)yo, 0), ψ(t) >Z,Z∗ dt

= E

∫
I
{< (B −Bo)yo, ψ1 >X,X∗ + < 0, ψ2 >Y,Y ∗}dt
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= E

∫
I
{< (B −Bo)yo, ψ1 >X,X∗}dt.

It is well known that a reflexive Banach space E has RNP (Radon Nikodym Prop-
erty). Therefore, for any finite measure space (Ω,Σ, λ) and any λ-continuous E
valued countably additive vector measure m, there exists a Bochner integrable E
valued function h such that, for every S ∈ Σ, m(S) =

∫
S h(s)dλ(s). Indefinite in-

tegrals in the sense of Bochner, as well as Pettis, are countably additive measures.
For an excellent account on the subject see [12,13]. In our case the Z∗ valued vector
measure µ is only finitely additive and this is the primary reason for using Henstock-
Kurzweil-petits integral. So far we have established the existence of ψ = (ψ1, ψ2)
giving an alternate expression for the functional L(v) and hence the directional de-
rivative of J. We must now develop a constructive procedure to determine ψ while
eliminating the variational equations. We can do this using the above expression
and the variational equations (7.7)-(7.8) or equivalently (7.9). For this we consider
the real valued functional g defined on Z × Z∗ and given by

g(v1(t), v2(t), ψ1(t), ψ2(t))(7.14)

=< v1(t), ψ1(t) >X,X∗ + < v2(t), ψ2(t) >Y,Y ∗ , t ∈ I.

With respect to compatible duality pairings, the Itô differential rules remain valid
also in UMD Banach spaces [10,19]. Thus

dg = d < v1, ψ1 > + d < v2, ψ2 >(7.15)

= {< v1, dψ1 > + < dv1, ψ1 > + << dv1, dψ1 >>}
+{< v2, dψ2 > + < dv2, ψ2 > + << dv2, dψ2 >>},

where << dv1, dψ1 >> and << dv2, dψ2 >> denote the quadratic variation terms.
Integrating dg by parts and recalling that v1(0) = 0, v2(0) = 0, we obtain

E

∫ T

0
dg = E

∫ T

0
{d < v1(t), ψ1(t) > +d < v2(t), ψ2(t) >}dt(7.16)

= E < v1(T ), ψ1(T ) >X,X∗ +E < v2(T ), ψ2(T ) >Y,Y ∗ .

Next, we consider the first term on the RHS of equation (7.15). For convenience of
presentation, let us denote its integral by R1,

R1 ≡ E

∫ T

0
< v1, dψ1 > + < dv1, ψ1 > + << dv1, dψ1 >> .(7.17)

Using the variational equation (7.7) and formally substituting in the above expres-
sion and integrating by parts we arrive at the following expression

R1 = E

∫ T

0

{
< v1, dψ1 +A∗ψ1dt+DF ∗(t, xo;ψ1)dt >(7.18)

+ < v1, DG
∗(t, xo;ψ1)dW >

+ < v2, (B
o)∗ψ1dt > + < (B −Bo)yo, ψ1dt > + << dv1, dψ1 >>

}
.
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Similarly, we consider the second term on the RHS of equation (7.15) and denote
its integral by R2 as follows:

R2 ≡ E

∫ T

0

{
< v2, dψ2 > + < dv2, ψ2 > + << dv2, dψ2 >>

}
.(7.19)

Using the variational equation (7.8) and again formally substituting in the above
expression we arrive at the following identity

R2 = E

∫ T

0

{
< v2, dψ2 +A∗

0ψ2dt+DG∗
0(t, y

o;ψ2)dW0 >(7.20)

+ < v1, DF
∗
0 (t, x

o;ψ2)dt > + << dv2, dψ2 >>

}
.

The formal substitution is justified by using the Yosida approximation [1] of the
identity operators in X and Y generated by the unbounded operators A and A0

respectively. Using the resolvents R(n,A), n ∈ ρ(A), where ρ(A) is the resolvent set
of A and R(n,A0), n ∈ ρ(A0), we obtain the approximations of the identity operators
In ≡ nR(n,A) on X and I0,n = nR(nA0) on Y respectively. Clearly, Range(In) ⊂
D(A) and Range(I0,n) ⊂ D(A0) for all n ∈ N. Further, both In and I0,n converge
in the strong operator topology to the identity operators I ∈ L(X) and I0 ∈ L(Y )
respectively. All the operators in the variational equations (7.7)-(7.8) except {A,A0}
are then replaced by their Yosida approximations. This leads to a sequence of
variational equations giving a corresponding sequence of solutions {v1,n, v2,n} which
take values in the domains of the operators A and A0 respectively. Then these
regularized equations are used to carry out all the intermediate operations, and
then, finally letting n → ∞, we reach the above expressions (R1) and (R2). Next,
we consider the quadratic variation terms. Since, by our assumptions, G and G0

are continuously Gâteaux differentiable, the corresponding directional derivatives
are bounded strongly measurable operator valued functions with values in the space
of γ-Radonifying operators as indicated below:

DG(t, xo(t); v1(t)) ∈ γ(H,X), and DG0(t, y
o(t); v2(t)) ∈ γ(H0, Y )

for almost all t ∈ I, P -a.s. Accordingly their duals belong to the corresponding
dual spaces as displayed below:

DG∗(t, xo(t);ψ1(t)) ∈ γ(H,X∗) and DG∗
0(t, y

o(t);ψ2(t)) ∈ γ(H0, Y
∗)

for almost all t ∈ I, P -a.s. Therefore, considering the quadratic variation terms,
recalling the independence of the two H and H0 Brownian motions, and noting that
{DG,DG0} and {DG∗, DG∗

0} are linear in their third argument, we obtain from
equations (7.7)-(7.8) and (7.18)-(7.20) the following bilinear forms:

E

∫ T

0

{
<< dv1, dψ1 >>

}
(7.21)

= E

∫ T

0
{<< DG(t, xo; v1)dW, (−1)DG∗(t, xo;ψ1)dW >>}

= E

∫ T

0
dt < DG(t, xo(t); v1(t)), (−)DG∗(t, xo(t);ψ1(t)) >γ(H,X),γ(H,X∗)
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≡ E

∫ T

0
(Q(t, xo(t))v1(t), ψ1(t))X,X∗dt,

and

E

∫ T

0
{<< dv2, dψ2 >>}

(7.22)

= E

∫ T

0
{<< DG0(t, y

o; v2)dW0, (−1)DG∗
0(t, y

o;ψ2)dW0 >>}

≡ E

∫ T

0
dt < DG0(t, y

o(t); v2(t)), (−)DG∗
0(t, y

o(t);ψ2(t)) >γ(H0,Y ),γ(H0,Y ∗)

≡ E

∫ T

0
(Q0(t, y

o(t))v2(t), ψ2(t))Y,Y ∗dt.

By our assumption, both G and G0 are continuously Gâteaux differentiable in their
second argument. Hence the operators Q(t) ≡ Q(t, xo(t)) and Q0(t) ≡ Q0(t, y

o(t))
are well defined strongly measurable operator valued functions on I taking values
in L(X) and L(Y )) respectively. Summing (7.18), (7.19), (7.21) and (7.22) and
equating with (7.16) we obtain

E < v1(T ), ψ1(T ) >X,X∗ +E < v2(T ), ψ2(T ) >Y,Y ∗(7.23)

= E

∫ T

0

⟨
v1, dψ1 +A∗ψ1dt+DF ∗(t, xo;ψ1)dt+DF ∗

0 (t, x
o;ψ2)dt

+Q∗(t, xo)ψ1dt+DG∗(t, xo;ψ1)dW
⟩

+E

∫ T

0

⟨
v2, dψ2 +A∗

0ψ2dt+ (Bo)∗ψ1dt

+Q∗
0(t, y

o)ψ2dt+DG∗
0(t, y

o;ψ2)dW0

⟩
+E

∫ T

0
< (B −Bo)yo, ψ1 >X,X∗ dt.

Setting

dψ1 +A∗ψ1dt+DF ∗(t, xo;ψ1)dt+DF ∗
0 (t, x

o;ψ2)dt(7.24)

+Q∗(t, xo)ψ1dt+DG∗(t, xo;ψ1)dW = −ℓx(t, xo, yo)dt,
ψ1(T ) = Φo

x(T ) ≡ Φx(x
o(T ), yo(T ));(7.25)

and

dψ2 +A∗
0ψ2dt+ (Bo)∗ψ1dt+Q∗

0(t, y
o)ψ2dt(7.26)

+DG∗
0(t, y

o;ψ2)dW0 = −ℓy(t, xo, yo)dt,
ψ2(T ) = Φo

y(T ) ≡ Φy(x
o(T ), yo(T ));(7.27)

it follows from the expression (7.23) that the following identity holds,

E < v1(T ),Φ
o
x(T ) >X,X∗ +E < v2(T ),Φ

o
y(T ) >Y,Y ∗(7.28)

+E

∫ T

0
< v1(t), ℓx(t, x

o, yo) >X,X∗ dt
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+E

∫ T

0
< v2(t), ℓy(t, x

o, yo) >Y,Y ∗ dt

= E

∫ T

0
< (B −Bo)yo, ψ1 >X,X∗ dt.

Note that the expression on the left hand side of the above equation coincides with
the functional L(v) given by equation (7.10). Hence it follows from (7.4) and the
above expression that

E

∫ T

0
< (B −Bo)yo, ψ1 >X,X∗ dt ≥ 0, ∀ B ∈ Bad.(7.29)

This gives the necessary condition (7.1). The necessary conditions (7.2)-(7.3) follow
from the equations (7.24)-(7.25) and (7.26)-(7.27). The mild solutions of the adjoint
equations (7.24)-(7.25) and (7.26)-(7.27) are given, respectively, by the solutions of
the following linear backward stochastic integral equations,

ψ1(t) = S∗(T − t)Φo
x(T ) +

∫ T

t
S∗(s− t)DF ∗(s, xo(s);ψ1(s))ds(7.30)

+

∫ T

t
S∗(s− t)DF ∗

0 (s, x
o(s);ψ2(s))ds

+

∫ T

t
S∗(s− t)Q∗(s, xo(s))ψ1(s)ds

+

∫ T

t
S∗(s− t)ℓx(s, x

o(s), yo(s))ds

+

∫ T

t
S∗(s− t)DG∗(s, xo(s);ψ1(s))dW (s), t ∈ I,

ψ2(t) = S∗
0(T − t)Φo

y(T ) +

∫ T

t
S∗
0(s− t)(Bo(s))∗ψ1(s)ds(7.31)

+

∫ T

t
S∗
0(s− t)Q∗

0(s, y
o(s))ψ2(s))ds

+

∫ T

t
S∗
0(s− t)ℓy(s, x

o(s), yo(s))ds

+

∫ T

t
S∗
0(s− t)DG∗

0(s, y
o(s);ψ2(s))dW0(s), t ∈ I.

Using the assumptions (P1) and (P2) and a standard approach based on successive
Piccard approximation technique developed by Hu and Peng [?, Theorem 3.1]] for
backward stochastic differential equations (BSDE), one can prove the existence and
uniqueness of a solution ψ = (ψ1, ψ2) of equations (7.30)-(7.31) in the Banach space
Ba

∞(I, L2(Ω,Z∗)). This completes the proof. □

Remark 7.2. It is interesting to note that the solution ψ of the adjoint system
(7.2)-(7.3) predicted by the WRNP (Weak Radon Nikodym property) is Henstock-
Kurzweil-Pettis integrable, that is, ψ ∈ La

HKP (I, L2(Ω,Z∗). On the other hand, by
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application of Piccard approximation technique for backward stochastic differential
equations (BSDE), we find that the adjoint system has a unique mild solution
ψ ∈ Ba

∞(I, L2(Ω, Z
∗)) which is clearly much more regular.

Remark 7.3. Since the state x of system (2.1) is not accessible, the cost integrands
{ℓ,Φ} may not be directly dependent on x, though the cost functional J is indirectly
dependent on state process. In this case the necessary conditions of optimality given
by Theorem 7.1 simplify with no change in the inequality (7.1), and ψ1(T ) = 0, ℓx ≡
0 for the adjoint equation (7.2), and no change in equation (7.3).

Remark 7.4. In this section we have developed necessary conditions of optimality
for control problem (2.3) known as the Bolza problem. For optimization problems
involving measure valued functions as in section 6, we can develop similar necessary
conditions of optimality. This requires the notion of measure solutions or equiv-
alently evolution equations on the space of measures and their control as seen in
Ahmed [4] and the references therein. The author believes that similar results can
be proved on UMD Banach spaces.

8. Convergence theorem

Using Theorem 7.1, one can determine the optimal feedback operator. For this we
construct a sequence of operators based on the necessary conditions and prove that
the sequence converges monotonically to the optimal operator (more precisely the
local optimal). Let E and F be a pair of real Banach spaces and let L1(E,F ) denote
the space of nuclear operators. An operator K ∈ L1(E,F ) has the representation
K ≡

∑
e∗i ⊗ fi, where {e∗i } ∈ E∗ and {fi} ∈ F are all linearly independent vectors

satisfying the property limi→∞ ∥ e∗i ∥E∗= limi→∞ ∥ fi ∥F= 0, with the nuclear
norm given by

∥ K ∥L1(E,F )≡
∑
i≥1

∥ e∗i ∥E∗∥ fi ∥F .

Another representation of K is given by K =
∑
λi e

∗
i ⊗ fi where now the vectors

{e∗i , fi} can be chosen to be normalized in the sense that e∗i ∈ B1(E
∗), fi ∈ B1(F )

and λ ∈ ℓ1. In this case ∥ K ∥L1(E,F )=
∑

|λi| ≡ Tr(K). It is well known that the
topological dual of L1(E,F ) is given by the space of bounded linear operators from
E∗ to F ∗ denoted by L(E∗, F ∗). The duality pairing between elements of L(E∗, F ∗)
with those of L1(E,F ) is given by

< L,K >L(E∗,F ∗),L1(E,F )=
∑

(Le∗i , fi)F ∗,F .

Clearly, | < L,K > | ≤∥ L ∥L(E∗,F ∗)∥ K ∥L1(E,F ) . Using the tensor product
notation we can rewrite the necessary condition (7.1) as follows:

J(Bo, B −Bo) = E

∫ T

0
< (B −Bo)yo, ψ1 >X,X∗ dt(8.1)

= E

∫ T

0
< (B(t)−Bo(t)), No(t) >L(Y,X),L1(Y ∗,X∗) dt

where No(t) ≡ {yo(t) ⊗ ψ1(t)}, t ∈ I. Since X,Y are reflexive Banach spaces, the
dual of L1(Y

∗, X∗) is given by L(Y,X). For the proof of convergence theorem we
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need the duality map denoted by △. For each N ∈ L1(Y
∗, X∗), define the set

△(N) ≡ {L ∈ L(Y,X) :< L,N >=∥ L ∥2L(Y,X)=∥ N ∥2L1(Y ∗,X∗)}.

By Hahn-Banach theorem this is a nonempty closed convex set. With this prepa-
ration, we can now prove the following convergence theorem.

Theorem 8.1. Suppose the assumptions of Theorem 7.1 hold and further assume
that Y is a separable (reflexive) Banach space. Then there exists a number m0 ∈ R
and a sequence {Bn} ∈ Bad along which J is monotone decreasing and

lim
n→∞

J(Bn) = m0 > −∞.

Proof. Since we want the feedback operator to be deterministic, we rewrite the
expression (8.1) as follows

J(Bo, B −Bo) =

∫ T

0
< (B(t)−Bo(t)), N̂o(t) >L(Y,X),L1(Y ∗,X∗) dt(8.2)

where N̂o(t) ≡ E{No(t)} =
∫
ΩNo(t, ω)P (dω), t ∈ I. This is justified by use of

Fubini’s theorem. Next, we choose an arbitrary B1 ∈ Bad and solve the pair of
equations (2.1)-(2.2) in the mild sense and denote these mild solutions by {x1, y1}.
Use these solutions in the adjoint pair of equations (7.2)-(7.3) by replacing the triple
{Bo, xo, yo} by {B1, x1, y1}, and solve for the pair {ψ1,1, ψ2,1} yielding the quintuple
{B1, x1, y1, ψ1,1, ψ2,1}. Using this quintuple, we construct N1 given by

N1(t) ≡ y1(t)⊗ ψ1,1(t), t ∈ I.

Since y1 ∈ Ba
∞(I, L2(Ω, Y )) and ψ1,1 ∈ Ba

∞(I, L2(Ω, X
∗)) it is clear that, for almost

all t ∈ I and P -a.s, N1(t) ∈ L1(Y
∗, X∗) and that it is Bochner integrable in the

sense that

N̂1(t) ≡ EN1(t) ≡
∫
Ω
N1(t, ω)P (dω).

Clearly, N̂1 is a strongly measurable function on I with values in the Banach space
L1(Y

∗, X∗). Let Lso(Y,X) denote the space of bounded linear operators from Y toX
endowed with the strong operator topology τso. This is a locally convex sequentially
complete Hausdorff topological space. Since Y is assumed to be separable, this
topology is metrizable with the metric

d(T, L) ≡
∞∑
n=1

(1/2n)min{1, ∥ (T − L)ζn ∥X} for T, L ∈ Lso(Y,X),

where {ζn} is a dense subset of the closed unit ball B1(Y ).We denote the completion
of Lso(Y,X) with respect to the above metric by Lsod(Y,X). This is a complete
metric space but not separable. Clearly, the strong operator topology is equivalent
to the metric topology. Using the metric topology one can verify that the graph

Gr(△) ≡ {(L,N) ∈ L(Y,X)× L1(Y
∗, X∗) : L ∈ △(N)}

of the multifunction △ is closed with respect the norm topology of L1(Y
∗, X∗) and

the metric topology of Lsod(Y,X). Thus the duality map

△ : L1(Y
∗, X∗) −→ Lsod(Y,X) ≡ (Lso(Y,X), d)
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is an upper semi-continuous multi function. Since t −→ N̂1(t) is strongly measur-

able, the composition map I ∋ t −→ △̂1(t) ≡ (△ ◦ N̂1)(t) ≡ △(N̂1(t)) is a weakly
measurable multi function in the sense that, for every open set O ⊂ Lsod(Y,X),

the set {t ∈ I : △̂1(t) ∩ O ̸= ∅} is Lebesgue measurable. We have seen that the
metric space Lsod(Y,X) is complete but not separable, and so, not a Polish or even
a Souslin space. Thus, unfortunately, many measurable selection theorems requir-
ing the target space to be separable [?, Theorem 1, p26]] are not applicable. Since
Lsod(Y,X) with the metric topology is not σ-compact either, measurable selection
theorems, requiring the target space to be σ-compact, are also not applicable. Un-
der some mild assumptions on additivity and reducibility (with respect to the class
of Lebesgue measurable subsets of the interval I), Graf presents, in an excellent
survey paper [15, Theorem 3.5, p98] a general result on selection theorem which
does not require separability. Based on this result [15, Theorem 3.5, p98], we can

assert that the multifunction △̂1 has measurable selections. Let L1 be a measur-
able selection of △̂1 in the sense that L1(t) ∈ △̂1(t), t ∈ I. Then define the operator
valued function B2 by setting

B2(t) ≡ B1(t)− εL1(t), t ∈ I,

for ε > 0 sufficiently small, so that B2 ∈ Bad. Computing the cost functional J at
B2 we obtain J(B2) = J(B1)+dJ(B1, B2−B1)+ o(ε). Using the expression for the
Gâteaux differential of J at B1 in the direction (B2−B1) we arrive at the following
expression,

J(B2) = J(B1) +E

∫ T

0
< B2 −B1, N1 >L(Y,X),L1(Y ∗,X∗) dt+ o(ε)(8.3)

= J(B1) +

∫ T

0
< B2 −B1, N̂1(t) >L(Y,X),L1(Y ∗,X∗) dt+ o(ε)

= J(B1)− ε

∫ T

0
< L1(t), N̂1(t) >L(Y,X),L1(Y ∗,X∗) dt+ o(ε)

= J(B1)− ε ∥ L1 ∥2L(Y,X) +o(ε) = J(B1)− ε ∥ N̂1 ∥2L1(Y ∗,X∗) +o(ε).

Thus, for ε > 0 sufficiently small, we have J(B2) < J(B1). Next we use B2 in
equation (2.1) and solve the state equations (2.1)-(2.2) (in the mild sense) giv-
ing the pair {x2, y2} ∈ Ba

∞(I, L2(Ω,Z)). Using this triple {B2, x2, y2} in place of
{Bo, xo, yo} in the adjoint system (7.2)-(7.3) and solving these equations we ob-
tain the pair {ψ1,2, ψ2,2}. Thus we have the quintuple {B2, x2, y2}, {ψ1,2, ψ2,2}.
Using this solution we construct the nuclear operator valued function (process)

N2(t) ≡ y2(t) ⊗ ψ1,2(t), t ∈ I, and N̂2(t) ≡ E(N2(t)), t ∈ I. Then using the duality

map △ we define the multi function △̂2 given by the composition

△̂2(t) ≡ (△oN̂2)(t), t ∈ I.

Using the selection theorem as stated above, we choose a (measurable) selection

L2(t) ∈ △̂2(t), t ∈ I, and define the operator valued function B3 by B3(t) ≡ B2(t)−
εL2(t), t ∈ I, so that B3 ∈ Bad. Then, following similar steps as in the preceding
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case and computing the cost functional J at B3, we find that

J(B3) = J(B2) + dJ(B2, B3 −B2) + o(ε)(8.4)

= J(B2) +E

∫ T

0
< B3 −B2, N2 >L(Y,X),L1(Y ∗,X∗) dt+ o(ε)

= J(B2)− ε ∥ L2 ∥2L(Y,X) +o(ε) = J(B2)− ε ∥ N̂2 ∥2L1(Y ∗,X∗) +o(ε).

Thus, for ε > 0 sufficiently small, we have J(B3) < J(B2) < J(B1). Continuing this
process we obtain a sequence {Bn} ⊂ Bad satisfying

J(B1) > J(B2) > · · · J(Bn) > J(Bn+1 > · · · .

It follows from Remark 5.1 that the solution set S is a bounded subset of
Ba

∞(I, L2(Ω,Z)). Hence it follows from the assumptions on ℓ and Φ, having qua-
dratic growth, that inf{J(B), B ∈ Bad} > −∞. Thus there exists an m0 ∈ R such
that limn→∞ J(Bn) = m0 > −∞. This completes the proof. □
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