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THE NASH INEQUALITY IN GENERAL DOMAINS WITH
APPLICATION TO THE LINEAR STOKES SYSTEM

MATANIA BEN-ARTZI

ABSTRACT. The well-known Nash inequality is extended to functions satisfying
a weak Dirichlet condition in a subset of R". Two versions of the inequality are
established, with constants independent of the domain. The inequality is applied
to obtain an estimate for the sup-norm of a solution to the linearized Stokes
system, independent of the velocity field.

1. INTRODUCTION

Let ¢ be an integrable Lipschitz function on R™, n > 1. The classical Nash’s
inequality [10] is

n+2

(1) ([ 1oPar) ™ <c, [ vopar- ([ oldz) "

where C), > 0 depends only on n.

Immediately after the publication of the paper by Nash, the whole array of the
Gagliardo-Nirenberg-Sobolev (GNS) inequalities was established by Gagliardo [9]
and Nirenberg [11]. We refer to [8, Part I, Theorem 9.3] for a full proof.

In fact, in the case of the full space R", the Nash inequality is included (except
for dimension n = 2) in the GNS inequalities [8, Part I, Theorem 9.3].

The significance of the Nash inequality is demonstrated by the variety of subse-
quent proofs; a proof based on the Fourier transform can be found in [7] and the
best constant C,, was determined in [5]. A geometric proof, based on the logarithmic
Sobolev inequality, was given in [1].

We recall the basic role played by this inequality in the study of the 2 — D
Navier-Stokes equations with singular initial vorticity [2] or the study of stability
of travelling waves in conservation laws [12]. In Section 3 the inequality is used in
the derivation of an estimate for the sup-norm of a solution to the linearized Stokes
system. This estimate is independent of the velocity field.

Let Q CR™ n > 1, be any domain and let ¢ € C3(€2), the space of continuously
differentiable, with compact support in Q2. Clearly, extending ¢ as zero outside €2, the
inequality (1.1) remains valid. However, consideration of more general situations
needs a more detailed investigation. In a recent paper [4] Brezis and Mironescu
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study the GNS inequalities in a “standard domain” €2, which is either the full or
half-space R™, or a Lipschitz bounded domain. More specifically, they establish in
these domains inequalities of the type

(1'2) HfHW“I(Q) S Hf”Ie/V‘SlvPl HfHWSz P2(Q)?

for suitable values of the various parameters.
Suppose that we want a “Nash inequality” of the type

(1.3) ( /Q 6Pde)" s < A, /Q Vo - ( /Q ldz)*,

where () ; R™ and A, may depend on §2. Of course it fails if no additional conditions
are imposed (for example, a constant function in a bounded domain). In [4] this
inequality is derived from (1.2) when {2 is a bounded Lipschitz domain and ¢ = 0
on J9 (in a trace sense).

The purpose of this paper is to establish (1.3) in domains that are not necessarily
bounded. We label the imposed boundary condition as “weak Dirichlet” (Defini-
tion 2.1). In particular, we shall not require that the functions vanish everywhere
on 0f).

We derive two different estimates for n > 3 (see Theorems 2.2, 2.3). Only the
second is valid in the case n = 2. The one-dimensional case is stated in Theorem 2.4.

2. EXTENDED FROM OF THE NASH INEQUALITY

In the following definition, we let e; be the unit vector in the direction of the z;
axis, 1 < j <mn, and denote by [;(y) the line y + te;, t € R.

Definition 2.1. Let ¢ be an integrable , Lipschitz function defined on Q. We
say that ¢ satisfies the weak Dirichlet condition if for every point y € 2 and any
j €{1,2,...,n}, there exists a point z € ;(y) N Q, such that

(i) o) =0, -

(ii) The open segment {ty + (1 —t)z, t € (0,1)} is contained in .

This definition is modified in an obvious way if z is the “point at infinity”, namely,
if the full half line {y + te;, t € (—00,0)} € Q, then . lim ¢(y +te;) = 0.
——00

Here are a few examples, where we take the plane (n = 2) for simplicity.

o Let 2 be the unit disk , then ¢ satisfies the weak Dirichlet condition if it
vanishes on two orthogonal diameters.

e Let ) be the upper half of the disk, then ¢ satisfies the weak Dirichlet
condition if it vanishes on the curved part (|z| = 1) of the boundary.

e Let © C R? be a bounded domain with a smooth boundary and let ¢ €
C3(£2). Assume that V1) vanishes on 9Q and let ¢ = (%ayw Then ¢ satisfies
the weak Dirichlet condition. Indeed, ¢(x,y) has zero mean value on every
horizontal or vertical line, so it must vanish at a point on such a line.

Notation. We designate by ||¢||, the LP(£2) norm, 1 < p < co. The set 2 will be
understood from the context.
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Theorem 2.2. Let Q CR", n > 3, be a domain and let ¢ € C1(Q) satisfy the weak
Dirichlet condition. Then

(21) ([1oras)™ < an [ 1vopas: [ folaz)’

where A, = (%) , and, in particular, it does not depend on 2.

Proof. Since ¢ can be replaced by |¢|, there is no loss of generality in assuming
¢ > 0.

The proof is actually a slight modification of the basic Gagliardo-Nirenberg-
Sobolev inequality [6, Section 5.6, Theorem 1]. We bring it here for the convenience
of the reader, and also because the inequality (2.3) below will be needed in the next
theorem.

it is easily seen that if 1 € C1(2) satisfies the weak Dirichlet condition, then

(2.2) [ @i < ([ [woids) ™

Indeed, this follows by integrating the derivative d, ;1 on the segment of I;(z) con-
necting a point x € € to a zero point of 1.

Let ¢ be as in the statement and let ¢ = gban_l, with ¢ > 1 to be selected.
Applying (2.2) , we have

(2.3) /¢ de< /¢ \V¢|dw>i.

Thus by the Cauchy—Schwarz 1nequahty,

/¢ Jidz < /¢ 2q<n 1>n 2(n 0 /’V(b‘d 2(n oy

Taking ¢ = .= 2 we get,

(2.5) (/Q¢(g;)f’3dx)n’_’2 < (2(5__21))2/Q|V¢|2dx.

Using the interpolation inequality

lgll2 < ||9||"*2 HQH””,

the last estimate yields

(2.6) jol < (A2 = o - vz,
which is exactly (2.1). O
The case n = 2 is included in the following theorem.

Theorem 2.3. Let Let Q C R™ n > 2, be a domain and let ¢ € C1(Q) satisfy the
weak Dirichlet condition in Q. Then

(2.7) lgll3 <

2n —1

16l Vlln-
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Proof. Asin the previous proof, we may assume ¢ > 0. Applying Holder’s inequality
to (2.3) yields

) oty < ( ([ o

2n—1

Taking ¢ = <"

) ([ 19elrae)

we get

2n >2n 1

(2.9) o2 < ( o= Vol

Invoking the interpolation inequality

lgll2 < ||g||2 ||9H

we infer from (2.9) that

2n —

(2.10) ot < (Z2) 21l 1w st o1

which is precisely (2.7).

Finally, the one-dimensional case is given in the following theorem.

Theorem 2.4. [The 1-D Nash Inequality] Let Q@ C R, be an open set and let
¢ € CHQ).

Suppose that ¢(xg) = 0 for some xqg € Q.

Then,

(2.11) 1113 < 2/Il3[1¢l|2-

Proof. We have
o113 < 1(6*) 1 < 2[|8ll21¢'[12,

hence

I9ll5e < 4llol3l¢'l3-
Since

6115 = 116111 < l¢ll1ll¢lloos

we have

19113 < 4llgllll¢'[13,
so that

115 < 181116113 < 4ll¢llill¢'l13,

as asserted. O

Remark 2.5. Obviously, the “best constant” in the above estimates cannot be
smaller than that obtained in [5] for the case of the full space. However, for more
general domains 2 C R", it is not clear if the best constant actually depends on 2.
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3. APPLICATION TO THE LINEARIZED STOKES SYSTEM

Consider the equation

(3.1) ¢+ (u-V)p=f

V-u=0,
in a bounded smooth domain 2 C R™, n > 2, subject to the boundary condition
(3.2) ¢=0, on Q.

It is assumed that u is a given smooth vectorfield. This is the well-known linearized
Stokes problem. In addition, it plays a central role in the study of the explosion
problem in a flow [3].
Assume first that

(3.3) fe P, p>g.
By standard elliptic estimates ¢ € W2P(2) C L®(), so ||¢]|oo can be estimated in
terms of || f||,. From the general theory such an estimate depends on the velocity
field u. However, it was shown in [3, Lemma 1.3] that in the case at hand (namely,
Equation (3.1)) one has , if p > §

(3-4) 18llc < Cl£llp,

where C > 0 is independent of u.

Next consider the case 1 < p < 5. In what follows we focus on estimates that are
independent of u.

Multiplying Equation (3.1) by ¢ and integrating by parts we have

p
(35) [ Ivetdz sl o =2
Q
On the other hand, the Sobolev embedding theorem implies that
1 1 1
. < S=_
(36) 6l < CIVla, =5

(take any ¢ < oo if n = 2).
Here and below C' > 0 denotes various constants depending on €2, but not on u.
Thus, in conjunction with (3.5) we get

101 D 1 1 1
3.7 <clflZlelE, o =-L—, f-1_1
(37) Ioll < CUIRIOIS, #= 25 T=3-1
Ifn%ggpg%then1<p’§qhence
161l < Cllgllg-

The estimate (3.7) now entails
(33 6l < Clflly, —5 <p<

) 1= P2~ P=75

In contrast to (3.4), the estimate (3.8) contains little information about the “size”
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of |¢]. As an attempt to get a better idea of this size, note that . Thus

Hsz can serve as such a measure.

In the following theorem we establish a result in this direction. It implies that

2
the ratio Hi”f can be large (for some vectorfield u) only if ||¢||2 gets small. In other

words, the ratio can be large only if |¢| is everywhere small except for “narrow sharp
spikes”.

Theorem 3.1. Let n > 3, 2]: <p < 3, and assume that ¢ is a bounded Lipschitz
continuous solution to (3.1)-(3.2) with f € LP(Q).
Then there exists a constant C = C(Q,p) (in particular, independent of u), such
that
> H¢||2

Proof. We use the form of the Nash inequality as given in Theorem 2.2.
n+2 4
(3.10) ([16Pds) < [ (vopas- ([ |oliz)".
Q Q Q

_ (2n-1)?
where A,, = (%) .
Incorporating (3.5) we get

< ClfIIf

n+2

(3.11) ([ 167ds) ™ < ulflploly- ( [ Ioido)
Q Q

Noting that p’ < ¢ we use repeatedly the estimates (see (3.6))

[0lly < Chlidllg, llolly < Cal V2,
and then again (3.5). Thus

4
n

([1ords)™ < anculstpliol - [ 1olae)’
< 1l ( [ fotar)”
(3.12) < 4,0l (17l0) - ( i ldo)”
S N (A \¢|dx)ﬁ
(),

< An(C1C)E | f Il (I 11V 8)2)

By induction, it follows that for k = 3,4, ...

19 ([ 1orar) " < ancicr T i ivels ([ jolar)

Taking the limit as k — oo we get

3

4

(3.14) ([ 1okas) ™ < anercapisiz( [ jolas)"
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This estimate can be rewritten as
i A 21 £112
(3.15) 91, ™ (1512)" < An(CCP I,

which is (3.9). O

In the following theorem we obtain an estimate for ||¢||~, valid for all p > 1. It
is independent of u , but depends on the size of the subset where ¢ is “sufficiently
large”.

Theorem 3.2. Letn > 2, p > 1, and assume that ¢ is a bounded Lipschitz contin-
uous solution to (3.1)-(3.2) with f € LP(2).
Let

1 = {9 o) 2 S0l }.

and assume that |Qq| > §|Q| (|B| is the Lebesgue measure of B) for some 6 € (0,1).
Then there ezists a constant C = C(Q,p,0) (in particular, independent of u),
such that the solution ¢ satisfies

(3.16) [8lloe < ClIfllp-

Proof. We use the form of the Nash inequality as given in Theorems 2.2, 2.3 , valid
for any Lipschitz continuous ¢ that vanishes on 0f2.

n+2 4
n

(3.17) ( /Q oPdr) T < A, /Q Vo ( /Q 0ldz) "

2
where A, = (22507, n > 3 and 4, = §.

Incorporating the estimate (3.5) in (3.17) we get as in (3.11)

n+2

([ 167dz) ™ < Aall00F 1Sl lol
Q

By assumption |1] > 0|Q| so using the trivial estimate |||, < ||¢|]OO|Q|%, the
last estimate yields

n+2

1) o 4, p=1 1+4
(FllelZlel) ™ < AnlQl= 5 | flpligle

hence

1 nt2 2_1
(3.18) 19lloc < 547 AnlQ 7 [ f 1],

g

As a corollary, we show that the “blow-up” set of a sequence of solutions is
necessarily small.

Corollary 3.3. Fiz p > 1 and let {uy};-, be a sequence of divergence-free vector-
fields. Let {fr}rey € LP(Q) be a uniformly bounded sequence: sup | fillp, < oo.

=1,4,...
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Let {¢r }r be the corresponding sequence of bounded Lipschitz continuous solutions
to (3.1)-(3.2). Suppose that

[kl 1 00
Let .
QLk_{l'EQ, ]qﬁk(az)|22]¢ka}, k:1,2,...
Then
(3.19) lim |9 ] = 0.
k—oo

Proof. Suppose to the contrary that (3.19) does not hold. Then there exists a 6 > 0
and a subsequence (without changing notation) such that

€] = 6192.
This is a contradiction in view of (3.18) and the assumption that ||¢k|lcc T 0o. O

Remark 3.4. Observe that we could modify the definition Q;;, =
{z € Q, |pr(x)] > €||¢rlloc} for any € > 0 without changing the conclusion (3.19).
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