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ON LIOUVILLE’S SYSTEMS CORRESPONDING TO SELF
SIMILAR SOLUTIONS OF THE KELLER-SEGEL SYSTEMS OF
SEVERAL POPULATIONS

DEBABRATA KARMAKAR AND GERSHON WOLANSKY

ABSTRACT. We study a modified version of the Liouville’s system on R?. One
of the motivation for this system is the Keller-Segel system of several interacting
populations, under the existence of an additional drift for each component which
decays in time at the rate O(1/y/f). We show that self-similar solutions always
exist in the sub-critical case, while the existence of such self-similar solution in
the critical case depends on the gap between the decaying drifts for each of the
components. For this, we study the conditions for existence/non-existence of
solutions for the corresponding Liouville’s systems, which, in turn, are related
to the existence/non-existence of minimizers to a corresponding Free Energy
functional.

1. INTRODUCTION
In this paper we study the modified Liouville system:

25 aijug(z)—aglm—uvi]? /2
Aul(x) + Bze ’

() —a | 2—0: 12 ) ’ )
f 26E:jauu](z) o lz—v4] /2d22’

on R? where (ai;) is a symmetric n x n matrix of nonnegative entries, 3; > 0,
a; > 0 and v; € R?. As it turns out, the solvability of this system depends on some
conditions on the matrix (a;;), on B; and (to some extent) on v;’s, but not on oy
(as long as these are positive). Thus, we will assume «; = 1.

Before discussing the analysis of this system we describe a possible motivation
for studying it, which is originated from the celebrated Keller-Segel system.

The Keller-Segel system represents the evolution of living cells under self-attraction
and diffusive forces [15], [18]. Its general form is given by

dp . 2

(1.1) E—Ap—v-p(avzu) i (x,t) e RF xRy
where a > 0, p = p(x,t) stands for the distribution of living cells and v = u(z, )
is a self-induced potential describing the concentration of the chemical substance
attracting the cells. In the parabolic/elliptic limit this concentration is given by the
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Newtonian potential
1 )
(1.2) u(z, t) = ~5- /R? ply,t)In|z —y|d*y , ie —Au=p.

Since (1.1) is a parabolic equation of divergence type it follows that the total pop-
ulation number | pd’xr := B > 0 is conserved in time under suitable boundary
conditions at infinity. The steady states of (1.1,1.2) takes the form of Liouville’s
FEquation

Beau(m
f 9 eau(2) 2 »

The spacial dimension 2 which we discuss here was studied by many authors [3, 4,
5, 6]. The two dimensional case is special in the sense that there is a critical mass
Be = 8m/a. If f < (. then, under some natural assumptions on the initial data
p(x,0) := po, the solutions exists globally in time and, moreover, lim;_,+ p(x,t) =0
locally uniformly on R? [3]. In particular, there is no solution of (1.3). If 8 > f3,
then there is no global in time solution of (1.1, 1.2) [13] and, again, no solution
of (1.3) exists. In the case 8 = [, there is a family of solutions of (1.3) and the
(free-energy) solutions of (1.1, 1.2) exist globally in time. Moreover, if the initial
data has finite second moment then any such solution converges asymptotically to
the Dirac measure 3.0y [6], otherwise, any radial solution to (1.1, 1.2) converges
asymptotically to one of the solutions of (1.3) [5].

In the sub-critical case 8 < . it is natural to ask whether there exists self similar
solutions of (1.1,1.2) of the form

(1.4) o, 1) = (24) "1 (f 21n2t> , u(x,t):a<\/”“; ;111275) .

where ¢t > 0.
It follows that

(1.3) Au(z) +

~ 1 _ B
ont) = =5 [ et inle gl - -

in particular Vyu(z,t) = (2t)"/2V,u(z/v/2t, 2 In2t). Substituting in the KS equa-

t

tion we get under the change of variables z — f’ t—1 5 In 2t,
(1.5) op=Ap—V-p(aVu—1z).
The corresponding steady state of (1.5) is

Beaﬂ—\x|2/2

(16) Azu + fRQ eaﬂ(z)_|z‘2/2d22’
The existence and uniqueness (up to a constant) of the solutions to (1.6) in the sub-
critical case < f3. was given in [10, 7]. In [2] the authors considered the existence
of such self-similar solution of (1.4) for sub-critical data. Non existence of solutions
of (1.6) in the critical case was also proved in [7].

In this paper we are motivated by a generalization of (1.1, 1.2) to the case of
a system of n populations whose densities are given by p1,..., p,, and assume the
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presence of O(t~'/?) decaying drift forces:
(1.7) Opi _ 20, Vps = Api = V - p; Zaijvmu]' o (z,t) e RZx Ry

where A := (aij)nxn is a symmetric and nonnegative (i.e., a;; > 0 for all 4, j) matrix,

1
(1.8) ui(z,t) = —/ pi(y,t) In |z — y|d®y
27'(' R2

and v; € R? are constant vectors.
In the case v; = 0 the stationary solution of such systems, subjected to the initial
data satisfying [ p;(z,0)d*z = B; solves the Liouville’s systems:

Biezj aijug
=0
o o2 @it (%) g2

Again, such Liouville’s systems have been studied intensively in [11, 22, 16], and the
cases where a;; are not necessarily nonnegative (in connection with the chemotactic
system known as the conflict case) have also been explored in [12, 24].

The solvability of such systems was considered in [11, 22] and [23]. The criticality
condition is determined, in that case, by the functions

(1.9) Au; +

As(B) =) Bi |8 — > ayB

icJ jed
where ¢ # J C I :={1,...,n}. The criticality condition 5. = 87 /a in the case of
single composition is replaced by

Ar(B)=0.

In particular it was proved in [11] that an entire solution of (1.9) exists only in the
critical case iff, in addition, A;(8) > 0 for all ¢ # J C I hold.
Under the scaling (1.4) we recover the modified KS system from (1.7)

op;
(1.10) 8’; 25—V [ S agVem — (e —w) | ¢ (0.t) B2 xR,
=1
where
(1.11) wlet) =~ [ pilut)nle — yldy - St
: 7 ) ° 27_‘_ RQ pl 9 271- .

The steady states of (1.10, 1.11) are given by the modified Liouville’s system

Bie2s v —le—vil*/2
0.

(1.12) B S ST
Note that if n =1, (a;;) = a and v = v; then the system (1.10) is reduced, under

the shift £ — x — v to the modified Liouville’s equation

Beaﬁf|z|2/2

Jaz e#H P22 -

(1.13) Ay + 0
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which is independent of v. The same holds for the system (1.12) only when vy =
vy = -+ = v,. The modified KS system (1.10, 1.11) and the modified Liouville’s
system (1.12) are closely related to the Free energy functional

(1.14)

Fu(p) ::Z/ pi(z) In py(x)d? er ZZ&Z]/ / pi(2) In |z —y|p;(y)d*xd*y
=1

i=1 j=1
"1
2_ 2
Y —u?pi(x)d
+i12/R2|x vi|“pi(x)d x

defined over the set

R2 R2 R2

Indeed, we observe formally that (1.10, 1.11) can be written as a gradient descend
system in the Wasserstein sense [1]

apl o _ 5]:'0 .
(1.15) 9 —V'<pzv<5ﬁi>> ,i=1,...,n,
and, in particular
d 8Fy |?
1.16 —Fu(p) = — i |V —
(1.16) 5P =% [0

Every critical point of F, on I'® induces a solution of (1.12) [11], [21]. In partic-
ular, any minimizer is such a solution. Moreover, we expect such minimizers to be
a stable stationary solutions of (1.10, 1.11) and thus to represent stable self similar
limit of (1.7, 1.8).

Unless otherwise stated, in this article we assume the matrix A = (aj;)nxn satis-
fies

(H)  Ais symmetric and nonnegative,
and 3 satisfies
(1.17) Aj(B) >0, forall ) £ J C 1,
. if, for some J # 0, Aj(B) =0, then a; + Apngy > 0,Vie J
Let

Var(vi,...,vp) :i= mmZ|x—v,\2
z€R?

The main result of this article is:

Theorem 1.1. Suppose A satisfies (H) and 3 satisfies (1.17). Then

(a) (1.17) is necessary and sufficient condition for the boundedness from below
of Fp on T'B.

(b) If Aj(B) > 0 for all 0 # J C I, then there exists a minimizer of F,, on T'P,
for all (v, ...,v,) € (R?)™.
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(¢) If A7(B) = 0 and Var(vi,...,v,) = 0 then there is no minimizer of Fy in
8.
(d) If n = 2 and A1 (B) = 0, Ay(B), Ap23(B) > 0 and |v1 — va| is large
enough then there exists a minimizer of Fp on TP,
For a given such matrix A, we define

Definition 1.2. e 3 is sub-critical if Aj(8) > 0 for any 0 # J C I.
e (3 is critical if A7(8) =0 and Ay(3) >0 for any 0 # J C I.

Theorem 1.3.

(a) There exists a solution of (1.12) for any sub-critical B and any vy, ..., v, €
R?.

(b) If B is critical, Var(vy,...,v,) = 0, and A is invertible and irreducible, then
there is no solution to (1.12).

(c) There ezists a solution of (1.12) for n = 2 in the critical case provided
|v1 — val| is large enough.

Remark 1. e Theorem 1.3-a,c follows immediately from Theorem 1.1-a,b.d.

e Theorem 1.1-c implies the non-existence of minimizers in the critical case.
The non-existence of solutions in the critical case (Theorem 1.3-c) follows
from a different argument.

e The results of Theorem 1.1-d and Theorem 1.3-c can be easily extended to
the case n > 2, provided Var(vy,...,v,) is large enough. It is not known
whether Var(vy,...,v,) # 0 is sufficient for existence of solutions of (1.12)
in the critical case for any n > 2.

Our organization of the article is as follows: in Section 2 we discuss the bound-
edness from below of the functional F, over I'3. Section 3 is devoted to the basic
lemmas required for the proof of our main theorem. In Section 4 we proved the
existence of minimizers for sub critical 8. The critical case has been analyzed in
Sections 5 and 6 and we established a sufficient criterion (Proposition 6.1) for the
existence of minimizers. More precisely, we proved that a minimizer exists if strict
inequality holds in (5.3). At the end of this article we exhibited certain examples
(when Var(vi,vs) large) for which the minimum is actually attained and proved
the nonexistence result (Theorem 2(b)) when Var(vy,...,v,) = 0.

2. BOUNDEDNESS FROM BELOW

Since we can shift (vy,...,v,) by any constant vector we can set v1 = vg = -+ =
v, = 0 if Var(vy,...,v,) = 0. The functional F, will be denoted by Fy in that
case. Also, we omit the bars from p; from now on.

We will actually prove the boundedness from below of a little more general func-
tional. For a := (aq,...,ap) € (Ry)™, (where Ry is the set of all positive real
numbers) define

]:v,a(p) = Z /R2 pi(z)In pl($)d2l‘

1 n n
2.1 i i ()1 _ . 2, 12
(21) f o Ya [ [ il - g t)dady

i=1 j=1
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n
s> [ e uPaois
i=1 R

When v; = 0 for all 4, it will be denoted by Fp «-

Theorem 2.1. Condition (1.17) is necessary and sufficient condition for the bound-
edness from below of Fy o on s,

Proof. First we recall [11, 22] that if p is supported in a given bounded set then F,, o
is bounded from below iff (1.17) is satisfied. This implies the necessary part. For
the sufficient part we know from the same references that (1.17) together with the
condition A;(3) = 0 imply that F, ¢ is bounded from below. We only need to show
that for any positive a we still obtain the bound from below in the case A;(3) > 0.
Note also that since |z — v|? > |2]?/2 — C for any x € R? and C depending on ||
it is enough to prove the sufficient condition for v = 0.

The proof is a straight forward adaptation of the corresponding proof in [22]
without the potential |z|2. For p = (p1,...,pn) € TP let p! be the symmetric
decreasing rearrangement of p;. Then clearly we have

/pz-lnpiz/ p;*lnp;*,/ pz-unmz/ pﬂlnpﬂ,/ |x|2p:</ 2.
R2 R2 R2 R2 R2 R2

Thus if we define p* = (p%,. .., p%) then p* € T'A. Furthermore, we have (see [8, 22])

/ g (@) Infz — ylol(y) < / pi(@)In |z — ylp;(y), Vi, i
R2 R2

and hence Fo o (p*) < Fo.a(p). Therefore it is enough to prove the theorem for
radially symmetric decreasing function of |z|. Let p € I'® be a radially symmetric
decreasing function of r = |z|. As in [11, 22] we define

m;(r) = 2w /OT Tpi(T) dr, 7 € (0,00),

1
uile) = —g | Wl —loity) &y

Then we get using [z [#]?p; < oo and [22, equation (5.6)]
2 lim R o0 [ui(R) +0im R} —0,
' hmR*)OO(/Bi — mZ(R))R2 = 0.

Furthermore, by density we can assume the support of p lies within the ball B(0, R)
Therefore, for any R > R

]:0a Z/ Pilnpi_;;;aij/Bo pzuj—i-ZOzz/ ‘x’ pz

7

Again following [22], we define w;(s) = m;(e®). Then

Q; lz|2ps(z) d*x = 27Ta,/ 3 pi(r) dr
> o >
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n R
= Zai/ r2ml(r) dr
i=1 0
n R n
= -2 Z ai/ rm;(r) dr + Z a;m;i(R)R?
i=1 0 i=1

n InR n
=2 Z a; / e*w;(s) ds + Z aim;(R)R?
i=1 % i=1

and therefore we can write Fp o(p) = Gr(w) — (In27) " | m;(R), where

n

InR 7 In R 1 &
Gr(w) = Zw; Inw) ds +/ 2Zwi i Z a;jw;w; | ds
o i=1

=1 - i,j=1

n InR n n
1
-2 E ozi/ e w; ds — E mi(R) [ 2In R + 3 E a;jjuj(R) — a; R?
i=1 - i=1 J=1

Now define v; = 2 — ﬁ > j—1 @ijP;. Using the identity Ai—@ = >, vif; and (2.2)
we get

(2.3)
Ar(B)

in In R+ ogr(1),

n 1 n n
—Emi(R) 21nR+2zlaijuj(R) —i—;QyzﬂilnR:
1= 1= 1=

where or(1) stands for a quantity going to zero as R — oo. Utilizing (2.3), we can
decompose Gr(w) as follows

Gr(w) = Joco(w) + Joo(w) + Er(w) + 0r(1),

where
0 n 0 n 1 &
J_oo(w) = /meglnwg ds+/oo 2Zwi - Z aijwiw; | ds
=1 =1 1,j=1
n 0
-2 ai/ e*Sw; ds,
=1 -
InR "1
Joo(w) —/ Zw; Inw} ds
0 =1
InR n n
1 Ar(B)
+/0 Zz; 2(1 — Vi)w,- — E i]z:l Qi Wi;w; + e d
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By [22] we have J_o, and Js, are bounded from below on I'®, once we observe

that
0 0 4
/ e*w; < Bz’/ -
—o0 —00 2

Therefore, we only need to show that Er(w) is bounded from below. We can rewrite
Egr(w) in the following way

].HR n n n
Er(w) = /0 [Z 2 (I/Z' — 041'628) w; — 2 Z viBi + 2 Z aiﬁiez‘g] ds
i=1 i=1 i=1

+ Z a;fBi + o(1)
i=1

n

InR
-/ [zzwi—wi(s))(aie%—w)
=1

Now w;(s) < ; for all s and «; > 0,1; are being fixed numbers, we can find a
Ry > 0, independent of w; such that (8; — w;(s))(c;e* —v;) > 0 for all s > In Ry.
Again since

mRy [ 7
/0 [2 Z(ﬁz‘ — wi(s))(ie® — ;)

=1

ds + Z a;fBi + o(1).
i=1

ds

n
gE}@@%&Mm%—%)
i=1
we have Er(w) > —|ER,(w)| > —C. This proves the sufficiency of the condition
(1.17). O

3. BAsic LEMMAS

In this section we will recall a few definitions and lemmas and also prove some
basic ingredients required for the proof of our main results. We define the space
LInL(R?) as the Orlicz space determined by the N-function N (¢) = (1 +¢)In(1 +
t)—t,t > 0:

LInL(R?) := {p : R? — R measurable : / [(1+ |p|) In(1 + |p]) — |p|]d*x < oo} :
R2

Then LInLL(R?) is a Banach space with respect to the Luxemberg norm (because
N (t) satisfies the Ay condition: N(2t) < 2N(t) for all t > 0).

The dual space of LInIL(R?) is the Orlicz space determined by the N-function
M(t) = (e —t—1),t > 0. It is important to remark that L InL(R?) is not reflexive
(because M (t) does not satisfy the A condition). However, there is a notion of weak
convergence which is slightly weaker than the usual weak convergence in Banach
spaces. A sequence p,, € LInL(R?) is said to converge Lj-weakly to p if

/ . PmP — / . po, for all bounded measurable functions ¢ with bounded support.
R R

It is well known from the general Orlicz space theory [14] that LInIL(R?) is Lyy-
weakly compact. To simplify our notations we will denote the weak convergence (in
the above sense) by p,, — p.



ON LIOUVILLE’S SYSTEMS 329

We begin with the following elementary lemma whose proof can be found in [3]:

Lemma 3.1. For 1 <i <n let p; € L*(R?) be such that p; > 0 and satisfies

/ Pi lnpi < Co,/ |$’2Pz < Cp.
R2 R2

Then
n n n n
pilln p;| < /p‘lnp-—|—21n27r /p' +2 /|x2p-—|—2n6_1.

Lemma 3.2. Let {p,,} be a sequence in LInL(R?) such that

/pmlnpmSCo, / pm—ﬁ,/ 22 pm < C.
R2 R2 R2

Then there exists p € LInIL(R?) such that up to a subsequence p,, — p in the weak
topology of LInIL(R?) and satisfies

(3.1) / plnp<liminf/ P 10 Py
R2 n—oo R2

Remark 2. The conclusion of the lemma is false without the assumption on the
uniform boundedness of [go |2|?pm. As a counter example, let ¢ € C2°(R?) be a
smooth cutoff function such that 0 < ¢ < 1 — 9, for some § € (0,1). Let x,, be a
sequence in R? such that |x,,| /* oo and define the sequence

pm(2) = d(T + Tm).

Then it is easy to check that [go |2[*pn — 0o, and

/ pmlnpm:/ ¢Ilng < 0, for all m.
R2 R?2

But p,, — p =0 in LInLL(R?) and hence fRZ’ plnp = 0. Therefore the assumption
Jgz |212pm bounded is a necessary condition for the Fatou’s type estimate (3.1) to
hold true.

We need some supplementary lemmas to prove Lemma 3.2.

Lemma 3.3. Let {p,,} be a sequence in LInIL(R?) such that

(3.2) / Pm I pr, < Co, / pm = B, / || pm < Co.
R2 R2 R2

Then there exists a p € L*(R?, (1+|x|?)d?z) such that (up to a subsequence) py, — p
weakly in L*(R?), i.e.,

/ Pmg —>/ pg, for all g € L®(R?).
R2 R2

Proof. By Lemma 3.1, the assumption (3.2) implies that

[ lpllnpn| <.
RZ
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for some constant C, and hence [po[(1+4 pm) In(14 pp) — pm] is uniformly bounded.
Since fR2 pm = 3 by weak* compactness in L' there exists a finite measure ;1 on R?
such that

/RQ J /RQ ¢ dp, for all ¢ € Co(R?).

Furthermore, the uniform boundedness of [o2[(1 4 ppm) In(1 + pr) — prn] implies p
has a density p € L},.(R?). Now we claim that [, [z[*p < +o0. To prove it we let
¢ € Co(R?) be such that ¢(z) = |z|? in B(0, R),0 < ¢ < |z|? in R% Then by (3.2)
and L' weak* convergence we get

| o< [ o=t [ pno<c
{|z|<R} R2 m—oo JR2

Letting R — oo we reach at the desired claim. Moreover, the assumption [, |z|%pm <
Co gives [po p = . Therefore, by Portmanteau’s theorem

(3.3) /RQ pPm@ — /RQ po,

for all bounded continuous functions ¢ on R?. Using Lusin’s theorem and Tietz’s
extension theorem we can extend this result to ¢ € L>°(R?). O

Lemma 3.4. The set

3:—{p€L1(R2):pZO,/ plnpéa,/ p—B,/ \xlzpéCo}
R2 R2 R2

is a weakly closed subset in L'(R?).

Proof. We will show that the set S is a convex and strongly closed subset of L!(R?).
Then by Mazur’s lemma it will imply the weak closeness of S. Again by the convexity
of tInt we only need to show that S is strongly closed in L'(R?). Let {pm}m be
a sequence in L'(R?) such that p,, — p in L'(R?). Let pf,, p* be the symmetric
decreasing rearrangement of p,, and p respectively. Then p¥, — p* in L'(R?) and
up to a subsequence py, (respectively p,) converges pointwise a.e. in R?. By strong
convergence and Fatou’s lemma we have

/pzﬁ,/ |z[%p < Co.
R2 R2

Furthermore, by Lemma 3.1 and the pointwise convergence we obtain

/ p|Inp| < +oo.
R2

To conclude the proof of the lemma we will show that fR2 p*In p* < a. Using Fatou’s
lemma we get

/ p*1In p* < liminf / o Inpl |
B(0,R) B(0,R)
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for any R > 0. Now to estimate for |z| > R we will use the bound 0 < p*(|z|) < 7r|f:|2 .

The bound follows from

g :/ p :/ Pt = 27r/ sp*(s)ds > 277/ sp*(s)ds > mrip*(r).
R2 R2 0 0

Choosing € € (0, 3) and using In(1/t) < 1/t for t < 1 we get, after multiplying by e
and using p*(z) < 1 for sufficiently large R

pm| 1npm| S - Pm
{||>R} {|=|>R} (Pm)

B /{|x|>R} ’

)1—6
/{|m|>R} |90|216 ’

1—e €
( :c|2p:;> ( / |z|2<1i>) ,
{lz|>R} {|z|>R}

- O R2(12)>
* * >k >k 1
/ pmlnpmg/ pmlnpm+0<1)7
B(O,R) R2 R—2)
.. 1
/ p*Inp* Shmlnf/ o npr. + O <1> .
B(0,R) R? R2:72)

Letting R — oo we get the desired result. O

a |

IN
a |

Thus we obtain

and hence

Proof of Lemma 3.2:

Proof. Define a = liminf fR2 Ppm 0 pm + €, where € > 0 is a small fixed number.
Let pm, be a subsequence such that lim fR2 Pmy 10 Py, = liminf fR2 Pm 10 ppy. By
Lemma 3.3, up to a subsequence p,,, converges to some p weakly in L'(R?). Since
for sufficiently large k, p,,,, € S, which is weak L'-closed by Lemma, 3.4, we conclude
that p € S and hence

/ plnp < liminf/ Pm 0 py + €.
R2 R2
Since € > 0 is arbitrary the proof of the lemma is completed. O

Lemma 3.5. Let p € L'(R?) satisfies
/ plnp < Co,/ p =7 / |z[*p < Co.
R2 R2 R2

1
(3.4) u(z) = —=— [ In|z —ylply) d*y, for z € R?
2w R2

Define
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Then there exists a constants C, R depending only on Cy and 5 such that

u(zx) + gln |z|| < C, for all |x| > R.
T

Proof. The proof goes in the same line as in Chen and Li [9] with slight modifica-
tions. As in [9] we write
u(z) B 1 In|x —y| — In|z|

2 dy=I5L+1I+1I
In|z| 27 27 Jp2 In |z| ) &y =h+ It I,

where the integral I; is over the domain {|z—y| < 1}, I3 is over the domain {|z—y| >
Lyl < %} and I3 is over the domain {|z —y| > 1, |y| > %} We want to show that
each I; is bounded by C(8,Co)/In |z|. Now

(3.5) uns/’ ply) dy +
{lz—y|<1} Infz] Jjp—y<1y

Since {|z —y| < 1} C {|y| > |z| — 1}, and g [z|*p < C the first integral in (3.5) is
bounded by C(3,Cp)/(|z| — 1)%. To estimate the second integral in (3.5) we divide
it into two parts {|z —y| > 1,p <1} and {|z —y| > 1,p > 1}. Clearly,

1 C(B,C
|In|z — yl|p(y) d*y < 1B, ).

|In |z — y||p(y) d*y

(2| Jijz—y<1,p<1} In ||
Choose € € (0,1). Then

/ infz ~ yllo(y) Py < [ In Jo = yllp(y) d

{|lz—y|<1,p>1} {|]z—y|<1,ln p<eln ﬁ}
+f nlz ~ ylloly)

{]z—y|<1,ln p>eln ﬁ}

< / (m 1 > M g2y
{o—yl<1} \ |7 =l

1

+/] p(y) In ply) d%y
€ J{lz—y|<1}

1 1
A
(o—yl<1} \ |T—yl/ [z -yl

1

+/' p(y) In ply) d%y
€ J{lz—y|<1}

< 0(67 007 6)'

Combining all we get the estimate

8l < 5.0 |+ o

To estimate I we see that on the domain {|z—y| > 1, |y| < %}, [In|z—y|—In|z|| <
1. Thus
c(8)

d*y < :
v= In |z|

1
[I2] < p(y
Infz] fgy <2ty
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Now on I3,In |z —y| > 0, |x —y| < 3|y| and hence |In |z —y| —In |z|| < In3|y|+1n|z]|.
Therefore
1

2] Sy 121

< C(8,C) [1 + 1] .

x| 2] |z

|I3] <

p(y) In(3y|) d2y+/ o PW) d*y
(ly>12}

g

We end this section with the following compactness lemma whose proof can be
found in [20].

Theorem A. Suppose we have a sequence {u,,} C H'(B(0,2R)) of weak solutions
to

(3.6) — AUy, = fm, in B(0,2R),
and {f,} C LInLL(B(0,2R)). Suppose there exists a constant C' < +o0o such that

(3.7) umll L1 (B0.2R) + |[fmllLmL(B02R) < C.

Then there exists u € Hlloc( (0,2R)) such that

||um — uHHl(B(O,R)) — 0, as m — oo.

In [20], the authors actually proved the above compactness theorem for R = %
but for more general inhomogeneity €2, - Vuy, + fr, under some smallness condition
on {2,,. For our purpose we can take €2,, = 0, and the general R can be dealt with
through a simple scaling argument. To be meticulous, define @, (r) = um(2Rz)
and f,(z) = (2R)? f,,(2Rx). Then one can easily verify that (3.6),(3.7) holds with
Um, fm replaced by @, fm in the domain B(0,1). Hence by compactness theorem
there exists & € H} (B(0,1)) such that @, — @ in H*(B(0, 3)). Scaling back to the

loc
original variable we see that um,(-) = u(-) := u(55) in Hl( (0, R)). We refer the

reader to [20] for more details.

4. EXISTENCE OF MINIMIZERS: SUB-CRITICAL CASE
In this section we assume (3 is sub-critical (Definition 1.2).

Theorem 4.1. If B3 is sub-critical then for allv = (vy,...,v,) € (R®)™ there exists
a minimizer of Fyp on T8,

Proof. Let p™ = (p, ..., p™) be a minimizing sequence for F, on T'8.
Step 1: [go |2 — vi|*p}" is uniformly bounded by some constant Cp.
Choose § € (0, 3). By Theorem 2.1

Z/ i In o +7 Zazj/ / pi( ln\x—y\p] Y)
- —uil2ym >
+;<2 o) [l ulor = —c
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which implies Fp(p™) — 6 31 [ge |z — vi?p™ > —C. Since along a minimizing
sequence J(p™) is bounded above, the conclusion of Step 1 is proved.
Step 2: p;* are uniformly bounded in LInL.

Since 3 is sub-critical we can choose € > 0, small such that
(4.1) ZBZ- 8T — Z(aij +e€)Bj | >0, forall 0 # J C I.
ieJ Jj€J
Define
=, [ oremle - s} )
R2 JR2
Using Step 1 and the following inequality
1 1
Injz —y| < 3 In(1 + |=|*) + §ln(1 +yl®) 5 |z > In(1 + |z?)
we see that I77 < %(ﬁz + f;). Since B satisfies (4.1) we obtain by Theorem 2.1

o m m 1 - - m m
Z/Rzpi In p} +47TZZ(%+€)/R2/RQm (z)In |z — y|pT"(y)
=1

i=1 j=1

n
1 2. m
—1—12;2/]1%2\9:—@1-] pit > —C.

Therefore we have

Folp™) + - > 1 ~ i o= ~C.
Im>0 IZ;}<0

Since along a minimizing sequence F,(p™) is bounded we obtain > ;m_q|1]}] is
ij

uniformly bounded. Hence ) ! , fRQ pit1In pi™ is bounded above and by Lemma 3.1
we get the uniform bound of p™ in LInL.

Step 3: Existence of a limit.

By Lemma 3.2 there exists p; € L InL(R?) such that up to a subsequence Pt — pi
in the topology of LInIL and satisfies the inequality

(4.2) / pilnp; <lim inf/ pitIn pi*, for all 4.
R2 R2

Furthermore, it also follows from the proof of Lemma 3.2 that

n n

1 1
43 > — v’ < liminf}_ - — w2, / = B,
(4.3) i12/R2]x vil“pi < limin Z‘12/R2]a: vi|“pi RQpZ Bi

and hence p := (p1,...,pn) € I'®. To complete the proof of the theorem we need to
show that

/Rgp?lu;-”%/wpiujforalllgi,jgn,

where u;, u]" are defined by (3.4) via p;, p]* respectively.
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By Lemma 3.5 we have for R large

(4.4) [ eapl<el [ gl [ p;”]
{lz|>R} {lz|>R} {lz[>R}
C
4. < —.
(45) <%

For {|z| < R} we will use Theorem A to prove the convergence. For that we
need to show that u* € H} (R?) and i1 (B(0,2R)) 18 uniformly bounded for all
1=1,...,n:

1
[tz [ [ wle - sl ) duds
{|z|<2R} 27 Jijz|<2R} JR2

1

<or [ eyl ) dys
T J{lz|<2R} J{ly|<4R}
1

bor [ e =il ) e
T J{lz|<2R} J{ly|>4R}
1

<o o) [l =] Pady
T J{lyl<4Rr} {lz|<2R}

+CR) [ WPo) &y
< C(R)

By compactness result of Theorem A, there exists u; € H'(B(0, R)) such that u"
converges to u; in H'(B(0, R)). Therefore u! converges to u; in the strong topology
of Orlicz space determined by the N-function (e! —t — 1). By duality

(4.6) / piug —>/ Pilj.
B(0,R) B(0,R)
Hence by (4.4) and (4.6) we see that
(4.7) / Py’ —>/ piuj, for all 4, j.
R2 R2

Therefore by (4.2), (4.3) and (4.7) we have p € I'® and
Fo(p) <liminf Fp,(p™) = 11£1ﬁ’f Fo.

This completes the proof of the theorem. O

Remark 3. It follows from the proof of Theorem 4.1 that if a minimizing sequence
is bounded in the LInIL topology and has bounded second moment then the min-
imizing sequence converges and the limit is a minimizer. More precisely, if p™ is
minimizing sequence that satisfies

n n
S [ orinpr < Coand Y- [ JaPpr < Co
i—1 /R? i—1 /R

for some constant Cyy independent of m then there exists py € I'? such that p™ — py
in the topology of LInIL and Fy(po) = inf ,cps Fu(p).
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5. THE CRITICAL CASE

Recall the definition of the functional F,(p) (1.14). In this section we assume
the critical case

(5.1) Ar(B)=0 ,A;B)>0YICI,J#I0.

Lemma 5.1. Assume (3 satisfies (5.1). Then any minimizing sequence {p™} for
Fo concentrates at the origin, i.e.,

lim / lz|2p(z)d*x =0, foralli=1,...,n

m—c0 |pa
In particular, Fy does not attain its infimum on I'8.
Proof. Let p™ be a minimizing sequence. Define

o (z) = R?p™(Rz), e RER>0 .

Direct computation gives

~ _ m i_ n} 2. m
Fo(pm) = Folp )+<R2 1>;2/Rglwl P

Thus we have (using liminf(a,, + by,) = lim a,, + lim inf b,,, if a,, converges)

inf Fo(p) <lim Fo(p™) + lim inf ( — 1) / |lz|2p.

pel's

which gives

(5.2) 11m1nf< )Z /m

Choosing R > 1 in (5.2) gives limsup (>, 2 L Jaz |2?p™) < 0. On the other hand
pI" being non-negative liminf " | ( Jge lz[2p7") > 0 and hence

“ 1
lim / z|?p | =
(53 Lov)

Therefore all the components of p™ concentrates at the origin and hence there does
not exists a minimizer of Fy on I'8. Il

5.1. A Functional inequality:
Lemma 5.2. The following inequality holds true

5.3 f F < inf Fyo(p)+ m o — v;|2.
(5.3) plenm »(P) plenm o(p) xoénz 5 BilTo — vl

Proof. Let pp, be a minimizing sequence for inf ,cps Fo(p). Define for zq € R2,

pm(z) = p™(x —x0), = € R
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Then a direct computation gives

pelB

n n 1
(5.4) = Fo(pP™) + ) /R w0 —vi)pl" + )y 5 Bilwo — v
=1 =1

Since by Lemma 5.1 lim (371 & [o |2[?0) = 0 we get

1
2
<Z,8 20 — v (/ |x|2p;-”) S,

as m — 0o. Therefore letting m — oo in (5.4) we get

~ m . 1 m
inf, 7o) < Folpn) = Fol0™) + 305 [ (la 0= il = [of?)
=1

xmo—vl

inf F, < inf Fo(p)+ i|lxo — v
perﬁ()pe o(p Zﬂ\o 2.

Since zo € R? is arbitrary the proof of the lemma is completed. O

Remark 4. If the equality occurs in (5.3) then there exists a minimizing sequence
p"™ for F,, such that the sequence p™ := p™ (-4 z0) is a minimizing sequence for Fy,
where g is the unique minimizer of min,cge > i1 36| — v;|*. Hence, for any such
minimizing sequence we get " | [0 pi" In pi* — co. Otherwise, as in Theorem 4.1
(Remark 3) we can prove the existence of a minimizer of Fy on I'?, which contradicts
Lemma 5.1.

6. BLOW UP ANALYSIS: BREZIS MERLE TYPE ARGUMENT
We pose the following:
Proposition 6.1. Suppose 3 satisfies (5.1), then either

(a) there exists a minimizer of F, over I, or
(b) equality holds in the functional inequality (5.3).

In particular, if strict inequality holds in (5.3) then there exists a minimizer of J,
over I'P.

For the proof of this Proposition will need the two Lemmas below:
Let 3,, be a sequence such that 3,, B3 and satisfies

Aj(Bm) >0, for all ¢ # J C I.

One can indeed choose such sequence 3,,, see for example [11, Lemma 5.1 and
equation (5.4)]. By Theorem 4.1 the infimum inf,cps,, Fu(p) is attained. Let us

denote the minimizer by p™ € I'8m,
Lemma 6.2. The following holds

sup/ |22 o™ < oo, for alli .
m JR?
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Proof. For each fixed m and R > 0 define
pi(x) = R?p}"(Ra).
A direct computations gives
Fo(pm) = Fo(p™) + fm(R),
where fp, : (0,00) = R is defined by
bm  2cm,
and a,, by, Cm, dpy, are defined as follows:

Ar(Bm) — 0, 2cm:—2/ z,v)p
m—zj 220", m:—Z/ o= vl + 2 Zm\ g

One can easily verify that the following inequality holds:

1 1
©.) el < (sup ¥ w5} ) bh,

Since p™ minimizes F, over I'®m we have
inf -Fu(p) < fv(ﬁm) = -Fv(pm> + fm(R) = inf F’U(p) + fm(R)7
and therefore f,(R) > 0. R > 0 being arbitrary we obtain infyc ) fim(t) > 0.

Since for each m, f,,(1) = 0 and f,,,(t) — oo as t — 0+ and ¢ — oo we have that
11, (1) = 0 for all m. Which gives

(6.2) m — b — 2¢,, =0 for all m.
Now the desired conclusion follows from the estimate (6.1) and (6.2) and hence the
proof of the lemma is completed. O

Lemma 6.3. The followings hold true:
(a)

: <
(63) ma e
(b)
6.4 li f Fo(p)= inf F
( ) mgnoo pé{“lﬁm 0( ) plenrﬂ 0( )

Proof. We first prove inequality (6.3). Let p € T'® be a fixed element. Choose
R > 0 such that fB(o Ry Pi = B and define pi* = PiXB(0,rm)- Then p™ € [Bm

(2
and by dominated convergence theorem

im Fy(p™) = Fu(p)-
Thus we have
lim inf Fyu(p) < lim Fp(p™) = Fu(p).

m—00 pc'Pm m—00
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Since p € T is arbitrary, we have proved the inequality (6.3). Next we prove (6.4).
Thanks to (6.3), we only need to show limy, o0 inf ,cpsm Fo(p) > inf ,crs Fo(p)-
This step is a little bit technical and therefore we divide the proof into several
parts.

(1) By Theorem 4.1, there exists p™ € I'®m such that

Folp™ = inf Folp).
pEF.Bm

Furthermore, we may assume that p}" are radially symmetric and decreasing func-
tion of r = |z|. By abuse of notation, we will also denote the radial function by

pi(r)-
(2) A simple adoption of the proof of Lemma 5.1 gives [po |2[*p"(z) — 0 as
m — oo. Therefore for any r € (0, 00)

on() = [ Jalp @) =2n [ 00r(s) ds 2 2m [ () ds = Trtor(,
R 0 0 2

where 0,,(1) denotes a quantity going to 0 as m — oo. Thus we have
SUPre(0,00) 7“4/)?1(7“) = o0m(l) as m — oo.

A similar argument using [p. pf* = B]" gives sup,¢ (o, r2pm(r) < %
(3) Let ¢ be a smooth, nonnegative, radial, compactly supported function such
that [ps ¢ = 1. Define €™ = 8; — ™ > 0 and

@) = o) + e p(a), = € R

Then p,, € I'® for all m and hence inf pers Fo(p) < Fo(pPm). Now we will estimate
each term of Fy(pn,) and show that

Fo(pm) = Fo(p™) + om(1).
(1)
(6.5) L= [ o = on(1).

Let us denote by ky, := maxi<i<, max{sup,c( ) r4p;”(r),supre(0700) riam(r)},

then using (2) and egm) — 0, we see that k,, — 0. Let ,, be a sequence such that

Sm — 0 and Ky, Ink,, /83, — 0. Clearly we have
[ @ mar o gy = om(D),
B(0,6m)

because tInt is bounded on any compact subset of [0,00). Now using mean value
theorem we get

/ (" In pi" = pi* In pi" )X (>3
(0,6m)
Om 1
:27regm)/0 /0 r [1 +1In(p"(r) + tegm)qﬁ(r)) ¢<7’)X{p;n>2} dtdr

1 rom
=om (1) + 27F6§m) /0 /0 rin(pi(r) + tegm)gb(r))gf)(r)x{p;nﬂ} drdt
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On the set {p" > 2}, we have p@”(r)—i—tegm)qﬁ(r) > 1. Moreover, using the estimate of
(2) we see that pI™*(r) +tel(-m)¢(r) < 7% where C' is some positive constant. Therefore
0 <rln(p"(r)+ tegm)qﬁ(r)) <rln r% and hence

1 Om
el /0 /0 I (1) + e () S xqpmzy drdt = om(1),

which gives

/ (P I pi" — pi" In pi" ) x{pm >0y = om(1).
B(0,0m)

Now let us estimate [p, 5ye P07

o0
[ | = for [ ) dr
B(0,6m)° S
00 |,.4 m ] 4 m 0o .4 m 1
S%/ I p} n?fr pi")] dr+8ﬂ/ rp; Ln'f\ dr
Sm r Sm r
> d 1
g27r\km1nkm|/ §+8wkm/ iy,
27|k Ink k
< il m2n m| +C 2’1, for some € > 0
6771 677’1

= o (1).

In an entirely similar way we can verify that ‘ / B(0,6m)° Pt In pit

= o (1), and hence
we have proved (6.5).
(5) Next we estimate

[ [ aramle =iz
R2 JR2
= [, Lr@mle =i+ [ [ s@mle o)
+ € /RQ /RQ pi' () In |z —ylo(y) + & €) /RQ /RQ é(z) In |z — yd(y)
66 = [ [ or@nle =yl +on(1).
Where we have used the fact that ]fRQ In |z — y|é(y) d2y| < C(1 +In(1 + |z|)) for

all z € R2.
(6) Finally we have

(67) [t = [ JaPor @)+ on)
Combining (6.5), (6.6) and (6.7) we get

inf Fo(p) < Fo(pm) = Fo(p™) +om(1) = nf Fo(p) + om(1).
pelrp pElBm
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Letting m — oo, we reach at the desired conclusion. This completes the proof of
the lemma. O
6.1. Proof of Proposition 6.1. Recall that p™ is a minimizer of F, over I'®m,
where 3,, ' 3. Define the Newtonian potentials

1
ui'(@) = —o— | Wz —ylp"(y) &y, z € R%

™ JRr2

By variational principle and Lemma 6.2, u;" satisfies the following equation:
—Au*(x) = M;nez;;l aij“T(x)_%‘x_”iP, in R?,
0710 _ g,

i fga o> e sl <

where Cj is a constant independent of m. Define
n
vi'(x) = Inpi" + Zaiju;‘n(x)a zeR?

Let us consider the two cases:
Case (A): Suppose there exists R > 0 such that

(6.8) max sup v;'(x) — 00, as m — 0.
1<i<n z€B(0,R)

Case (B): For any R > 0 there exists a constant C'(R) such that
i"(x) < C(R).

max sup v
1<’L<TL :L‘EB(O R)

We first prove:
Lemma 6.4. Under the assumption of Case (A), the following equality holds:

6.9 inf F,(p) = inf Fo(p) + ilzo — vl
) 8, Flo) = o, o)+ i > o

Proof. By definition v}",1 <14 < n satisfies the equation

1 2
_ z)—5le—v;[? 2
—AvM(z) =377 aije’ 7@ =zle=ul iy R,
v —Llz—v;|? _ am
fRQe % 2 = .

Ja z2er = zlemul® < ¢
Furthermore, the following relation holds:
(610) p;n(m) _ MTGZ?:I aiju;-”(x)—%\x—uiﬁ oVt m(x)—1 \93—1;1-|2, r € R

After passing to a subsequence if necessary we may assume the supremum in (6.8)
is attained by v} for all m. That is, there exists z,, € B(0, R) such that

v" (%) = max sup )"

: () — 00, as m — oo.
i 2eB(0,R)
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Let z,, — x¢ for some zy € B(0, R), and choose a R > 0 large enough so that

B(0,R) C B(z, R). Since v{"(z,) — oo we have

(6.11)

sup{v™(z) + 2In(R — |z — z¢|) : z € B(zo, R),1 <i < n} — oo, as m — oo.
Again after passing to a subsequence me may assume y,, € B(zo, f%) be the point
and 4o be the index such that the supremum in (6.11) is attained for all m. Since

2In(R — |z — z0|) is bounded above on B(zg, R) we have v’ (ym) — oo.

v (ym)
Define 8,, = e~ 2 , then 8,, — 0 and it follows from (6.11) that
(6.12) (R—\ym—xo!> — 00, as m — 00.
Om

Now define
(@) = 0" (Ym + Om(z — 20)) + 210 6.

We note that 97’ (z9) = 0 for all m. Furthermore, it follows from (6.12) that for any

M > 0 fixed and x € B(zg, M), Ym + 6m (2 — x0) € B(zo, R) for large m. Now 0" (z)
satisfies the equation

(6.13) {—Mm(@ = 30 age’

m -1 m(sm - _'L2
Jigs €5 @ Blum+om(z—z0)—il? _ gm.

Let ym — yo € B(wo, R). Since 9{"(x9) = 0 either 7" converges to some @; in
CP (R?) for all i or o converges to —oo uniformly on compact subsets of R? for
some i # 1.

Let I' C I is the set of indices such that @; # —oc iff i € I'. Then v converges

to o; in C{) (R?) for i € I' and, by (6.13)

~ 1 2
~ Vi—= —V; . 2
(6.14) —Ab; =3y aige 270l in R?,
. 5 — Ll —o. |2 ~
fR2 eVi—5lyo—vil =B,

Letting z;(z) = 0;(x) — |yo — v;|> we obtain

(6.15) {—Azi = Ejel/ a;;e% in R?,

)= |Ym+om(z—z0)—v;[* ;| R2
)

(ST

f]R2 et = Bl .
holds for i € I' for some f3; < f3;. _
A necessary condition for the existence of solution to (6.15) is A (3) = 0 ([11],
see also [17, 19]). Since we assumed A;(8) = 0 this implies I' = I and 8 = 8. (see

[11]).

It follows that, in Case (A), pI concentrates at some point yo € R?. In particular

(6.16) lim |z — v 2" (z)d?x > Bilyo — vi]* foralll1 <i<n.
m—0o0 R2
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We want to show that yq is the global minima of Y ; $8;|z — v;|* on R?. Let us
define p,, as

Then

Therefore we obtain

m Af(ﬁm) 2 2
R AT oy
Letting m — oo and using (6.16) and Lemma 6.3(b) we get
1
< 2 N 28w — w2
inf Fo(p) < inf Fulp) +6°0(1) Z; 5 Bilyo — v
Since § > 0 is arbitrary, by (5.3) we get yo is the global minima of " ; £ 8;|z — v;|?
on R? and (6.9) holds true. O

Lemma 6.5. Under the assumption of Case (B) there exists a minimizer of Fy, in
e

Proof. Under this assumption, we have from (6.10) that ||p]" || (B(0,r)) < Co, for
some constant Cy independent of m. In the proof Cy will stand for some universal
constant independent of m but may depend on R. Then

6.17 / z)In p*(2) d*z| < Cp.
(6.17) Z B(OR (z)
Now let
o 1 m
(@) == | Wz =yl W)xsem ) ¢y,
™ JRr2

then it follows from Lemma 3.5 (using the fact |[p]"||Lo(B(0,r)) < Co) that

()] < Co, if x| <1,
! Co(1 +In|z|), if |z| > 1.

Thus we have

[ [ @l ) duds
B(0,R)¢ JB(0,R)

m ~m 2
< [ @@l
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/ Pl d%ax —I—/ In |z|p!* d*x
R? {l=[>1}

(6.18) <Co [@m‘i‘/ |z 7" d29€] < Co.
R2

< Cy

Let us define pf (z) = P (2)XB(0,R)c (7). Let
(6.19)

pzlnpﬂrf az/ / pi (x) Infz —ylpj*(y)
ZED ZZ oo Joom J
—i-lZ/ |z — vi?p; -
2= JB.R)

We can write F,(p™) as

(6.20) Fo(p™) = Fo,r(p™) + Folpry)

1 / / 2

+ — a; z)In |z — y|p (y)d°zd*y
2m Zz; le Y B(0,R) J B(0 R)” 7

Since ||p™|| Lo (B(0,r)) < Co we obtain that Fy r(p™) = O(1). Also, (6.18) implies

that the second line in (6.20) is O(1) as well. Since F,(p™) is a bounded sequence

(as p™ is a minimizer of infps,, Fyp, see Lemma 6.3(a)) this implies that

(6.21) Folppy) = O(1)

uniformly in m.

Next, observe that we can choose R large enough for which fRQ pE < B/2. Indeed,
since [go |z|?pf" < C then f{|x|>R} Pt < R? f{|x|>R} |z|2p™ < C'/R%. For such R,
Pm is sub-critical, uniformly in m, thus

(6.22) )>C Z/ " n pn

From (6.21) and (6.22) we acquire that pZ has a uniform bound in LInL. Since by
assumption ||p™|| e (p(0,r)) = O(1) we obtain that p™ is bounded in LInL as well.

Proceeding as in the sub critical case (Theorem 4.1, see Remark 3) we can prove
the existence of a minimizer of F, over I'®. O

6.2. Case of Var(vi,...,v,) large: Proof of Theorem 1.1-d. According to
Proposition 6.1 we only have to exclude case A.

Lemma 6.6. Suppose B satisfies (5.1). Then there exists a constant k(83) such that
whenever |vy — va| > K, then strict inequality holds in (5.3).

Proof. Let p be any non-negative, bounded function of compact support (say p(x) =
0 if || > 1) such that [g, p = 1. Define p;(2) := B;p(x — v;) so that p € I'P.
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Then we immediately see that

[ im0 /R/R” £z — ylpily >'— o),
[ la=vifn= ﬁz/ 2?5 =0

for all ¢ = 1,2, where O(1) denotes a quantity independent of v;. Now

(6.23) /}R2/]RQPl z)In|z — ylp2(y 51ﬁ2// z)Infz —y+ (v1 — v2)|p(y)-

One can easily estimate that |In|z —y + (v — v2)| — In|vy — ve|| <

o= ua]=2" for

all z,y € (0,1) provided |v; — vg| > 2 (this condition on |v; — vy| is unnecessary,
because we can choose the support of p accordingly). Since p has support in B(0, 1)
we get,

/ / z)In|z —y + (v1 —v2)|p(y) — In|vy — vo|
(6.24) /]1%2 /]R2 )(In|z —y + (v1 —v2)| —In|v —v2]) p(y) = O(1).

Thus we obtain from (6.23) and (6.24),
ai2

(6.25) mpf;a Folp) < Fo(p) = O(1) + o ~F1fzIn[v1 — va].
pE
While the right hand side of (5.3) becomes
5162 2
6.26 f Fo( — > =0(1 — v — .
(6.26) p1€n o(p +xlgl€1n E ey a— ()+2(ﬁ1+ﬁz)|v1 |

We see from (6.25) and (6.26) that the equality can not occur in (5.3) provided
|vp — gl is very large. Hence by Proposition 6.1, there exists a minimizer of F, on
I'3. This completes the proof of the lemma. O

Proof of Theorem 1.3:

Proof. The proof of (a) and (c) follows from Theorem 1.1 (b) and (d) respectively.
We only need to prove (b). Since A is invertible and all the v; are equal by translating
and adding constants to the solution we can assume u;, 1 < i < n satisfies

N 112
—Au; = e2i=1 %% 312 iy R2
2
AiiUj— x
fR2 eZ ijUgj | | :52._

Again using the invertibility and irreducibility of A we get by [11, Proposition 4.1]

(6.27)

: L : : o
with Vj(z) = e” 2 that w; in (6.27) are radially symmetric with respect to the
origin. By abuse of notation we still denote the radial function by u;(r),r = |z|.
Then wu; satisfies

1 i ooy 12
(6.29) Ld (Cgﬁ) = S5 e (0, 00)

rdr
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Define
r n 52 d y
mi(r) =2 | seXi=1 %) =5 gg = —27TT%, re(0,00),i=1,...,n.
0 s
Then m; satisfies
(6.29) lim m;(r) =0, lim m;(r) = f;, and m; are non decreasing.
r—0+ r—00

Furthermore, since u; has log decay at infinity i.e., |u;(r)+ - Inr| = O(1) as r — oo
(see [11, Proposition 3.1]) we see that
(6.30) lim r2m/(r) = 0.

r—r00
Now define w;(s) = m;(e®), s € (—o0, 00) then it follows from (6.29), (6.30) that w;
is non decreasing and satisfies

o
i () = 0. Jim wi(s) = 65, lim_e~*ul(s) =0, [ eui(s)ds < o

—00

Therefore using the equation (6.28) we see that w; satisfies

1 n
(6.31) wl(s) = wi(s) |2 — o Z ajjw;(s) — e
j=1

Summing over all ¢ we can rewrite (6.31) as

(6.32) Z wi(s) ] = |2 Z wi(s) — i Z Z ajjwi(s)w;i(s)| — Z e*w(s).
i=1 i=1 i=1

i=1 j=1

Since limg o0 Y i q wi(s) = D1 Bi, w; are non decreasing we can find a sequence
$m converging to oo such that Y ;" wi(smy) — 0 as m — co. Therefore integrating
(6.32) from —oo to sy, and letting m — oo we obtain

QZﬁi - ﬁ Zzazjﬁiﬂj = Z/OO e*wi(s)ds
i=1 i=17 7

i=1 j=1

which implies A7(8) > 0, contradicting our assumption. This completes the proof
of the corollary. O
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