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SHARP POINTWISE ESTIMATES FOR SOLUTIONS OF
THE MODIFIED HELMHOLTZ EQUATION

GERSHON KRESIN AND TEHIYA BEN YAAKOV

ABSTRACT. Modified Helmholtz equation (A —¢*)u = 0, ¢ > 0, in the half-space

" ={x=(2,2n) : 2’ € R" ' 2, > 0} is considered. Tt is assumed that the
boundary data of the Dirichlet and Neumann problems in R’} belong to the space
LP. Representations for the sharp coefficients in pointwise estimates involving
the gradient of solution to this equation in R’ are obtained. Each of these
representations includes an extremal problem with respect to a vector parameter
inside of an integral over the unit sphere in R™. The extremal problems are
solved for p € [2,00] and p € [2, (n+2)/2] in the cases of Dirichlet and Neumann
boundary data, respectively. Besides, the explicit formula for the sharp coefficient
in the pointwise estimate for the modulus of the gradient of solution to the

equation (c¢® — A)a/2u = f with @ > 1 and f € L*>(R") is found.

1. INTRODUCTION

In the present paper we find, mainly, the sharp coefficients in certain pointwise
estimates for solutions to the modified Helmholtz equation (A — ¢?)u = 0, ¢ > 0, in
the half-space R: = {z = (2/,z,,) : 2’ € R""!,z,, > 0}. Henceforth we use the term
sharp estimate if the coefficient in front of a function characteristic in the majorant
part of an inequality can’t be diminished. This best coefficient we call also sharp.
It is assumed that the boundary data of the Dirichlet and Neumann problems in
R? for the modified Helmholtz equation belong to the space L (R™~1). Previous
results of similar nature were obtained in the works [3]-[8], where solutions of the
Laplace, Lamé, Stokes and heat equations in R’} were considered.

In particular, in [7] the explicit formula for the sharp coefficient A, ,(z) in the
inequality

(1.1)

was derived, where z is an arbitrary point R’', u is a harmonic function in R,
represented by the Poisson integral with boundary values in LP(R"1), || - ||, is the
norm in LP(R"!), 1 < p < co. It was shown that

An7p
x721+(n—1)/p’

v {@H < Aup(a) [u(-0)],

TIn

A p(z) =
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where
n-1 3p4+n—1 1_%
4 _2n )T F(Q(p71)>
mp win (n+2)p
I (2(17—1))

for 1 < p < oo, and A, 1 = 2n/wy, Ap o = 1. Here and henceforth, we denote by
wp = 272 /T'(n/2) the area of the unit sphere S*~! in R”.

Another sharp estimate for the modulus of the gradient of harmonic function u
in R’ was obtained in [4]:

ou

(1.2) V(@) < Nap(@) || 5°(0)

)

p

where v is the unit normal vector to OR"}, p € [1,n], € R",. The best value of the
coefficient in (1.2) is given by

Nn,P

Lm0/p

Nn,p(x) =

where
1—-1
-1)/2 +p—1
L 2(n Vr(%) v
n7p_
w o r(ss)

for 1 < p <mn,and N, 1 = 2/wy.

The plan of the present paper is as follows. Introduction is followed by four
sections. Section 2 is auxiliary. It is devoted to a certain optimization problem
with respect to vector parameter inside of an integral over the unit sphere of R”. In
sections 3 and 4 we study solutions of the modified Helmholtz equation in the half-
space R} with Dirichlet and Neumann boundary data, respectively. We note that
in these sections we apply the result of section 2 to solution of some n-dimensional
extremal problems. In section 5 we deal with solutions in R™ of non-homogeneous
equation containing a power of the modified Helmholtz operator ¢ — A.

In what follows, K, denotes the modified Bessel function of the third kind, or
the Macdonald function.

Now we describe the results of this paper in more detail.

The Dirichlet boundary value problem

(1.3) (A—c*u=0 in R7, u‘wnzo = f(2)

is considered in Section 3, where f € LP (R”_l), 1 < p < oo. In this section we

obtain the inequality
u(x
v {“ <,

n

with the best coefficient

o2 >1/2 K(n+2)/2(6113n)

n—2.-n 2
2n—2 xz/

Ci(z) = <
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for p=1 and
2l/p n+p é
(1.4) Cp(a:):max{/ i ((eq,en))l(eq, €n)| P T I(emz)lqda}
Trgwiﬁ‘i |z|=1 gn—1

1

for p € (1,00], where p~! +¢~1 = 1, u is solution of problem (1.3), x is an arbitrary

point in R’} and
oo 6217,’21
pult) = [ gmie i e
0

The extremal problem in (1.4) is solved for the case p € [2, 00]. Namely, it is shown
the maximum in (1.4) is attained at z = e,,. As a consequence, the explicit formula

1—-1 nt2 n—2_n—1

1
w, ezt P /2 CIn 2p—n(p—2) a
Cp(z) = =L / K7 ( )COS -0 Ysin™ 2 9do
p( ) n—2 0 +2 COS".9

7225 2

is derived. In particular,
B C(n+2)/2$£,,n72)/2 /71'/2 < ey ) sin™ 29
2%4\/7? D (21) 2 cos(n=2)/2y

In Section 4 we obtain an analog of (1.2) for solutions of the Neumann problem

dg .

cos v

(A—c*u=0 in RY, =g(a2)

zp=0

D

with g € LP (]R”fl), 1 < p < oo. It is shown that for an arbitrary point z € R}, the
sharp coefficient £, (x) in the inequality

[Vu(z)] < Kp()llgllp

is given by
c Kn/Q(C:En)
Ki(z) = 9(n—2)/2n/2 xgln—Q)/Q
for p=1 and

9y~ . np .
Kp(r) = ————= max Pr-2((es, €n))l(es, €n)|7 (€5, 2)[do
n n—2 p—1 |Z‘:1 S§n—1
T2¢ 2 T

Q=

for p € (1,00]. It is proven that the maximum in the last equality for the case
p € [2,(n+2)/2] is attained at z = e,. As a corollary, the explicit formula

1_7 n_n—1 p—1

Cwnfﬁpl p/pl) CTn Soe n—2 B
Kp(z) = e / K5 osﬁ) cos 21 ¢ ¢in" "< Jdv

is obtained, where p € [2, (n + 2)/2]. In particular,

cpl/? /2 cx 1/2
Ka(z) = = / KTZL/Q ( L ) sin" 29 dv .
r(n+D)/49(m=3)/2, 1 (21) {Jo cos v
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In Section 5 we consider solution of the equation (02 — A)a/ 2y = f in the whole
space with a > 1 and f € L*°(R™). It is shown that for an arbitrary point x € R™,
the sharp coefficient B, in the inequality

[Vu(z)] < Bal|flloo

is given by

In particular,
(2m — 3)!!
(2m — 2)ll¢2m—1
for a natural number m. As a special case of the last formula, for the non-
homogeneous modified Helmholtz equation one has

1
e

BZm =

By =

2. EXTREMAL PROBLEM FOR INTEGRAL OVER S" ! WITH VECTOR PARAMETER

Let assume X is the space with o-finite measure p defined on the o-algebra & of
measurable sets, parameters y and y, are elements of a set Y, p(x;y) and f(z;y)
are [0, +oo]-valued G-measurable functions on X for any fixed y € Y.

The following assertion was proved in [8].

Proposition 2.1. Let y, be a fizred point of Y, and let p(z;y) and f(z;y) be non-
negative measurable functions on the space X for any fixed point y € Y. Let v > 0
and let the integral

(2.1) /X p(x;y,) 7 (z;y)dp

attains its supremum (the case of +00 is not excluded) ony € Y at the pointy, € Y.
Further on, let

(2.2) Z(y,yo)=:l[;tﬂazyo)fa(w;y)fﬁ(x;yo)du,

where a« > 0,8 >0 and o+ 5 =1.
Then the equality holds

(2.3) mﬂwWZﬂ%w=/MmWmew.
yey X

In particular, the supremum of Z(y,y,) over y € Y is independent of vy, if the
value of integral

/ p(z;y) 7 (25 y)du
X

doesn’t depend on y.
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A particular case of Proposition 2.1 with p = 1 and somewhat weaker assumption
was proved in [9].

Let e, stand for the n-dimensional unit vector joining the origin to a point o
on the sphere S”~!. In what follows by e; we mean the unit vector of the i-th
coordinate axis. We denote by e and z the n-dimensional unit vectors and assume
that e is a fixed vector. Let p and f be non-negative Lebesgue measurable functions
in [—1,1].

The next assertion is an immediate consequence of Proposition 2.1.

Corollary 2.2. Let v > 0 and let the integral

(2.4) /Snl p((es €))7 ((er,2))do

attains its supremum on z € R"™, |z| =1 at the vector e. Further, let « > 0,5 > 0
and o+ B =~. Then

sup /Snl p((eg, e))fo‘((eg, e))fﬁ((eg, z))da

|z|=1
(2.5) = /S"l p((es,€))f7((es, €))do.

Remark 2.3. The equality

(2.6) / F((eq,€))do = wn—1 / F(cos ) sin" 2 9y
Sn—1 0

shows that value of the integral on the right-hand side of (2.5) is independent of e.
In the case of the even function F', the last equality can be written as

w/2
(2.7) / F((es,€))do = 2wy / F(cos?) sin™ 2 9d.
sn-1 0

Indeed, by (2.6)

/2
/ F((eg,e))da = wn_l/ F(cos 19) sin” 2 9dy
Sn-1 0
(2.8)
+ wn_l/ F(cosﬁ) sin™ 2 9dy.
/2

By the change of variable ¥ = m — ¢ in the second integral on the right-hand side
of the last equality, we obtain

0

/ F(cosd) sin" 2 9di) = — / F(—cosyp) sin™ 2 pdp,
/2 /2

which together with (2.8) and the evenness of function F' leads to (2.7).

The following assertion plays an important role in two next sections.



354 G. KRESIN AND T. BEN YAAKOV

Lemma 2.4. Let
(2.9) Gy(z) = /Snl w((es, e))|(es, e)”|(es, z)‘Zﬂ,da’

where w is a continuous non-negative even function on [—1, 1] with continuous pos-
itive derivative on (0,1). Then for any v € [0,2), the equality

(2.10) maxG,(z) = G,(e) = /gnl w((eq,e))(eq, e)’do

|z]=1
holds.
Proof. (i) The case v = 0. Let 2z’ = z — (z,e)e. Then (2’,e) = 0. We choose

the Cartesian coordinates with origin O at the center of the sphere S*~! such that
e1 = e and e, is collinear to z’. Then z = ae; + Be,,, where

(2.11) o? + 5% =1.

Now, we rewrite (2.9) for the case v = 0 in the form

Golz)= /S (e, e1)) (eqs aer + Ben) do
(2.12)

:/SM o((eore1)) [0 (€0, €1)*+ 20 (€ns €1)(€ns €n) +52(€ns €n)?] do
Let us show that
(2.13) /Snl w((€eq,€1))(eq, e1)(€r, €n)do =0 .

The last equality is obvious for the case n = 2. We suppose that n > 3. Let
us denote by t,9,...,9,_1 the spherical coordinates in R™ with the center at
O, where ¢; € [0,7] for 1 < i < n—2, and ¥,—1 € [0,27]. Then for any o =
(01,...,04) € S ! we have

o1 = cosH,

09 = sin 1t} cos Vo,

Op_1 =sint ...sin¥,_scost,_1,

op, =sinty ...sind,_osint,_1.
Using the equalities

(és,e1) =01 =cost, (ey,e,) =0, =-sind;...sind,_9sint,_;

in view of
do = sin" 29 sin" 3 Yy .. .sinv,_o dhdds . .. dY,_1,
we calculate the integral on the left-hand side of (2.13):

/ 1w((eg,81))(80,81)(60,en)d0‘

Sn=
™ T 27 n—2 '

:/ / / w(cosz?l) COSl91<H gin™? 791,> sind,_1dd1...d0,_od0n,_1
o Jo Jo Pl
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27

(2.14) = I/ sin,_1d¥,_1 =0,
0

where

™ T n—2
I = / / w(cosﬁl) cos 191<H sin™ ! 191') ddq...d0,_o .
o Jo i=1

Equality (2.14) proves (2.13).
Hence, by (2.11), (2.12) and (2.13) we obtain

(2.15) Go(z):/snlw((eg, e1)) [a2(eg, e1)?+5%(es, en)2]da < max{L, M},

where

(2.16) L= /Sn_i,u((eg, e1))(es, e1)’do
and

(2.17) M = SMw((ea, e1))(es, en)?do.

In view of the evenness of the function w(t), by virtue of (2.7) we can write (2.16)
as

w/2
L =2w,_4 / w(cos V) cos? ¥ sin 2 ¥1dv.
0

By the change of variable 11 = § — ¢ in the integral on the right-hand side of the
last equality, we obtain

(2.18) L =2w, /W/2 w(sin @) sin? ¢ cos™ 2 pdy .
Now, we calculate the integra? on the right-hand side of (2.17):
M = s w((eg,el))(eo,en)Qda
e pom n—1
(2.19) = /0 ... /0 /0 w(cos V1) <H1 sin" 1~ 19i> diy ...d0,_od¥y,_;

T x pmx /1 )
= {/w(cos 1) sin” 191d191} {2// (H sin" 1 19; dﬂg...dﬂnl}.
0 0o Jo \is

Changing the variable 97 = ¢ + 7 in the first integral on the right-hand side of
(2.19) and using the evenness of w(t), we arrive at equality

T w/2
(2.20) / w(cos ) sin" Y1diy = 2 / w(sin )y cos™ pdp .
0 0

Calculating the multiple integral on the right-hand side of (2.19), we obtain

T x /n—1 n—1 )2
2/ / Hsin”“—i i | d¥g...d¥,_ = 2272 H/ sin® 9dv
0 0 \i=2 k=270
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R EY ) 2w
s T (n-Dr(=t) n-1°
which together with (2.19) and (2.20) leads to
Qo /2
(2.21) M= 11 / w(sin ) cos™ pdy .
n—1=1Jo

Let us show that L > M. Choosing two positive numbers € and § such that
€ < 5 — 6, we transform the integral

-4
2Wn_1 / w(sin ) sin? @ cos™ 2 @dyp
€

VB

w1 [270
— Y 1/ w(sin @) sin ¢ d(cos”_1 ©)
n—1J.

2wp—1 . . n—1 30 b n—1 . .
=— 1 w(sin ) sin p cos™ * ¢ - cos" " d (w(sin ) sin @)
n — € €
Qo T_§ gfci
el 11 {—w(sin @)singcos" tpl? 4 / w(sin ¢) cos™ (pdgp}
n — € €

+ 2wp—1

T_5
2
/ w ' (sin ) cos™ @ sin ¢ dep.
n—1J,

Since w’(t) > 0 in the interval ¢ € (0,1) by assumption of the Lemma, it follows
from the last equality that

x5
2w 1 /2 w(sin o) sin? @ cos™ 2 @dyp
€

2wnp— 1

1 . . nei |279
1 —w(sin ) singcos" ¢

n — €

T_g
-1—/2 w(sin ¢) cos™ godgo}.
€

Passing to the limits as 6 — 0,e — 0 in the last inequality and taking into account
(2.18) and (2.21), we arrive at

L>M.
This, by (2.15) and (2.16), leads to the inequality
(2.22) ‘m‘ax Go(z) §/ w((eq, e1))(es, e1)do .
z|=1 S§n—1

By (2.7), the value of the integral

/gn_1 w((es,€))(eq, e)*do

is independent of e. Hence, by (2.22),

max z wil€s, e € 62 g
(2.23) |z|:1Go( )S/Sn_1 ((esse))(es,€)’d
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for an arbitrary n-dimensional unit vector e.
The lower estimate

max Go(z) > Go(e) = /Snl w((es,e))(es, €e)’do

j=I=1

follows from (2.9) with v = 0, which together with (2.23) proves equality (2.10) for
the case v = 0.

(ii) The case v € (0,2). Equality (2.10) is an immediate consequence of part (i)
of the Lemma and Corollary 2.2. O

3. SHARP WEIGHTED ESTIMATE FOR THE GRADIENT OF SOLUTION TO THE
DIRICHLET PROBLEM IN THE HALF-SPACE

We denote by || - ||, the norm in the space LP(R"™1), that is

1/p
b ={ [ werat

if 1 <p < oo, and ||f]|ec = ess sup{|f(z')]| : 2’ € R*"1}.
Solution of the Dirichlet problem in R’} for the modified Helmholtz equation,

(3.1) (A—cHu=0 in RY, u’xnzo = f(2")

with continuous and bounded function f on R"~! is given by (e.g. [13]):

B "z, Kn/2 (C|y - x|) N,
(3.2) O = gy TV

where y = (y/,0),y’ € R*~ 1.

Let us consider solution of problem (3.1) with f € LP(R"~!) represented by (3.2),
where p € [1,00]. A related theory of harmonic functions in R’} with boundary
values from LP(R"!) is described, for instance, in [14] (Ch. 2, Sect. 2).

In this section we prove the following assertion.

Theorem 3.1. Let = be an arbitrary point in R’}. The sharp coefficient Cp(x) in
the inequality

33) v {“ < i,
s given by
(3.4) Ci(z) = <2s”;r72rn >1/2 K(nJrjjl//Q;Cl’n)
forp=1 and '
91/p ntp 7
(35)  Cp(x) :”T gl'g{/n_lp%((eg, en))|(es, en)| 71 (s, z)!qda}

orpe (1,00], where p L +¢ 1 =1 and
for p € (1,00], p q

oo czz%
(3.6) pmlt) = [ gmie e g
0
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In particular,

1
21/p n+2p q
30 o { [ plenenl(enen) i ao)
m2zx, ° "
1—1 4o 22 _n-l 1
w _Yeza,t P /2 2p—n(p—2) a
(3.8) =t {/ K., ( Cwnﬁ) cos 20D ) sin” 2 ﬁdﬁ}
325 0o 2 \cos

for2 <p < oo.
As a special case of (3.8) one has

(n+2)/2,.(n=2)/2  .7/2 "2
c T cy, sin

(3.9) Coolz) = —— — / K(n+2)/2( 19) TR
25 ﬁF(nT) 0 cos?/ cos )

Proof. By (3.2),

n/2
u(z) [ Kop(cly—=l) , .
. =2 <27r> /Rnl eRACRAE

(cly — =)
Differentiating the last equality with respect to x;, j =1,...,n, in view of (see e.g.
[10])
d (K,(t) K,11(t)
1 — - _
(3.10) dt ( t > o
we obtain
2\ /2 K cly —x
Tn 2T Rr—1 (c|y _ x|)

/2 \ 21 rRo-1 oy -2y —al '

Denoting e,y = (y — x)/|y — x|, we rewrite the last equality as

n 1/2 -

Tn on—2gn ’y — x’n/Q

which leads to

o ({22} )- () B

T, re—1 |y — x|"/2

where z is a unit n-dimensional vector.
The known integral representation (see e.g. [10])

Ky<t>=;<;> | erte

in view of the property K,(t) = K_,(t) of the Macdonald function, can be written
in the form

(3.12) K (t) = % (i)/o‘” et ge |
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which together with (3.11) implies

u(x) 2 o iy —f—thjz\Q (ex ,z) o
<V{ . },Z> = an/2 /Rn1</0 2% g df) Wf(y )dy'.

The last equality, by the property of the inner product in R", leads to

u(:p) — 2 > n/2 —f— 2|y x‘Q > (e:cyv )
‘V{ Ty }‘ 7Tn/2 |z|a}§/Rn 1</0 5 e d& ‘y x‘n+1f( )

Therefore, the sharp coefficient C,(x) in inequality (3.3) is given by

2 e Iu w\ (ew )
C — n/2 'E d > Yo d /’
W)= f|pp1|r£|a}§/R” 1</ : - ly — I"“f( v)dy

which after permutation of suprema becomes

—im % 5 —¢-< 2‘y7 12 (exy’ ) / /
313 Go)=pmax sw [ (e e ag) E0 T pijay.

T2 |z|= 1||f||p—1

(i) The case p = 1. In view of (3.13) with p = 1 and the theorem on the norm of
a linear functional in the space of summable functions, we obtain

2 ez , 2 9 —¢-¢ 2|y—a|?
Ci(x) = max sup T / 2%e & dg.
T2 |21=1 yeory |y — @[+

Using the permutation of suprema in the last equality, we arrive at

2 1 e y 1\2
Cila) = oy swp Ty [ e T g

/2 yEORY ‘y

2 e 2 _6_%
=g [, €T
n

which together with (3.12) proves (3.4).
(ii) Representation of the sharp coefficient Cp(z) in inequality (3.3) in the case
€ (1,00]. By (3.13) and the theorem on the norm of a linear functional in LP, we
have

1
9 o 2|y z\2 |(em z)|q d

_ n/2_—§ AU Reg N AW
(3.14) Cp(x) — Igla)i{/w 1</0§ e df) iy _x‘(nﬂ)qdy )

Using the equality

(3.15) \y—x\|(exy,en)| =T, ,
we represent the inner integral on the right—hand side of (3.14) as

(3.16) / 2% - d£ pn((ezy, €n)),

where the function p,, () is defined by (3.6).
In view of (3.15), we have

1 1 T

ly — x| e |y — et fy —




360 G. KRESIN AND T. BEN YAAKOV

i ( | (emya en) | ) it In

Tn T ly — x|

— 1 n(g—1)+q
T n(g—1)4+q+1 | (ef’fy’ e”) |
Tn

Tn

ly —xn’

which together with (3.16) allows us to represent (3.14) in the form

2 ntp a
BA1) Gla) = maxd [ gt ((enen))l(ensen)] P er D)y,
T |zl=1 | st
n

T2

where S ' = {0 € " : (e,,€,) < 0}.
Using the evenness of the function py,(t) defined by (3.6), we rewrite (3.17) as

n+p

91/p ¢
318 Go=—" e max{ [ ptl(enen)lenen) (e ) tdaf
n - D |Z‘71 Snfl

T2 X

which proves (3.5).
(iii) Solution of extremal problem in (3.5) for the case p € [2,00]. We introduce
the function

_pP_
n 2 n o0 _ 7621% p—1
(319) w(t) = |t|rﬁpﬁ_l = ’t’ﬁ </ fn/2€ ¢ 162 d§>
0
for t # 0, w(0) = 0, and rewrite (3.18) as

(3.20)  Cp(a)= Lpn_l maX{/S (€0 en)) (€. €n)| T [(es. Z)\Q_ﬁda};-

71'%$,21+7 |z|=1 | Jgn—1
Since the quantity v = (p — 2)/(p — 1) for p € [2, 00] satisfies inequality 0 < v <1
and the function (3.19) obeys the assumptions of Lemma 2.4, we can apply Lemma
2.4 to (3.20). As the result, we obtain

p—1

21/p e
(3.21) Cp(z) = +n_1{/ w((eg, en))(eg, en)2da} )
7-‘-71/21171 P Sn—1
Substituting w(t) from (3.19) into (3.21), we arrive at (3.7).
(iv) Representation of Cp(x) as definite integral for the case p € [2,00]. Using
(2.7), we rewrite (3.7) in the form

1/q B
2 /2 _p_ n P
(3.22) Cp(x) = % {/ pi* (cos ) cos 7T 9 sin”2 ﬂdz?}

a5z Jo
In view of (3.6) and (3.12),

n+2
cry, \ "3 cTy
pn(cos ) =2 <2cosz9> o <cos19> ’

which together with (3.22) leads to (3.8). O
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4. SHARP ESTIMATE FOR THE GRADIENT OF SOLUTION TO THE NEUMANN
PROBLEM IN THE HALF-SPACE

Solution of the Neumann problem in R’} for the modified Helmholtz equation,

(4.1) (A—-c*u=0 in R%, = g(z")

Oz, on=0

with continuous and bounded function g on R"~!, is given by (e.g. [12], sect. 7.3,
8.3)

2c(n=2)/2 K92 (C\y - 95’)
4.2 = Ny
( ) U(ﬂf) (27‘(‘)"/2 /R" L (c|y— |)(n 2)/2 (y) Y
Here, as before, y = (y/,0),y € R*~L.
In this section we consider solution of problem (4.1) with g € LP(R"™!) repre-
sented by (4.2), where p € [1, 00].
Now, we prove

Theorem 4.1. Let x be an arbitrary point in R'}. The sharp coefficient Ky(z) in
the inequality

(4.3) [Vu(z)| < Kp(2)llgllp
s given by
C Kn/Q(C'rn)

(44) K:l(l')  9(n—2)/2n/2 xgln_g)/g
forp=1 and

o(1-p)/p e ‘
45) Kl [ (e e (enen] F lier.2) o}

7Tn/2C 5 ,fUp 1|z| 1 Sn 1

for p € (1,00], where p~t + ¢q=1 =1 and the function p,(t) is defined by (3.6).
In particular,

9(1-p)/p . n :
(4.6) Kp(@)=———=r {/ Pr— 2((ea,en))l(emen)\f’1d0}
ﬂ%c%xﬁfl Sn—t
n—1 1
1/q T p—1 /2 (2—p)n 3
(4.7) :$ {/ Kq/Q ( N )cosm’pl) ¥sin"™ Zﬂdﬁ}
T22 2 0 /2 \cos

forpe 2, (n+2)/2).
As a special case of (4.7) one has

cxl/? "2 ema N L 1/2
(4.8) Ko(x)= s = /() Ky (cosﬁ)sm dddy .
2

T4 22 I
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Proof. Differentiating in (4.2) with respect to x;, j = 1,...,n, and using (3.10), we
obtain

920(n—2)/2 K, nlcly—=x
Vale) = Zor [ ¥ 2= 3 ely - al) ot ey

(27’(‘)”/2 C’y _ x’)(n72)/2
2c Kn/2(6|y_$|) y—x / /
= — d
o7 o s o s Ty =0
which can be written as
2c n/Q(C‘y - .%") / /
\Y = — €, dy’,
U(x) (27r)n/2 An . ‘y_x‘ n— 2/2 e yg( ) Yy
where e,y = (y — x)/|y — z|. It follows
2c Kn/2 (C|y - .fL'|)
(Vele)2) =~y [, o gy (o 90
where z is a unit n-dimensional vector. Therefore,
2 K a(cly — =) Ny
}Vu(az)‘ = Wﬁliﬁ/ﬂ%n . W(ewa)g(y )dy'.

From the last equality, by permutation of suprema, we obtain the representation of
the sharp coefficient K,(x) in inequality (4.3)

2c Koya(c Iy - wl) o
* = (2m)n2 T T (n_2y/o \Exys Z dy’,

which in view of (3.12), can be written as

49 Kpo)=bomax s [ [ [Tepe et ag D0y

|21=1 ||g||p=1

where
1

n/2e(n—2)/2"
(i) The case p = 1. In view of (4.9) with p = 1 and the theorem on the norm of
a linear functional in the space of summable functions, we obtain

ky =

1 |(€ay, 2 n—2)/2 ,~§=< “ﬁfw'2
_ € de.
) = S R Ty — ol 1/ ¢ :

Using the permutation of suprema in the last equality, we arrive at

1 e Ply—a)?
_ (n=2)/2,,~¢
40) = e 2 ), € oo

1 > n-2)2, —e— S
- n—2)/2 €~
ﬂ_n/2c(n72)/2$2_1 A 5 e d€ 9

which together with (3.12) proves (4.4).
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(ii) Representation of the sharp coefficient Kp(x) in inequality (4.3) in the case
p € (1,00]. By (4.9) and the theorem on the norm of a linear functional in LP, we
have

1

o0 n—2 __ 702‘1‘/%‘2 q ’(e Z)‘q a
n=2 _¢ zY> /

4.1 —k,  ge) Lo 2 g b
a0 o=t [ ([ )

Using equality (3.15), we represent the inner integral on the right-hand side of
(4.10) as

o0 _ 762| _1‘2
(4.11) /0 €002 4 = 5o ((€ays ).

where the function p,,(t) is defined by (3.6).
In view of (3.15), we have

1 - 1 T
ly —2|mDe |y — g|r@De |y — af
1 (lesped) "7
T ( Tn ) ly — [
B
grla—b—atl TYs = ly—z["’

which together with (4.11) allows us to represent (4.10) as

(412)  Kp(a)=— max{ /L. pz2<<ea,en>)|<emen>r?f|<ea,z>|qdo}q,

—1 |z|=1
xﬁkl ‘ |

where S"! = {0 € S"" ! : (e,,e,) < 0}.
Using the evenness of the function p,,(t) defined by (3.6), we rewrite (4.12) as

(413) Ko@) ="2 1 max { / p:a_Q((ea,en))r(ea,en>|ﬁ|<ea,z>|Qda}i

xF |z|=1 n—1

which proves (4.5).
(iii) Solution of extremal problem in (4.5) for the case p € [2,(n + 2)/2]. We
introduce the function
_p

N e A
(4.14) w(t) = |t pr L = Jt] e / eln=2/2,~6~ ¥ g
0

for t # 0, which is defined at ¢ = 0 by continuity, and rewrite (4.13) as

Q=

419 K=t ma{ [ w(er.en)(er e l(en 2 o}

=1 |z|=1 n—1
n

Since p € [2, (n+2)/2], the quantity v = (p—2)/(p—1) satisfies inequality 0 < v < 1
and the function (4.14) obeys the assumptions of Lemma 2.4. Applying Lemma 2.4
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to (4.15), we arrive at

1 9 p—1

2p P
(4.16) Kp(z) = — {/ w((emen))(emen)Qda} .
ﬂ-n/QC(n—Q)/QxF S
Substituting w(t) from (4.14) into (4.16), we get (4.6).
(iv) Representation of KCp(x) as definite integral for the case p € [2,(n + 2)/2].
Using (2.7), we rewrite (4.6) in the form

wl/q 7r/2 " %
4.17 K(z) = ——n=t 2 (cost) cosp—1 9sin™ 2 9dd .
p n n—=2 n=1 pn 2
r2c 2z a0

In view of (3.12) and (3.6),

)
pn_g(cosﬁ):2< “n )%K%<Cx"> ,

2cos? cos
which together with (4.17) leads to (4.7). O

5. SHARP ESTIMATE FOR THE GRADIENT OF SOLUTION TO NON-HOMOGENEOUS
EQUATION IN R” CONTAINING A POWER OF THE OPERATOR ¢? — A

First, we describe the notions of the positive power of the modified Helmholtz
operator, the Bessel kernel and Bessel potential with a parameter ¢ > 0.
Let a > 0. The positive power of the modified Helmholtz operator ¢ — A is
defined as
(¢ = A)*Pu(e) = F (¢ + [6°)* Fu(©)) (=) ,
where F and F~! are the Fourier and inverse Fourier transforms, respectively, and

u belongs to the Schwartz class S of rapidly decreasing C*°-functions on R".
The parametric Bessel potential

(5.1) u(z) = Gac* f= - Gaclr —y)f(y)dy ,

where

Gaelz) = F (P + 1% (x)

)

(5.2)

_ " K(n—ay2(cl])
~ qn/2g(nte-d/2r (3) ( )(n—a)/Q

c|z|

is the parametric Bessel kernel and f € L>°(R™), represents continuous and bounded
in R™ solution of the equation

(5.3) (= A)Pu=r.

The definitions and facts given above for any positive parameter ¢ are completely
analogous (including the proofs) to those discussed in the bibliography for the case
c=1 (e.g. [1], Ch. 1, [11], Ch. 10).

Various estimates, including pointwise ones, for the Bessel potential are known
(e.g. [1], Ch. 3). In the statement below we give a simple sharp pointwise estimate
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for the modulus of the gradient of the parametric Bessel potential with respect to
the norm of its density in the space L>(R").

Theorem 5.1. Let u be solution of (5.3) with a > 1 and f € L*(R™), and let x be
an arbitrary point in R™. The sharp coefficient B, in the inequality

(5.4) IVu(z)| < Ballf]lo
s given by

a—1
(5.5) B, = (%)

OE
In particular,
(2m — 3)!

(5.6) Bom = (2m — 2)ll2m—1

As a special case of (5.6) one has
1
. By =—.
6.7 =1
Proof. By (5.1) and (5.2),

o e K(nfa)/2 (C’x - y|)
(58) ) = e (3) / + (el — )2 Fly)dy

Differentiating in (5.8) with respect to z;, j = 1,...,n, in view of (3.10) we obtain
e K(n—a+2)/2 (C|y - ‘T|)
Vu(a) = - e | Y el ) S )y
71/29(n+a=2)/2T (2) fgn (cly — x’)( )/2
n—o+1 K o — _
- n/22(nc+a—2)/2r o! / a2/ ((Cn‘%a)/gx‘) . f(y)dy‘
4 () Jer (cly — =) ly — x|

Denoting e, = (y — z)/|y — x|, we rewrite the last equality as

K(n—a+2)/2(cly — zI)

Vu(o) = b [ el W)y

which leads to

K(n—at2)2(cly — x)
69 (Vule).2)= ko [ SO o0 2) )y,
where z is a unit n-dimensional vector and

L c(n—a+2)/2
(510) e o n/29(nta—2) /2T (%) ’
By (5.9) and the property of the inner product in R", we arrive at
K. _ (c|y - :U|)
(n—a+2)/2

5.11 \Y =kna 2y dy.
G Vue) = ke [ SO o 2) )y
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Using permutation of suprema in (5.11), we obtain the representation for the sharp
coefficient in inequality (5.4),

K(n—a+2),2(cly — z)

Bo = kp,o max sup / (exya z)f(y)dy,

121=1]|f]|co=1 |y — x| (nme)/2
that is
K,_ (cly — zl)
_ (n—a+2)/2
(5.12) Bo = kna gl'i}i o ly — ()2 |(€xy, 2)|dy.
Now, we write the integral in (5.12) as
K(n—at2)/2(cly —z)
e ey 2y

(5.13)

o ano¢+2 2\ep) ,_
= [ Ko s, [ ey,
0 pln=ell sn-1
Using the known formula (see, e.g. [2], item 6.561/16)

) . ) B
/ 'K, (ax)de = 2#Lq~ D ( + /; + 1/) r ( +g V) |
0

we calculate the first integral on the right-hand side of (5.13)

o nta—2 o(nta—4)/2 n+1 a—1
(5.14) /0 K’“S‘H (cp)p 2 dp= ) F< 5 >F< 5 ) .

Further, by (2.7),

/2 9 (n—1)/2
(5.15) /Sn—1 |(es, z)|do = 2wn_1/0 cos 9 sin™ 2 9d9 = @ .

Substituting (5.14) and (5.15) into (5.13), we obtain

K(n—a+2)/2 (C‘y — ZE’) |(e z)‘d B 2(”4—&—2)/27‘-(”—1)/2 a—1
n ‘y — x’(n—a)/? Ty Y= c(nta)/2 2 )

which together with (5.12) and (5.10) leads to (5.5).

Applying formula
1 2m — 2)!
r <m B > _ y/m(2m —2)

2)  22m=1)(m — 1)
to transform of (5.5) in the case a = 2m, we arrive at (5.6). O
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