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where

An,p =
2n

ωn

π
n−1
2 Γ

(
3p+n−1
2(p−1)

)
Γ
(
(n+2)p
2(p−1)

)


1− 1
p

for 1 < p < ∞, and An,1 = 2n/ωn, An,∞ = 1. Here and henceforth, we denote by

ωn = 2πn/2/Γ(n/2) the area of the unit sphere Sn−1 in Rn.
Another sharp estimate for the modulus of the gradient of harmonic function u

in Rn
+ was obtained in [4]:

(1.2) |∇u(x)| ≤ Nn,p(x)

∣∣∣∣∣∣∣∣∂u∂ν (·, 0)
∣∣∣∣∣∣∣∣
p

,

where ν is the unit normal vector to ∂Rn
+, p ∈ [1, n], x ∈ Rn

+. The best value of the
coefficient in (1.2) is given by

Nn,p(x) =
Nn,p

x
(n−1)/p
n

,

where

Nn,p =
21/p

ωn

2π(n−1)/2Γ
(
n+p−1
2p−2

)
Γ
(

np
2p−2

)


1− 1
p

for 1 < p ≤ n, and Nn,1 = 2/ωn.
The plan of the present paper is as follows. Introduction is followed by four

sections. Section 2 is auxiliary. It is devoted to a certain optimization problem
with respect to vector parameter inside of an integral over the unit sphere of Rn. In
sections 3 and 4 we study solutions of the modified Helmholtz equation in the half-
space Rn

+ with Dirichlet and Neumann boundary data, respectively. We note that
in these sections we apply the result of section 2 to solution of some n-dimensional
extremal problems. In section 5 we deal with solutions in Rn of non-homogeneous
equation containing a power of the modified Helmholtz operator c2 −∆.

In what follows, Kν denotes the modified Bessel function of the third kind, or
the Macdonald function.

Now we describe the results of this paper in more detail.
The Dirichlet boundary value problem

(1.3) (∆− c2)u = 0 in Rn
+, u

∣∣
xn=0

= f(x′)

is considered in Section 3, where f ∈ Lp
(
Rn−1

)
, 1 ≤ p ≤ ∞. In this section we

obtain the inequality ∣∣∣∣∇{u(x)

xn

}∣∣∣∣ ≤ Cp(x)||f ||p

with the best coefficient

C1(x) =
(

cn+2

2n−2πn

)1/2 K(n+2)/2(cxn)

x
n/2
n
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for p = 1 and

(1.4) Cp(x)=
21/p

π
n
2 x

2+n−1
p

n

max
|z|=1

{∫
Sn−1

ρqn
(
(eσ, en)

)
|(eσ, en)|

n+p
p−1 |(eσ, z)|qdσ

} 1
q

for p ∈ (1,∞], where p−1+ q−1 = 1, u is solution of problem (1.3), x is an arbitrary
point in Rn

+ and

ρm(t) =

∫ ∞

0
ξm/2e

−ξ− c2x2n
4ξt2 dξ.

The extremal problem in (1.4) is solved for the case p ∈ [2,∞]. Namely, it is shown
the maximum in (1.4) is attained at z = en. As a consequence, the explicit formula

Cp(x) =
ω
1− 1

p

n−1 c
n+2
2 x

n−2
2

−n−1
p

n

π
n
2 2

n−2
2

{∫ π/2

0
Kq

n+2
2

( cxn
cosϑ

)
cos

2p−n(p−2)
2(p−1) ϑ sinn−2 ϑdϑ

}1
q

is derived. In particular,

C∞(x) =
c(n+2)/2x

(n−2)/2
n

2
n−4
2
√
π Γ

(
n−1
2

) ∫ π/2

0
Kn+2

2

( cxn
cosϑ

) sinn−2 ϑ

cos(n−2)/2 ϑ
dϑ .

In Section 4 we obtain an analog of (1.2) for solutions of the Neumann problem

(∆− c2)u = 0 in Rn
+,

∂u

∂xn

∣∣∣∣
xn=0

= g(x′)

with g ∈ Lp
(
Rn−1

)
, 1 ≤ p ≤ ∞. It is shown that for an arbitrary point x ∈ Rn

+, the
sharp coefficient Kp(x) in the inequality

|∇u(x)| ≤ Kp(x)||g||p
is given by

K1(x) =
c

2(n−2)/2πn/2

Kn/2(cxn)

x
(n−2)/2
n

for p = 1 and

Kp(x)=
2

1
p
−1

π
n
2 c

n−2
2 x

n−1
p−1
n

max
|z|=1

{∫
Sn−1

ρqn−2

(
(eσ, en)

)
|(eσ, en)|

n−p
p−1 |(eσ, z)|qdσ

} 1
q

for p ∈ (1,∞]. It is proven that the maximum in the last equality for the case
p ∈ [2, (n+ 2)/2] is attained at z = en. As a corollary, the explicit formula

Kp(x) =
c ω

1− 1
p

n−1 x
n
2
−n−1

p−1
n

π
n
2 2

n−2
2

{∫ π/2

0
K

p/(p−1)
n/2

( cxn
cosϑ

)
cos

(2−p)n
2(p−1) ϑ sinn−2 ϑdϑ

} p−1
p

is obtained, where p ∈ [2, (n+ 2)/2]. In particular,

K2(x) =
cx

1/2
n

π(n+1)/42(n−3)/2
√

Γ
(
n−1
2

)
{∫ π/2

0
K2

n/2

( cxn
cosϑ

)
sinn−2 ϑ dϑ

}1/2

.
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In Section 5 we consider solution of the equation
(
c2 −∆

)α/2
u = f in the whole

space with α > 1 and f ∈ L∞(Rn). It is shown that for an arbitrary point x ∈ Rn,
the sharp coefficient Bα in the inequality

|∇u(x)| ≤ Bα||f ||∞

is given by

Bα =
Γ
(
α−1
2

)
√
πΓ
(
α
2

)
cα−1

.

In particular,

B2m =
(2m− 3)!!

(2m− 2)!!c2m−1

for a natural number m. As a special case of the last formula, for the non-
homogeneous modified Helmholtz equation one has

B2 =
1

c
.

2. Extremal problem for integral over Sn−1 with vector parameter

Let assume X is the space with σ-finite measure µ defined on the σ-algebra S of
measurable sets, parameters y and y0 are elements of a set Y , ρ(x; y) and f(x; y)
are [0,+∞]-valued S-measurable functions on X for any fixed y ∈ Y .

The following assertion was proved in [8].

Proposition 2.1. Let y0 be a fixed point of Y , and let ρ(x; y) and f(x; y) be non-
negative measurable functions on the space X for any fixed point y ∈ Y . Let γ > 0
and let the integral

(2.1)

∫
X
ρ(x; y0)f

γ(x; y)dµ

attains its supremum (the case of +∞ is not excluded) on y ∈ Y at the point y0 ∈ Y .
Further on, let

(2.2) I(y, y0) =

∫
X
ρ(x; y0)f

α(x; y)fβ(x; y0)dµ ,

where α > 0, β ≥ 0 and α+ β = γ.
Then the equality holds

(2.3) sup
y∈Y

I(y, y0) = I(y0 , y0) =

∫
X
ρ(x; y0)f

γ(x; y0)dµ.

In particular, the supremum of I(y, y0) over y ∈ Y is independent of y0 if the
value of integral ∫

X
ρ(x; y)fγ(x; y)dµ

doesn’t depend on y.
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A particular case of Proposition 2.1 with ρ ≡ 1 and somewhat weaker assumption
was proved in [9].

Let eσ stand for the n-dimensional unit vector joining the origin to a point σ
on the sphere Sn−1. In what follows by ei we mean the unit vector of the i-th
coordinate axis. We denote by e and z the n-dimensional unit vectors and assume
that e is a fixed vector. Let ρ and f be non-negative Lebesgue measurable functions
in [−1, 1].

The next assertion is an immediate consequence of Proposition 2.1.

Corollary 2.2. Let γ > 0 and let the integral

(2.4)

∫
Sn−1

ρ
(
(eσ, e)

)
fγ
(
(eσ, z)

)
dσ

attains its supremum on z ∈ Rn, |z| = 1 at the vector e. Further, let α ≥ 0, β > 0
and α+ β = γ. Then

sup
|z|=1

∫
Sn−1

ρ
(
(eσ, e)

)
fα
(
(eσ, e)

)
fβ
(
(eσ, z)

)
dσ

=

∫
Sn−1

ρ
(
(eσ, e)

)
fγ
(
(eσ, e)

)
dσ.(2.5)

Remark 2.3. The equality

(2.6)

∫
Sn−1

F
(
(eσ, e)

)
dσ = ωn−1

∫ π

0
F
(
cosϑ

)
sinn−2 ϑdϑ

shows that value of the integral on the right-hand side of (2.5) is independent of e.
In the case of the even function F , the last equality can be written as

(2.7)

∫
Sn−1

F
(
(eσ, e)

)
dσ = 2ωn−1

∫ π/2

0
F
(
cosϑ

)
sinn−2 ϑdϑ.

Indeed, by (2.6)∫
Sn−1

F
(
(eσ, e)

)
dσ = ωn−1

∫ π/2

0
F
(
cosϑ

)
sinn−2 ϑdϑ

(2.8)

+ ωn−1

∫ π

π/2
F
(
cosϑ

)
sinn−2 ϑdϑ.

By the change of variable ϑ = π − φ in the second integral on the right-hand side
of the last equality, we obtain∫ π

π/2
F
(
cosϑ

)
sinn−2 ϑdϑ = −

∫ 0

π/2
F
(
− cosφ

)
sinn−2 φdφ,

which together with (2.8) and the evenness of function F leads to (2.7).

The following assertion plays an important role in two next sections.
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Lemma 2.4. Let

(2.9) Gν(z) =

∫
Sn−1

ω
(
(eσ, e)

)∣∣(eσ, e)|ν∣∣(eσ, z)∣∣2−ν
dσ,

where ω is a continuous non-negative even function on [−1, 1] with continuous pos-
itive derivative on (0, 1). Then for any ν ∈ [0, 2), the equality

(2.10) max
|z|=1

Gν(z) = Gν(e) =

∫
Sn−1

ω
(
(eσ, e)

)
(eσ, e)

2dσ

holds.

Proof. (i) The case ν = 0. Let z′ = z − (z, e)e. Then (z′, e) = 0. We choose
the Cartesian coordinates with origin O at the center of the sphere Sn−1 such that
e1 = e and en is collinear to z′. Then z = αe1 + βen, where

(2.11) α2 + β2 = 1.

Now, we rewrite (2.9) for the case ν = 0 in the form

G0(z)=

∫
Sn−1

ω
(
(eσ, e1)

)(
eσ, αe1 + βen

)2
dσ

(2.12)

=

∫
Sn−1

ω
(
(eσ, e1)

)[
α2(eσ, e1)

2+2αβ(eσ, e1)(eσ, en)+β2(eσ, en)
2
]
dσ.

Let us show that

(2.13)

∫
Sn−1

ω
(
(eσ, e1)

)
(eσ, e1)(eσ, en)dσ = 0 .

The last equality is obvious for the case n = 2. We suppose that n ≥ 3. Let
us denote by ϑ1, ϑ2, . . . , ϑn−1 the spherical coordinates in Rn with the center at
O, where ϑi ∈ [0, π] for 1 ≤ i ≤ n − 2, and ϑn−1 ∈ [0, 2π]. Then for any σ =
(σ1, . . . , σn) ∈ Sn−1 we have

σ1 = cosϑ1,

σ2 = sinϑ1 cosϑ2,

. . . . . . . . . . . . . . . . . . . . . . . .

σn−1 = sinϑ1 . . . sinϑn−2 cosϑn−1,

σn = sinϑ1 . . . sinϑn−2 sinϑn−1.

Using the equalities

(eσ, e1) = σ1 = cosϑ1, (eσ, en) = σn = sinϑ1 . . . sinϑn−2 sinϑn−1

in view of
dσ = sinn−2 ϑ1 sin

n−3 ϑ2 . . . sinϑn−2 dϑ1dϑ2 . . . dϑn−1,

we calculate the integral on the left-hand side of (2.13):∫
Sn−1

ω
(
(eσ, e1)

)
(eσ, e1)(eσ, en)dσ

=

∫ π

0
...

∫ π

0

∫ 2π

0
ω
(
cosϑ1

)
cosϑ1

(
n−2∏
i=1

sinn−i ϑi

)
sinϑn−1dϑ1...dϑn−2dϑn−1



ESTIMATES FOR SOLUTIONS OF THE MODIFIED HELMHOLTZ EQUATION 355

= I

∫ 2π

0
sinϑn−1dϑn−1 = 0 ,(2.14)

where

I =

∫ π

0
...

∫ π

0
ω
(
cosϑ1

)
cosϑ1

(
n−2∏
i=1

sinn−i ϑi

)
dϑ1...dϑn−2 .

Equality (2.14) proves (2.13).
Hence, by (2.11), (2.12) and (2.13) we obtain

(2.15) G0(z)=

∫
Sn−1

ω
(
(eσ, e1)

)[
α2(eσ, e1)

2+β2(eσ, en)
2
]
dσ ≤ max{L,M},

where

(2.16) L =

∫
Sn−1

ω
(
(eσ, e1)

)
(eσ, e1)

2dσ

and

(2.17) M =

∫
Sn−1

ω
(
(eσ, e1)

)
(eσ, en)

2dσ.

In view of the evenness of the function ω(t), by virtue of (2.7) we can write (2.16)
as

L = 2ωn−1

∫ π/2

0
ω(cosϑ1) cos

2 ϑ1 sin
n−2 ϑ1dϑ1.

By the change of variable ϑ1 = π
2 − φ in the integral on the right-hand side of the

last equality, we obtain

(2.18) L = 2ωn−1

∫ π/2

0
ω(sinφ) sin2 φ cosn−2 φdφ .

Now, we calculate the integral on the right-hand side of (2.17):

M =

∫
Sn−1

ω
(
(eσ, e1)

)
(eσ, en)

2dσ

=

∫ π

0
. . .

∫ π

0

∫ 2π

0
ω(cosϑ1)

(
n−1∏
i=1

sinn+1−i ϑi

)
dϑ1 . . . dϑn−2dϑn−1(2.19)

=

{∫ π

0
ω(cosϑ1) sin

n ϑ1dϑ1

}{
2

∫ π

0
...

∫ π

0

(
n−1∏
i=2

sinn+1−i ϑi

)
dϑ2...dϑn−1

}
.

Changing the variable ϑ1 = φ + π
2 in the first integral on the right-hand side of

(2.19) and using the evenness of ω(t), we arrive at equality

(2.20)

∫ π

0
ω(cosϑ1) sin

n ϑ1dϑ1 = 2

∫ π/2

0
ω(sinφ)φ cosn φdφ .

Calculating the multiple integral on the right-hand side of (2.19), we obtain

2

∫ π

0
...

∫ π

0

(
n−1∏
i=2

sinn+1−i ϑi

)
dϑ2...dϑn−1 = 2 · 2n−2

n−1∏
k=2

∫ π/2

0
sink ϑdϑ



356 G. KRESIN AND T. BEN YAAKOV

=
2n−1

2n−2

n−1∏
k=2

Γ
(
k+1
2

)
Γ
(
1
2

)
Γ
(
k+2
2

) =
2π(n−1)/2

(n− 1)Γ
(
n−1
2

) =
ωn−1

n− 1
,

which together with (2.19) and (2.20) leads to

(2.21) M =
2ωn−1

n− 1

∫ π/2

0
ω(sinφ) cosn φdφ .

Let us show that L ≥ M . Choosing two positive numbers ϵ and δ such that
ϵ < π

2 − δ, we transform the integral

2ωn−1

∫ π
2
−δ

ϵ
ω(sinφ) sin2 φ cosn−2 φdφ

= −2ωn−1

n− 1

∫ π
2
−δ

ϵ
ω(sinφ) sinφ d

(
cosn−1 φ

)
= −2ωn−1

n− 1

{
ω(sinφ) sinφ cosn−1 φ

∣∣∣π2−δ

ϵ
−
∫ π

2
−δ

ϵ
cosn−1 φ d (ω(sinφ) sinφ)

}

=
2ωn−1

n− 1

{
−ω(sinφ) sinφ cosn−1 φ

∣∣∣π2−δ

ϵ
+

∫ π
2
−δ

ϵ
ω(sinφ) cosn φdφ

}

+
2ωn−1

n− 1

∫ π
2
−δ

ϵ
ω ′(sinφ) cosn φ sinφ dφ.

Since ω ′(t) > 0 in the interval t ∈ (0, 1) by assumption of the Lemma, it follows
from the last equality that

2ωn−1

∫ π
2
−δ

ϵ
ω(sinφ) sin2 φ cosn−2 φdφ

>
2ωn−1

n− 1

{
−ω(sinφ) sinφ cosn−1 φ

∣∣∣π2−δ

ϵ
+

∫ π
2
−δ

ϵ
ω(sinφ) cosn φdφ

}
.

Passing to the limits as δ → 0, ϵ → 0 in the last inequality and taking into account
(2.18) and (2.21), we arrive at

L ≥ M.

This, by (2.15) and (2.16), leads to the inequality

(2.22) max
|z|=1

G0(z) ≤
∫
Sn−1

ω
(
(eσ, e1)

)
(eσ, e1)

2dσ .

By (2.7), the value of the integral∫
Sn−1

ω
(
(eσ, e)

)
(eσ, e)

2dσ

is independent of e. Hence, by (2.22),

(2.23) max
|z|=1

G0(z) ≤
∫
Sn−1

ω
(
(eσ, e)

)
(eσ, e)

2dσ
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for an arbitrary n-dimensional unit vector e.
The lower estimate

max
|z|=1

G0(z) ≥ G0(e) =

∫
Sn−1

ω
(
(eσ, e)

)
(eσ, e)

2dσ

follows from (2.9) with ν = 0, which together with (2.23) proves equality (2.10) for
the case ν = 0.

(ii) The case ν ∈ (0, 2). Equality (2.10) is an immediate consequence of part (i)
of the Lemma and Corollary 2.2. □

3. Sharp weighted estimate for the gradient of solution to the
Dirichlet problem in the half-space

We denote by || · ||p the norm in the space Lp(Rn−1), that is

||f ||p =
{∫

Rn−1

|f(x′)|p dx′
}1/p

,

if 1 ≤ p < ∞, and ||f ||∞ = ess sup{|f(x′)| : x′ ∈ Rn−1}.
Solution of the Dirichlet problem in Rn

+ for the modified Helmholtz equation,

(3.1) (∆− c2)u = 0 in Rn
+, u

∣∣
xn=0

= f(x′)

with continuous and bounded function f on Rn−1, is given by (e.g. [13]):

(3.2) u(x) =
cnxn

2(n−2)/2πn/2

∫
Rn−1

Kn/2

(
c|y − x|

)(
c|y − x|

)n/2 f(y′)dy′ ,

where y = (y′, 0), y′ ∈ Rn−1.
Let us consider solution of problem (3.1) with f ∈ Lp(Rn−1) represented by (3.2),

where p ∈ [1,∞]. A related theory of harmonic functions in Rn
+ with boundary

values from Lp(Rn−1) is described, for instance, in [14] (Ch. 2, Sect. 2).
In this section we prove the following assertion.

Theorem 3.1. Let x be an arbitrary point in Rn
+. The sharp coefficient Cp(x) in

the inequality

(3.3)

∣∣∣∣∇{u(x)

xn

}∣∣∣∣ ≤ Cp(x)||f ||p

is given by

(3.4) C1(x) =
(

cn+2

2n−2πn

)1/2 K(n+2)/2(cxn)

x
n/2
n

for p = 1 and

(3.5) Cp(x)=
21/p

π
n
2 x

2+n−1
p

n

max
|z|=1

{∫
Sn−1

ρqn
(
(eσ, en)

)
|(eσ, en)|

n+p
p−1 |(eσ, z)|qdσ

}1
q

for p ∈ (1,∞], where p−1 + q−1 = 1 and

(3.6) ρm(t) =

∫ ∞

0
ξm/2e

−ξ− c2x2n
4ξt2 dξ.
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In particular,

Cp(x)=
21/p

π
n
2 x

2+n−1
p

n

{∫
Sn−1

ρqn
(
(eσ, en)

)
|(eσ, en)|

n+2p
p−1 dσ

}1
q

(3.7)

=
ω
1− 1

p

n−1 c
n+2
2 x

n−2
2

−n−1
p

n

π
n
2 2

n−2
2

{∫ π/2

0
Kq

n+2
2

( cxn
cosϑ

)
cos

2p−n(p−2)
2(p−1) ϑ sinn−2 ϑdϑ

}1
q

(3.8)

for 2 ≤ p ≤ ∞.
As a special case of (3.8) one has

(3.9) C∞(x) =
c(n+2)/2x

(n−2)/2
n

2
n−4
2
√
π Γ

(
n−1
2

) ∫ π/2

0
K(n+2)/2

( cxn
cosϑ

) sinn−2 ϑ

cos(n−2)/2 ϑ
dϑ .

Proof. By (3.2),

u(x)

xn
= 2

(
c2

2π

)n/2 ∫
Rn−1

Kn/2

(
c|y − x|

)(
c|y − x|

)n/2 f(y′)dy′ .

Differentiating the last equality with respect to xj , j = 1, . . . , n, in view of (see e.g.
[10])

(3.10)
d

dt

(
Kν(t)

tν

)
= −Kν+1(t)

tν
,

we obtain

∇
{
u(x)

xn

}
= −2

(
c2

2π

)n/2 ∫
Rn−1

K(n+2)/2

(
c|y − x|

)(
c|y − x|

)n/2 ∇
(
c|y − x|

)
f(y′)dy′

= 2
c

cn/2

(
c2

2π

)n/2 ∫
Rn−1

K(n+2)/2

(
c|y−x|

)
|y − x|n/2

y − x

|y − x|
f(y′)dy′.

Denoting exy = (y − x)/|y − x|, we rewrite the last equality as

∇
{
u(x)

xn

}
=

(
cn+2

2n−2πn

)1/2 ∫
Rn−1

K(n+2)/2

(
c|y − x|

)
|y − x|n/2

exyf(y
′)dy′,

which leads to

(3.11)

(
∇
{
u(x)

xn

}
, z

)
=

(
cn+2

2n−2πn

)1/2∫
Rn−1

K(n+2)/2

(
c|y − x|

)
|y − x|n/2

(
exy, z

)
f(y′)dy′,

where z is a unit n-dimensional vector.
The known integral representation (see e.g. [10])

Kν(t) =
1

2

(
t

2

)ν ∫ ∞

0
ξ−ν−1e

−ξ− t2

4ξ dξ

in view of the property Kν(t) = K−ν(t) of the Macdonald function, can be written
in the form

(3.12) Kν(t) =
1

2

(
2

t

)ν ∫ ∞

0
ξν−1e

−ξ− t2

4ξ dξ ,
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which together with (3.11) implies(
∇
{
u(x)

xn

}
, z

)
=

2

πn/2

∫
Rn−1

(∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ

) (
exy, z

)
|y − x|n+1

f(y′)dy′.

The last equality, by the property of the inner product in Rn, leads to∣∣∣∣∇{u(x)

xn

}∣∣∣∣= 2

πn/2
max
|z|=1

∫
Rn−1

(∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ

) (
exy, z

)
|y − x|n+1

f(y′)dy′.

Therefore, the sharp coefficient Cp(x) in inequality (3.3) is given by

Cp(x)=
2

πn/2
sup

||f ||p=1
max
|z|=1

∫
Rn−1

(∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ

) (
exy, z

)
|y − x|n+1

f(y′)dy′,

which after permutation of suprema becomes

(3.13) Cp(x)=
2

π
n
2

max
|z|=1

sup
||f ||p=1

∫
Rn−1

(∫ ∞

0
ξ

n
2 e

−ξ− c2|y−x|2
4ξ dξ

)(
exy, z

)
|y−x|n+1

f(y′)dy′.

(i) The case p = 1. In view of (3.13) with p = 1 and the theorem on the norm of
a linear functional in the space of summable functions, we obtain

C1(x) =
2

πn/2
max
|z|=1

sup
y∈∂Rn

+

|(exy, z)|
|y − x|n+1

∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ.

Using the permutation of suprema in the last equality, we arrive at

C1(x) =
2

πn/2
sup

y∈∂Rn
+

1

|y − x|n+1

∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ

=
2

πn/2xn+1
n

∫ ∞

0
ξn/2e

−ξ− c2x2n
4ξ dξ ,

which together with (3.12) proves (3.4).
(ii) Representation of the sharp coefficient Cp(x) in inequality (3.3) in the case

p ∈ (1,∞]. By (3.13) and the theorem on the norm of a linear functional in Lp, we
have

(3.14) Cp(x)=
2

π
n
2

max
|z|=1

{∫
Rn−1

(∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ

)q |
(
exy, z

)
|q

|y − x|(n+1)q
dy′

} 1
q

.

Using the equality

(3.15) |y − x||
(
exy, en

)
| = xn ,

we represent the inner integral on the right-hand side of (3.14) as

(3.16)

∫ ∞

0
ξn/2e

−ξ− c2|y−x|2
4ξ dξ = ρn

(
(exy, en)

)
,

where the function ρm(t) is defined by (3.6).
In view of (3.15), we have

1

|y − x|(n+1)q
=

1

xn|y − x|n(q−1)+q

xn
|y − x|n
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=
1

xn

(
|
(
exy, en

)
|

xn

)n(q−1)+q
xn

|y − x|n

=
1

x
n(q−1)+q+1
n

|
(
exy, en

)
|n(q−1)+q xn

|y − x|n
,

which together with (3.16) allows us to represent (3.14) in the form

(3.17) Cp(x)=
2

π
n
2 x

2+n−p
p

n

max
|z|=1

{∫
Sn−1
−

ρqn
(
(eσ, en)

)
|(eσ, en)|

n+p
p−1 |(eσ, z)|qdσ

}1
q

,

where Sn−1
− = {σ ∈ Sn−1 : (eσ, en) < 0}.

Using the evenness of the function ρm(t) defined by (3.6), we rewrite (3.17) as

(3.18) Cp(x)=
21/p

π
n
2 x

2+n−1
p

n

max
|z|=1

{∫
Sn−1

ρqn
(
(eσ, en)

)
|(eσ, en)|

n+p
p−1 |(eσ, z)|qdσ

}1
q

,

which proves (3.5).
(iii) Solution of extremal problem in (3.5) for the case p ∈ [2,∞]. We introduce

the function

(3.19) ω(t) = |t|
n+2
p−1 ρ

p
p−1
n = |t|

n+2
p−1

(∫ ∞

0
ξn/2e

−ξ− c2x2n
4ξt2 dξ

) p
p−1

for t ̸= 0, ω(0) = 0, and rewrite (3.18) as

(3.20) Cp(x)=
21/p

π
n
2 x

2+n−1
p

n

max
|z|=1

{∫
Sn−1

ω
(
(eσ, en)

)
|(eσ, en)|

p−2
p−1 |(eσ, z)|2−

p−2
p−1dσ

}1
q

.

Since the quantity γ = (p − 2)/(p − 1) for p ∈ [2,∞] satisfies inequality 0 ≤ γ ≤ 1
and the function (3.19) obeys the assumptions of Lemma 2.4, we can apply Lemma
2.4 to (3.20). As the result, we obtain

(3.21) Cp(x) =
21/p

πn/2x
2+n−1

p
n

{∫
Sn−1

ω
(
(eσ, en)

)
(eσ, en)

2dσ

} p−1
p

.

Substituting ω(t) from (3.19) into (3.21), we arrive at (3.7).
(iv) Representation of Cp(x) as definite integral for the case p ∈ [2,∞]. Using

(2.7), we rewrite (3.7) in the form

(3.22) Cp(x) =
2ω

1/q
n−1

π
n
2 x

2+n−1
p

n

{∫ π/2

0
ρ

p
p−1
n

(
cosϑ) cos

n+2p
p−1 ϑ sinn−2 ϑdϑ

} p−1
p

.

In view of (3.6) and (3.12),

ρn
(
cosϑ) = 2

( cxn
2 cosϑ

)n+2
2

Kn+2
2

( cxn
cosϑ

)
,

which together with (3.22) leads to (3.8). □
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4. Sharp estimate for the gradient of solution to the Neumann
problem in the half-space

Solution of the Neumann problem in Rn
+ for the modified Helmholtz equation,

(4.1) (∆− c2)u = 0 in Rn
+,

∂u

∂xn

∣∣∣∣
xn=0

= g(x′)

with continuous and bounded function g on Rn−1, is given by (e.g. [12], sect. 7.3,
8.3)

(4.2) u(x) = −2c(n−2)/2

(2π)n/2

∫
Rn−1

K(n−2)/2

(
c|y − x|

)(
c|y − x|

)(n−2)/2
g(y′)dy′.

Here, as before, y = (y′, 0), y′ ∈ Rn−1.
In this section we consider solution of problem (4.1) with g ∈ Lp(Rn−1) repre-

sented by (4.2), where p ∈ [1,∞].
Now, we prove

Theorem 4.1. Let x be an arbitrary point in Rn
+. The sharp coefficient Kp(x) in

the inequality

(4.3) |∇u(x)| ≤ Kp(x)||g||p

is given by

(4.4) K1(x) =
c

2(n−2)/2πn/2

Kn/2(cxn)

x
(n−2)/2
n

for p = 1 and

(4.5) Kp(x)=
2(1−p)/p

πn/2c
n−2
2 x

n−1
p−1
n

max
|z|=1

{∫
Sn−1

ρqn−2

(
(eσ,en)

)
|(eσ,en)|

n−p
p−1 |(eσ,z)|qdσ

}1
q

for p ∈ (1,∞], where p−1 + q−1 = 1 and the function ρm(t) is defined by (3.6).
In particular,

Kp(x)=
2(1−p)/p

π
n
2 c

n−2
2 x

n−1
p−1
n

{∫
Sn−1

ρqn−2

(
(eσ, en)

)
|(eσ, en)|

n
p−1dσ

} 1
q

(4.6)

=
c ω

1/q
n−1x

n
2
−n−1

p−1
n

π
n
2 2

n−2
2

{∫ π/2

0
Kq

n/2

( cxn
cosϑ

)
cos

(2−p)n
2(p−1) ϑ sinn−2 ϑdϑ

} 1
q

(4.7)

for p ∈ [2, (n+ 2)/2].
As a special case of (4.7) one has

(4.8) K2(x)=
cx

1/2
n

π
n+1
4 2

n−3
2

√
Γ
(
n−1
2

)
{∫ π/2

0
K2

n/2

( cxn
cosϑ

)
sinn−2 ϑ dϑ

}1/2

.
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Proof. Differentiating in (4.2) with respect to xj , j = 1, . . . , n, and using (3.10), we
obtain

∇u(x) =
2c(n−2)/2

(2π)n/2

∫
Rn−1

Kn/2

(
c|y − x|

)(
c|y − x|

)(n−2)/2
∇
(
c|y − x|

)
g(y′)dy′

= − 2c

(2π)n/2

∫
Rn−1

Kn/2

(
c|y − x|

)
|y − x|(n−2)/2

y − x

|y − x|
g(y′)dy′,

which can be written as

∇u(x) = − 2c

(2π)n/2

∫
Rn−1

Kn/2

(
c|y − x|

)
|y − x|(n−2)/2

exyg(y
′)dy′,

where exy = (y − x)/|y − x|. It follows(
∇u(x), z

)
= − 2c

(2π)n/2

∫
Rn−1

Kn/2

(
c|y − x|

)
|y − x|(n−2)/2

(
exy, z)g(y

′)dy′,

where z is a unit n-dimensional vector. Therefore,∣∣∇u(x)
∣∣ = 2c

(2π)n/2
max
|z|=1

∫
Rn−1

−
Kn/2

(
c|y − x|

)
|y − x|(n−2)/2

(
exy, z)g(y

′)dy′.

From the last equality, by permutation of suprema, we obtain the representation of
the sharp coefficient Kp(x) in inequality (4.3)

Kp(x) =
2c

(2π)n/2
max
|z|=1

sup
||g||p=1

∫
Rn−1

−
Kn/2

(
c|y − x|

)
|y − x|(n−2)/2

(
exy, z)g(y

′)dy′,

which in view of (3.12), can be written as

(4.9) Kp(x)=kn max
|z|=1

sup
||g||p=1

∫
Rn−1

(∫ ∞

0
ξ

n−2
2 e

−ξ−c2|y−x|2
4ξ dξ

)
(exy, z)

|y−x|n−1
g(y′)dy′,

where

kn =
1

πn/2c(n−2)/2
.

(i) The case p = 1. In view of (4.9) with p = 1 and the theorem on the norm of
a linear functional in the space of summable functions, we obtain

K1(x) =
1

πn/2c(n−2)/2
max
|z|=1

sup
y∈∂Rn

+

|(exy, z)|
|y − x|n−1

∫ ∞

0
ξ(n−2)/2e

−ξ− c2|y−x|2
4ξ dξ.

Using the permutation of suprema in the last equality, we arrive at

K1(x) =
1

πn/2c(n−2)/2
sup

y∈∂Rn
+

1

|y − x|n−1

∫ ∞

0
ξ(n−2)/2e

−ξ− c2|y−x|2
4ξ dξ

=
1

πn/2c(n−2)/2xn−1
n

∫ ∞

0
ξ(n−2)/2e

−ξ− c2x2n
4ξ dξ ,

which together with (3.12) proves (4.4).



ESTIMATES FOR SOLUTIONS OF THE MODIFIED HELMHOLTZ EQUATION 363

(ii) Representation of the sharp coefficient Kp(x) in inequality (4.3) in the case
p ∈ (1,∞]. By (4.9) and the theorem on the norm of a linear functional in Lp, we
have

(4.10) Kp(x)=kn max
|z|=1

{∫
Rn−1

(∫ ∞

0
ξ

n−2
2 e

−ξ− c2|y−x|2
4ξ dξ

)q ∣∣(exy, z)∣∣q
|y−x|(n−1)q

dy′

}1
q

.

Using equality (3.15), we represent the inner integral on the right-hand side of
(4.10) as

(4.11)

∫ ∞

0
ξ(n−2)/2e

−ξ− c2|y−x|2
4ξ dξ = ρn−2

(
(exy, en)

)
,

where the function ρm(t) is defined by (3.6).
In view of (3.15), we have

1

|y − x|(n−1)q
=

1

xn|y − x|n(q−1)−q

xn
|y − x|n

=
1

xn

(
|
(
exy, en

)
|

xn

)n(q−1)−q
xn

|y − x|n

=
1

x
n(q−1)−q+1
n

|
(
exy, en

)
|n(q−1)−q xn

|y − x|n
,

which together with (4.11) allows us to represent (4.10) as

(4.12) Kp(x)=
kn

x
n−1
p−1
n

max
|z|=1

{∫
Sn−1
−

ρqn−2

(
(eσ, en)

)
|(eσ, en)|

n−p
p−1 |(eσ, z)|qdσ

}1
q

,

where Sn−1
− = {σ ∈ Sn−1 : (eσ, en) < 0}.

Using the evenness of the function ρm(t) defined by (3.6), we rewrite (4.12) as

(4.13) Kp(x)=
kn2

− 1
q

x
n−1
p−1
n

max
|z|=1

{∫
Sn−1

ρqn−2
(
(eσ, en)

)
|(eσ, en)|

n−p
p−1 |(eσ, z)|qdσ

}1
q

,

which proves (4.5).
(iii) Solution of extremal problem in (4.5) for the case p ∈ [2, (n + 2)/2]. We

introduce the function

(4.14) ω(t) = |t|
n+2−2p

p−1 ρ
p

p−1

n−2 = |t|
n+2−2p

p−1

(∫ ∞

0
ξ(n−2)/2e

−ξ− c2x2n
4ξt2 dξ

) p
p−1

for t ̸= 0, which is defined at t = 0 by continuity, and rewrite (4.13) as

(4.15) Kp(x)=
kn2

− 1
q

x
n−1
p−1
n

max
|z|=1

{∫
Sn−1

ω
(
(eσ, en)

)
|(eσ, en)|

p−2
p−1 |(eσ, z)|2−

p−2
p−1dσ

}1
q

.

Since p ∈ [2, (n+2)/2], the quantity γ = (p−2)/(p−1) satisfies inequality 0 ≤ γ < 1
and the function (4.14) obeys the assumptions of Lemma 2.4. Applying Lemma 2.4
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to (4.15), we arrive at

(4.16) Kp(x) =
2

1
p
−1

πn/2c(n−2)/2x
n−1
p−1
n

{∫
Sn−1

ω
(
(eσ, en)

)
(eσ, en)

2dσ

} p−1
p

.

Substituting ω(t) from (4.14) into (4.16), we get (4.6).
(iv) Representation of Kp(x) as definite integral for the case p ∈ [2, (n + 2)/2].

Using (2.7), we rewrite (4.6) in the form

(4.17) Kp(x) =
ω
1/q
n−1

π
n
2 c

n−2
2 x

n−1
p−1
n

{∫ π/2

0
ρqn−2

(
cosϑ) cos

n
p−1 ϑ sinn−2 ϑdϑ

} 1
q

.

In view of (3.12) and (3.6),

ρn−2

(
cosϑ) = 2

( cxn
2 cosϑ

)n
2
Kn

2

( cxn
cosϑ

)
,

which together with (4.17) leads to (4.7). □

5. Sharp estimate for the gradient of solution to non-homogeneous
equation in Rn containing a power of the operator c2 −∆

First, we describe the notions of the positive power of the modified Helmholtz
operator, the Bessel kernel and Bessel potential with a parameter c > 0.

Let α > 0. The positive power of the modified Helmholtz operator c2 − ∆ is
defined as

(c2 −∆)α/2u(x) = F−1
(
(c2 + |ξ|2)α/2Fu(ξ)

)
(x) ,

where F and F−1 are the Fourier and inverse Fourier transforms, respectively, and
u belongs to the Schwartz class S of rapidly decreasing C∞-functions on Rn.

The parametric Bessel potential

(5.1) u(x) = Gα,c ∗ f =

∫
Rn

Gα,c(x− y)f(y)dy ,

where

Gα,c(x) = F−1
(
(c2 + |ξ|2)−α/2

)
(x)

(5.2)

=
cn−α

πn/22(n+α−2)/2Γ
(
α
2

)K(n−α)/2

(
c|x|
)(

c|x|
)(n−α)/2

is the parametric Bessel kernel and f ∈ L∞(Rn), represents continuous and bounded
in Rn solution of the equation

(5.3)
(
c2 −∆

)α/2
u = f.

The definitions and facts given above for any positive parameter c are completely
analogous (including the proofs) to those discussed in the bibliography for the case
c = 1 (e.g. [1], Ch. 1, [11], Ch. 10).

Various estimates, including pointwise ones, for the Bessel potential are known
(e.g. [1], Ch. 3). In the statement below we give a simple sharp pointwise estimate
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for the modulus of the gradient of the parametric Bessel potential with respect to
the norm of its density in the space L∞(Rn).

Theorem 5.1. Let u be solution of (5.3) with α > 1 and f ∈ L∞(Rn), and let x be
an arbitrary point in Rn. The sharp coefficient Bα in the inequality

(5.4) |∇u(x)| ≤ Bα||f ||∞
is given by

(5.5) Bα =
Γ
(
α−1
2

)
√
πΓ
(
α
2

)
cα−1

.

In particular,

(5.6) B2m =
(2m− 3)!!

(2m− 2)!!c2m−1
.

As a special case of (5.6) one has

(5.7) B2 =
1

c
.

Proof. By (5.1) and (5.2),

(5.8) u(x) =
cn−α

πn/22(n+α−2)/2Γ
(
α
2

) ∫
Rn

K(n−α)/2

(
c|x− y|

)(
c|x− y|

)(n−α)/2
f(y)dy .

Differentiating in (5.8) with respect to xj , j = 1, . . . , n, in view of (3.10) we obtain

∇u(x) = − cn−α

πn/22(n+α−2)/2Γ
(
α
2

)∫
Rn

K(n−α+2)/2

(
c|y − x|

)(
c|y − x|

)(n−α)/2
∇
(
c|y − x|

)
f(y)dy

=
cn−α+1

πn/22(n+α−2)/2Γ
(
α
2

) ∫
Rn

K(n−α+2)/2

(
c|y − x|

)(
c|y − x|

)(n−α)/2

y − x

|y − x|
f(y)dy.

Denoting exy = (y − x)/|y − x|, we rewrite the last equality as

∇u(x) = kn,α

∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

exyf(y)dy,

which leads to

(5.9) (∇u(x), z) = kn,α

∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

(
exy, z

)
f(y)dy,

where z is a unit n-dimensional vector and

(5.10) kn,α =
c(n−α+2)/2

πn/22(n+α−2)/2Γ
(
α
2

) .

By (5.9) and the property of the inner product in Rn, we arrive at

(5.11) |∇u(x)| = kn,α max
|z|=1

∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

(
exy, z

)
f(y)dy.
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Using permutation of suprema in (5.11), we obtain the representation for the sharp
coefficient in inequality (5.4),

Bα = kn,α max
|z|=1

sup
||f ||∞=1

∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

(
exy, z

)
f(y)dy,

that is

(5.12) Bα = kn,α max
|z|=1

∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

|(exy, z)|dy.

Now, we write the integral in (5.12) as∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

|(exy, z)|dy

(5.13)

=

∫ ∞

0

K(n−α+2)/2

(
cρ
)

ρ(n−α)/2
ρn−1dρ

∫
Sn−1

|(eσ, z)|dσ .

Using the known formula (see, e.g. [2], item 6.561/16)∫ ∞

0
xµKν(ax)dx = 2µ−1a−(µ+1)Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
,

we calculate the first integral on the right-hand side of (5.13)

(5.14)

∫ ∞

0
Kn−α+2

2

(
cρ
)
ρ

n+α−2
2 dρ =

2(n+α−4)/2

c(n+α)/2
Γ

(
n+ 1

2

)
Γ

(
α− 1

2

)
.

Further, by (2.7),

(5.15)

∫
Sn−1

|(eσ, z)|dσ = 2ωn−1

∫ π/2

0
cosϑ sinn−2 ϑdϑ =

2π(n−1)/2

Γ
(
n+1
2

) .

Substituting (5.14) and (5.15) into (5.13), we obtain∫
Rn

K(n−α+2)/2

(
c|y − x|

)
|y − x|(n−α)/2

|(exy, z)|dy =
2(n+α−2)/2π(n−1)/2

c(n+α)/2
Γ

(
α− 1

2

)
,

which together with (5.12) and (5.10) leads to (5.5).
Applying formula

Γ

(
m− 1

2

)
=

√
π(2m− 2)!

22(m−1)(m− 1)!

to transform of (5.5) in the case α = 2m, we arrive at (5.6). □
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