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Our main results on the accretivity problem for general differential operators are
discussed in Sec. 4 below. (See Propositions 4.1 and 4.2, as well as Theorem V for
n = 1, and Theorem VI for n ≥ 2.)

For the sake of simplicity, we will focus in the Introduction on the operator

L̃ = ∆+ b⃗ · ∇+ c,

whose principal part is the Laplacian ∆, and the coefficients b⃗ = (bj) and c are

locally integrable functions in Rn. Then the sesquilinear form of −L̃ is given by

⟨−L̃u, v⟩ =
∫
Rn

(∇u · ∇v − b⃗ · ∇u v − c u v) dx,(1.4)

where u, v ∈ C∞
0 (Rn).

In this special case, let

(1.5) q = Re c− 1
2div (Re b⃗), d⃗ = 1

2(Im b⃗).

We denote by H = ∆+q the corresponding Schrödinger operator. The quadratic
form associated with −H in the case q ∈ L1

loc(Rn) is given by

(1.6) [h]2H := ⟨−Hh, h⟩ =
∫
Rn

(|∇h|2 − q |h|2) dx, h ∈ C∞
0 (Rn).

Theorem I. Let L̃ = ∆+ b⃗ ·∇+ c, where Re b⃗ ∈W 1,1
loc (R

n), and Im b⃗, c ∈ L1
loc(Rn).

Let q, d⃗ be given by (1.5). Then the operator −L̃ is accretive if and only if the
following two conditions hold:

(i) The operator −H is nonnegative definite, i.e.,

(1.7) [h]2H =

∫
Rn

(|∇h|2 − q |h|2) dx ≥ 0,

for all real (or complex-valued) h ∈ C∞
0 (Rn).

(ii) The commutator inequality

(1.8)

∣∣∣∣∫
Rn

d⃗ · (u∇v − v∇u) dx
∣∣∣∣ ≤ [u]H [v]H

holds for all real-valued u, v ∈ C∞
0 (Rn).

A necessary and sufficient condition for property (1.7) was obtained in [11, Propo-
sition 5.1] (see Sec. 4.3 below). Concerning condition (1.8), we observe that, under
the upper and lower bounds on the quadratic form (1.7) discussed in Sec. 4.5,
the expressions [u]H and [v]H on the right-hand side of (2.12) can be replaced, up
to a constant multiple, with the corresponding Dirichlet norms ||∇u||L2(Rn) and
||∇v||L2(Rn), respectively. Then the corresponding commutator inequality

(1.9)

∣∣∣∣∫
Rn

d⃗ · (u∇v − v∇u) dx
∣∣∣∣ ≤ C ||∇u||L2(Rn) ||∇v||L2(Rn),

for all (real-valued or complex-valued) u, v ∈ C∞
0 (Rn), can be characterized com-

pletely as follows (see [26, Lemma 4.8]).
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Theorem II. Let d⃗ ∈ L1
loc(Rn), n ≥ 2. Then inequality (1.9) holds if and only if

(1.10) d⃗ = c⃗+DivF,

where F ∈ BMO(Rn)n×n is a skew-symmetric matrix field, and c⃗ satisfies the con-
dition

(1.11)

∫
Rn

|⃗c|2 |u|2 dx ≤ C ||∇u||2L2(Rn),

where the constant C does not depend on u ∈ C∞
0 (Rn).

Moreover, if (1.9) holds, then (1.10) is valid with c⃗ = ∇∆−1(div d⃗) satisfying

(1.11), and F = ∆−1(Curl d⃗) ∈ BMO(Rn)n×n.

In the case n = 2, necessarily c⃗ = 0, and d⃗ = (−∂2f, ∂1f) with f ∈ BMO(R2) in
the above statements.

Here the gradient ∇, and the matrix operators Div, Curl are understood in the

sense of distributions (see Sec. 2). Expressions ∆−1(div d⃗), ∆−1(Curl d⃗), etc., are
defined in terms of the weak-∗ BMO convergence (details can be found in [26], [27]).

Theorems I & II yield an explicit criterion of accretivity for −L̃ (see Theorem VI
below in the general case).

More general commutator inequalities related to compensated compactness the-
ory [3] were studied earlier by the authors [26] in the framework of the form bound-
edness problem,

(1.12) |⟨L0 u, v⟩| ≤ C ||∇u||L2(Rn) ||∇v||L2(Rn),

where the constant C does not depend on u, v ∈ C∞
0 (Rn).

If (1.12) holds, then ⟨L0 u, v⟩ can be extended by continuity to u, v ∈ L1, 2(Rn)
(n ≥ 3). Here L1, 2(Rn) is the completion of (complex-valued) C∞

0 (Rn) functions
with respect to the norm ||u||L1, 2(Rn) = ||∇u||L2(Rn). Equivalently,

(1.13) L0 : L
1, 2(Rn) → L−1, 2(Rn)

is a bounded operator, where L−1, 2(Rn) = L1, 2(Rn)∗ is a dual Sobolev space.
Analogous problems have been studied in [23]–[25] for the inhomogeneous Sobolev
space W 1, 2(Rn), fractional Sobolev spaces, infinitesimal form boundedness, and
other related questions (see Sec. 3 below).

In the special case of the operator L̃, we have the following characterization of
form boundedness.

Theorem III. Let L̃ = ∆+ b⃗ ·∇+q, where b⃗ ∈ L1
loc(Rn)n and q ∈ L1

loc(Rn), n ≥ 2.
Then the following statements hold.

(i) The sesquilinear form of L̃ given by (1.4) is bounded if and only if b⃗ and q
can be represented respectively in the form

(1.14) b⃗ = c⃗+DivF, q = div h⃗,

where F is a skew-symmetric matrix field such that

(1.15) F ∈ BMO(Rn)n×n,
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whereas c⃗ and h⃗ satisfy the condition

(1.16)

∫
Rn

(|⃗c|2 + |⃗h|2) |u|2 dx ≤ C ||∇u||2L2(Rn),

where the constant C does not depend on u ∈ C∞
0 (Rn).

(ii) If the sesquilinear form of L̃ is bounded, then c⃗, F , and h⃗ in decomposition
(1.14) can be determined explicitly by

c⃗ = ∇∆−1(div b⃗), h⃗ = ∇(∆−1 q),(1.17)

F = ∆−1(Curl b⃗),(1.18)

so that conditions (1.15), (1.16) hold.

If n = 2, then (1.16) yields that c⃗ = 0 and h⃗ = 0, so that q = 0 and b⃗ =
(−∂2f, ∂1f) with f ∈ BMO(R2).

The form boundedness problem (1.12) for the general second order differential
operator L0 in the case Ω = Rn was characterized by the authors in [26] using
harmonic analysis and potential theory methods. These results are discussed in Sec.
3 below. We observe that no ellipticity assumptions are imposed on the principal
part A of L0 in this context.

For the Schrödinger operator H = ∆+q with q ∈ D′(Ω), where either Ω = Rn, or
Ω is a bounded domain that supports Hardy’s inequality (see [2]), a characterization
of form boundedness was obtained earlier in [22]. A different approach for H =
div (P∇·)+q in general open sets Ω ⊆ Rn, under the uniform ellipticity assumptions
on P , was developed in [11]. (We remark that these assumptions on P can be
relaxed in a substantial way.) There is also a quasilinear version for operators of
the p-Laplace type (see [12]).

Both the accretivity and form boundedness properties have numerous applica-
tions. They include problems in mathematical quantum mechanics ([31], [32]), PDE
theory ([4], [6], [8], [13], [14], [21], [28], [29]), fluid mechanics and Navier-Stokes equa-
tions ([7], [16], [33], [35]), semigroups and Markov processes ([18]), homogenization
theory ([37]), harmonic analysis ([3], [5]), etc.

We observe that, for the form boundedness property, the case of complex-valued
coefficients is easily reduced to the real-valued case. In contrast, for the accretivity
property, complex-valued coefficients lead to additional difficulties that appear when

the matrix ImA is not symmetric, or the imaginary part of b⃗ is nontrivial.
We conclude the Introduction with a brief description of the structure of this

paper. In Sec. 2, we introduce some preliminary notions, definitions and notations
used throughout the paper.

The form boundedness property for general second order linear differential op-
erators with distributional coefficients is discussed in Sec. 3. The main results
for homogeneous Sobolev spaces L1,2(Rn) are presented in Sec. 3.1 (Theorem IV),
and for inhomogeneous Sobolev spaces W 1,2(Rn) in Sec. 3.2, respectively. Several
versions of form boundedness, including the infinitesimal form boundedness (Sec.
3.3), p-subordination and generalized Nash’s inequality (Sec. 3.4), as well as form
boundedness for the relativistic Schrödinger operator (Sec. 3.5) are treated as well.
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The accretivity property for general second order operators with complex-valued
distributional coefficients is discussed in Sec. 4. Real-valued coefficients are consid-
ered in Sec. 4.2, and Sec. 4.3 in the special case of Schrödinger type operators. The
main results are contained in Sec. 4.4 (Theorem V) in the one-dimensional case,
and in Sec. 4.6 (Theorem VI) in the case Ω = Rn for dimensions n ≥ 2.

2. Preliminaries

Let Ω ⊆ Rn (n ≥ 1) be an open set. The matrix row divergence operator
Div: D′(Ω)n×n → D′(Ω)n is defined on matrix fields F = (fjk)

n
j,k=1 ∈ D′(Ω)n×n by

DivF = (
∑n

k=1 ∂k fjk)
n
j=1 ∈ D′(Ω)n. If F is skew-symmetric, i.e., fjk = −fkj , then

we obviously have div (DivF ) = 0.
The matrix curl operator Curl: D′(Ω)n → D′(Ω)n×n is defined on vector fields

f⃗ = (fk)
n
k=1 by Curl f⃗ = (∂jfk − ∂kfj)

n
j,k=1. Clearly, Curl f⃗ is always a skew-

symmetric matrix field.
It will be convenient to use the notion of admissible measures M1, 2

+ (Ω), i.e.,
nonnegative locally finite Borel measures µ in Ω which obey the trace inequality

(2.1)
(∫

Ω
|u|2 dµ

) 1
2 ≤ C ||∇u||L2(Ω), for all u ∈ C∞

0 (Ω),

where the constant C does not depend on u. The least embedding constant C in
(2.1) will be denoted by ||µ||

M1, 2
+ (Ω)

. For admissible measures q(x) dx with nonneg-

ative density q ∈ L1
loc(Ω), we write q ∈ M1, 2

+ (Ω).

Several characterizations of M1, 2
+ (Ω) are known. They can be formulated in

terms of capacities [21] or Green energies [5], [30], and, in the case Ω = Rn, in
terms of local maximal estimates [15], pointwise potential inequalities [22], or dyadic
Carleson measures [36] (see also [26], [27]).

Suppose that the principal part Au of the general differential operator is given
in the divergence form,

(2.2) Au = div (A∇u), u ∈ C∞
0 (Ω).

Then we consider the operator

(2.3) Lu = div (A∇u) + b⃗ · ∇u+ c u,

with distributional coefficients A = (ajk), b⃗ = (bj), and c. The corresponding
sesquilinear form ⟨Lu, v⟩ is given by

(2.4) ⟨Lu, v⟩ = −⟨A∇u,∇v⟩+ ⟨⃗b · ∇u, v⟩+ ⟨c u, v⟩,
where u, v ∈ C∞

0 (Ω) are complex-valued.
We observe that if L0 is given in the non-divergence form (1.1), then

L0 = L −DivA · ∇.
(See, for instance, [14], [27].) Hence, we can express ⟨L0u, v⟩ in the form (2.4), with

b⃗−DivA in place of b⃗, for distributional coefficients A and b⃗.
This means that, without loss of generality, we may treat the accretivity property

(2.5) Re ⟨−Lu, u⟩ ≥ 0, for all u ∈ C∞
0 (Ω),
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for the divergence form operator L given by (2.3).
This problem is of substantial interest even in the real-variable case, where the

goal is to characterize operators −L with real-valued coefficients whose quadratic
form is nonnegative definite,

(2.6) ⟨−Lh, h⟩ ≥ 0, for all real-valued h ∈ C∞
0 (Ω).

In this case the operator −L is called nonnegative definite.
In the special case of Schrödinger operators

(2.7) Hu = div (P∇u) + σ u,

with real-valued P ∈ D′(Ω)n×n and σ ∈ D′(Ω), a characterization of this prop-
erty was obtained earlier in [11, Proposition 5.1] under the assumption that P is
uniformly elliptic, i.e.,

(2.8) m ||ξ||2 ≤ P (x)ξ · ξ ≤M ||ξ||2, for all ξ ∈ Rn, a.e. x ∈ Ω,

with the ellipticity constants m > 0 and M <∞.
An analogous characterization of (2.6) for more general operators which include

drift terms, L = div(P∇·) + b⃗ · ∇+ c, with real-valued coefficients and P satisfying
(2.8), is given in Proposition 4.2 below.

For the general differential operator in the form (2.2), we define the symmetric
part As, and co-symmetric (or skew-symmetric) part Ac, respectively, by

(2.9) As =
1

2
(A+A⊥), Ac =

1

2
(A−A⊥).

Here A = (ajk) ∈ D′(Ω)n×n, and A⊥ = (akj) is the transposed matrix.
For −L to be accretive, the matrix As must have a nonnegative definite real part:

P = ReAs should satisfy

(2.10) Pξ · ξ ≥ 0 for all ξ ∈ Rn, in D′(Ω).

Moreover, if the corresponding Schrödinger operator H is defined by (2.7) with

P = ReAs, σ = Re c− 1

2
div (Re b⃗),

then −H must be nonnegative definite:

(2.11) [h]2H = ⟨−Hh, h⟩ = ⟨P∇h,∇h⟩ − ⟨σh, h⟩ ≥ 0,

for all real-valued (or complex-valued) h ∈ C∞
0 (Ω).

The rest of the accretivity problem for L (see Sec. 4.1) is reduced to the commu-
tator inequality

(2.12)
∣∣∣⟨d⃗, u∇v − v∇u⟩

∣∣∣ ≤ [u]H [v]H,

for all real-valued u, v ∈ C∞
0 (Ω), where the real-valued vector field d⃗ is given by

(2.13) d⃗ = 1
2 [Im b⃗−Div(ImAc)].

As mentioned in the Introduction, under some mild restrictions onH, the “norms”
[u]H and [v]H on the right-hand side of (2.12) can be replaced, up to a constant
multiple, with the corresponding Dirichlet norms ||∇ · ||L2(Ω). This leads to explicit
criteria of accretivity, such as Theorem VI below in the case Ω = Rn.
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3. Form boundedness

We start with a discussion of form boundedness for the general second order dif-
ferential operator L in the form (2.3), where aij , bi, and c are real- or complex-valued
distributions, on the homogeneous Sobolev space L1, 2(Rn), and its inhomogeneous
counterpart W 1, 2(Rn), obtained in [26].

In particular, this leads to criteria of the relative form boundedness of the operator

b⃗ · ∇ + q with distributional coefficients b⃗ and q with respect to the Laplacian ∆
on L2(Rn). Invoking the so-called KLMN Theorem (see [4, Theorem IV.4.2]; [31,

Theorem X.17]), we can then demonstrate that L̃ = ∆ + b⃗ · ∇ + q is well defined,

under appropriate smallness assumptions on b⃗ and q, as an m-sectorial operator on
L2(Rn). In this case, the quadratic form domain of L̃ coincides with W 1, 2(Rn).

This yields a characterization of the relative form boundedness for the magnetic
Schrödinger operator

(3.1) M = (i∇+ a⃗)2 + q,

with arbitrary vector potential a⃗ ∈ L2
loc(Rn)n, and q ∈ D′(Rn) on L2(Rn) with

respect to ∆ (see [26]).
Our approach is based on factorization of functions in Sobolev spaces and inte-

gral estimates of potentials of equilibrium measures, combined with compensated
compactness arguments, commutator estimates, and the idea of gauge invariance.
Moreover, an explicit Hodge decomposition is established for form bounded vector
fields in Rn. In this decomposition, the irrotational part of the vector field is subject
to a stronger restriction than its divergence-free counterpart.

3.1. Form boundedness in the homogeneous Sobolev space. As was men-
tioned above, without loss of generality we may assume that the principal part of

the differential operator is in the divergence form, i.e., L = div (A∇·) + b⃗ · ∇+ q.

We present necessary and sufficient conditions on A, b⃗, and q, obtained in [26,
Theorem I], which ensure the boundedness in the homogeneous Sobolev space
L1, 2(Rn) of the sesquilinear form associated with L:

(3.2) |⟨Lu, v⟩| ≤ C ||u||L1, 2(Rn) ||v||L1, 2(Rn),

where C does not depend on u, v ∈ C∞
0 (Rn), and ||u||L1, 2(Rn) = ||∇u||L2(Rn).

Theorem IV. Let L = div (A∇·) + b⃗ · ∇+ q, where A ∈ D′(Rn)n×n, b⃗ ∈ D′(Rn)n

and q ∈ D′(Rn), n ≥ 2. Then the following statements hold.
(i) The sesquilinear form of L is bounded, i.e., (3.2) holds if and only if As ∈

L∞(Rn)n×n, and b⃗ and q can be represented respectively in the form

(3.3) b⃗ = c⃗+DivF, q = div h⃗,

where F is a skew-symmetric matrix field such that

(3.4) F −Ac ∈ BMO(Rn)n×n,

whereas c⃗ and h⃗ belong to L2
loc(Rn)n, and obey the condition

(3.5) |⃗c|2 + |⃗h|2 ∈ M1, 2
+ (Rn).
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(ii) If the sesquilinear form of L is bounded, then c⃗, F , and h⃗ in decomposition
(3.3) can be determined explicitly by

c⃗ = ∇(∆−1div b⃗), h⃗ = ∇(∆−1 q),(3.6)

F = ∆−1Curl [⃗b−Div (Ac)] +Ac,(3.7)

where

(3.8) ∆−1Curl [⃗b−Div (Ac)] ∈ BMO(Rn)n×n,

and

(3.9) |∇(∆−1div b⃗)|2 + |∇(∆−1 q)|2 ∈ M1, 2
+ (Rn).

We remark that condition (3.8) in statement (ii) of Theorem IV may be replaced
with

(3.10) b⃗−Div (Ac) ∈ BMO−1(Rn)n,

which ensures that decomposition (3.3) holds. Here BMO−1(Rn) stands for the
space of distributions that can be represented in the form f = div g⃗ where g⃗ ∈
BMO(Rn)n (see [16]).

In the special case n = 2, it is easy to see that (3.2) holds if and only if As ∈
L∞(R2)2×2, b⃗− Div (Ac) ∈ BMO−1(R2)2, and q = div b⃗ = 0.

As mentioned in the Introduction, expressions ∇(∆−1 q), ∇(∆−1div b⃗),

Div(∆−1Curl b⃗), which involve nonlocal operators, are defined in the sense of distri-

butions. This is possible, since ∆−1q, ∆−1div b⃗, and ∆−1Curl b⃗ can be understood

in terms of the convergence in the weak-∗ topology of BMO(Rn) of ∆−1 div (ψN b⃗),

∆−1Curl (ψN b⃗), and ∆−1 (ψN q), respectively, as N → +∞. Here ψN (x) = ψ( x
N )

is a smooth cut-off function, where ψ is supported in the unit ball {x : |x| < 1},
and ψ(x) = 1 if |x| ≤ 1

2 . The limits above do not depend on the choice of ψ.

It follows from Theorem IV that L is form bounded on L1, 2(Rn) × L1, 2(Rn) if

and only if As ∈ L∞(Rn)n×n, and b⃗1 · ∇+ q is form bounded, where

(3.11) b⃗1 = b⃗−Div(Ac).

In particular, the principal part Pu = div(A∇u) is form bounded if and only if

As ∈ L∞(Rn)n×n,(3.12)

Div (Ac) ∈ BMO−1(Rn)n.(3.13)

A simpler condition with Ac ∈ BMO(Rn)n×n in place of (3.13) is sufficient, but
generally is necessary only if n = 1, 2.

Thus, the form boundedness problem for the general second order differential
operator is reduced to the special case

(3.14) L = b⃗ · ∇+ q, b⃗ ∈ D′(Rn)n, q ∈ D′(Rn).

As a corollary of Theorem IV, we deduce that, if b⃗ · ∇+ q is form bounded, then
the Hodge decomposition

(3.15) b⃗ = ∇(∆−1div b⃗) + Div (∆−1Curl b⃗)
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holds, where ∆−1(Curl b⃗) ∈ BMO(Rn)n×n, and

(3.16)

∫
|x−y|<r

[ |∇∆−1(div b⃗)|2 + |∇(∆−1 q)|2 ] dy ≤ const rn−2,

for all r > 0, x ∈ Rn, in the case n ≥ 3; in two dimensions, it follows that div b⃗ =
q = 0.

We observe that condition (3.16) is generally stronger than ∆−1div b⃗ ∈ BMO(Rn)

and ∆−1 q ∈ BMO(Rn), while the divergence-free part of b⃗ is characterized by

∆−1Curl b⃗ ∈ BMO(Rn)n×n, for all n ≥ 2.
The main difficulty in the proof of Theorem IV is the interaction between the

quadratic forms associated with q − 1
2 div b⃗ and the divergence free part of b⃗. To

this effect, we use Theorem II, which characterizes vector fields d⃗ such that the
commutator inequality (1.9) holds. Theorem II is proved in [26, Lemma 4.8] using
the idea of the gauge transformation ([17, Sec. 7.19]; [31, Sec. X.4]):

∇ → e−iλ∇ e+iλ,

where the gauge λ is a real-valued function in L1, 2
loc (R

n).
The nontrivial problem of choosing an appropriate gauge is solved in [26] as

follows:

λ = τ log (Nµ), 1 < 2τ < n
n−2 ,

where Nµ = (−∆)−1µ is the Newtonian potential of the equilibrium measure µ
associated with an arbitrary compact set e of positive capacity.

With this choice of λ, the energy space L1, 2(Rn) is gauge invariant, and for the

irrotational part c⃗ = ∇(∆−1div d⃗) we have |⃗c|2 ∈ M1, 2
+ (Rn). In addition, we have

F = ∆−1Curl d⃗ belongs to BMO(Rn)n×n, and d⃗ = c⃗+DivF . These conditions are
necessary and sufficient for (1.9).

Applications of Theorem IV to the magnetic Schrödinger operator M defined by
(3.1) are given in [26, Theorem 3.4], where it is shown that M is form bounded if
and only if both q + |⃗a|2 and a⃗ · ∇ are form bounded.

3.2. Form boundedness in W 1, 2(Rn). The above results are easily extended to
the Sobolev space W 1, 2(Rn) (n ≥ 1) with norm ||u||W 1, 2(Rn) = ||∇u||L2(Rn) +
||u||L2(Rn).

In particular, necessary and sufficient conditions are given in [26, Theorem 5.1]
for the boundedness of the general second order operator

L :W 1, 2(Rn) →W−1, 2(Rn).

This solves the relative form boundedness problem for L, and consequently for the
magnetic Schrödinger operator M, with respect to the Laplacian on L2(Rn) (see
[31, Sec. X.2]). The proofs make use of an inhomogeneous version of the div-curl
lemma ([26, Lemma 5.2]).

3.3. Infinitesimal form boundedness. Other fundamental properties of qua-
dratic forms associated with differential operators can be characterized using our
methods. In particular, for the Schrödinger operator H = ∆+ q with q ∈ D′(Rn),
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criteria of relative compactness were obtained in [22], whereas the infinitesimal form
boundedness expressed by the inequality

(3.17) |⟨q u, u⟩| ≤ ϵ ||∇u||2L2(Rn) + C(ϵ) ||u||2L2(Rn), u ∈ C∞
0 (Rn),

for every ϵ ∈ (0, 1), where C(ϵ) is a positive constant, along with Trudinger’s sub-
ordination where C(ϵ) = C ϵ−β (β > 0), was characterized in [25]. Necessary and
sufficient conditions for such properties in the case of the general second order dif-
ferential operator are discussed in [26].

3.4. Nash’s inequality and p-subordination. For q ∈ D′(Rn), we consider the
p-subordination property

(3.18) |⟨q u, u⟩| ≤ C ||∇u||2p
L2(Rn)

||u||2(1−p)
L2(Rn)

,

for all u ∈ C∞
0 (Rn), where p ∈ (0, 1).

Nash’s type inequality is similar to (3.18), with ||u||L1(Rn) in place of ||u||L2(Rn)

on the right-hand side,

(3.19) |⟨q u, u⟩| ≤ C ||∇u||2p
L2(Rn)

||u||2(1−p)
L1(Rn)

.

The classical Nash’s inequality corresponds to q ≡ 1 and p = n
n+2 (see [17, Theorem

8.13].

It is proved in [25, Theorem 6.5] that (3.18) holds if and only if q = div Γ⃗, where

Γ⃗ = ∇∆−1q, and one of the following conditions hold:

Γ⃗ ∈ BMO if p = 1/2;

Γ⃗ ∈ Lip(1− 2p) if 0 < p < 1/2;∫
|x−y|<r

|Γ⃗(y)|2 dy ≤ c rn+2−4p if 1/2 < p < 1,

for all r > 0 and x ∈ Rn. Similar results hold for Nash’s inequality (3.19) (see [25,
Corollary 6.8]).

3.5. Form boundedness in W
1
2
, 2(Rn). Similar problems were solved for the frac-

tional (modified relativistic) Schrödinger operator L = −(−∆)
1
2 + q. In particular,

the boundedness of the operator

L :W
1
2
, 2(Rn) →W− 1

2
, 2(Rn)

has been characterized in [23] using certain extensions to higher dimensions for
multipliers acting from W 1, 2(Rn+1) to W−1, 2(Rn+1).

4. Accretivity

We now turn to the accretivity problem for −L, where L is a second order linear
differential operator with complex-valued distributional coefficients defined by (2.3)
in an open set Ω ⊆ Rn (n ≥ 1).
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4.1. General accretivity criterion. Given A = (ajk) ∈ D′(Ω)n×n, we define
its symmetric part As and skew-symmetric part Ac respectively by (2.9). The
accretivity property for −L can be characterized in terms of the following real-
valued expressions:

(4.1) P = ReAs, d⃗ = 1
2 [Im b⃗−Div (ImAc)], σ = Re c− 1

2div (Re b⃗),

where P = (pjk) ∈ D′(Ω)n×n, d⃗ = (dj) ∈ D′(Ω)n, and σ ∈ D′(Ω). This is a
consequence of the relation (see [27, Sec.4])

(4.2) Re⟨−Lu, u⟩ = Re⟨−L2u, u⟩, u ∈ C∞
0 (Ω),

where

(4.3) L2 = div (P∇·) + 2i d⃗ · ∇+ σ.

Moreover, in order that −L be accretive, the matrix P must be nonnegative
definite, i.e., Pξ ·ξ ≥ 0 in D′(Ω) for all ξ ∈ Rn. In particular, each pjj (j = 1, . . . , n)
is a nonnegative Radon measure.

A characterization of accretive operators −L is given in the following criterion
obtained in [27, Proposition 2.1].

Proposition 4.1. Let L = div(A∇·) + b⃗ · ∇+ c, where A ∈ D′(Ω)n×n, b⃗ ∈ D′(Ω)n

and c ∈ D′(Ω) are complex-valued. Suppose that P , d⃗, and σ are defined by (4.1).
The operator −L is accretive if and only if P is a nonnegative definite matrix,

and the following two conditions hold:

(4.4) [h]2H = ⟨P∇h,∇h⟩ − ⟨σ h, h⟩ ≥ 0,

for all real-valued h ∈ C∞
0 (Ω), and

(4.5)
∣∣∣⟨d⃗, u∇v − v∇u⟩

∣∣∣ ≤ [u]H [v]H,

for all real-valued u, v ∈ C∞
0 (Ω).

4.2. Real-valued coefficients. It follows from Proposition 4.1 that, for operators
with real-valued coefficients, condition (4.4) alone characterizes nonnegative definite
operators −L in an open set Ω ⊆ Rn (n ≥ 1). A more explicit characterization of
this property, under the assumption that P = As ∈ L1

loc(Ω)
n×n in the sufficiency

part, and that P is uniformly elliptic in the necessity part, is given in the next
proposition (see [27, Theorem 2.2]).

Proposition 4.2. Let L = div(A∇·) + b⃗ · ∇+ c, where A ∈ D′(Ω)n×n, b⃗ ∈ D′(Ω)n

and c ∈ D′(Ω) are real-valued. Suppose that P = As ∈ L1
loc(Ω)

n×n is a nonnegative
definite matrix a.e.

(i) If there exists a measurable vector field g⃗ in Ω such that (P g⃗) · g⃗ ∈ L1
loc(Ω),

and

(4.6) σ = c− 1
2div (⃗b) ≤ div (P g⃗)− (P g⃗) · g⃗ in D′(Ω),

then the operator −L is nonnegative definite.
(ii) Conversely, if −L is nonnegative definite, then there exists a vector field

g⃗ ∈ L2
loc(Ω)

n so that (P g⃗) · g⃗ ∈ L1
loc(Ω), and (4.6) holds, provided P is uniformly

elliptic.
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The uniform ellipticity condition on P in statement (ii) of Proposition 4.2 can be
relaxed. This question will be treated elsewhere.

Results similar to Proposition 4.2 are well known in ordinary differential equations
[9, Sec. XI.7], in relation to disconjugate Sturm-Liouville equations and Riccati
equations with continuous coefficients (see also [8], [23], [27]).

4.3. Nonnegative definite Schrödinger operators. As was mentioned above,
in the special case of Schrödinger operators H = div (P∇h) + σ, with real-valued
σ ∈ D′(Ω) and uniformly elliptic P , Proposition 4.2 was obtained originally in [11,
Proposition 5.1]. Under these assumptions, −H is nonnegative definite, i.e.,

[h]2H = ⟨−Hh, h⟩ ≥ 0, for all h ∈ C∞
0 (Ω),

if and only if there exists a vector field g⃗ ∈ L2
loc(Ω)

n such that

(4.7) σ ≤ div (P g⃗)− P g⃗ · g⃗ in D′(Ω).

A simpler linear sufficient condition for −H to be nonnegative definite is given
by σ ≤ div (P g⃗), where g⃗ ∈ L2

loc(Ω)
n satisfies the inequality∫

Ω
(P g⃗ · g⃗)h2 dx ≤ 1

4

∫
Ω
|P∇h|2 dx, for all h ∈ C∞

0 (Ω).

Here P g⃗ · g⃗ ∈ M1, 2
+ (Ω), and so |⃗g|2 is admissible if P is uniformly elliptic. However,

such conditions are not necessary, with any constant in place of 1
4 , even when P = I;

see [11, Proposition 7.1].
We observe that in Proposition 4.1 above, the nonnegative definite quadratic

form [h]2H is associated with the Schrödinger operator −H, where H has real-valued

coefficients P = ReAs and σ = Re c − 1
2div (Re b⃗). Hence, (4.7) characterizes

the first condition of Proposition 4.1 given by (4.4). The second one, namely, the
commutator condition (4.5), will be discussed further in Sections 4.5 and 4.6.

4.4. The one-dimensional case. In this section, the differential operator Lu =
(a u′)′ + bu′ + c is defined on an open interval I ⊆ R (possibly unbounded). In this
case, one can avoid commutator estimates using methods of ordinary differential
equations ([9], [10]). In the statements below we will make use of the standard con-
vention 0

0 = 0. The following criterion of accretivity for complex-valued coefficients
in the one-dimensional case was obtained in [27, Theorem 2.2].

Theorem V. Let a, b, c ∈ D′(I). Suppose that p = Re a ∈ L1
loc(I), and Im b ∈

L1
loc(I).

(i) The operator −L is accretive if and only if (Im b)2

p ∈ L1
loc(I), where p ≥ 0 a.e.,

and the following quadratic form inequality holds:

(4.8)

∫
I
p(h′)2dx− ⟨Re c− 1

2
(Re b)′, h2⟩ −

∫
I

(Im b)2

4p
h2 dx ≥ 0,

for all real-valued h ∈ C∞
0 (I).

(ii) If there exists a function f ∈ L1
loc(I) such that f2

p ∈ L1
loc(I), and

(4.9) Re c− 1

2
(Re b)′ − (Im b)2

4p
≤ f ′ − f2

p
in D′(I),
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then the operator −L is accretive.
Conversely, if −L is accretive, and m ≤ p(x) ≤ M a.e. for some constants

M,m > 0, then there exists a function f ∈ L2
loc(I) such that (4.9) holds.

We remark that in Theorem V, the terms Im a and Im c play no role, but the
behavior of Im b is essential. In higher dimensions, the situation is even more
complicated. The term Im b may contain both the irrotational and divergence-free
components, and the latter may interact with ImAc.

4.5. Upper and lower bounds of quadratic forms. For general operators with
complex-valued coefficients in the case n ≥ 2, we recall that the first condition of
Proposition 4.1 is necessary for the accretivity of −L, namely,

(4.10) ⟨σ h, h⟩ ≤
∫
Ω
(P∇h · ∇h) dx,

for all real-valued h ∈ C∞
0 (Ω), where σ = Re c− 1

2div(Re b⃗) ∈ D′(Ω), and ReAs =
P ∈ D′(Ω)n×n is a nonnegative definite matrix.

Suppose now that σ has a slightly smaller upper form bound, that is,

(4.11) ⟨σ h, h⟩ ≤ (1− ϵ2)

∫
Ω
(P∇h · ∇h) dx, h ∈ C∞

0 (Ω),

for some ϵ ∈ (0, 1]. We also consider the corresponding lower bound,

(4.12) ⟨σ h, h⟩ ≥ −K
∫
Ω
(P∇h · ∇h) dx, h ∈ C∞

0 (Ω),

for some constant K ≥ 0.
Such restrictions on real-valued σ ∈ D′(Ω) were invoked in [11, Theorem 1.1], for

uniformly elliptic P .
We observe that (4.11) is satisfied for any ϵ ∈ (0, 1), up to an extra term

C ||h||2L2(Ω), if σ is infinitesimally form bounded (see Sec. 3.3). The second term on

the right is sometimes included in the definition of accretivity of the operator −L.
We can always incorporate it as a constant term in σ−C(ϵ). The same is true with
regards to the lower bound where we can use σ + C(ϵ).

Assuming that both bounds (4.11) and (4.12) hold for some ϵ ∈ (0, 1] and K ≥ 0,
we obviously have, for all h ∈ C∞

0 (Ω),

(4.13) ϵ

∫
Ω
(P∇h · ∇h) dx ≤ [h]2H ≤ (K + 1)

1
2

∫
Ω
(P∇h · ∇h) dx.

If P satisfies the uniform ellipticity assumptions (2.8), then from (4.13) it follows
that condition (4.5) equivalent, up to a constant multiple, to

(4.14)
∣∣∣⟨d⃗, u∇v − v∇u⟩

∣∣∣ ≤ C ||∇u||L2(Ω) ||∇v||L2(Ω)

where C > 0 is a constant which does not depend on real-valued u, v ∈ C∞
0 (Ω). For

Ω = Rn and d⃗ ∈ L1
loc(Rn), see Theorem II above.

In the case Ω = Rn, inequality (4.14) was characterized completely in [26, Lemma
4.8] for complex-valued u, v. However, that characterization obviously works in the
case of real-valued u, v as well (one only needs to change the constant C up to a
factor of

√
2).
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4.6. Accretivity criterion in Rn. Combining the characterization of the commu-
tator inequality (4.14) with Proposition 4.1 yields the following accretivity criterion
([27, Theorem 2.7]), where the lower bound (4.12) in used the necessity part, whereas
the upper bound (4.11) is invoked in the sufficiency part.

Theorem VI. Let L be the second order differential operator (2.3) on Rn (n ≥ 2)

with complex-valued coefficients A ∈ D′(Rn)n×n, b⃗ ∈ D′(Rn)n and c ∈ D′(Rn). Let

P , d⃗ and σ be defined by (4.1), where P is uniformly elliptic.
(i) Suppose that −L is accretive, i.e., (2.5) holds, and σ satisfies (4.12) for some

K ≥ 0. Then d⃗ can be represented in the form

(4.15) d⃗ = ∇f +DivG,

where f ∈ D′(Rn) is real-valued, |∇f |2 ∈ M1, 2
+ (Rn), and G ∈ BMO(Rn)n×n is a

real-valued skew-symmetric matrix field.
Moreover, f and G above can be defined explicitly as

(4.16) f = ∆−1(div d⃗), G = ∆−1(Curl d⃗).

(ii) Conversely, suppose that σ satisfies (4.11) with some ϵ ∈ (0, 1]. Then

−L is accretive if representation (4.15) holds, where |∇f |2 ∈ M1, 2
+ (Rn), and G ∈

BMO(Rn)n×n is a real-valued skew-symmetric matrix field, provided both ∥|∇f |2∥
M1, 2

+ (Rn)

and the BMO-norm of G are small enough, depending only on ϵ.

If n = 2, then in Theorem VI, we have f = 0, and d⃗ = (−∂2g, ∂1g) with g ∈
BMO(R2). In statement (ii), the BMO-norm of g is supposed to be small enough
(depending only on ϵ).

If n = 3, one can use the usual vector-valued curl(g⃗) ∈ D′(R3)3 in place of DivG

in decomposition (4.15), with g⃗ = ∆−1(curl d⃗) in place of G in (4.16).
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