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elliptic spectral second order boundary value problems (1.20), (1.21) in domains Π♯,
(1.19).

The above-mentioned peculiarity of wave phenomena is realized mathematically
as the emergence of new points of the essential spectrum, either inside the spectral
gaps or below the spectrum of the purely periodic medium. These points come from
the discrete spectrum of the model problem, where only one cell is changed into a
foreign one.

As for the structure of this paper, the exact statements of the purely periodic,
perturbed and model problems will be given in Sections 1.2–1.3, and we in particular
specify the meaning of ”sparcely distributed” foreign cells. Besides, in Section 1.4
we present examples of problems in mathematical physics, to which our results apply
directly, while in Section 4 we will discuss possible generalizations and modifications
of the main result yielding more examples. Section 2 contains descriptions of the
spectra of the introduced problems as well as the formulation of our main result in
Theorem 2.3. Its proof, divided into several steps, is presented in Section 3.

Sparse perturbations of the Schrödinger equation with decaying potentials were
studied in the papers [15, 16, 23, 24]. In these papers there were found isolated
points of the essential spectrum, which are below the cut-off value of the spectrum
of the equation with the original potential. Our technique allows to study the
spectrum of the Schrödinger equation with non-decaying periodic potentials with
sparsely placed local perturbations; it can yield points of the essential spectrum
inside the spectral gaps.

In the paper [36] we considered one-side directed periodic quantum waveguides
(the spectral Dirichlet-Laplace problem) with local perturbations sparsely
distributed along the waveguide axis. The final theorem in [36] is similar to our
Theorem 2.3, but the technique in the reference is completely based on general
comprehensive results in [25], [30, Ch. 3,5] about solvability of elliptic problems in
periodic quasi-cylinders and asymptotics of their solutions at infinity. Such the-
ory is not yet known in domains which are periodic in many dimensions. Serious
problems for the present analysis are caused by the necessity to treat the variational
formulation of systems of differential equations and mixed boundary value problems
when the coefficients and boundaries are not assumed smooth1 ; also the band-gap
spectrum of the unperturbed problem brings additional difficulties. The most tech-
nical issue of our paper, Theorem 3.4 on the exponential decay of the solutions of
the model problem, will be proved by using several new tricks, namely by verifying
the Fredholm property and deriving a priori estimates in weighted Sobolev spaces
without directly using the FBG-transform. It should be mentioned that we employ
in parallel two dissimilar operator realizations of the variational problems, the spec-
tra of which have a simple relationship. These operators are used to verify different
particular properties of the perturbed problem.

1This is a direct requirement of the main application to the elasticity, since the elastic moduli
of composites are usually only piecewise continuous and those associated with fractures creating
micro-cracks are even less smooth.
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1.2. Formulation of the periodic problem. Let ϖ be the periodicity cell, which
is an open subset of the unit cube

□ = {x = (x1, . . . , xd) ∈ Rd : |xj | < 1/2, j = 1, . . . , d}.(1.1)

We denote by Π the interior of the union

Π =
∪

α∈Zd

ϖ(α),(1.2)

where α = (α1, . . . , αd) is a multi-index, Z is the set of integers and

ϖ(α) = {x : x− α ∈ ϖ}.(1.3)

Let Π be a domain, in particular a connected set, which has a (d− 1)-dimensional
Lipschitz boundary ∂Π. In order to properly formulate the boundary value problem

L(x,∇)u(x) = λM(x)u(x), x ∈ Π,(1.4)

B(x,∇)u(x) = 0, x ∈ ∂Π,(1.5)

we assume for a moment that the boundary and other data are smooth, but after
going over to the weak statement (1.14) we will return to the Lipschitz case. The
differential operator of the system (1.4) is given by

L(x,∇) = D(−∇)
⊤
A(x)D(∇),(1.6)

where ∇ is the gradient, A andM are Hermitian positive matrices of size N×N and
n×n, respectively, andD(∇) is an (N×n)-matrix of first order differential operators

with constant complex coefficients so that D(−∇)
⊤
is the formal adjoint of D(∇);

the transposition of matrices is denoted by ⊤. We require that D is algebraically
complete [37], that is, there exists a number ϱD ∈ N = {1, 2, 3, . . .} such that, for for
any row p of homogeneous polynomials p1, . . . , pm of degree ϱ ≤ ϱD, one can find a
row q = (q1, . . . , qN ) of polynomials satisfying the relation

p(ξ) = q(ξ)D(ξ) ∀ ξ ∈ Rd.(1.7)

In other words, p(ξ) can be divided by D(ξ). Property (1.7) assures that L is a
formally positive operator [37, § 3.7.4], namely, there holds the Korn inequality

∥u;H1(ϖ)∥2 ≤ c
(
a(u, u;ϖ) + ∥u;L2(ϖ)∥

)2
,(1.8)

where H1(ϖ) and L2(ϖ) are the Sobolev and Lebesgue spaces, the coefficient c > 0
depends on ϖ and D, A, but not on u = (u1, . . . , un)

⊤ ∈ H1(ϖ)n and a is the
Hermitian positive form

a(u, v;ϖ) =
(
AD(∇)u,D(∇)v

)
ϖ
.(1.9)

For all vector functions u, v ∈ H2
per(ϖ)n, which are 1-periodic in the variables

x1, . . . , xd, there holds the Green formula

a(u, v;ϖ) = (Lu, v)ϖ + (Nu, v)υ(1.10)

where υ = ∂ϖ ∩ □ is the ”interior” boundary of the cell, possibly the empty set,
and

N(x,∇) = D(ν(x))
⊤
A(x)D(∇)(1.11)
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with the unit outward normal vector ν. The boundary condition operator is given
by

B(x,∇) =
(
In − P (x)

)
N(x,∇) + P (x),(1.12)

where In andOn are the unit and null matrices of size n×n and P (x) is an orthogonal
projection in Cn, which may depend continuously on x belonging to the compact
set υ. Thus, (1.5) coincides with the Dirichlet condition in the case P = In and the
Neumann one, if P = On.

For a vector function u ∈ H2(Π) satisfying the boundary condition (1.5) and a
vector function v ∈ H(Π), where

H(Π) = {v ∈ H1(Π)n : Pv = 0 on ∂Π},(1.13)

the last scalar product in (1.11) vanishes. Hence, formulas (1.10)-(1.13) yield the
variational formulation of the problem (1.4), (1.5): find u ∈ H(Π) and λ ∈ C such
that

a(u, v; Π) = λ(Mu, v)Π ∀ v ∈ H(Π).(1.14)

Notice that in the variational problem (1.14) it suffices that the matrix functions
A, M and P are bounded and measurable (instead of smooth). We extend them
1-periodically from ϖ and υ to Π and ∂Π, respectively, and require that

CA|η|2 ≥ η⊤A(x)η ≥ cA|η|2 ∀ η ∈ CN ,

CM |ζ|2 ≥ ζ
⊤
M(x)ζ ≥ cM |ζ|2 ∀ ζ ∈ Cn,(1.15)

where CA, cA, CM , cM are positive constants independent of x ∈ ϖ, η and ζ. Also,
the normal vector ν is defined almost everywhere on the Lipschitz surfaces υ and
∂Π.

In Section 2.1 we will give the equivalent operator formulation of the problem
(1.14) and define its spectrum σ properly.

1.3. Formulation of the perturbed problem. Let ϖ• ⊂ □ be a foreign cell
such that

Π◦ = (Π \ϖ) ∪ϖ•(1.16)

is still a domain with Lipschitz boundary (in addition we assume about the geometry
of ϖ• that the domain (1.19), below, will be Lipschitz). We set

A◦ = A in Π \ϖ, A◦ = A• in ϖ•,(1.17)

where A• is a foreignN×N -matrix with the same general properties as A. We define
the matrices M◦ and P ◦ analogously to (1.17) by using the original and foreign
matrices M , P and M•, P •, respectively, where the latter also have the qualities
described after (1.6). We apply self-evident changes to the notation in (1.14) and
(1.13) (see also the beginning of Section 2.2, below) and pose the problem

a◦(u◦, v◦; Π◦) = λ◦(M◦u◦, v◦)Π◦ ∀ v◦ ∈ H(Π◦),(1.18)

the spectrum of which will be studied in Section 2.2. Of course, in order to avoid
trivialities, we assume that at least one of ϖ• A•, M•, or P •, differs from the
corresponding original objects.
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Let {αk}k∈N be a sequence of multi-indices in Zd such that the numbers |αk| =
|αk

1 |+ . . .+ |αk
d| form a monotonely increasing, unbounded sequence. Replacing the

cells (1.3) with indices αk by the foreign cells

ϖ•(α) = {x : x− α ∈ ϖ•}

we obtain the modified domain

Π♯ =
(
Π \

∪
k∈N

ϖ(αk)
)
∪

∪
k∈N

ϖ•(αk).(1.19)

Similarly to (1.17) we define the matrices A♯, M ♯ on Π♯ and Θ♯ on ∂Π♯ by substi-
tuting the original matrices in the selected cells ϖ(αk), k ∈ N. Our principal object
of investigation is the spectral boundary value problem

L♯(x,∇)u(x) = λM ♯(x)u(x), x ∈ Π♯,(1.20)

B♯(x,∇)u(x) = 0, x ∈ ∂Π♯,(1.21)

where the differential operators L♯ and B♯ are defined as in (1.6) and (1.12) by
changing A 7→ A♯ and P 7→ P ♯. By σ♯ we understand the spectrum of the variational
form of the problem (1.20), (1.21), namely

a♯(u♯, v♯; Π♯) = λ♯(M ♯u♯, v♯)Π♯ ∀ v♯ ∈ H(Π♯),(1.22)

where a♯ and H(Π♯) are obtained from (1.9) and (1.13) by using A♯ and P ♯ instead
of A and P .

Remark 1.1. If {αk}k∈N = Zd, then we again obtain a 1-periodic medium the
spectrum of which can be studied by the FBG-theory as will be outlined in Section
2.1. Many other choices of the sequence {αk}k∈N lead to purely periodic media. For
example the one corresponding to the chessboard distribution of the foreign cells
only means the doubling of the length of the period.

To describe the sparse distribution of foreign cells we denote for every p ∈ N by
Lp > 0 the largest natural number such that for the cube

⊡p = {x : |xj − αp
j | < Lp + 1/2, j = 1, . . . , d}(1.23)

there holds ⊡p ∩ϖ•(αk) = ∅ for all k ̸= p. We now make the principal geometric
assumption of this paper by requiring that

lim
k→+∞

Lk = +∞.(1.24)

Remark 1.2. Suppose that condition (1.24) holds with L̃k for some sequence
{α̃k}k∈N ⊂ Zd. If a new sequence {αp}p∈N is defined by α2k−1 = α̃2k−1 and

α2k = α2k−1 + (1, 0, . . . , 0) for all k ∈ N, then Lp = 0 for every p ∈ N so that
(1.24) does certainly not hold. However, we perform the change of coordinates
x 7→ x′ = (x1/2, x2, . . . , xd) and redefine the matrix differential operator D(∇) ac-
cordingly, but still regard the obtained matrices and domain Π′ as 1-periodic in all
directions. In this way we join the cells ϖ′(α2k−1) and ϖ′(α2k), which allows us to
redetermine L′

p and see that condition (1.24) holds. Apparently, this idea can be
modified and generalized in many ways; see also Sections 3.3 and 4.1.
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Remark 1.3. Let αk = (kN, 0, . . . , 0) for k ∈ N and some fixed N ∈ N. Then,
Lk = N − 1 and condition (1.24) fails. However, the foreign inclusions ϖ•(αk),
k ∈ N, form a so called open waveguide, and the corresponding problem (1.22) has
been thoroughly investigated in [5].

1.4. Concrete spectral problems in mathematical physics. 1◦. Scalar case.
Let n = 1, N = d and D(∇) = ∇. Then, (1.6) is a scalar elliptic second-order
differential operator in divergence form. Clearly, ϱD = 1 in (1.7). In addition, let
ϖ ̸= □ and A = Id so that L(∇) = −∆ is the negative Laplacian. In the case
B(x,∇) = ν(x)⊤∇ we have the Neumann spectral problem (1.4), (1.5), which de-
scribes, for example, the propagation of waves in a homogeneous acoustic medium
polluted by particles of two types, □\ϖ and □\ϖ•. A more general real, symmetric
and positive definite matrix function A could describe an anisotropic and inhomo-
geneous medium, in particular a stratified one, if the periodicity occurs only in the
directions x1, . . . , xd−1. The case of the Dirichlet boundary conditions is usually
connected to quantum waveguides.

2◦. Elastic medium. Let d = n = 3, N = 6 and

(1.25) D(∇)⊤ =

 ∂1 0 0 0 2−1/2∂3 2−1/2∂2
0 ∂2 0 2−1/2∂3 0 2−1/2∂1
0 0 ∂3 2−1/2∂2 2−1/2∂1 0

 , ∂j =
∂

∂xj
.

This matrix is algebraically complete with ϱD = 2, see [37].
Using the Voigt-Mandel notation we regard the displacement vector u as the

column (u1, u2, u3)
⊤, where uj is the projection to xj-axis. The strain column

ϵ(u) = D(∇)u =
(
ε11u, ε22u, ε33u,

√
2ε23(u),

√
2ε31(u),

√
2ε12(u)

)⊤
(1.26)

contains the Cartesian components of the strain tensor

εjk(u) =
1

2

(∂uj
∂xk

+
∂uk
∂xj

)
, j, k = 1, 2, 3.

The elastic moduli of a deformable medium form the symmetric and positive definite
6× 6-matrix A(x), and by Hooke’s law, it defines the stress column

σ(u;x) = A(x)ϵ(u;x) = A(x)D(∇)u(x)(1.27)

which has the same structure as (1.26). The normalization factors 2−1/2 and
√
2 in

(1.25) and (1.26) make the natural norms of two representations, the tensor of rank
3 and the column of height 6, equal to each other. Finally, M(x) = ϱ(x)I3 in (1.6)
is the material density.

The system (1.4) defined by (1.25)–(1.27) describes the time-harmonic oscillations
of an elastic medium. The case of Neumann boundary conditions B = N , see (1.11),
describes the case the surface ∂Π is traction-free and the Dirichlet case B = Id
corresponds to the rigidly fixed surface. We also mention the linearized Signorini
conditions which are obtained by fixing in (1.12) the orthogonal projection

P (x) = ν(x)ν(x)⊤.

These describe the situation that the solid Π is in an inseparable contact with the
absolutely rigid profile ∂Π.
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To treat two-dimensional problems of the elasticity theory one needs some obvious
changes to the notation introduced above.

3◦. In Section 4 we will describe other problems in mathematical physics which do
not exactly satisfy the conditions although they can be treated by straightforward
modifications of our approach.

2. Spectra of the problems.

2.1. Purely periodic case. The FBG-transform [11]

u(x) 7→ Uη(x) =
1

(2π)d/2

∑
α∈Z

e−iα⊤ηu(x+ α)(2.1)

is a discrete analogue of the Fourier transform, and it converts the problem (1.14)
in the periodic set Π, (1.2), into the following problem in the periodicity cell:

a(Uη, V η;ϖ) = Λη(MUη, V η)ϖ.(2.2)

Problem (2.2) depends on the Floquet parameter, the dual Gelfand variable

η = (η1, . . . , ηd) ∈ [−π, π]d,(2.3)

and it is posed in the subspace

Hη
per(ϖ) =

{
Uη ∈ H1(ϖ)n : PUη = 0 on υ,

Uη(x)
∣∣
xj=1/2

= eiηjUη(x)
∣∣
xj=−1/2

, j = 1, . . . , d
}
,(2.4)

the definition of which includes the Dirichlet part of the condition (1.6) restricted
to υ ⊂ ∂ϖ and the so-called quasi-periodicity conditions on ∂ϖ ∩ ∂□, while Λη is
just a new notation for the spectral parameter.

In the subspace (2.4) we introduce a new scalar product

⟨U, V ⟩ϖ = a(U, V ;ϖ) + (MU,V )ϖ(2.5)

and the positive, symmetric and continuous (thus self-adjoint) operator Aη, which
is determined by the relation

⟨AηUη, V η⟩ϖ = (MηUη, V η)ϖ ∀ Uη, V η ∈ Hη
per(ϖ).(2.6)

Our assumptions on A andM and the Korn inequality (1.8) imply that the sesquilin-
ear form (2.5) is Hermitian, closed and positive in Hη

per(ϖ).
Owing to (2.5) and (2.6), the problem (2.2) is equivalent to the abstract equation

AηUη = µηUη in Hη
per(ϖ)

with the new spectral parameter

µη = (1 + Λη)−1.(2.7)

Due to the compactness of the embedding H1(ϖ) ⊂ L2(ϖ), the operator Aη is
compact and by [3, Thm. 10.1.5.,10.2.2.], [39, Thm.VI.16], its essential spectrum
Ση
ess consists of the single point µ = 0 and the discrete spectrum Ση

di of the positive
monotonely decreasing sequence

1 ≥ µη1 ≥ µη2 ≥ . . . ≥ µηm ≥ . . .→ +0,

where the multiplicities of the eigenvalues are taken into account.
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The relation (2.7) determines the eigenvalue sequence

0 ≤ Λη
1 ≤ Λη

2 ≤ . . . ≤ Λη
n ≤ . . .→ +∞

of the problem (2.2). The corresponding eigenvectors Uη
(m) ∈ Hη

per(ϖ), m ∈ N, can
be subject to the normalization and orthogonality conditions(

MUη
(m), U

η
(k)

)
ϖ
= δm,k, m, k ∈ N,

where δm,k is the Kronecker symbol. Each eigenpair {Λη
m, U

η
(m)} generates the Flo-

quet wave

wηm
(m)(x) = eiα

⊤ηUη
(m)(x− α), x ∈ ϖ(α), α ∈ Zd(2.8)

which belongs to H1
loc(Π)

n and satisfies the integral identity (1.14) with the param-

eter λ = Ληm
m and test functions v ∈ C∞

c (Π)n ∩H(Π).
The functions [−π, π] ∋ η 7→ Λη

m are continuous and 2π-periodic in the variables
(2.3) for all m ∈ N. This fact, other main properties of the FBG-transform and
information on purely periodic elliptic problems can be found in the monographs
[44, 18, 39] and others. In particular it is known that the spectrum σ of the original
problem has the band-gap structure

σ =
∪

m∈N
βm(2.9)

composed of the spectral bands βm, which are compact intervals

βm = {Λη
m : η ∈ [−π, π]d}, m ∈ N.(2.10)

If Λη
m does not depend on η ∈ [−π, π]d, i.e. Λη

m = Λ0
m for all η, then Λ0

m is an
eigenvalue of the problem (1.14) with infinite multiplicity and it belongs to the point
spectrum σpo. For particular scalar problems with certain geometric restrictions it
has been proved that σpo = ∅, see [42, 43, 41, 17] and others. There exist examples
of concrete problems with non-empty point spectrum. The discrete spectrum σdi of
purely periodic elliptic problems is always empty.

The band-gap structure (2.9) makes it possible that a spectral gap γm ̸= ∅ is
opened between the bands βm and βm+1, the gap being an open interval, which is
free of the essential spectrum but has both endpoints in it. In the case that the
lower bound

λ† := σ = min{Λη
0 : η ∈ [−π, π]d}(2.11)

is positive, we will also consider the interval γ0 = (0, λ†) below the essential spec-
trum. Examples of spectral gaps exist in the case of lattices of thin acoustic and
quantum waveguides (see [38, 7, 19, 12, 34, 2, 27, 28] and many others), in dou-
ble porocity problems [13, 14, 46], in the Dirichlet and Neumann problems for the
Laplacian in the periodically perforated plane [32, 33, 8] and other problems in
mathematical physics.



SPARSELY PLACED FOREIGN INCLUSIONS 435

2.2. The case of a local perturbation. We now consider problem (1.18), which
concerns the periodic medium Π◦ perturbed in one cell, see (1.16), and which is
posed in the space

H(Π◦) = {u ∈ H1(Π◦)n : Pu = 0 on ∂Π \ υ, P •u = 0 on υ• }
with the scalar product

⟨u◦, v◦⟩◦ = a◦(u◦, v◦; Π◦) + (M◦u◦, v◦)Π◦(2.12)

(cf. (2.5) and (2.6)), and the positive, continuous self-adjoint operator A◦, which is
determined by the relation

⟨A◦u◦, v◦⟩ϖ = (M◦u◦, v◦)ϖ ∀ u◦, v◦ ∈ H(Π◦).(2.13)

Problem (1.18) becomes equivalent to the abstract equation

A◦u◦ = µ◦u◦ in H(Π◦)

with the spectral parameter

µ◦ = (1 + λ◦)−1,(2.14)

cf. (2.7). Since the perturbation is localized, the essential spectrum σ◦ess of the
problem (1.18) coincides with that of the unperturbed problem, hence,

σ◦ess = σ and Σ◦
ess = {0} ∪

{
µ◦ : (µ◦)−1 − 1 ∈ σ◦ess

}
,(2.15)

where Σ◦
ess is the essential spectrum of the operator A◦. However, in contrast to

the purely periodic problem (1.14), the discrete components

σ◦di and Σ◦
di =

{
µ◦ : (µ◦)−1 − 1 ∈ σ◦di

}
.

of the spectra σ◦ and Σ◦ may be nonempty.
Examples of eigenvalues inside spectral gaps γm, m ≥ 1, and on the interval γ0

below the essential spectrum (2.15) can be found, e.g., in [9, 1, 4, 6, 29].
Let us demonstrate by a standard example of a perturbation of a periodic medium,

how one can find an eigenvalue in any spectral gap. We consider a perforated
medium (1.2), that is, we set ϖ = □ \ ω, where ω ̸= ∅ is a domain with a smooth
boundary and ω ⊂ □. We also pick up another domain ω• with a smooth boundary
such that ω• ⊂ ω, and connect the original cell ϖ with ω• by a cylindrical ligament
ςε with a circular cross-section of radius ε. We set

ϖ• = ϖ ∪ ω• ∪ ςε, A• = A in ϖ• \ ω•, A• = IN in ω•,

M• =M, P • = P in ϖ• \ ω•, M• = ρIn, P • = In in ω•,(2.16)

Lemma 2.1. 1) Let P = In so that (1.5) coincides with the Dirichlet condition.
Then, the cut-off value (2.11) is positive.

2) Assume that the spectral gap γm, m ∈ {0} ∪ N, is non-empty. Then, one
can find the parameters ε and ρ in (2.16) such that γm ̸= ∅ contains at least one
eigenvalue of the operator A◦.

Proof. 1) Owing to the Dirichlet condition on υ (see the explanation below (1.12)),
the Korn inequality (1.8) becomes

∥u;H1(ϖ)∥2 ≤ cϖ,Aa(u, u;ϖ) ∀ u ∈ H1(ϖ)n, u = 0 on υ.(2.17)
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Estimates (2.17) and (1.15) yield

a(u, u;ϖ) ≥ c−1
ϖ,A∥u;L

2(ϖ)∥2 ≥ (cϖ,ACM )−1(Mu, u)ϖ

and thus also λ† > (cϖ,ACM )−1 > 0.
2) Let τ•1 > 0 be the first eigenvalue of the Dirichlet problem

D(−∇)
⊤
D(∇)w•(x) = τ•w•(x), x ∈ ω•, w•(x) = 0, x ∈ ∂ω•,(2.18)

cf. the notation in (2.16). The corresponding eigenvector w•
(1) belongs to C

∞(ω•)n

due to our assumption on the smoothness of the boundary ∂ω•, and therefore

|w•(x)| ≤ cdist(x, ∂ω•), |∇w•(x)| ≤ c, x ∈ ω•.(2.19)

Let Q be the intersection point of the axis of the circular cylinder ζε and the surface
∂ω•. We define the smooth cut-off functions X and Xε,

X(r) = 1 for r ≥ 3 and X(r) = 0 for r ≤ 2,

Xε = X(ε−1|x−Q|), x ∈ ω• and Xε = 0, x ∈ Π◦ \ ω•.(2.20)

Then, we set uε = Xεw
• ∈ H(Π◦) and observe that in view of (2.19) and (2.20) we

have ∣∣∣(Muε, uε)Π◦ − ∥w•;L2(ω•)∥2
∣∣∣ ≤ cε2+d,∣∣∣a◦(uε, uε; Π◦)− ∥D(∇)w•;L2(ω•)∥2

∣∣∣ ≤ cεd.(2.21)

Our lemma will follow from a well-known perturbation result, namely the lemma
on ”near eigenvalues” [45], which is based on the spectral decomposition of the
resolvent (see e.g. [3, Ch. 6]). It can be written briefly as the implication

∥U◦;H(Π◦)∥ = 1, M◦ ∈ R+, ∥A◦U◦ −M◦U◦;H(Π◦)∥ =: δ◦ ∈ (0,M◦)

⇒ ∃ µ◦ ∈ σ◦ such that |µ◦ −M◦| ≤ δ◦.(2.22)

We recall the factor ρ in (2.16) as well as the relation (2.14) and take U◦ =
∥uε;H(Π◦)∥−1uε and M◦ = (1 + ρ−1τ•1 )

−1. Using the definition of the norm of
a Hilbert space, we obtain

δ0 := ∥A◦U◦ −M◦U◦;H(Π◦)∥ = inf
∣∣⟨A◦U◦ −M◦U◦, v◦⟩

∣∣
= (1 + ρ−1τ•1 )

−1∥uε;H(Π◦)∥−1

× inf
∣∣∣(1 + ρ−1τ•1 )(M

◦uε, v◦)Π◦ − a◦(uε, v◦; Π◦)− (M◦uε, v◦)Π◦

∣∣∣
= (1 + ρ−1τ•1 )

−1∥uε;H(Π◦)∥−1 inf
∣∣∣a◦(uε, v◦; Π◦)− (τ◦1 )

−1(M◦uε, v◦)Π◦

∣∣∣.
Here, the infimum is taken over all functions v◦ ∈ H(Π◦) with norm one, and we
have also used formulas (2.12) and (2.13). Taking into account (2.16), (2.21) and
(2.18) yields ∣∣∣(a◦(uε, v◦; Π◦)− τ◦1 (ρ

−1M◦uε, v◦)Π◦)

−
(
(D(∇)w•

(1), D(∇)(Xεv
◦)
)
ω• − τ◦1 (w(1), Xεv

◦)ω•

∣∣∣
≤ cεd/2∥v◦;H(Π◦)∥
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and thus δ0 ≤ c0ε
d/2.

We now choose ρ > 0 and ε > 0 such that[
(1 + ρ−1τ◦1 )

−1 − c0ε
d/2, (1 + ρ−1τ◦1 )

−1 + c0ε
d/2

]
⊂ Γm

= {µ : µ−1 − 1 ∈ γm} ̸= ∅
and use assertion (2.22) to complete the proof. □
Remark 2.2. 1) In the above application of the implication (2.22) it was much more
convenient to use the operator A◦, (2.13), than the operator directly connected to
the variational problem (1.18). The same will also happen in Section 3.

2) In the case λ† > 0, cf. Lemma 2.1.1), there exists a much easier way to verify
that γ0 ∩ σ◦di ̸= ∅ with the help of the following observation. Namely, the norm
n◦ < 1 of the operator A◦ is an eigenvalue belonging to the discrete spectrum Σ◦

di,
if the upper bound (1+λ†)

−1 < 1 of the essential spectrum Σ◦
ess is strictly less than

n◦. Then, by (2.14), (n◦)−1 − 1 ∈ γ0 ∩ σ◦di. In the above example, we take the zero
extension u• of w•

(1) from ω• onto Π◦: this falls into the space H(Π◦) and therefore

n◦ = sup
u◦∈H(Π◦)

⟨A◦u◦, u◦⟩◦
⟨u◦, u◦⟩◦

≥ ⟨A◦u•, u•⟩◦
⟨u•, u•⟩◦

=
ρ∥w•

(1);L
2(ω•)∥2

∥D(∇)w•
(1);L

2(ω•)∥2 + ρ∥w•
(1);L

2(ω•)∥2
=

ρ

τ•1 + ρ
.

It again suffices to choose ρ > 0 properly.

2.3. The case of sparsely placed inclusions. In the same way as above we
introduce the scalar product

⟨u♯, v♯⟩♯ = a♯(u♯, v♯; Π♯) + (M ♯u♯, v♯)Π♯

and the positive, continuous, self-adjoint operator A♯, which is determined by the
formula

⟨A♯u♯, v♯⟩ϖ = (M ♯u♯, v♯)Π♯ ∀ u♯, v♯ ∈ H(Π♯).

in the space

H(Π♯) = {u♯ ∈ H1(Π♯)n : P ♯u♯ = 0 on ∂Π♯ }.

The relation of the essential spectrum Σ♯
ess ⊂ [0, 1] of the operator A♯ and the

essential spectrum σ♯ess of the problem (1.22) is the same as before,

σ♯ess = {λ : (1 + λ)−1 ∈ Σ♯
ess}.(2.23)

In the following, main result of this paper we characterize the essential spectrum
of the principal problem formulated in Section 1.3.

Theorem 2.3. The essential spectrum (2.23) of the boundary value problem (1.20)–
(1.21), or (1.22), in the medium (1.19) with sparsely placed inclusions (1.3) equals

σ♯ess = σ ∪ σ◦di
where σ is the spectrum of the problem (1.14) in the purely periodic medium (1.2)
and σ◦di is the discrete spectrum of the problem (1.18) in the medium (1.16) with the
single inclusion ϖ•.
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Recall that the spectra of the problems (1.14) and (1.18) were described in Sec-
tions 2.1 and 2.2, respectively.

The proof will be given in the next section.

2.4. Operators of the inhomogeneous problems. Let us fix the parameter
λ ∈ C. In addition to the operators A and A◦, we will also need the operators

B(λ) : H(Π) → H(Π)∗ and B◦(λ) : H(Π◦) → H(Π◦)∗,(2.24)

respectively, related to the spectral problems (1.4)–(1.5), (1.14), on the intact do-
main Π and to (1.18) on the perturbed domain Π◦. The operator B(λ) is defined
by mapping u ∈ H(Π) to the functional

v 7→ a(u, v; Π)− λ(Mu, v)Π, v ∈ H(Π),(2.25)

and the definition of B◦(λ) is analogous. In other words, B(λ) is the problem
operator of the inhomogeneous problem

a(u, v; Π)− λ(Mu, v)Π = f(v) ∀ v ∈ H(Π),(2.26)

where f ∈ H(Π)∗ is given; the case B◦(λ) is similar.

Lemma 2.4. If λ ∈ R, λ /∈ σ = σess, then the operator B(λ) : H(Π) → H(Π)∗ is
an isomorphism.

Proof. The FBG-transform is an isomorphism from the Sobolev space H1(Π) onto
the space L2([−π, π]d;Hη

per(ϖ)) of abstract functions in η with the norm( ∫
[−π,π]d

∥Uη;Hη
per(ϖ)∥2dη

)1/2
.

Applying the FBG-transform, equation (2.26) turns into the problem,

a(Uη, V η;ϖ)− λ(MUη, V η)ϖ = F η(V η) ∀ V η ∈ Hη(ϖ),(2.27)

where the notation is as in (2.1), and F η is defined as the compose of f and theFBG-
transform. By the assumption, the distance of λ from the union of the eigenvalues
Λη (see (2.9), (2.10)) is positive, hence, (2.27) has a unique solution Uη for every
η, and we even get an upper bound for the norm ∥Uη;H1(ϖ)∥. Taking the inverse
FBG-transform yields a solution u of (2.26).

The uniqueness of the solution by an indirect argument: having two different
solutions of (2.26) would lead to having two different solutions of (2.27) for some η,
which is a contradiction. Finally, as B(λ) is a bounded operator, the boundedness
of the inverse follows from the open mapping theorem. □

3. Identification of the essential spectrum.

3.1. On exponentially decaying solutions of the inhomogeneous problems.
Let us proceed to consider the inhomogeneous problem

a◦(u◦, v◦; Π◦)− λ(M◦u◦, v◦)Π◦ = f◦(v◦) ∀ v◦ ∈ H(Π◦),(3.1)

where f◦ ∈ H(Π◦)∗ is an (anti)linear continuous functional on H◦(Π◦). In this
section we treat the parameter values

λ ∈ R, λ /∈ σ◦ess = σ(3.2)
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and the operator B◦(λ) : H(Π◦) → H(Π◦)∗ of (2.24).

Proposition 3.1. If (3.2) holds, then the operator B◦(λ), (2.24), is Fredholm.

This result follows immediately from the following one.

Lemma 3.2. If (3.2) holds, the operator B◦(λ) has a parametrix, i.e. a mapping
R◦(λ) : H(Π◦)∗ → H(Π◦) such that the operator

B◦(λ)R◦(λ)− id : H(Π◦)∗ → H(Π◦)∗(3.3)

is compact.

The compactness of (3.3) actually means that R◦(λ) is a right parametrix for
B◦(λ), but this suffices, since B◦(λ) is self-adjoint with respect to the duality so
that the adjoint of R◦(λ) is a left parametrix.

Proof. Let f◦ be as in (3.1). We recall that by Lemma 2.4 and assumption (3.2),
the operator B(λ) is an isomorphism. The parametrix will be constructed as a
perturbation of the inverse B(λ)−1 of B(λ). Putting B(λ)−1 into (3.3) instead
of R◦(λ) leaves a discrepancy in a neighborhood of the modified cell ϖ•, which
is compensated by solving a variational problem (see (3.8), below) in a bounded
domain and extending its solution to Π◦ by using suitable cut-off functions.

1◦. In the first part of the proof we define three subsidiary functionals. We define
the smooth cut-off functions

χ(t) = 1 for t > 1/4 and χ(t) = 0 for t < −1/4,

XJ(x) =

d∏
j=1

χ(J + xj)χ(J − xj), J ∈ N.(3.4)

Notice that XJ ∈ C∞
c (□J) and XJ = 1 on □J−1, where

□J = {x : |xj | < J + 1/2, j = 1, . . . , d}.(3.5)

Let us define the functional f1 ∈ H(Π)∗ and the vector function u1 ∈ H(Π)∩H(Π◦)
by

f1(v) = f◦
(
(1−X2)v

)
, u1 = (1−X2)B(λ)−1f1.(3.6)

We next set

f2(v◦) = f◦
(
(1− (1−X2)

2)v◦
)
−
(
A◦u1D(∇)X2, D(∇)v◦

)
Π◦

+
(
A◦D(∇)u1, v◦D(∇)X2

)
Π◦ .(3.7)

Since 1 − (1 − X2)
2 = X2(2 − X2), this functional has a compact support in Π◦

2,
where Π◦

N = Π◦ ∩□N for N ∈ N. Then, we consider the problem

a0T (u
2, v◦; Π◦

3) = f2(v◦), where

a0T (u
2, v◦; Π◦

3) := a◦(u2, v◦; Π◦
3)− λ(M◦u2, v◦)Π◦

3
+ T (u2, v◦)Π◦

3
,(3.8)

which is posed in the space

H◦(Π
◦
J)

=
{
v ∈ H1(Π◦

J) : P ◦v = 0 on ∂Π◦ ∩□J , v = 0 on ∂□J ∩Π◦}(3.9)
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with J = 3. Problem (3.9) is uniquely solvable for large T > 0. This follows from
the Lax-Milgram lemma, since summing the Korn inequalities (1.8) in ϖ(α) ⊂ Π3,
α ̸= 0, and the inequality

∥v◦;H1(ϖ•)∥ ≤ cϖ•
(
a◦(v◦, v◦;ϖ•) + ∥v◦;L2(ϖ•)∥2

)
,

we see that

a0T (v
◦, v◦; Π◦

3) ≥ min{c−1
ϖ , c−1

ϖ•}∥v◦;H1(Π◦
3)∥2

+(T − 1− λCM )∥v◦;L2(Π◦
3)∥2.

We still denote

f3(v◦) = T (X3u
2, v◦)Π◦ +

(
A◦u2D(∇)X3, D(∇)v◦

)
Π◦

−
(
A◦D(∇)u2, v◦D(∇)X3

)
Π◦(3.10)

By standard estimates,

∥u1;H(Π◦)∥+ ∥X3u
2;H(Π◦)∥ ≤ c∥f◦;H(Π◦)∗∥

hence, we observe that, first,

∥f3;H(Π◦)∗∥ ≤ c∥f◦;H(Π◦)∗∥
and, second,

the mapping f◦ 7→ f3 is compact in the space H(Π◦)∗,(3.11)

because each of the scalar products on the right-hand side of (3.10) has the com-
pactly supported factor X3 and contains derivatives of u2 or v◦ at most in one
position.

2◦. We now show that the parametrix can be defined by R0(λ)f◦ = u1 +X3u
2.

Notice that the calculation (3.12)–(3.14), with straightforward changes, will be used
several times in the sequel.

We calculate for all v◦ ∈ H(Π◦) using (2.25), (3.6) and taking into account the
support of the cut-off function,

B◦(u1)(v◦) =
(
AD(∇)

(
(1−X2)R(λ)−1f1

)
, D(∇)v◦

)
Π

−λ
(
M(1−X2)R(λ)−1f1, v◦

)
Π

(3.12)

We commute here the cut-off function 1−X2 to the right factor so that (3.12) equals(
AD(∇)R(λ)−1f1, D(∇)

(
(1−X2)v

◦))
Π

−λ
(
M(R(λ)−1f1, (1−X2)v

◦)
Π

+
(
A◦u2D(∇)X2, D(∇)v◦

)
Π◦ −

(
A◦D(∇)u2, v◦D(∇)X2

)
Π◦ .(3.13)

Here we use (2.25) for the first two terms and (3.7) for the last ones: (3.12) equals

B(λ)R(λ)f1
(
(1−X2)v

◦)+ f◦
(
(1− (1−X2)

2)v◦
)

= f1((1−X2)v
◦)− f2(v◦) + f◦

(
(1− (1−X2)

2)v◦
)
= f◦(v◦)− f2(v◦).

Hence,

B◦u1 = f◦ − f2.(3.14)
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Commuting the cut-off function in the same way as in (3.12)-(3.13) and taking into
account (3.8), (3.10) yield

B◦(X3u
2)(v◦)

=
(
A◦D(∇)(X3u

2), D(∇)v◦
)
Π◦

3
− λ

(
M◦(X3u

2), v◦
)
Π◦

3

=
(
A◦D(∇)u2, D(∇)(X3v

◦)
)
Π◦

3
− λ

(
M◦u2, (X3v

◦)
)
Π◦

3

+
(
A◦u2D(∇)X3, D(∇)v◦

)
Π◦

3
−
(
A◦D(∇)u2, v◦D(∇)X3

)
Π◦

3

= f2(v◦) + T (u2, v◦)Π◦
3

+
(
A◦u2D(∇)X3, D(∇)v◦

)
Π◦

3
−
(
A◦D(∇)u2, v◦D(∇)X3

)
Π◦

3

= f2(v◦) + f3(v◦) ⇒ B◦(X3u
2) = f2 + f3.(3.15)

In view of (3.14), (3.15), (3.11), setting R◦(λ)f◦ = u1 + X3u
2 yields the desired

parametrix. □

Our immediate goal is now to prove that a solution u◦ ∈ H(Π◦) of the problem
(3.1) inherits the exponential decay at infinity from the right-hand side f◦.

We fix the spectral parameter λ satisfying (3.2). The subspace kerB◦(λ), which
consists of the solutions of the homogeneous problem (1.18), may be non-trivial,
since λ may still be an eigenvalue. However, the dimension K = dimkerB◦(λ) is
finite due to Proposition 3.1. Let u◦(1), . . . , u(K) ∈ H(Π◦) be a basis of kerB◦(λ). We

can choose the number J ∈ N such that the restrictions u◦(1)
∣∣
Π◦

J
, . . . , u◦(K)

∣∣
Π◦

J
are lin-

early independent in L2(Π◦
J)

n. Moreover, we find vector functions ψ(1), . . . , ψ(K) ∈
H(Π◦

J) (see (3.9)) such that(
u◦(j), ψ(k)

)
Π◦

J
= δj,k, j, k = 1, . . . ,K.(3.16)

Proposition 3.3. For every λ as in (3.2), the problem

a◦(u♭, v♭; Π◦) − λ(M◦u♭, v♭)Π◦ +

K∑
k=1

(ψ(k), v
♭)Π◦

J
(u♭, ψ(k))Π◦

J

= f ♭(v♭) ∀ v♭ ∈ H(Π◦)(3.17)

has a unique solution u♭ ∈ H(Π◦) for every f ♭ ∈ H(Π◦)∗, and there holds the
estimate

∥u♭;H(Π◦)∥ ≤ c♭∥f ♭;H(Π◦)∗∥

Proof. The functional

v 7→ f◦(v) = f ♭(v)−
K∑
k=1

f b(u◦(k))(ψ(k), v)Π◦
J
,

clearly has the property

f◦(v) = 0 ∀ v ∈ kerB◦(λ).
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Since the operator (2.24) is self-adjoint, problem (3.1) with the right-hand side f◦

thus has a solution u◦ ∈ H(Π◦) which is defined up to an addendum belonging to
kerB◦(λ), i.e.,

u♭ = u◦ + c1u
◦
(1) + . . .+ cKu

◦
(K).

The conditions (u◦, ψ(k))Π◦
J
= 0, k = 1, . . . ,K make the solution u◦ unique. It

remains to set

cK = f ♭(u(k)), k = 1, . . . ,K.

□
Let us now introduce the weighted spaceWκ(Π

◦) of vector functions u◦ ∈ H2
loc(Π

◦)n

which fulfill the boundary condition P ◦u◦ = 0 on ∂Π◦ and have finite norm

∥u◦;Wκ(Π
◦)∥ = ∥Eκu◦;H1(Π◦)∥,

where the weight function Eκ is defined for all κ ≥ 0 by

Eκ(x) =
d∏

j=1

max{1, eκ(|xj |−J−1/2)},(3.18)

and by Eκ(x) = E|κ|(x)−1 for κ < 0. The number J is fixed such that Eκ = 1 on

suppψ(k) ⊂ Π◦
J .

For κ > 0, any solution uκ := u♭ ∈ Wκ(Π
◦) ⊂ H(Π◦) of the problem (3.17) must

by definition satisfy the integral identity

a◦(uκ, vκ; Π◦) − λ(M◦uκ, vκ)Π◦ +
K∑
k=1

(ψ(k), v
κ)Π◦(uκ, ψ(k))Π◦

= fκ(vκ) ∀ vκ ∈ W−κ(Π
◦),(3.19)

where

fκ ∈ W−κ(Π
◦)∗(3.20)

is a continuous (anti)linear functional W−κ(Π
◦) → C, which decays exponentially

at infinity, since it acts on the space of exponentially growing vector functions.

Theorem 3.4. For every λ as in (3.2), there exists κ0 > 0 such that for κ ∈ [0, κ0),
problem (3.19) with right-hand side (3.20) has a unique solution uκ ∈ Wκ(Π

◦), which
satisfies the estimate

∥uκ;Wκ(Π
◦)∥ ≤ cκ∥fκ;W−κ(Π

◦)∗∥
and coincides with the (unique) solution u♭ ∈ H(Π◦) of the problem (3.17) with the

right-hand side f ♭ = fκ ∈ H(Π◦)∗.

Proof. For uκ ∈ Wκ(Π
◦) and vκ ∈ W−κ(Π

◦), we set uκ = E−κu
κ, v = Eκvκ ∈ H(Π◦).

Then, we rewrite (3.19) as follows:

a◦(Eκuκ, E−κv
κ; Π◦)− λ(M◦uκ,vκ)Π◦

+
J∑

k=1

(ψ(k),v
κ)Π◦(uκ, ψ(k))Π◦ = fκ(vκ) := fκ(E−κv

κ) ∀vκ ∈ H(Π◦).(3.21)
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A simple computation gives us

r◦κ(u
κ,vκ)

:=
(
AD(∇)(Eκuκ), D(∇)(E−κv

κ)
)
Π◦ −

(
AD(∇)uκ, D(∇)vκ

)
Π◦

=
(
AD(∇)Eκ)uκ), (D(∇)E−κ)v

κ
)
Π◦ +

(
A(D(∇)Eκ)uκ, E−κD(∇)vκ

)
Π◦

+
(
AEκD(∇)uκ, (D(∇)E−κ)v

κ
)
Π◦ .

The inequalities ∣∣∣∂E±κ

∂xj
(x)

∣∣∣ ≤ κE±κ(x), j = 1, . . . , d,

hold for the weight Eκ, (3.18), and therefore

|r◦κ(uκ,vκ)| ≤ cκ∥uκ;H(Π◦)∥ ∥vκ;H(Π◦)∥.
In other words, the operators of the problems (3.21) and (3.17) differ by an operator
H(Π◦) → H(Π◦)∗ with a small norm O(κ) as κ→ 0.

Thus, in view of Proposition 3.3, problem (3.21) is also uniquely solvable2 and
therefore problem (3.19) has a solution uκ ∈ Wκ(Π

=0) which is a solution of the
problem (3.17) as well, because Wκ(Π

◦) ⊂ H(Π◦) ⊂ W−κ(Π
◦). Hence, the claimed

coincidence of the solutions follows from the uniqueness statement in Proposition
3.3. □

Note that a solution u◦ ∈ kerB◦(λ) of the problem (1.18) satisfies problem (3.17)
with the right-hand side

f ♭(v♭) =

K∑
k=1

(ψ(k), v
♭)Π◦(u◦, ψ(k))Π◦ ,

which has a compact support and hence satisfies (3.20). This observation yields the
following

Corollary 3.5. If κ is as in Theorem 3.4, then there holds the inclusion kerB◦(λ) ⊂
Wκ(Π

◦).

3.2. Weyl sequences. In this section, the inclusion

σ ∪ σ◦di ⊂ σ♯ess(3.22)

will be verified in a standard way, namely, by constructing singular sequences for
the operator A♯ at a point µ ∈ Σ ∪ Σ◦

di, see, e.g., [3, §1Ch. 9], [39, VII.12].
Let λ ∈ σ and µ = (1 + λ)−1 ∈ Σ. We consider the Floquet wave w(x) =

eiη
⊤αU(x− α) for x ∈ ϖ(α) and α ∈ Zd, see (2.8), (2.9), and obtain for any J ∈ N,

∥XJw;H(Π)∥2 ≥ (MXJw,XJw)Π ≥ (2J − 1)d.(3.23)

Here we took into account that the number of the cells (1.3) on which Xj = 1 is

exactly (2J − 1)d. Furthermore, since w satisfies the purely periodic problem in Π,
we observe that, first,

a(w,Xjv; Π) = λ(Mw,XJv)Π ∀ v ∈ H(Π),

2This and the further arguments in this proof are the very reason for inserting the sum on the
left-hand side of (3.19) into the integral identity (3.1).
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and, second, by (1.15), there holds

∥A◦(XJw)− µXJw;H(Π)∗∥ = sup
∣∣⟨A◦(XJw)− µXJw, v⟩

∣∣
= (1 + λ)−1 sup

∣∣a(XJw, v; Π)− λ(MXJw, v)Π
∣∣

= (1 + λ)−1 sup
∣∣∣(A(D(∇)XJ)w,D(∇)v

)
Π

−
(
AD(∇)w, (D(∇)XJ)v

)
Π
≤ CJd−1.(3.24)

Here, the supremum is computed over the unit ball of H(Π). To get the inequality
at the end of (3.24) we used the fact that ∇XJ ̸= 0 only in the set ΠJ \ ΠJ−1

which contains (2J + 1)d − (2J − 1)d = O(2d(2J)d−1) cells, by (3.4), and that
|D(∇)XJ(x)| ≤ cX uniformly with respect to J ∈ N.

The entries of the Weyl sequence are now defined as

W J(x) = ∥XJw;H(Π)∥−1X
α(J)
J (x)w(x− α(J)),(3.25)

where Xα
J (x) := XJ(x − α) for α ∈ Zd and the shift vectors α(J) ∈ Zd are chosen

such that

Π ∩ suppX
α(J)
J = Π♯ ∩ suppX

α(J)
J .

Thus, the support of (3.25) belongs to the set

Π \
∪
k∈N

ϖ(αk)

which is nothing but the part of the perturbed medium (1.19) which coincides with
the original medium. The choice of the shift vectors is possible because the distance
of adjacent foreign cells increases unboundedly due to the assumption (1.24). The
condition

suppW J ∩ suppWK = ∅ for J ̸= K(3.26)

can be satisfied for the same reason.
Formulas (3.25) and (3.26) readily imply the properties

1◦. ∥W J ;H(Π♯)∥ = 1 for all J ∈ N,
2◦. W J ⇁ 0 weakly in H(Π♯) as J → +∞
The third property, which is needed in order to make {W J}∞J=1 into a Weyl sequence,
namely
3◦. ∥A♯W J − µW J ;H(Π♯)∥ = 0 as J → +∞,
is a consequence of (3.23)–(3.25).

The proof of the inclusion Σdi ⊂ Σ♯
ess is much simpler because of the exponential

decay of the eigenvectors of the problem (1.18), established in Corollary 3.5. Indeed,
we take a function w ∈ kerB◦(λ) with λ ∈ Σ◦

d, (Mw,w)Π◦ = 1, and obtain

∥XJw;H(Π◦)∥2 ≥ 1

2
− ∥(1−XJ)w;H(Π◦)∥2 ≥ 1

2
− ce−2κJ ,

∥A◦(XJw)− µXJw;H(Π◦)∗∥2

= (1 + λ)−1 sup
∣∣a◦(XJw, v; Π

◦)− λ(M◦XJw, v)Π◦
∣∣

= (1+λ)−1 sup
∣∣∣(A(D(∇)XJ)w,D(∇)v

)
Π◦−

(
AD(∇)w, (D(∇)XJ)v

)
Π◦

≤ Ce−κJ ,(3.27)
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where the supremum is taken over functions v belonging to the unit sphere ofH(Π◦).
We define the vector functionW J as in (3.25), by changing Π into Π◦ and α(J) into
αp, where p is chosen such that Lp ≥ J and (3.26) holds, too. Now the properties
1◦-3◦ of a Weyl sequence follow from (3.25) and (3.27), and the inclusion (3.22) is
thus proven.

3.3. Parametrix. We fix the spectral parameter

λ ∈ R \ (σ ∪ σ◦di)(3.28)

and proceed to construct the right parametrix

R♯(λ) : H(Π♯)∗ → H(Π♯)(3.29)

for the operator B♯(λ) : H(Π♯) → H(Π♯)∗ of the inhomogeneous problem (1.22), i.e.

a♯(u♯, v♯); Π♯)− λ(M ♯u♯, v♯)Π♯ = f ♯(v♯) ∀v♯ ∈ H(Π♯).

Accordingly, we will prove that the mapping

B♯(λ)R♯(λ)− Id : H(Π♯)∗ → H(Π♯)∗(3.30)

is compact, since in view of the self-adjointness of B♯(λ), this implies that the
operator B♯(λ) is Fredholm (cf. the explanation on the left parametrix after Lemma
3.2) and thus

µ = (1 + λ)−1 /∈ σ♯.

This, together with the inclusion (3.22), complete the proof of Theorem 2.3.
The proof will be given in several steps. In the step a) we divide the domain

Π♯ into two parts, one inside the box □J (notation in (3.5)) and one outside it, for
some large enough J . We apply the result of Section 3.1 to treat a given right-hand
side f ♯ in the bounded subdomain □J . In the step b) we use a cut-off function
to eliminate the right-hand side f ♯ near all foreign cells and solve the problem in
a purely periodic domain. In the step c) we compensate the discrepancies caused
by the previous approximations by solving an infinite family of problems in Π◦.
To show that all discrepancies only give rise to a compact operator we use the
exponential decay of the solutions in Π◦ as explained in Section 3.1, the assumption
on the sparse distribution of the foreign cells, and the choice of a large enough
number J as a technical tool.
a). We fix an arbitrary natural number m > 1 and, by (1.24), assume that the

number J ∈ N is large enough so that Lp ≥ m for any cell ϖ•(αp) ⊂ Π♯ \ □J , cf.

(1.19) and (1.23). Let us denote by α1, . . . , αk⊚−1 the indices of the cells ϖ•(αk)
which are contained in Π♯∩□J . For a moment, we regard Π as a J-periodic domain
in d directions, so that the side lengths of the periodicity cells (call them J-cells)
are equal to J . Let us define another new domain

Π⊚ = (Π♯ ∩□J) ∪ (Π \□J),

which is obtained from Π by changing only one J-cell, namely Π ∩□J , by another
one, Π♯ ∩ □J . In the subdomain Π ∩ □J all J-cells remain unaltered. Up to a
rescaling, the domain Π⊚ has the same geometric properties as Π◦ and in particular
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the results of Section 3.1 can be applied. More precisely, we now fix a functional
f ♯ ∈ H(Π♯)∗ and define the functional

f⊚ ∈ H(Π⊚)∗ , f⊚(v⊚) = f ♯(XJv
⊚)(3.31)

so that supp f⊚ ⊂ Π♯ ∩ □J (i.e., f⊚ vanishes on functions with support outside
this subdomain). Next, we consider the analogue of the problem (3.1), where all
quantities with the superindex ◦ are replaced by those with index⊚ and where (3.31)
is posed as the right-hand side. If the corresponding problem operator is denoted
by B⊚ : H(Π⊚) → H(Π⊚)∗, then the results of Section 3.1 yield a parametrix
R⊚(λ) : H(Π⊚)∗ → H(Π⊚). We set

u1 = XJ+1R⊚(λ)f⊚ ∈ H(Π♯).(3.32)

b). To treat f ♯ outside □J , we define

f1(v♯) = f ♯((1−XJ)v
♯)(3.33)

and consider the purely periodic problem (with problem operator BΠ(λ) : H(Π) →
H(Π)∗)

a(uΠ, vΠ; Π)− λ(MuΠ, vΠ)Π = fΠ(vΠ) ∀ vΠ ∈ H(Π),(3.34)

where

fΠ(vΠ) = f1(X2v
Π) and Xq(x) =

∏
k≥k⊚

(
1−Xq(x− αk)

)
, q = 1, 2.

We have X2 = 0 on all foreign cells ϖ•(αk) ⊂ Π♯ \ □J , hence, f
Π ∈ H(Π)∗ and

moreover,

|fΠ(v)| ≤ ∥f1;H(Π♯)∗∥ ∥X2v;H(Π♯)∥
≤ c∥f1;H(Π♯)∗∥

(
∥v;H(Π)∥+ ∥v∇X2;L

2(Π)∥
)

≤ c∥f1;H(Π♯)∗∥ ∥v;H(Π)∥
⇒ ∥fΠ;H(Π)∗∥ ≤ ∥f ♯;H(Π♯)∗∥.(3.35)

Since λ /∈ σ by the assumption (3.28), the problem (3.34) has a unique solution uΠ

satisfying the estimate

∥uΠ;H(Π)∥ ≤ c∥fΠ;H(Π)∗∥ ≤ C∥f ♯;H(Π♯)∗∥.(3.36)

We set

u2 = (1−XJ−1)X1u
Π = (1−XJ−1)X1(BΠ)−1fΠ(3.37)

and observe that analogously to (3.35),

∥u2;H(Π♯)∥ ≤ c∥uΠ;H(Π)∥ ≤ C∥f ♯;H(Π♯)∗∥.

c). To compensate the discrepancy left by (3.37) we set

fX(v) = −
(
A(D(∇)XJ−1)u

Π, D(∇)v
)
Π
+
(
AD(∇)uΠ, (D(∇)XJ−1)v

)
Π
,

f(k)(v) = −f1(Xk
2 v) +

(
A(D(∇)Xk

1 )u
Π, D(∇)v

)
Π

−
(
AD(∇)uΠ, (D(∇)Xk

1 )v
)
Π

(3.38)
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where we denote for q = 1, 2,

Xk
q = Xq ◦ τk with τk(x) := x− αk ∀x ∈ Rd, k ∈ N,(3.39)

and Xq is as in (3.4). Observe that the mapping f ♯ 7→ fX ∈ H(Π♯)∗ is compact, for
the same reasons as in (3.11).

For every k ∈ N, the functional (3.38) has a compact support in a neighborhood
of the foreign cell ϖ•(αk), and the shifted functional

f◦(k)(v
◦) = f(k)(v

◦
(k)), v◦(k) = v◦ ◦ τk(3.40)

belongs to H(Π◦)∗ and W−κ(Π
◦)∗ for all κ. We recall that due to (3.28), λ /∈ σ◦ =

σ ∪ σ◦di. Using Theorem 3.4 we thus obtain for all k ∈ N, for any κ ∈ (0, κ0) a
solution u◦(k) ∈ Wκ(Π

◦)∗ of the problem

a◦(u◦(k), v
κ; Π◦) − λ(M◦u◦(k), v

κ)Π◦ = f◦(k)(v
κ) ∀ vκ ∈ Wκ(Π

◦),(3.41)

such that

∥u◦(k);Wκ(Π
◦)∥ ≤ c0∥f◦(k);W−κ(Π

◦)∗∥ ≤ c′0∥f◦(k);H(Π◦)∗∥.(3.42)

Notice that the functions ψ(k) of the equation (3.19) do not appear in (3.41),
since we are assuming that λ is not an eigenvalue of the problem (1.18) and thus
dimkerB◦(λ) = 0, see (3.28), the choice of the functions ψ(k) and the discussion
above (3.16).

Finally, we set

u3 =
∑
k≥k⊚

χk u
◦
(k) ◦ τ

k,(3.43)

where we define one more family of cut-off-functions by χk(x) = XLk/2 ◦ τ
k(x) =

XLk/2(x − αk), k ∈ N, so that the supports of the terms in (3.43) are mutually
disjoint by the choice of the numbers Lk in (1.23).

We need to show that the map

H(Π♯)∗ ∋ f ♯ 7→
∑
k≥k⊚

f̃3(k) ∈ H(Π♯)∗,(3.44)

where

f̃3(k)(v) = −
(
A(D(∇)χk)u

◦
(k) ◦ τ

k, D(∇)v
)
Π♯

+
(
AD(∇)u◦(k) ◦ τ

k, (D(∇)χk)v
)
Π♯ ,(3.45)

is compact (since we will see that this sum appears in the discrepancy caused by
the series (3.43)). By the same argument as after (3.10) one can see that a single

mapping f ♯ 7→ f̃3(k)(v) is compact, but this is not enough to conclude the same

property for the whole infinite sum of them. However, we take into account the
weight (3.18), which is of order O(eκLk/2) on the set

(τk)−1(Sk), where Sk = supp
(
|D(∇)χk|

)
,

see (3.4) and the definition of χk just above. Thus, we obtain for every v ∈ H(Π♯)
with ∥v;H(Π♯)∥ ≤ 1 and for every k ≥ k⊚, by (3.45),

|f̃3(k)(v)| ≤ c∥u◦(k) ◦ τ
k;H1(Sk)∥ = c

∥∥u◦(k);H1
(
(τk)−1(Sk)

)∥∥
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= ce−κLk/2∥eκLk/2u◦(k);H
1
(
(τk)−1(Sk)

)
∥ ≤ c′e−κLk/2∥u◦(k);Wκ(Π

◦)∥.(3.46)

By (3.38), (3.33), (3.36), there also holds ∥f◦(k);H(Π◦)∗∥ ≤ c∥f ♯;H(Π♯)∗∥ for all k so

that we get by (3.46), (3.42) and the disjointness of the supports of the functionals
f◦(k) ∑

k≥k⊚
eκLk∥f̃3(k);H(Π♯)∗∥2 ≤ c

∑
k≥k⊚

∥u◦(k);Wκ(Π
◦)∥2

≤ c′
∑
k≥k⊚

∥f◦(k);H(Π♯)∗∥2 ≤ cκ∥f ♯;H(Π♯)∗∥2.(3.47)

We can now conclude that the operator (3.44) is compact, since it can be presented
for any ε > 0 as the sum F ε(f ♯) + F ε

comp(f
♯), where F ε

comp is compact and F ε has

norm less than ε. Indeed, by the key assumption (1.24) we can choose kε ≥ k⊚

large enough such that cκe
−κLj ≤ ε2 for all j ≥ kε, where the constant cκ is as in

(3.47), and then define

F ε(f ♯) =
∑
k≥kε

f̃3(k).

so that (3.47) and the above choice imply

∥F ε(f ♯);H(Π♯)∥2 ≤
∑
k≥kε

c−1
κ eκLjε2∥f̃3(k);H(Π♯)∥2 ≤ ε2∥f ♯;H(Π♯)∗∥2.

The operator defined by the finite sum

F ε
comp(f

♯) =
∑
k<kε

f̃3(k)

is compact by what was said about single terms.
d). We now define the parametrix (3.29) by combining the expressions (3.32),

(3.37) and (3.43):

R♯(λ)f ♯ = u1 + u2 − u3.(3.48)

To prove that (3.30) is indeed a compact operator, we fix v♯ ∈ H(Π♯). First, let us
employ (3.31), (3.32):

B♯(λ)u1(v♯)

=
(
AD(∇)(XJ+1R⊚f⊚), D(∇)v♯

)
Π⊚ − λ

(
MXJ+1R⊚f⊚, v♯

)
Π⊚

=
(
AD(∇)R⊚f⊚, D(∇)(XJ+1v

♯)
)
Π⊚ − λ

(
MR⊚f⊚, XJ+1v

♯
)
Π⊚

+
(
A(D(∇)XJ+1)R⊚f⊚, D(∇)v♯

)
Π⊚ −

(
AD(∇)R⊚f⊚, v♯D(∇)XJ+1

)
Π⊚ .(3.49)

Since XJ+1XJ = XJ , the penultimate row equals

B⊚(λ)R⊚(λ)f⊚(XJ+1v
♯) = f⊚(XJ+1v

♯) + K̃1f⊚(XJv
♯)

= f ♯(XJv
♯) +K1f ♯(v♯),

where K̃1 : H⊚(Π⊚)∗ → H⊚(Π⊚)∗ is a compact operator, and thus also the operator
K1 : H♯(Π♯)∗ → H♯(Π♯)∗ defined by

K1f ♯(v♯) = K̃1f⊚(XJv
♯)(3.50)
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is compact. The last line of (3.49) is denoted by f̃1(v♯), and the map f ♯ 7→ f̃1 ∈
H(Π♯)∗ is compact, for the same reasons as in (3.11). We obtain

B♯(λ)u1(v♯) = f ♯(XJv
♯) +K1f ♯(v♯) + f̃1(v♯).(3.51)

Next, we use (3.33), (3.34) , the identities X1X2 = X2 and (1−XJ)(1−XJ−1) =
1−XJ , and f

Π(v♯) = f ♯(X2(1−XJ)v
♯). The following argument is similar although

much simpler than (3.49)–(3.51), since we can use the unique solution of (3.34)
instead of the parametrix R⊚:

B♯(λ)u2(v♯)

=
(
AD(∇)

(
(1−XJ−1)X1(BΠ)−1fΠ

)
, D(∇)v♯)

)
Π

−λ
(
M(1−XJ−1)X1(BΠ)−1fΠ), v♯)

)
Π

= f ♯(X2(1−XJ)v
♯) +

(
AuΠD(∇)

(
(1−XJ−1)X1

)
, D(∇)v♯)

)
Π⊚

−
(
AD(∇)uΠ, v♯D(∇)

(
(1−XJ−1)X1

))
Π⊚

= f ♯(X2(1−XJ)v
♯)−

(
A(D(∇)XJ−1)u

Π, D(∇)v♯
)
Π

+
(
AD(∇)uΠ, (D(∇)XJ−1)v

♯
)
Π
,

+
∑
k≥k⊚

(
A(D(∇)Xk

1 )u
Π, D(∇)v♯

)
Π

−
(
AD(∇)uΠ, (D(∇)Xk

1 )v
♯
)
Π

= f ♯(X2(1−XJ)v
♯) + fX(v♯) +

∑
k≥k⊚

(
f(k)(v

♯) + f1(Xk
2 v

♯)
)
,(3.52)

where we at the end used the notation (3.38).
Finally, by (3.43),

B♯(λ)u3(v♯)

=
∑
k≥k⊚

((
AD(∇)(χku

◦
(k) ◦ τ

k), D(∇)v♯
)
Π♯

− λ
(
Mχku

◦
(k) ◦ τ

k, v♯
)
Π♯

)
=

∑
k≥k⊚

((
AD(∇)(u◦(k) ◦ τ

k), D(∇)(χkv
♯)
)
Π♯ − λ

(
Mu◦(k) ◦ τ

k, χkv
♯
)
Π♯

+
(
A(D(∇)χk)u

◦
(k) ◦ τ

k, D(∇)v♯
)
Π♯

−
(
AD(∇)u◦(k) ◦ τ

k, (D(∇)χk)v
♯
)
Π♯

)
.

Here, the penultimate line is by (3.41), (3.40) equal to∑
k≥k⊚

f(k)(χkv
♯),

and the terms on the last line are equal to f̃3(k)(v
♯), by (3.45). Due to the supports

of the cut-off functions Xk
1 and χk, see (3.38), (3.43) we have f(k)(χkv

♯) = f(k)(v
♯)
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for all k, hence,

−B♯(λ)u3(v♯) = −
∑
k≥k⊚

(
f(k)(v

♯) + f̃3(k)(v
♯)
)
.(3.53)

Summing up (3.51), (3.52) and (3.53) (see (3.48)) yields for all v♯ ∈ H(Π♯).

B♯(λ)R♯(λ)f ♯(v♯) = f ♯(v♯) +K1f ♯(v♯) + f̃1(v♯) + fX(v♯)−
∑
k≥k⊚

f̃3(k)(v
♯).

The right hand side forms, as desired, a compact perturbation of the identity map-
ping of H(Π♯)∗, by the remarks around (3.50), (3.51), (3.39), (3.45). □

4. Possible generalizations.

4.1. Geometry. One can generalize the results of the previous sections for example
by considering, instead of a single cell ϖ•, several types of such cells ϖ•

(1), . . . , ϖ
•
(m),

which have the characteristics A•
(q), M

•
(q) and P •

(q), 1 = 1, . . . ,m, and satisfy the

sparseness assumption (1.24) with sequences {L(q)
p }p∈N for the cubes⊡p

(q) ⊃ ϖ•
(q)(α

p
(q))

of size 2L
(q)
p + 1, cf. (1.23). The essential spectrum of the problem (1.22) in the

medium Π♯ with the family
{
ϖ•

(q)(α
p
(q)) : p ∈ N, q = 1, . . . ,m

}
of inclusions is

σ♯ess = σ ∪
m∪
q=1

σ
◦,(q)
di

where σ
◦,(q)
di is the discrete spectrum of the problem (1.18) corresponding to the

foreign cell ϖ•
(q) instead of ϖ•, see Sections 1.3 and 2.2.

One may also consider sparsely distributed identical conglomerates of miscella-
neous foreign inclusions. This can be done along the scheme which was explained in
Remark 1.2 in the simple case of the duplication of neighbouring cells. The general
case can be studied by using the coordinate dilation

x 7→ (τ−1
1 x1, . . . , τ

−1
d xd), τ = (τ1, . . . , τd) ∈ Nd,

which puts the conglomerate inside one cell of size one. It is worth mentioning
that such affine transforms of Cartesian coordinates preserve the linear elasticity
equations in d = 2, 3, if one uses the Voigt-Mandel notation and introduces artificial,
non-physical, displacements, strains and stresses. See, e.g. [20].

Our approach, with minor modifications, also applies to layer-like composites,
where the space Rd = ∪α∈Zd□(α) is replaced by the layer L⊟ paved with the cells

ϖ⊟ = ϖ(α)× ω ⊂ Rd+d⊟

where ω is a bounded Lipschitz domain in the space Rd⊟ of dimension d⊟ > 1.
Our method also works for lattices different from the cubic one, (1.2), (1.1), for

example, for the honeycomb lattice (cf. [19, 34]). One can find a detailed description
of such lattices, e.g., in [44].
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4.2. Absolutely rigid inclusions in elasticity. Let Π ⊂ R3 be a triply periodi-
cally perforated Euclidean space, namely, define the periodicity cells by ϖ = □ \ω,
where ω ̸= ∅ is a Lipschitz domain inside the cube, ω ⊂ □. Then, define the
domain Π as in (1.1)–(1.3). We wish to study the linear elasticity problem in Π
with boundary conditions describing the contact with absolutely rigid bodies ω(α),
α ∈ Z3. However, due to the topology of the situation, the usual Dirichlet condition
(1.5) (corresponding to P = Id in (1.12)) cannot be used now, since the forces acting
on the surfaces ∂ω(α) should be balanced by some weird, impossible non-physical
activity.

Instead of the Dirichlet conditions, the following boundary conditions on the
isolated surfaces are appropriate from the mechanical point of view,

u(x) = d(x)cα, x ∈ ∂ω(α)(4.1) ∫
∂ω(α)

d(x)⊤D(ν(x))⊤A(x)D(∇)u(x)dx = 0 ∈ R6,(4.2)

where cα can be an arbitrary column in R6 and d(x) is the following 3 × 6-matrix
of rigid motions,

d(x) =

 1 0 0 0 −2−1/2x3 2−1/2x2
0 1 0 2−1/2x3 0 −2−1/2x1
0 0 1 −2−1/2x2 2−1/2x1 0

 ;

compare with the structure of the matrix D⊤ in (1.25). According to (4.1), the dis-
placement vector u is a rigid motion (a linear combination of the three translations
and three rotations) of the rigid body ω(α), while the six relations in (4.2) make
the traction force D(ν)⊤AD(∇)u (see the Hooke law (1.27)) on the surface ∂ω(α)
self-balanced.

The variational formulation of the elasticity problem is posed in the space

H(Π) = {u ∈ H1(Π)3 : u
∣∣
∂ω(α)

∈ Dα, α ∈ Z
}
,(4.3)

where

Dα = {u : u(x) = d(x− α)cα for some cα ∈ R6, x ∈ ∂ω(α)}.

Notice that the sequence {cα}α∈Zd is not fixed a priori, but it is found by solving the
whole problem. We also remark that the integral conditions (4.2) have been derived
form the integral identity (1.14) by using the Green formula and the arbitrariness
of cα in (4.3).

Although the space (4.3) is not formally included in the scheme of Sections 2 and
3, the method can still clearly be applied to prove the above statements.

In dimension d = 2 we have

D(∇)⊤ =

(
∂1 0 2−1/2∂2
0 ∂2 2−1/2∂1

)
, d(x) =

(
1 0 2−1/2x2
0 1 −2−1/2x1

)
and A is a symmetric, positive definite matrix of size 3 × 3, whose entries are real
valued functions. In this case the Dirichlet boundary conditions make sense, since
any part of the two-dimensional plane can be reached from outside it.



452 S. A. NAZAROV AND J. TASKINEN

4.3. Kirchhoff plates. Let us consider a two-dimensional model of a thin elastic
anistropic plate see [22, 40, 26, 10] and many others. This is a fourth order analogue
of the (scalar) equation (1.4): in the operator (1.6), the real-valued function matrix
A of size 3× 3 is assumed symmetric and positive definite, but D(∇) is replaced by
the second order column operator

D(∇)⊤ =
( ∂2

∂x21
,
∂2

∂x22
,
√
2

∂2

∂x1∂x2

)
.

Repeating the proofs in this case would require many changes (for example, the
continuous weight functions (3.18) should be made differentiable), however, the
scheme would work as a whole and it would lead to conclusions similar to Theorem
2.3. We refrain from formulating the exact results and instead only mention that in
this elastic plate model, the Dirichlet (clamping) boundary conditions of the second
order model are replaced by

u(x) = 0, ∂νu(x) = 0

on the edges of the plate, i.e. for x ∈ ∂Π. The boundary conditions, which cor-
respond to the Neumann or mixed conditions of the second order case, are much
more complicated, see the monographs cited above.

4.4. Piezoelectric media. We set d = 3, n = 4, N = 9 and denote DE(∇) = ∇
and (as in (1.25)) DM(∇) = D(∇) , and introduce the 9× 4- and 9× 9-matrices

(4.4) D(∇) =

(
DM(∇) O6×1

O3×3 DE(∇)

)
, A =

(
AMM −AME

AEM AEE

)
;

the superscripts M and E stand for ”mechanical” and ”electrical”. Furthermore,
AMM and AEE are the elastic and dielectric matrices, which are real, symmetric,
positive definite, and of sizes 6×6 and 3×3, respectively. No restriction is posed on

the real piezoelectric matrix AME =
(
AEM

)⊤
, except that it is not the null matrix.

Although the matrix A is not symmetric, the spectrum of the piezoelectricity
system (1.4) with appropriate boundary conditions (1.5) is contained in the set
of non-negative real numbers, see for example [35, 31, 21] and others. This is a
consequence of the specific structure of the diagonal matrix

M(x) = ϱM(x)diag {1, 1, 1, 0}
on the right-hand side of (1.4); here ϱM > 0 is the material density, see Section
1.4, 2◦. The vector function u = (uM1 , u

M
2 , u

M
3 , u

E
4 )

⊤ is composed of the displacement
vector uM = (uM1 , u

M
2 , u

M
3 )⊤ and the electric potential uE = uE4 .

The Neumann boundary condition

D(ν(x))⊤A(x)D(∇)u(x) = 0, x ∈ ∂Π,

means that the holes ω(α) consist of vacuum, which is an insulator and corresponds
to a traction-free boundary.

The Dirichlet conditions

uM(x) = 0, uE(x), x ∈ ∂Π,(4.5)

correspond to the ideal contact of the piezoelectric medium with an absolutely rigid
conductor, but this setting has a clear physical sense only in the case Rd \ Π is a
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connected set. If the domain is perforated by isolated voids, the conditions (4.5)
must be reformulated in the same way as in Section 4.2 for both the mechanical
and electric components, because the electric potential becomes constant at each
isolated conductor surface ∂ω(α); these constans may differ from each other for
different α.

The piezoelectricity problem can be reduced to a study of a self-adjoint operator,
see [35, 31, 21], but this operator contains a non- trivial integro-differential operator
term, the definition of which is only implicit. Applying the theory of self-adjoint
semibounded Hilbert space operators is still possible, but the calculations become
quite troublesome, see the papers cited above. It is thus more convenient to deal
directly with the operators generated by the integral identities. The key observation
in doing so is that for matrices (4.4) we have

(AD(∇)u,D(∇)u)Π = a(u, u; Π) + b(u, u; Π),

a(u, u; Π) =
(
AMMDM(∇)uM, DM(∇)uM

)
Π
+
(
AEEDE(∇)uE, DE(∇)uE

)
Π

b(u, u; Π) =
(
AEMDM(∇)uM, DE(∇)uE

)
Π
−
(
AMEDE(∇)uE, DM(∇)uM

)
Π
.

Here, most importantly,

a(u, u; Π) ≥ cA∥D(∇)u;L2(Π)∥2

Re b(u, u; Π) = 0

so that the Lax-Milgram lemma can be applied. However, additional considerations
are needed for the investigation of the spectra of piezoelectric media with either
localized or sparsely placed defects, and we leave this topic to a planned forthcoming
papers by the authors.
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[16] V. Jakšić and P. Poulin, Scattering from sparse potentials: a deterministic approach, analysis
and mathematical physics, Trends in Mathematics (2009), 205–210.

[17] I. Kachkovskii and N. Filonov, Absolute continuity of the spectrum of a periodic Schrödinger
operator in a multidimensional cylinder, Algebra i Analiz 21 (2009), 133–152 (English transl.
St. Petersburg Math. J. 21 (2010), 95–109).

[18] P. Kuchment, Floquet Theory for Partial Differential Equations, Oper. Theory Adv. Appl. 60,
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