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aspect ratio of the two chambers, they replace the three-dimensional (3D) model
by one-dimensional (1D) models. See e.g. [1]. Such dimensional reductions are
ubiquitous in many disciplines [3]. Are these one-dimensional cochlear models jus-
tified? In [9] we examined this question for the case where the BM is modeled as a
continuous chain of springs. We proved a theorem that justifies the reduction to a
1D model, and then pointed out that just near resonance the dimensional reduction
is not rigorous. Nevertheless, numerical comparisons between the full 3D model and
the reduced 1D model show excellent agreement.

Our goal here is to examine the dimensional reduction for a more elaborate (and
more realistic) elastic case, where the BM is modeled as a membrane. We shall
denote by x, y coordinates along the cochlea and across it, respectively. Assuming
that the membrane is fixed at its boundaries, so its deflection there must vanish, it is
clear that it is not possible anymore to use just a single 1D model in the x direction,
since there must be nonconstant deflection in the y direction. However, as we show
below, it is still possible to simplify considerably the 3D model. Essentially, our
main result is a rigorous reduction of the 3D model to a 1.5D model, where by 1.5D
model we mean one canonical equation in the y direction, whose solution is then
coupled to a 1D equation in the x direction. Therefore, although the final model
involves two equations, one of them is solved independently of the other.

The process outlined above describes a passive BM. It is well known, though,
that the cochlea includes an amplifier acting via a positive feedback, so that the
actual wave problem is nonlinear [2]. However, in this paper we limit ourselves
to the simpler passive case in order to capture the unusual dimensional reduction.
The nonlinear active cochlea model for spring-like BM will be considered by us
elsewhere.
Remark: It might seem somehow strange to model the BM as anything but a
membrane, in spite of its name. However, there is experimental evidence that the
BM exhibits to some extent properties of a plate. In principle the analysis performed
here can be extended to the case of a plate [5], but we do not pursue the details.

2. The cochlea model

We will represent the cochlea as an elongated prism. Though the cross-sectional
area of the cochlea tapers gradually towards the apex, in this analysis we will ignore
this effect and consider it to occupy the region

(2.1) 0 < x < L, −c < y < c, −c < z < c.

for constants L and c to be discussed later.
The rest position of the basilar membrane (BM) is at the plane z = 0. Using this

geometric simplification we neglect the effect of the cochlea coiling. It is believed
in general that the coiling simply serves to store the elongated cochlea in the skull;
some authors, though, argue that the coiling has a dynamical effect, essentially to
enhance the low frequencies as the wave reaches the cochlea apex [8].

We assume that the cochlea is filled with a linear ideal fluid:

(2.2) ρŨt +∇P̃ = 0, ∇ · Ũ = 0.
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Here Ũ is the fluid velocity, P̃ is the pressure, and ρ is the density. The fluid
equations hold in the upper and lower chambers of the cochlea. We use P̃ for the
pressure in any of them. Later on we shall distinguish between them by using the
notation P̃+ and P̃−. In this model we neglect the fluid viscosity. This can be
justified by estimating the parameters in the problem, with further justification
given in the work of Keller and Neu [7].

The boundary conditions that we use for the top (z = c), bottom (z = −c) and
lateral sides (y = ±c) of the cochlea are

(2.3) Ũν(x,±c, z, t) = Ũν(x, y,±c, t) = 0

where Ũν denotes the outer normal (to the boundary) component of the velocity.
We assume that the oval window vibrates in a specified way, namely the system

is driven by

(2.4) P̃+(0, y, z, t) = f(y, z, t)

for some given function f . Alternatively, one could provide a boundary condition
on the velocity at the oval window. For the round window (the left face of the lower
chamber) we assume

(2.5) P̃−(0, y, z, t) = 0,

and at the apex of the cochlea we take

(2.6) P̃+(L, y, z, t) = P̃−(L, y, z, t) = 0.

We proceed to describe our elastic model for the BM. We take W̃ = W̃ (x, y, t) to be
the vertical deflection of the BM, and we use the fact that the deflection is small.
Thus coupling between W̃ and the pressure/velocity variables is assumed to hold
at z = 0. While in reality the BM is closer to a plate, we shall use here a simpler
model where we take the BM to behave like a damped, vibrating membrane. Thus,
we write the following model for the BM vibrations:

m(x)W̃tt + r(x)W̃t − κ(x)
(
W̃xx + W̃yy

)
= l along {z = 0},

W̃ = 0 on the boundary of the BM.

(2.7)

Here m(x) is the BM mass density, r(x) and κ(x) are the BM damping coefficient
and elastic coefficient, respectively, and l is the load on the membrane, taken here
to be simply minus the pressure jump [P̃ ] := P̃+(x, y, 0, t) − P̃−(x, y, 0, t). Notice
that we assume that m, r and κ might depend upon the longitudinal direction x.
Later we shall write down two specific models for this dependency.

Throughout this article, we will in general employ the notation [f ] to denote
the difference between two quantities f+ and f− defined in the upper and lower
chambers, respectively.

At this point we introduce typical values for different parameters in the problem.
The fluid density is taken to be ρ = 1 g/cm3. The mass density of the BM is about
m ∼ 10−2g/cm2 [10]. For the physical dimensions of the cochlea we take

L ∼ 35 mm, c = 2 mm.
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Since we are interested mostly in the nature of the BM response to different
frequencies, we assume the vibrations are driven by input f in (2.4) of the form

(2.8) f = f(t) = eiωt for some frequency ω.

At a frequency of about 1kHz for instance, we have ω ∼ 103 − 104 s−1. We then
anticipate that the time dependence of the pressure, velocity and displacement of
the BM is similarly maintained, so we seek solutions to our problem in the form

P̃ = P (x, y, z)eiωt, Ũ = U(x, y, z)eiωt and W̃ = Ŵ (x, y)eiωt

for spatially dependent functions P , U and Ŵ to be determined. With these as-
sumptions, the equations (2.2) and (2.7) transform to

(2.9) iωρU± = −∇P±, ∇ · U± = 0 in the upper and lower chambers

and

(2.10) −ω2mŴ + iωrŴ − κ
(
Ŵxx + Ŵyy

)
= −[P ] along z = 0.

Since the fluid is incompressible, we can take the divergence of the first equation
of (2.9), eliminate U altogether, and conclude that P is a harmonic function in each
of the two chambers:

(2.11) ∆P± = 0.

In light of the first relation in (2.9), the boundary conditions (2.3) for Ũν translate
into homogeneous Neumann boundary conditions for P on the top, bottom and
lateral sides of the cochlea.

Across the BM we must have continuity of the fluid velocity and acceleration
which in turn must match the membrane velocity, so we see that U±

3 = Ŵt. This,
together with the momentum equation (2.9) implies

(2.12) P±
z (x, y, 0) = ω2ρŴ (x, y) for |x| < L, |y| < c.

Our goal is to use the large aspect ratio of the cochlea to approximate the three-
dimensional model described in the previous section by a simpler one-dimensional
model. It is useful for this purpose to scale x by L, and y, z by c. However, for
simplicity of notation we retain the original notation x, y, z. Define also the small
parameter δ = c/L. Then (2.11) becomes

(2.13) ∆δP
± = 0 in D±,

where we have introduced the notation ∆δP
± := P±

xx +
1
δ2
P±
yy +

1
δ2
P±
zz as well as

D+ := {(x, y, z) : 0 < x < 1, |y| < 1, 0 < z < 1}
and

D− := {(x, y, z) : 0 < x < 1, |y| < 1, −1 < z < 0}
to denote the scaled upper and lower chambers respectively.

For later use we also introduce here the notation

Ω+ := {(y, z) : |y| < 1, 0 < z < 1} and Ω− := {(y, z) : |y| < 1, −1 < z < 0}
and

B := {(x, y) : 0 < x < 1, |y| < 1}.
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We anticipate small vibrations of the BM so we also scale Ŵ by introducing W via
Ŵ = δW. Then in the rescaled z variable, the boundary condition (2.12) becomes

(2.14) P±
z (x, y, 0) = δ2Lρω2W (x, y) for (x, y) ∈ B.

2.1. First elastic model: Neglecting the inertial term and taking special
forms for κ and r. We turn next to the rescaled version of (2.10). We will assume
that r and κ take the form

(2.15) κ(x) =
c2κ0
δ

e−λx, r(x) =
r0
δ
e−λx.

for a positive parameter λ. We have selected similar functional forms for κ and for
r mostly for convenience. In Section 2.2 we indicate how to carry out the argument
in more generality. Before proceeding we will also make the simplification to neglect
the first term −ω2mW . Neglecting the inertia is in no way an essential step; its
only purpose is to simplify the calculations to follow. In a second model presented
below we consider the full wave problem for the BM. Thus, we replace equation
(2.10) by

iωr0W − δ2κ0Wxx − κ0Wyy = −eλx[P ].

Our three-dimensional problem then consists of the system

∆δP
± = 0 in D±,(2.16)

iωr0W − δ2κ0Wxx − κ0Wyy = −eλx[P ],(2.17)

P±
z (x, y, 0) = δ2Lρω2W (x, y) for (x, y) ∈ B,(2.18)

W (x, y) = 0 for (x, y) ∈ ∂B,(2.19)

P+(0, y, z) = 1, P+(1, y, z) = 0 for (y, z) ∈ Ω+,(2.20)

P−(0, y, z) = 0 = P−(1, y, z) for (y, z) ∈ Ω−,(2.21)

P+
y (x,±1, z) = 0 for 0 < x < 1, 0 < z < 1,(2.22)

P−
y (x,±1, z) = 0 for 0 < x < 1, −1 < z < 0 and(2.23)

P+
z (x, y, 1) = 0 = P−

y (x, y,−1) for (x, y) ∈ B.(2.24)

We point out that the boundary conditions on P±, namely (2.20) and (2.21), follow
from the assumptions given in (2.4), (2.5), (2.6) and (2.8). In particular, this linear
problem is driven by the assumed pressure applied at the oval window, cf. (2.4).

Before stating our result on the δ → 0 limit of P± and W , we need to introduce
two auxiliary functions. We denote by T : [−1, 1] → C the solution to the boundary
value problem

(2.25) ir0ωT − κ0T
′′ = −1 for − 1 < y < 1, T (±1) = 0.

and we let T̄ := 1
2

∫ 1
−1 T dy denote the integral average of T . Notice the crucial

point that the equation for T (y) is stand-alone; in particular it does not depend
on the pressure in the two chambers. Though we will not need it, we note that of
course one could solve for T explicitly. Aside from its existence, however, we will
only need the fact that

(2.26) Im T̄ ̸= 0,

a property established in the Appendix.



462 J. RUBINSTEIN AND P. STERNBERG

Then we let βδ : [0, 1] → R be any C2 function such that βδ(x) = 1 for δ ⩽ x ⩽ 1,
βδ(0) = 0, 0 ⩽ βδ(x) ⩽ 1, |β′

δ| ⩽ 2
δ and |β′′

δ | ⩽ 2
δ2
. This latter function will be used

to handle the boundary layer that resides near x = 0 for the function W .
We will now establish convergence to a one-dimensional model in the small δ

regime:

Theorem 2.1. As δ → 0 the functions P± converge in L2(D±) to the functions
p±0 : [0, 1] → C solving the following system of ODE’s

(p±0 )
′′ ∓ Lρω2T̄ eλx[p0] = 0 for 0 < x < 1,(2.27)

p+0 (0) = 1, p+0 (1) = 0 = p−0 (0) = p−0 (1).(2.28)

Furthermore, the derivatives P±
y and P±

z converge to zero in L2(D±). Finally, as
δ → 0 one has

(2.29) W − T eλx [p0] → 0 and
(
W − T eλx [p0]

)
y
→ 0 in L2(B).

Proof. We begin by taking the cross-sectional average of the PDE’s in (2.16) over
D±. To this end, we introduce

p̃± = p̃±(x) :=
1

2

∫
Ω±

P±(x, y, z) dy dz

and then define p± via

(2.30) P± = p̃± + p±.

For later use, we note that

(2.31)

∫
Ω±

p±(x, y, z) dy dz = 0 for each x ∈ (0, 1).

After an integration of (2.16) over Ω± and the use of the boundary conditions we
find

(2.32) p̃±xx ∓
1

2
Lρω2

∫ 1

−1
W (x, y) dy = 0.

Now define

(2.33) w̃ = w̃(x, y) := βδ(x)T (y)e
λx[p̃](x)

and w via

(2.34) W = w̃ + w.

Note that both w̃ and w satisfy homogeneous Dirichlet boundary conditions on ∂B.
Then through substitution into (2.32) we can decompose p̃± as p̃± = p±0 + g±

where the functions p±0 are given by (2.27)-(2.28) and g± : [0, 1] → C solve the
system

(2.35)
1

Lρω2
g±xx∓βδT̄ e

λx[g] = ±1

2

∫ 1

−1
w(x, y) dy±(βδ − 1) T̄ eλx[p0] for 0 < x < 1,

subject to the boundary conditions

(2.36) g±(0) = 0 = g±(1).
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For later use, we note that subtraction of the ODE’s for g+ and g− gives an ODE
for [g]:
(2.37)

1

Lρω2
[g]±xx − 2βδT̄ e

λx[g] =

∫ 1

−1
w(x, y) dy + 2 (βδ − 1) T̄ eλx[p0] for 0 < x < 1.

Ultimately then, we have decomposed P± as

(2.38) P±(x, y, z) = p±0 (x) + g±(x) + p±(x, y, z).

A primary goal of this argument is to show that g± and p± vanish in the δ → 0
limit.

We break the remainder of the proof into a series of energy identities and esti-
mates.

1. Energy identities for ∇p±.
Let us now return to (2.16) and use (2.30) to conclude that

(2.39) p±xx +
1

δ2
(
p±yy + p±zz

)
= −p̃±xx.

Invoking the boundary conditions (2.18), (2.20)-(2.24) as well as (2.34) we then
integrate by parts over the regions D± in the expressions∫

D±
(2.39) · (−p±)∗ + (2.39)∗ · (−p±)

(where ∗ denotes complex conjugation) to arrive at the identities∫
D±

{∣∣p±x ∣∣2 + 1

δ2

(∣∣p±y ∣∣2 + ∣∣p±z ∣∣2)} dx dy dz =∫ 1

0

(
Re

{
p̃±xx(x)

∫
Ω±

(p±(x, y, z))∗ dy dz

})
dx

∓Lρω2

∫
B

(
Re {p±(x, y, 0)∗w̃}+Re p±(x, y, 0)∗w}

)
dx dy =

∓Lρω2

∫
B

(
Re {p±(x, y, 0)∗T (y)([p0] + [g])}βδ eλx +Re p±(x, y, 0)∗w}

)
dx dy,

(2.40)

where the last line follows from (2.31) and (2.33).

2. Energy identities for w and ∇w.
Turning now to the equation for W we use (2.25), (2.34) and (2.38) to rewrite

(2.17) as

iωr0w − δ2κ0wxx − κ0wyy =

(βδ − 1)eλx[p0] + (βδ − 1)eλx[g]− eλx[p] + δ2κ0T
(
βδ e

λx ([p0] + [g])
)
xx

.

(2.41)
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Using the zero Dirichlet boundary conditions satisfied by w we then carry out the
integration ∫

B
(2.41) · w∗ + (2.41)∗ · w dxdy.

This leads to the identity∫
B
δ2κ0 |wx|2 + κ0 |wy|2 dx dy =

∫
B
(βδ − 1)eλxRe {w∗[p0]} dx dy +∫

B
(βδ − 1)eλxRe {w∗[g]} dx dy + δ2κ0

∫
B
Re

{
w∗T

(
βδ e

λx [p0]
)
xx

}
dx dy +

δ2κ0

∫
B
Re

{
w∗T

(
βδ e

λx [g]
)
xx

}
dx dy −

∫
B
eλxRe {w∗[p]} dx dy.

(2.42)

Similarly, from the integration∫
B
(2.41) · w∗ − (2.41)∗ · w dxdy.

we derive

ω r0

∫
B
|w|2 dx dy =

∫
B
(βδ − 1)eλxIm {w∗[p0]} dx dy +∫

B
(βδ − 1)eλxIm {w∗[g]} dx dy + δ2κ0

∫
B
Im

{
w∗T

(
βδ e

λx [p0]
)
xx

}
dx dy +

δ2κ0

∫
B
Im

{
w∗T

(
βδ e

λx [g]
)
xx

}
dx dy −

∫
B
eλxIm {w∗[p]} dx dy.

(2.43)

3. Energy identities for [g] and [g]′.
Next we return to (2.37) and derive from the expression∫ 1

0
(2.37) · [g]∗ + (2.37)∗[g] dx

the identity

(2.44)

1

ρω2

∫ 1

0

∣∣[g]′∣∣2 dx = 2(Re T̄ )

∫ 1

0
eλxβδ |[g]|2 dx

+

∫
B
Re {w[g]∗}+ (βδ − 1)eλxRe {T [p0][g]} dx dy,

along with its imaginary counterpart
∫ 1
0 (2.37) · [g]∗ − (2.37)∗[g] dx which takes the

form
(2.45)

−2(Im T̄ )

∫ 1

0
βδ e

λx |[g]|2 dx =

∫
B
Im {w[g]∗}+ (βδ − 1)eλxIm {T [p0][g]} dx dy.

4. Estimates for [g] and [g]′ in terms of w.
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In light of (2.36) we see that for x ∈ [0, δ] one has |[g](x)| ⩽
∫ δ
0 |[g]′(s)| ds from

which one readily checks that

(2.46)

∫ δ

0
|[g]|2 dx ⩽ δ2

∫ 1

0

∣∣[g]′∣∣2 dx.

From (2.44) we can estimate that∫ 1

0

∣∣[g]′∣∣2 dx ⩽ C

(∫ 1

0
|[g]|2 dx+

∫
B
|w|2 dx dy +

∫ δ

0
|[g]| dx

)
so that, writing say |[g]| ⩽ 1 + |[g]|2 we have

(2.47)

∫ 1

0

∣∣[g]′∣∣2 dx ⩽ C

(∫ 1

0
|[g]|2 dx+

∫
B
|w|2 dx dy + δ

)
in light of (2.46), where here and in what follows we use C to denote any positive
constant independent of δ.

Then invoking (2.26) we see from (2.45) that for a C > 0 depending on
∣∣ImT

∣∣
we have∫ 1

δ
|[g]|2 dx ⩽ C

∫
B
|w|2 dx dy +

1

2

∫ 1

0
|[g]|2 dx+ C

∫ δ

0
|[g]| dx

⩽ C

∫
B
|w|2 dx dy +

1

2

∫ 1

0
|[g]|2 dx+

∫ δ

0
|[g]|2 dx+ Cδ.

Combining this last estimate with (2.46) and (2.47) we find that

(2.48)

∫ 1

0
|[g]|2 dx ⩽ C

(∫
B
|w|2 dx dy + δ

)
and

(2.49)

∫ 1

0

∣∣[g]′∣∣2 dx ⩽ C

(∫
B
|w|2 dx dy + δ

)
.

5. Control of the trace of p± on B

In light of the standard trace inequality for Sobolev functions, we know that for
some C > 0∫ 1

−1

∣∣p+(x, y, 0)∣∣2 dy⩽C

∫ 1

0

∫ 1

−1

(∣∣p+(x, y, z)∣∣2+∣∣p+y (x, y, z)∣∣2+∣∣p+z (x, y, z)∣∣2) dy dz

for every x ∈ (0, 1). Hence, appealing to (2.31) in order to apply the Poincaré
inequality in Ω+, and then integrating with respect to x, we obtain (for a different
C) that

(2.50)

∫
B

∣∣p+(x, y, 0)∣∣2 dx dy ⩽ C

∫
D+

(∣∣p+y ∣∣2 + ∣∣p+z ∣∣2) dx dy dz,

with a similar inequality holding with p+ replaced by p− and D+ replaced by D−.

6. Bounds on ∥p±x ∥L2(D±),
1
δ

∥∥p±y ∥∥L2(D±)
, 1
δ ∥p

±
z ∥L2(D±) in terms of ∥w∥L2(B)
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We return to the identity (2.40) to see that∫
D±

{∣∣p±x ∣∣2+ 1

δ2

(∣∣p±y ∣∣2+∣∣p±z ∣∣2)} dx dy dz ⩽ C

∫
B

(∣∣p±∣∣+∣∣p±∣∣ |[g]|+∣∣p±∣∣ |w|) dx dy.

Consequently, through the use of (2.48) and (2.50) there exists a C > 0 such that

(2.51)

∫
D±

{∣∣p±x ∣∣2 + 1

δ2

(∣∣p±y ∣∣2 + ∣∣p±z ∣∣2)} dx dy dz ⩽ C +
1

2

∫
B
|w|2 dx dy.

7. Estimate on ∥w∥L2(B) in terms of ∥[p]∥L2(B)

To close this estimate, we consider the energy identity for w, (2.43). Note that
there are five terms on the right-hand side of this identity. We comment briefly on
how each one is handled.

For the first one we have∣∣∣∣∫
B
(βδ − 1)eλxIm {w∗[p0]} dx dy

∣∣∣∣ ⩽ C

∫
B
|βδ − 1| |w| dx dy

⩽ Cδ1/2 ∥w∥L2(B) ⩽
ωr0
10

∫
B
|w|2 dx dy + Cδ(2.52)

for an appropriate C.
For the second one we apply Cauchy-Schwarz and then combine (2.46) and (2.49)

to make the estimate

(2.53)

∣∣∣∣∫
B
(βδ − 1)eλxIm {w∗[g]} dx dy

∣∣∣∣
⩽ C

(∫
B
|w|2 dx dy

)1/2(∫
B
|βδ − 1|2 |[g]|2 dx dy

)1/2

⩽ C

(∫
B
|w|2 dx dy

)1/2(∫ δ

0
|[g]|2 dx

)1/2

⩽ C

(∫
B
|w|2 dx dy

)1/2(
δ2

∫
B
|w|2 dx dy + δ3

)1/2

⩽ Cδ

(∫
B
|w|2 dx dy + δ

)
.

For the third term on the right-hand side of (2.43)

δ2κ0

∫
B
Im

{
w∗T

(
βδ e

λx [p0]
)
xx

}
dx dy

we observe that all terms not involving derivatives of βδ can be bounded in absolute
value by Cδ2

∫
B |w| dx dy. and so, via Cauchy-Schwarz, by Cδ2 ∥w∥L2(B) . As for the

terms involving differentiation of βδ, in light of the bounds |β′
δ| ⩽ 2

δ , |β
′′
δ | ⩽ 2

δ2
and

the fact that these derivatives are supported on the interval 0 < x < δ, all of these

can be bounded by C
∫ δ
0 |w| which in turn can be bounded by say Cδ+ ωr0

10 ∥w∥2L2(B)
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for an appropriate C. Consequently, we have

(2.54)

∣∣∣∣δ2κ0 ∫
B
Im

{
w∗T

(
βδ e

λx [p0]
)
xx

}
dx dy

∣∣∣∣ ⩽ Cδ +
ωr0
10

∫
B
|w|2 dx dy.

The fourth term, namely

δ2κ0

∫
B
Re

{
w∗T

(
βδ e

λx [g]
)
xx

}
dx dy,

is handled in a similar manner except that one must substitute for the term con-
taining [g]xx using the ODE (2.37) and make use of (2.46)-(2.49). Carrying this
out, we again can bound it by the right-hand side of (2.54).

For the fifth and final term on the right-hand side of (2.43) we have

(2.55)

∫
B

∣∣∣eλxIm {w∗[p]} dx dy
∣∣∣ ⩽ C ∥w∥L2(B) ∥[p]∥L2(B)

⩽ ωr0
10

∫
B
|w|2 dx dy + C

∫
B
|[p]|2 dx dy

for an appropriately chosen C.
Combining the estimates (2.52)-(2.55) and absorbing the square L2-norms of w

into the left-hand side of (2.43) we conclude that

(2.56)

∫
B
|w|2 dx dy ⩽ C

(∫
B
|[p]|2 dx dy + δ

)
.

8. Closing the estimates on ∥p±x ∥L2(D±),
1
δ

∥∥p±y ∥∥L2(D±)
, 1
δ ∥p

±
z ∥L2(D±) and ∥w∥L2(B)

Now we add (2.51) and (2.56) and through an appeal to (2.50) and its counterpart
for p− we arrive at the uniform estimate

(2.57)

∫
D±

{∣∣p±x ∣∣2 + 1

δ2

(∣∣p±y ∣∣2 + ∣∣p±z ∣∣2)} dx dy dz +

∫
B
|w|2 dx dy ⩽ C.

In particular, then, we have shown that
∥∥p±y ∥∥L2(D±)

and
∥∥p±y ∥∥L2(D±)

are O(δ).

From this, (2.50) and the Poincaré inequality it then immediately follows that
∥p±∥L2(B) and ∥p±∥L2(D±) tend to zero at the same order. Therefore, by (2.56),

∥w∥L2(B) = O(δ1/2). Necessarily, ∥[g]∥L2(0,1) approaches zero as well, in view of

(2.48).
Since the right-hand side of (2.35) approaches zero in L2(0, 1), we observe that

g± both satisfy ODE’s of the form g±xx = f where f approaches zero in L2. Given
the homogeneous boundary conditions (2.36), it easily follows that g± also approach
zero. Hence, recalling (2.38), we have shown that P± → p±0 in L2(D±).

Finally, these estimates along with (2.52)-(2.55) applied to (2.42) imply that
∥wy∥L2(B) → 0 as δ → 0 as well, completing the proof of (2.29).

□
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2.2. Second elastic model: Full wave equation with resonance and friction.
Suppose now that instead of neglecting the inertial term in (2.10) and instead of
assuming (2.15) we take m to be constant and we assume

(2.58) κ(x) =
c2κ0(x)

δ
, r =

r0
δ
,

where κ0 is a positive, decreasing function of x and r0 is a positive constant. Now
if we do not scale m with δ then equation (2.17) is replaced by

(2.59) −ω2δmW + iωr0W − δ2κ0Wxx − κ0Wyy = −[P ].

For now, let us scale m with δ by defining m0 via m = m0
δ , leading to the equation

(2.60) −ω2m0W + iωr0W − δ2κ0Wxx − κ0Wyy = −[P ].

Then we can proceed as before, but now we replace T (y) given in (2.25) by T (x, y)
mapping [0, 1]× [−1, 1] into C as the solution to the boundary value problem

(2.61) (ir0ω−ω2m0)T −κ0(x)Tyy = −1 for 0 < x < 1, −1 < y < 1, T (x,±1) = 0.

If we let T̄ (x) := 1
2

∫ 1
−1 T (x, y) dy denote the integral average in y of T , then the

analogue of property (2.26), namely

(2.62) inf
x∈[0,1]

Im T̄ (x) > 0,

follows by a simple calculation given in the Appendix and the same approach based
on energy estimates yields:

Theorem 2.2. As δ → 0 the functions P± converge in L2(D±) to the functions
p±0 : [0, 1] → C solving the following system of ODE’s

(p±0 )
′′ ∓ Lρω2T̄ (x)[p0] = 0 for 0 < x < 1,(2.63)

p+0 (0) = 1, p+0 (1) = 0 = p−0 (0) = p−0 (1).(2.64)

Furthermore, the derivatives P±
y and P±

z converge to zero in L2(D±). Finally, as
δ → 0 one has

(2.65) W − T (x, y) [p0] → 0 and (W − T (x, y) [p0])y → 0 in L2(B).

3. Discussion

We derived 1.5D reduced models for the hydro-elastic waves in the cochlea where
the BM is modeled as an elastic membrane. We presented two models. The first one,
where the inertia of the BM was neglected, while the friction and elastic coefficient
took a special form, is an extension of the spring model that was considered by
us in [9]; see also [6]. The reduced model in this case consists of equations (2.26)
for the function T (y) and equation (2.27) for the fluid pressure. We recall that
the place principle determining the location along the cochlea excited by a given
frequency is expressed via an experimentally derived function x = G(ω) where the
Greenwood function G is specific to a given mammal. To see how the 1.5D model
above is related to the function G we compare the reduced model in the present
setting with the spring model of [9], and refer to the formula for T̄ derived in the
Appendix. If we maintain only the leading order term in the sums for the two
expressions for ReT and ImT , (cf. (4.6) and (4.5)) and set m = 0, we recover
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the 1D model of [9]. We can then perform a WKB expansion of equation (2.27)
and obtain, for an appropriate choice of the parameters r0 and κ0, the Greenwood
function G. Maintaining further terms in the sums appearing in the formula for
ReT and ImT will provide corrections to the classical place principle formula.

In the second model the equation for the BM motion has a built-in expression for
the resonance. To obtain the place principle formula x = G(ω), we can again main-
tain just the first term in the infinite sum for ReT and ImT . Then the resonance
formula becomes

m0ω
2 =

(π
2

)2
κ0(x).

Therefore, selecting an appropriate function κ0(x) would imply the experimentally
observed G.

4. Appendix

In this appendix we provide a simple proof of (2.62). The condition (2.26) is
established similarly. Writing T = ReT + iImT , it follows from (2.61) that

(4.1) r0ωReT −m0ω
2 ImT − κ0(x) ImTyy = 0

and

(4.2) r0ω ImT +m0ω
2ReT + κ0(x)ReTyy = 1,

with ReT (x,±1) = ImT (±1) = 0. It also readily follows from (2.61) and the
boundary conditions that T , and therefore ReT and ImT , are even functions of y
so that we may instead work on the interval 0 ⩽ y ⩽ 1 and replace the boundary
conditions by

ReTy(x, 0) = 0 = ImTy(x, 0) and ReT (x, 1) = 0 = ImT (x, 1).

In light of these boundary conditions we seek Fourier series expansions for ReT and
ImT of the form

ReT (x, y) =

∞∑
k=1

an(x) cos

[
(2n− 1)π

2
y

]
and

ImT (x, y) =

∞∑
k=1

bn(x) cos

[
(2n− 1)π

2
y

]
.

Expanding

1 =

∞∑
n=1

An cos

[
(2n− 1)π

2
y

]
so that

An =
4

(2n− 1)π
(−1)n+1

we then substitute these expansions into (4.1) and (4.2) to obtain the system

r0ω an +

(
κ0

[
(2n− 1)π

2

]2
−m0ω

2

)
bn = 0,(4.3)

r0ω bn −
(
κ0

[
(2n− 1)π

2

]2
−m0ω

2

)
an =

4

(2n− 1)π
(−1)n+1.(4.4)
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Solving for bn we find that ImT is given by

(4.5) ImT (x, y)

=
4r0ω

π

∞∑
n=1

(−1)n+1

(2n− 1)

{
r20ω

2 +

(
κ0

[
(2n−1)π

2

]2
−m0ω2

)2} cos

[
(2n− 1)π

2
y

]
.

As this series is clearly uniformly convergent in y, we may integrate term-wise to
obtain

Im T̄ (x) =
1

2

∫ 1

−1
ImT (x, y) dy =

∫ 1

0
ImT (x, y) dy =

8r0ω

π2

∞∑
n=1

1

(2n− 1)2
{
r20ω

2 +

(
κ0

[
(2n−1)π

2

]2
−m0ω2

)2} > 0.

Hence (2.62) is verified.
It is useful to write also the associated formula for ReT that follows similarly

from equations (4.3)-(4.4):
(4.6)

ReT (x, y)=
−4

π

∞∑
n=1

(−1)n+1

(
κ0

[
(2n−1)π

2

]2
−m0ω

2

)2

(2n− 1)

{
r20ω

2 +

(
κ0

[
(2n−1)π

2

]2
−m0ω2

)2} cos

[
(2n− 1)π

2
y

]
.

and after integration:

∫ 1

−1
ReT (x, y) dy =

−16

π2

∞∑
n=1

(
κ0

[
(2n−1)π

2

]2
−m0ω

2

)
(2n− 1)2

{
r20ω

2 +

(
κ0

[
(2n−1)π

2

]2
−m0ω2

)2} .
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