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where u = (u1, ..., un), F = (F1, ..., Fn), D is a diagonal matrix with positive diago-
nal elements. We consider this system on the whole axis, x ∈ R, and suppose that
the vector-valued function F (u) is sufficiently smooth.

Travelling wave solution of this equation is a solution of the form u(x, t) = w(x−
ct), where c is a constant, the wave speed. The function w(ξ) satisfies the equation

(1.2) Dw′′ + cw′ + F (w) = 0

and some limits at infinity

(1.3) w(±∞) = w±,

where F (w±) = 0. Travelling waves oscillating at infinity can also be considered.
Since the wave speed c is unknown, the problem of wave existence is formulated as
follows: find the value of c for which problem (1.2), (1.3) has a solution.

The existence and the properties of travelling wave solutions depends on the
stability of the points w± as stationary solutions of the ODE system

(1.4)
du

dt
= F (u).

If all eigenvalues of the matrices F ′(w±) lie in the left-half plane of the complex
plane, that is, the corresponding solutions of equation (1.4) are stable, then this is
the bistable case. If one of the matrices has an eigenvalue with a positive real part
and another one is still stable, then this is the monostable case. In this bistable
case, the set of solutions of problem (1.2), (1.3) is, in general, discrete, while in the
monostable case there can exist continuous families of solutions for which the values
of c fill an interval or a half-axis. These different properties of solutions are related
to the location of the essential spectrum of the corresponding operator and to its
index.

1.3. Fredholm property for elliptic problems in unbounded domains. Thus,
reaction-diffusion waves are described by the second-order ordinary differential sys-
tem of equations (1.2) or, in the multidimensional setting, by elliptic problems in
unbounded domains. Hence, we need to discuss some properties of the correspond-
ing operators.

Let us recall that a linear operator L : E1 → E2, acting in some Banach spaces
E1 and E2, satisfies the Fredholm property if it is normally solvable, its kernel has
a finite dimension and the codimension of its image is also finite. Then the non-
homogeneous equation Lu = f is solvable if and only if ϕi(f) = 0 for a finite number
of functionals ϕi from the dual space E∗

2 . In some case, these solvability conditions
can be replaced by the orthogonality to the solutions of the homogeneous formally
adjoint equations.

Fredholm property, solvability conditions, and the index of linear operators are
often used in the methods of linear and nonlinear analysis including the topological
degree theory. General elliptic problems in bounded domains with a sufficiently
smooth boundary satisfy the Fredholm property if and only if the ellipticity condi-
tion, the condition of proper ellipticity and the Lopatinskii conditions are satisfied
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[1, 2, 54]. In the case of unbounded domains, these conditions may not be suf-
ficient. One more condition, formulated in terms of limiting operators should be
imposed. In order to introduce this condition, let us consider an example of the
scalar second-order operator

(1.5) Lu = a(x)u′′ + b(x)u′ + c(x)u

acting from the Hölder space C2+α(R) to the space Cα(R). Assuming, for simplicity,
that the coefficients of the operator have limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

we can introduce the limiting operators

L̂±u = a±u
′′ + b±u

′ + c±u.

Applying the Fourier transform, we find the essential spectrum of the operator L,

(1.6) λ(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R,

that is, the set of complex numbers λ for which the operator L−λ does not satisfy the
Fredholm property. Hence, this property is satisfied if and only if the curves (1.6) do
not cross the origin. In the general case, the definition of limiting operators is more
involved [46, 47, 49, 63, 74]. The Fredholm property of general elliptic problems
in unbounded domains requires an additional condition that all limiting problems
should be invertible.

1.4. Index. Elliptic boundary value problems in the plane can be studied by re-
duction to singular integral equations in one space dimension. This method was
developed by I.N. Vekua for certain classes of elliptic problems [51, 52, 53]. It al-
lowed him to prove normal solvability of boundary value problems and to find their
index. Further development of these works was due to A.I. Volpert [55, 56, 57].
He used fundamental matrices of elliptic systems of equations constructed by Ya.B.
Lopatinskii. In [58] normal solvability was proved and the index was computed for
general first-order systems and in [59] for general higher-order systems in the plane.
The Dirichlet problem for elliptic systems was studied in [58]. It was shown that
the index of this problem can be equal to an arbitrary even number and a formula
for the index was given. It was proved that the index is a homotopy invariant and
the formula for the index was obtained in terms of this invariant [57].

For the unbounded domains, even the simplest scalar second-order operator (1.5)
can have nonzero index [14]. Typically, in the bistable case, where the essential
spectrum (1.6) lies in the left-half plane, the index equals 0. In the monostable
case, where a part of the spectrum is in the right-half plane, it equals 1. Location
of the essential spectrum and the value of the index are used in the construction of
the topological degree.
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1.5. Properness and topological degree. Topological degree for elliptic opera-
tors was introduced by Leray and Schauder [39] by the reduction to the operator
I + K, where I is the identity operator and K is a compact operator. This con-
struction is not applicable to unbounded domains since, contrary to the bounded
domains, the inverse to the Laplace operator is not compact. There are various
degree constructions in abstract setting [13, 19, 20, 22], [26]-[30] and in the frame-
work of elliptic problems [15, 60, 76, 77]. We will use the degree construction for
Fredholm and proper operators with the zero index [78].

An operator A(u) : E1 → E2 (possibly nonlinear) is called proper if an inverse
image A−1(G) of any compact set G ⊂ E2 is compact in any bounded closed set
B ⊂ E1. This property implies, in particular, that the set of solution of the operator
equation A(u) = 0 is compact in any bounded closed set B.

It appears that elliptic problems in unbounded domains may not be proper. We
illustrate it with the following example. Consider scalar equation (1.2) with c = 0.
Assume, further, that F (0) = F (1) = 0, F (w) < 0 for 0 < w < w0, and F (w) > 0
for w0 < w < 1. Then this equation has a positive solution with zero limits at

infinity if and only
∫ 1
0 F (u) > 0. This solution can be explicitly constructed. If this

condition is satisfied, and there exists a solution w(x), then the functions w(x+ h)
are also solutions for any real h. Therefore, the set of solutions can be bounded
in Hölder or Sobolev spaces but it is not compact. The lack of properness does
not allow the construction of the topological degree. Moreover, this is not only a
technical restriction. There are counterexamples which show that the properties of
the degree may not hold.

It appears that general elliptic problems become proper in some appropriate
weighted spaces [76, 63] (see also [48]), and the degree construction for Fredholm
and proper operators with the zero index becomes applicable in this case [78].

2. Monotone and locally monotone systems

2.1. Existence of solutions. The topological degree constructed for Fredholm and
proper operators with the zero index can be used to prove the existence of waves in
the bistable case for some classes of systems. Let us recall that if the inequalities

(2.1)
∂Fi

∂uj
> 0, i, j = 1, ..., n, i ̸= j

hold for all u ∈ Rn (or in some domain in Rn containing the solutions), then systems
(1.1) and (1.2) are called monotone systems. If these inequalities are satisfied only
at the surfaces Fi(u) = 0, then such systems are called locally monotone [60, 75].
Non-strict inequalities in (2.1) can also be considered. Similar to the scalar equation,
the monotone systems satisfy the maximum principle and positiveness (comparison)
theorems. This is not the case of the locally monotone systems.

2.1.1. Function spaces and operators. We consider the Hölder space Ck+α(R) con-
sisting of vector-functions of class Ck, which are continuous and bounded on R
together with their derivatives of order k, and such that the derivatives of order k
satisfy the Hölder condition with the exponent α ∈ (0, 1). The norm in this space
is the usual Hölder norm. Set E1 = C2+α(R), E2 = Cα(R). Next, we introduce the
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weighted spaces E1
µ and E2

µ with µ(x) =
√
1 + x2. These spaces are equipped with

the norms:

∥w∥Ei
µ
= ∥wµ∥Ei , i = 1, 2.

We introduce the operators which will allow us to study travelling waves, that is,
solutions of problem (1.2), (1.3). Consider an infinitely differentiable vector-function
η(x) such that

η(x) =

{
w− , x ≤ −1
w+ , x ≥ 1

,

where w± = (v±, c±). Set w = u+ η and consider the operator

(2.2) Aτ (u) = D(u+ η)′′ + cτ (u+ η)′ + Fτ (u+ η),

acting from E1
µ into E2

µ. The operator depends on a parameter τ ∈ [0, 1] providing
homotopy in the Leray-Schauder method.

2.1.2. Leray-Schauder method on subclasses of solutions. In order to apply the
Leray-Schauder method, we need to obtain a priori estimates of solutions. In the
case of monotoneand locally monotone systems, they can be obtained for some
subset of solutions but not for all solutions. Thus, we will consider two types of
solutions, monotone solutions of problem (1.2), (1.3) and non-monotone solutions.
By monotone solutions, we understand vector-valued functions wm(x) all compo-
nents of which are monotonically decreasing functions of x. Non-monotone solutions
wn(x) do not satisfy this property. Suppose that the following two conditions hold:

1. Separation of monotone solutions. There exists a positive number r such that

(2.3) ∥wm − wn∥E1
µ
≥ r

for any monotone solution wm and non-monotone solution wn (possibly for different
τ),

2. A priori estimates of monotone solutions. There exists a positive number R such
that

(2.4) ∥um∥E1
µ
≤ R

for any monotone solution wm = um + η.
In these conditions are satisfied, then we can apply the Leray-Schauder method

only for monotone solutions [60, 75]. Both properties can be proved for monotone
and locally monotone systems. Separation of monotone solutions was first used in
[33] to prove the existence of waves for a monotone system of two equations by a
continuation method.
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2.1.3. Existence of waves. The wave existence result in the bistable case is given by
the following theorem.

Theorem 2.1. Suppose that system (1.2) is locally monotone, the matrices F ′(w±)
have all eigenvalues in the left-half plane, and for any other zero w0 of the function
F (w) such that w+ ≤ w0 ≤ w− (the inequalities between the vectors are understood
component-wise), the matrix F ′(w0) has an eigenvalue with a positive real part.
Then problem (1.2), (1.3) has a monotonically decreasing solution for some value
of c. If the system is monotone, then this value of c is unique.

In the monostable case, under the assumption that there are no stable zeros of
the function F except for w+, it is proved that the waves exist for all values of the
speed greater than or equal to the minimal speed.

If there are other stable points, then similar to the scalar equation [23, 24, 61, 62],
the wave may not exist. In this case, there are systems of waves propagating one
after another with different speeds [68].

2.2. Stability of waves and instability pulses.

2.2.1. Spectral properties. Consider the scalar operator L given by (1.5). Suppose
that its essential spectrum (1.6) lies in the left-half plane of the complex plane, and
that it has some eigenvalues with non-negative real parts. Then its eigenvalue with
the maximal real part (principal eigenvalue) is real, simple, and the corresponding
eigenfunction is positive [71]. Moreover, there are no other positive eigenfunctions.
These spectral properties generalize the Krein-Rutman theorem for elliptic opera-
tors in unbounded domains. They remain valid for more general multi-dimensional
operators and for the operators in the case of monotone systems.

2.2.2. Stability of monotone waves. Suppose that problem (1.2), (1.3) has a mono-
tonically decreasing (component-wise) solution w(x). Consider the operator lin-
earized about this solution:

Lu = Du′′ + cu′ + F ′(w(x))u.

It has the zero eigenvalue with the corresponding eigenfunction w′(x). Since w′(x) <
0, then, up to multiplication by −1 this eigenfunction is positive.

If the function F (w) satisfies the monotonicity condition (2.1), then in the bistable
case the essential spectrum lies in the left-half plane. Therefore, from the spectral
properties presented in the previous section it follows that 0 is the principle eigen-
value, and all other spectrum lies in the left-half-plane. Hence, monotone travelling
waves of monotone systems are asymptotically stable with shift with respect to
small perturbations [69, 71]. It is also proved that they are globally stable. In the
monostable case, stability of waves with the speed greater than the minimal speed
holds in some weighted norm [70].

2.2.3. Minimax representation of the wave speed. Global stability of monotone waves
for the monotone systems allows the derivation of the minimax representation of
the wave speed in the bistable case:
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(2.5) c = inf
ρ
sup
x,i

Φi(ρ) = sup
ρ

inf
x,i

Φi(ρ),

where

Φi(ρ) =
ρ′′ + Fi(ρ)

−ρ′i
,

ρ(x) is a monotonically decreasing (component-wise) vector-function continuous
together with its second derivative, and having the limits ρ(±∞) = w±.

This minimax representation is used to obtain the estimates and the asymptotics
of the wave speed [75]. In the monostable case, only the first equality in (2.5) holds
for the minimal wave speed, since the maximal speed in infinite. Its derivation does
not require the stability results. The minimax representation is generalized for the
nonlocal models [17].

2.2.4. Instability of pulses. If equation (1.1) has a positive stationary solution w(x)
with zero limits at infinity, then the eigenfunction w′(x) of the operator L (with
c = 0) is of a variable sign. Therefore, λ = 0 is not the principal eigenvalue of this
operator. Hence, the principal eigenvalue is positive, and the stationary solution
is not stable. Similarly, non-monotone waves of the monotone systems (and of the
scalar equation) are unstable.

If we consider the Cauchy problem for equation (1.1) with the initial condition
u(x, 0) = w(x) + ϕ(x), where w(x) is the pulse solution and ϕ(x) is a small per-
turbation, then the solution u(x, t) uniformly converges to 0 for negative ϕ(x), and
it locally converges to w− for positive ϕ(x). In the latter case, the solution forms
two travelling waves propagating in the opposite directions. In the scalar case, the
convergence to such waves is proved, while for the monotone systems of equations
it is observed numerically.

Thus, the pulse solution separates two classes of initial conditions with different
behavior of solutions of the Cauchy problem. This property is important for various
applications in biomedical problems. In the case of blood coagulation, we obtain
two conditions of clot growth. The first one is the existence of the pulse solution
which is equivalent to the positiveness of the wave speed [31]. The second one is
that the initial condition should be sufficiently large (compared to the pulse) in
order to provide growth of solution and not its decay. The value of the wave speed
can be approximated in this case using the minimax representation [32].

2.2.5. Stability of pulses in nonlocal equations. Instead of equation (1.1) consider
now the scalar equation

(2.6)
∂u

∂t
= D

∂2u

∂x2
+ au2(1− I(u))− bu,

where I(u) =
∫∞
−∞ u(x, t)dx. Such problems arise in population dynamics with

global consumption of resources [64]. The existence of two pulses can be easily
proved here. Numerical simulations show that one of them is stable [65] (see also
the next section).
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3. New models and results

3.1. Existence of pulses.

3.1.1. Scalar equation. Let us recall that positive stationary solutions of equation
(1.1) with zero limits at infinity are called pulses. These are solutions of problem
(1.2), (1.3) with c = 0 and w± = 0. Existence of such solutions can be easily studied
for the scalar equation. We will use this existence result below for the systems of
equations. Suppose that F (0) = F (1) = 0,

(3.1) F (w) < 0 for 0 < w < w0; F (w) > 0 for w0 < w < 1

for some w0 ∈ (0, 1). Then the problem

(3.2) w′′ + F (w) = 0, w(±∞) = 0

(D = 1) has a positive solution if and only if

(3.3)

∫ 1

0
F (u)du > 0.

On the other hand, the wave speed in equation (1.2) is positive if and only if
condition (3.3) is satisfied. Indeed, it is sufficient to multiply this equation by w′

and integrate from −∞ to ∞. Hence, a pulse solution exists if and only if the wave
speed is positive. This formulation is convenient since it does not use condition
(3.3). The latter is not applicable for the systems of equations but the result on the
existence of pulses formulated in terms of the wave speed remains valid.

3.1.2. Systems of equations. Consider now the system of equations

(3.4) w′′ + F (w) = 0,

where w = (w1, w2), F = (F1, F2),

F1(w) = f1(w2)− w1, F2(w) = f2(w1)− w2.

This is a model problem describing various biomedical applications (e.g., chronic in-
flammation [18]). Suppose that the functions fi(u), i = 1, 2 are sufficiently smooth,
monotonically increasing, fi(0) = fi(1) = 0. Set w+ = (0, 0), w− = (1, 1) and as-
sume that the matrices F ′(w±) have negative eigenvalues. Moreover, there exists a
unique point w0, w+ < w0 < w− (the inequalities are understood component-wise)
such that F (w0) = 0. We suppose that the matrix F ′(w0) has a positive eigenvalue.

System (3.4) satisfies condition (2.1). Therefore, there exists a unique up to
translation solution of problem (1.2), (1.3). We can now formulate the result on the
existence of pulses.

Theorem 3.1. Under the conditions on the function F (w) formulated above, a
pulse solution of system (3.4) exists if and only if the wave speed in problem (1.2),
(1.3) is positive.
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Contrary to the scalar equation, the proof of this theorem is quite involved [42].
The sufficiency part of the proof uses the Leray-Schauder method with the technique
presented in the previous section and adapted to this type of solutions. The necessity
is based on the comparison of solutions applicable for the monotone systems. This
result was generalized in [43] and applied for the system of competition of species.
Existence of pulses for the reaction-diffusion system describing blood coagulation
was studied in [31, 45], and for the nonlocal equations in [21, 79].

3.1.3. One stable point. Let us return to the scalar equation in order to present
another case of pulse existence. Instead of conditions (3.1) we now suppose that
F (w) > 0 for all w > w0, and limw→∞F (w) > 0. Then it can be easily verified that
problem (3.2) always has a positive solution. Condition (3.3) is not imposed here.
Thus, there are two different cases. In the first one, there are two stable points,
and pulse existence is determined by the speed of the wave between them. In the
second case, there is only one stable point, the bistable wave does not exist, and
the pulse exists without additional conditions.

Consider system (3.4) where

(3.5) F1(w) = w1w2 − k1w1 , F2(w) = w1w2 − k2w2,

k1 and k2 are some positive constants. Such problems arise in population dynam-
ics [67]. This is a vector analogue of the situation described above for the scalar
equation. There are two zeros of the function F (w), w+ = (0, 0) and w0 = (k2, k1).

Theorem 3.2. System (3.4) with functions (3.5) has a pulse solution for any pos-
itive constants k1 and k2.

The proof of this theorem uses the Leray-Schauder method with the separation of
monotone (on the half-axis) solutions [67]. This result has an interesting application
to the integro-differential equation, where the functions Fi(w) are replaced by the
expressions

F1(w, I) = w1w2(1− aI1 − bI2)− k1w1 , F2(w, I) = w1w2(1− cI1 − dI2)− k2w2 ,

where I = (I1, I2), Ii =
∫∞
−∞wi(x)dx. In population dynamics such models describe

global consumption of resources. The existence of pulses follows from Theorem 3.2.
Contrary to the reaction-diffusion system with functions (3.5), in this case, the pulse
solution can be stable.

3.2. Nonlocal and delay equations.

3.2.1. Nonlocal equations. Nonlocal reaction-diffusion equations are studied in rela-
tion with various applications in population dynamics. Some of them were presented
above. Consider now the scalar equation

(3.6)
∂u

∂t
= D

∂2u

∂x2
+ F (u, J(u)),
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where J(u) =
∫∞
−∞ ϕ(x − y)u(y, t)dy, and ϕ(x) is a non-negative kernel function.

Specific form of the function F (u, J(u)) is given by the following two examples:

F1(u, J(u)) = auJ(u)(1− u)− bu, F2(u, J(u)) = au2(1− J(u))− bu.

If we replace the kernel ϕ(x) by the δ-function, then in both cases we obtain the
same bistable reaction-diffusion equation. However, if ϕ(x) is an integrable function,
behavior of solutions in these two cases can be essentially different. Equation (3.6)
with the first function satisfies the maximum principle and comparison of solutions.
These properties allow us to prove the existence and stability of waves by the meth-
ods presented above [3, 5, 16]. In the case of the second function, the maximum
principle is not applicable, and there are only few results on the wave existence.
On the other hand, this equation manifests interesting nonlinear dynamics with
important applications in ecology and evolution [10, 35, 36, 37, 64].

3.2.2. Delay equation. Another interesting development of the conventional reaction-
diffusion equations is related to the delay equations

(3.7)
∂u

∂t
= D

∂2u

∂x2
+ F (u, uτ ),

where uτ (x, t) = u(x, t−τ). We will restrict ourselves here to the function F (u, uτ ) =
u(1 − u − f(uτ )) arising in a model of immune response [11]. If f(u) is a decreas-
ing function, then the maximum principle is applicable and the existence of waves
is proved by conventional methods (in a more general case) [41]. However, if the
function f(u) is not decreasing, then this approach is not applicable. The wave
existence is proved in this case by the Leray-Schauder method with separation of
monotone solutions [50].

3.3. Other models.

3.3.1. Non-monotone systems of equations. The method to prove the existence of
waves presented above is based on a separation of monotone and non-monotone
solutions. This property holds for monotone and locally monotone systems. It
appears that there are some other systems of equations for which a modification of
this approach is applicable. The following reaction-diffusion system of equation was
introduced in [12] as a model of immune response:

(3.8)
∂v

∂t
= D1

∂2v

∂x2
+ kv(1− v)− cv,

(3.9)
∂c

∂t
= D2

∂2c

∂x2
+ ϕ(v)c(1− c)− ψ(v)c.

Here v is the concentration of virus and c is the concentration of immune cells,
ϕ(v) and ψ(v) are some non-negative functions. The function f(v) = 1−ψ(v)/ϕ(v)
determines the zero line of the nonlinearity in the second equation. If f ′(v) < 0,
then system (3.8), (3.9) can be reduced to a locally monotone system. In a more
general and biologically realistic case, this function is not monotone but it has a
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single maximum. If this is the case, then the class of separated solution also changes.
These are non-monotone solutions anymore, but the solutions whose c component
can have a single maximum. Such solutions are separated from the other solutions
in the sense of Section 2, and the existence of travelling waves can be proved by the
Leray-Schauder method on subclasses of solutions [66].

3.3.2. Nonlinear boundary conditions. In the case of multi-dimensional problems
in unbounded cylinders, the method of separation of solutions is applicable for
monotone systems [70, 72] (see also [8, 9, 34]) but not for locally monotone systems.
Though technically it is more involved than the 1D systems, the main ideas of the
existence and stability proofs remain the same. One of the interesting development
of the multi-dimensional problems concerns the model with nonlinear boundary
condition:

(3.10)
∂u

∂t
= ∆u+ f(u),

(3.11) y = 0 :
∂u

∂y
= 0, y = 1 :

∂u

∂y
= g(u)

arising in modelling atherosclerosis. Here f and g are sufficiently smooth functions,
−∞ < x < ∞, 0 < y < 1. Under appropriate conditions on the functions f and
g, the wave existence is proved by the method of separation of monotone solutions
[4, 6, 7, 18].
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