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moments of this density distribution are finite in the case of normal diffusion, but
this is not the case for the anomalous diffusion. The asymptotic behavior at infinity
of the probability density function determines the value sm, 1 ≤ m ≤ N of the
power of the negative Laplacian (see [17]). The operators (−∆)sm , 1 ≤ m ≤ N are
defined by virtue of the spectral calculus. Let us consider the case of 0 < sm <
1/2, 1 ≤ m ≤ N in the present article. A similar system in the case of the standard
Laplacian in the diffusion term was treated recently in [32]. Let us note that the
restriction on the powers sm, 1 ≤ m ≤ N here comes from the solvability conditions
of our problem.

We set here all Dm = 1 and establish the existence of solutions of the system of
equations

(1.2) −(−∆)smum +

∫
R2

Km(x− y)gm(u(y))dy + fm(x) = 0, 0 < sm <
1

2
,

where 1 ≤ m ≤ N . We treat the case when the linear part of this operator fails to
satisfy the Fredholm property. Consequently, the conventional methods of nonlinear
analysis may not be applicable. Let us use the solvability conditions for the opera-
tors without Fredholm property along with the method of contraction mappings.

Let us consider the problem

(1.3) −∆u+ V (x)u− au = f,

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential function V (x) is either zero identically or converges to 0 at infinity. For
a ≥ 0, the essential spectrum of the operator A : E → F corresponding to the left
side of equation (1.3) contains the origin. Consequently, this operator fails to satisfy
the Fredholm property. Its image is not closed, for d > 1 the dimension of its kernel
and the codimension of its image are not finite. The present article is devoted to
the studies of certain properties of the operators of this kind. Note that elliptic
equations with non Fredholm operators were studied actively in recent years. Ap-
proaches in weighted Sobolev and Hölder spaces were developed in [2], [3], [4], [5], [6].
The Schrödinger type operators without Fredholm property were treated with the
methods of the spectral and the scattering theory in [21], [27], [26]. The Laplace
operator with drift from the point of view of non Fredholm operators was stud-
ied in [29] and linearized Cahn-Hilliard equations in [24] and [30]. Nonlinear non
Fredholm elliptic equations were treated in [28] and [31]. The significant applica-
tions to the theory of reaction-diffusion type problems were developed in [9], [10].
The operators without Fredholm property arise also when studying wave systems
with an infinite number of localized traveling waves (see [1]). In particular, when
a = 0 the operator A is Fredholm in some properly chosen weighted spaces (see
[2], [3], [4], [5], [6]). However, the case of a ̸= 0 is significantly different and the
method developed in these works cannot be used. Front propagation problems with
anomalous diffusion were treated largely in recent years (see e.g. [22], [23]). The
form boundedness criterion for the relativistic Schrödinger operator was established
in [16]. In article [15] the authors prove the imbedding theorems and study the
spectrum of certain pseudodifferential operators.
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Let us set Km(x) = εmHm(x), where εm ≥ 0, such that

ε := max1≤m≤Nεm, s := max1≤m≤Nsm

with 0 < s <
1

2
and suppose that the assumption below is fulfilled.

Assumption 1.1. Let 1 ≤ m ≤ N and consider 0 < sm <
1

2
. Let fm(x) : R2 → R

be nontrivial for some m. Let fm(x) ∈ L1(R2) ∩ L2(R2) and

(−∆)1−smfm(x) ∈ L2(R2).

We assume also that Hm(x) : R2 → R, such that Hm(x) ∈ L1(R2) and

(−∆)1−smHm(x) ∈ L2(R2).

Moreover,

H2 :=
N∑

m=1

∥Hm(x)∥2L1(R2) > 0

and

Q2 :=
N∑

m=1

∥(−∆)1−smHm(x)∥2L2(R2) > 0.

We choose here the space dimension d = 2, which is related to the solvability
conditions for the linear Poisson type equation (4.1) given in Lemma 4.1 below.
For the applications, the space dimension is not restricted to d = 2, because the
space variable here corresponds to the cell genotype but not to the usual physical

space. In d = 1 our system was studied in [35] with all 0 < sm = s <
1

4
based on

the solvability conditions for the analog of (4.1) in one dimension. In d = 3 our

system was treated in [33] with all
1

4
< sm = s <

3

4
. As distinct from the situation

in lower dimensions d = 1, 2, in R3 we were able to apply the Sobolev inequality for
the fractional negative Laplacian (see Lemma 2.2 of [12], also [13]). Let us use the
Sobolev spaces for the technical purposes with 0 < s ≤ 1, namely

H2s(R2) := {ϕ(x) : R2 → R | ϕ(x) ∈ L2(R2), (−∆)sϕ ∈ L2(R2)}
equipped with the norm

(1.4) ∥ϕ∥2H2s(R2) := ∥ϕ∥2L2(R2) + ∥(−∆)sϕ∥2L2(R2).

For a vector vector function

u(x) = (u1(x), u2(x), ..., uN (x))T ,

throughout the article we will use the norm

(1.5) ∥u∥2H2(R2,RN ) := ∥u∥2L2(R2,RN ) +
N∑

m=1

∥∆um∥2L2(R2)

with

∥u∥2L2(R2,RN ) :=

N∑
m=1

∥um∥2L2(R2).



492 V. VOUGALTER

By virtue of the standard Sobolev embedding in two dimensions, we have

(1.6) ∥ϕ∥L∞(R2) ≤ ce∥ϕ∥H2(R2),

where ce > 0 is the constant of the embedding. When all the nonnegative parameters
εm = 0, we arrive at the linear Poisson type equations

(1.7) (−∆)smum(x) = fm(x), 1 ≤ m ≤ N.

By virtue of Lemma 4.1 below along with Assumption 1.1 each equation (1.7) admits
a unique solution

u0,m(x) ∈ H2sm(R2), 0 < sm <
1

2
, 1 ≤ m ≤ N,

such that no orthogonality conditions are required. According to Lemma 4.1 below,
when 1

2 ≤ sm < 1, a certain orthogonality condition (see formula (4.3)) is needed

to be able to solve equation (1.7) in H2sm(R2). Because

−∆u0,m(x) = (−∆)1−smfm(x) ∈ L2(R2), 1 ≤ m ≤ N

due to Assumption 1.1, we obtain for the unique solution of linear problem (1.7)
that each u0,m(x) ∈ H2(R2), such that

u0(x) := (u0,1(x), u0,2(x), ..., u0,N (x))T ∈ H2(R2,RN ).

Let us look for the resulting solution of nonlinear system of equations (1.2) as

(1.8) u(x) = u0(x) + up(x),

with
up(x) := (up,1(x), up,2(x), ..., up,N (x))T .

Evidently, we easily derive the perturbative system of equations

(1.9) (−∆)smup,m(x) = εm

∫
R2

Hm(x− y)gm(u0(y) + up(y))dy, 0 < sm <
1

2
,

with 1 ≤ m ≤ N . We introduce a closed ball in the Sobolev space

(1.10) Bρ := {u(x) ∈ H2(R2,RN ) | ∥u∥H2(R2,RN ) ≤ ρ}, 0 < ρ ≤ 1.

Let us look for the solution of system (1.9) as the fixed point of the auxiliary
nonlinear problem

(1.11) (−∆)smum(x) = εm

∫
R2

Hm(x− y)gm(u0(y) + v(y))dy, 0 < sm <
1

2
,

where 1 ≤ m ≤ N in ball (1.10). For a given vector function v(y) this is a system
of equations with respect to u(x). The left side of (1.11) contains the operators
without the Fredholm property

(−∆)sm : H2sm(R2) → L2(R2).

Its essential spectrum fills the nonnegative semi-axis [0,+∞). Therefore, such oper-
ator has no bounded inverse. The similar situation appeared in works [28] and [31]
but as distinct from the present case, the problems studied there required orthogo-
nality conditions. The fixed point technique was used in [25] to estimate the pertur-
bation to the standing solitary wave of the Nonlinear Schrödinger (NLS) equation
when either the external potential or the nonlinear term in the NLS were perturbed
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but the Schrödinger operator involved in the nonlinear equation there possessed the
Fredholm property (see Assumption 1 of [25], also [8]). Let us define the closed ball
in the space of N dimensions as

(1.12) I := {z ∈ RN | |z| ≤ ce∥u0∥H2(R2,RN ) + ce}

and the closed ball DM in the space of C2(I,RN ) vector functions given by

(1.13) {g(z) := (g1(z), g2(z), ..., gN (z)) ∈ C2(I,RN ) | ∥g∥C2(I,RN ) ≤ M},

with M > 0. Here the norms

(1.14) ∥g∥C2(I,RN ) :=

N∑
m=1

∥gm∥C2(I),

(1.15) ∥gm∥C2(I) := ∥gm∥C(I) +

N∑
n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

+
N∑

n,l=1

∥∥∥ ∂2gm
∂zn∂zl

∥∥∥
C(I)

,

where ∥gm∥C(I) := maxz∈I |gm(z)|. We make the following technical assumption on
the nonlinear part of problem (1.2).

Assumption 1.2. Let 1 ≤ m ≤ N . Assume that gm(z) : RN → R, such that
gm(0) = 0 and ∇gm(0) = 0. It is also assumed that g(z) ∈ DM and it is not equal
to zero identically in the ball I.

Let us introduce the operator Tg, such that u = Tgv, where u is a solution of
problem (1.11). Our first main result is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then for every ρ ∈ (0, 1] there
exists ε∗ > 0, such that system (1.11) defines the map Tg : Bρ → Bρ, which is a
strict contraction for all 0 < ε < ε∗. The unique fixed point up(x) of this map Tg is
the only solution of problem (1.9) in Bρ.

Obviously, the resulting solution u(x) of problem (1.2) will not vanish identically
since the source terms fm(x) are nontrivial for some 1 ≤ m ≤ N and all gm(0) = 0
due to the one of our assumptions. Let us make use of the following elementary
lemma.

Lemma 1.4. For R ∈ (0,+∞) consider the function

φ(R) := αR2−4s +
1

R4s
, 0 < s <

1

2
, α > 0.

It attains the minimal value at R∗ :=

√
2s

α(1− 2s)
, which is given by

φ(R∗) =
(1− 2s)2s−1

(2s)2s
α2s.
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Our second main proposition deals with the continuity of the fixed point of the
map Tg which existence was established in Theorem 1.3 above with respect to the
nonlinear vector function g.

Theorem 1.5. Let j = 1, 2, the assumptions of Theorem 1.3 hold, such that up,j(x)
is the unique fixed point of the map Tgj : Bρ → Bρ, which is a strict contraction for
all 0 < ε < ε∗j and δ := min(ε∗1, ε

∗
2). Then for all 0 < ε < δ the estimate

(1.16) ∥up,1 − up,2∥H2(R2,RN ) ≤ C∥g1 − g2∥C2(I,RN )

holds, where C > 0 is a constant.

Let us proceed to the proof of our first main statement.

2. The existence of the perturbed solution

Proof of Theorem 1.3. Let us choose an arbitrary vector function v(x) ∈ Bρ and
denote the terms involved in the integral expressions in the right side of problem
(1.11) as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Throughout the article we will use the standard Fourier transform

(2.1) ϕ̂(p) :=
1

2π

∫
R2

ϕ(x)e−ipxdx.

Clearly, we have the upper bound

(2.2) ∥ϕ̂(p)∥L∞(R2) ≤
1

2π
∥ϕ(x)∥L1(R2).

We apply (2.1) to both sides of problem (1.11). This yields

ûm(p) = εm2π
Ĥm(p)Ĝm(p)

|p|2sm
, 1 ≤ m ≤ N.

Then we express the norm as

(2.3) ∥um∥2L2(R2) = 4π2ε2m

∫
R2

|Ĥm(p)|2|Ĝm(p)|2

|p|4sm
dp, 1 ≤ m ≤ N.

As distinct from works [28] and [31] with the standard Laplacian in the diffusion
term, here we do not try to control the norms∥∥∥∥∥Ĥm(p)

|p|2sm

∥∥∥∥∥
L∞(R2)

, 1 ≤ m ≤ N.

Instead, let us estimate the right side of (2.3) via the analog of bound (2.2) applied
to functions Hm and Gm with R ∈ (0,+∞) as

4π2ε2m

[ ∫
|p|≤R

|Ĥm(p)|2|Ĝm(p)|2

|p|4sm
dp+

∫
|p|>R

|Ĥm(p)|2|Ĝm(p)|2

|p|4sm
dp

]
≤
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(2.4) ≤ ε2m∥Hm∥2L1(R2)

{
1

4π
∥Gm(x)∥2L1(R2)

R2−4sm

1− 2sm
+

1

R4sm
∥Gm(x)∥2L2(R2)

}
.

Be means of norm definition (1.5) along with the triangle inequality and since
v(x) ∈ Bρ, we easily arrive at

∥u0 + v∥L2(R2,RN ) ≤ ∥u0∥H2(R2,RN ) + 1.

Sobolev embedding (1.6) gives us

|u0 + v| ≤ ce(∥u0∥H2(R2,RN ) + 1).

Let the dot stand for the scalar product of two vectors in RN . The representation

Gm(x) =

∫ 1

0
∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N,

where the ball I is defined in (1.12) implies

|Gm(x)| ≤ supz∈I |∇gm(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|.
Therefore,

∥Gm(x)∥L2(R2) ≤ M∥u0 + v∥L2(R2,RN ) ≤ M(∥u0∥H2(R2,RN ) + 1).

Evidently, for t ∈ [0, 1] and 1 ≤ m, j ≤ N , we have the representation

∂gm
∂zj

(t(u0(x) + v(x))) =

∫ t

0
∇∂gm

∂zj
(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This gives us∣∣∣∂gm
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gm
∂zj

∣∣∣|u0(x) + v(x)| ≤

≤
N∑

n=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0(x) + v(x)|.

Thus, |Gm(x)| ≤

≤ |u0(x) + v(x)|
N∑

n,j=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0,j(x) + vj(x)| ≤ M |u0(x) + v(x)|2.

Therefore,

(2.5) ∥Gm(x)∥L1(R2) ≤ M∥u0 + v∥2L2(R2,RN ) ≤ M(∥u0∥H2(R2,RN ) + 1)2.

This allows us to derive the estimate from above for the right side of (2.4) as
ε2mM2∥Hm∥2L1(R2)×

×(∥u0∥H2(R2,RN ) + 1)2

{
(∥u0∥H2(R2,RN ) + 1)2R2−4sm

4π(1− 2sm)
+

1

R4sm

}
,

where R ∈ (0,+∞). Lemma 1.4 yields the minimal value of the expression above.
Hence, ∥um∥2L2(R2) ≤

≤ εm
2∥Hm∥2L1(R2)(∥u0∥H2(R2,RN ) + 1)2+4sm M2

(1− 2sm)(8πsm)2sm
.
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We introduce
1

(8πS)2S
:= max1≤m≤N

1

(8πsm)2sm
,

with 0 < S <
1

2
. Hence

(2.6) ∥u∥2L2(R2,RN ) ≤ ε2H2(∥u0∥H2(R2,RN ) + 1)2+4s M2

(1− 2s)(8πS)2S
.

Evidently, (1.11) gives us

−∆um(x) = εm(−∆)1−sm

∫
R2

Hm(x− y)Gm(y)dy, 1 ≤ m ≤ N,

with 0 < sm <
1

2
. By virtue of the analog of estimate (2.2) applied to function Gm

along with (2.5) we arrive at

∥∆um∥2L2(R2) ≤ ε2m∥Gm∥2L1(R2)∥(−∆)1−smHm∥2L2(R2) ≤

≤ ε2M2(∥u0∥H2(R2,RN ) + 1)4∥(−∆)1−smHm∥2L2(R2).

Therefore,

(2.7)

N∑
m=1

∥∆um∥2L2(R2) ≤ ε2M2(∥u0∥H2(R2,RN ) + 1)4Q2.

Thus, by means of the definition of the norm (1.5) along with estimates (2.6) and
(2.7) we obtain the upper bound for ∥u∥H2(R2,RN ) as

(2.8) εM(∥u0∥H2(R2,RN ) + 1)2

[
H2(∥u0∥H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

] 1
2

≤ ρ

for all ε > 0 small enough. Therefore, u(x) ∈ Bρ as well. If for some v(x) ∈ Bρ

there exist two solutions u1,2(x) ∈ Bρ of problem (1.11), their difference w(x) :=
u1(x)− u2(x) ∈ L2(R2,RN ) satisfies

(−∆)smwm(x) = 0, 0 < sm <
1

2
, 1 ≤ m ≤ N.

Since the operator (−∆)sm considered on the whole R2 does not have any nontrivial
square integrable zero modes, w(x) = 0 a.e. on R2. Hence, system (1.11) defines a
map Tg : Bρ → Bρ for all ε > 0 sufficiently small.

Our aim is to prove that this map is a strict contraction. We choose arbitrarily
v1,2(x) ∈ Bρ. The argument above yields u1,2 := Tgv1,2 ∈ Bρ as well. By virtue of
(1.11) we have for 1 ≤ m ≤ N

(2.9) (−∆)smu1,m(x) = εm

∫
R2

Hm(x− y)gm(u0(y) + v1(y))dy,

(2.10) (−∆)smu2,m(x) = εm

∫
R2

Hm(x− y)gm(u0(y) + v2(y))dy,
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where all 0 < sm <
1

2
. Let us define

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (2.1) to both sides of problems (2.9) and
(2.10). This gives us

û1,m(p) = εm2π
Ĥm(p)Ĝ1,m(p)

|p|2sm
, û2,m(p) = εm2π

Ĥm(p)Ĝ2,m(p)

|p|2sm
.

Evidently,

∥u1,m − u2,m∥2L2(R2) = ε2m4π2

∫
R2

|Ĥm(p)|2|Ĝ1,m(p)− Ĝ2,m(p)|2

|p|4sm
dp.

Clearly, it can be bounded from above via estimate (2.2) by ε2∥Hm∥2L1(R2)×

×

{
∥G1,m(x)−G2,m(x)∥2L1(R2)

4π

R2−4sm

1− 2sm
+

∥G1,m(x)−G2,m(x)∥2L2(R2)

R4sm

}
,

where R ∈ (0,+∞). Let us make use of the representation for 1 ≤ m ≤ N

G1,m(x)−G2,m(x) =

∫ 1

0
∇gm(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

Evidently, for t ∈ [0, 1]

∥v2(x) + t(v1(x)− v2(x))∥H2(R2,RN ) ≤ t∥v1(x)∥H2(R2,RN )+

+(1− t)∥v2(x)∥H2(R2,RN ) ≤ ρ,

which yields that v2(x) + t(v1(x)− v2(x)) ∈ Bρ. Thus,

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|.
This gives us

∥G1,m(x)−G2,m(x)∥L2(R2) ≤ M∥v1 − v2∥L2(R2,RN ) ≤ M∥v1 − v2∥H2(R2,RN ).

Let us express
∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x)) for 1 ≤ m, j ≤ N as∫ 1

0
∇∂gm

∂zj
(τ [u0(x) + tv1(x) + (1− t)v2(x)]).[u0(x) + tv1(x) + (1− t)v2(x)]dτ.

Hence for t ∈ [0, 1] ∣∣∣∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤
N∑

n=1

∥∥∥∥∥ ∂2gm
∂zn∂zj

∥∥∥∥∥
C(I)

(|u0(x)|+ t|v1(x)|+ (1− t)|v2(x)|).

Thus we derive the estimate from above for G1,m(x)−G2,m(x) in the absolute value
as

M |v1(x)− v2(x)|
(
|u0(x)|+

1

2
|v1(x)|+

1

2
|v2(x)|

)
.
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By virtue of the Schwarz inequality we obtain at the upper bound for the norm
∥G1,m(x)−G2,m(x)∥L1(R2) as

M∥v1 − v2∥L2(R2,RN )

(
∥u0∥L2(R2,RN ) +

1

2
∥v1∥L2(R2,RN ) +

1

2
∥v2∥L2(R2,RN )

)
≤

(2.11) ≤ M∥v1 − v2∥H2(R2,RN )(∥u0∥H2(R2,RN ) + 1).

Hence we obtain the estimate from above for the norm ∥u1,m − u2,m∥2L2(R2) given

by ε2∥Hm∥2L1(R2)M
2∥v1 − v2∥2H2(R2,RN )×

×
{ 1

4π
(∥u0∥H2(R2,RN ) + 1)2

R2−4sm

1− 2sm
+

1

R4sm

}
.

Let us minimize the expression above over R ∈ (0,+∞) by virtue of Lemma 1.4.
Thus, we arrive at ∥u1,m(x)− u2,m(x)∥2L2(R2) ≤

≤ ε2∥Hm∥2L1(R2)M
2∥v1 − v2∥2H2(R2,RN )

(∥u0∥H2(R2,RN ) + 1)4sm

(1− 2sm)(8πsm)2sm
,

such that ∥u1(x)− u2(x)∥2L2(R2,RN )
≤

(2.12) ≤ ε2H2M2∥v1 − v2∥2H2(R2,RN )

(∥u0∥H2(R2,RN ) + 1)4s

1− 2s

1

(8πS)2S
.

Formulas (2.9) and (2.10) with 1 ≤ m ≤ N give us

(−∆)(u1,m(x)− u2,m(x)) =

= εm(−∆)1−sm

∫
R2

Hm(x− y)[G1,m(y)−G2,m(y)]dy.

By means of inequalities (2.2) and (2.11) we derive

∥∆(u1,m(x)− u2,m(x))∥2L2(R2) ≤

≤ ε2∥G1,m −G2,m∥2L1(R2)∥(−∆)1−smHm∥2L2(R2) ≤

≤ ε2M2∥v1 − v2∥2H2(R2,RN )(∥u0∥H2(R2,RN ) + 1)2∥(−∆)1−smHm∥2L2(R2).

Therefore,
∑N

m=1 ∥∆(u1,m(x)− u2,m(x))∥2L2(R2) ≤

(2.13) ≤ ε2M2∥v1 − v2∥2H2(R2,RN )(∥u0∥H2(R2,RN ) + 1)2Q2.

Estimates (2.12) and (2.13) imply that the norm ∥u1−u2∥H2(R2,RN ) can be bounded

from above by the expression εM(∥u0∥H2(R2,RN ) + 1)×

(2.14) ×

{
H2(∥u0∥H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

} 1
2

∥v1 − v2∥H2(R2,RN ).

This implies that the map Tg : Bρ → Bρ defined by problem (1.11) is a strict con-
traction for all values of ε > 0 sufficiently small. Its unique fixed point up(x) is the
only solution of system (1.9) in the ball Bρ. The resulting u(x) ∈ H2(R2,RN ) given
by (1.8) is a solution of problem (1.2). Note that by virtue of (2.8) up(x) converges to
zero in theH2(R2,RN ) norm as ε tends to zero. □
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Let us turn our attention to the proof of the second main proposition of our
article.

3. The continuity of the fixed point of the map Tg

Proof of Theorem 1.5. Evidently, for all 0 < ε < δ we have

up,1 = Tg1up,1, up,2 = Tg2up,2.

Thus,

up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Obviously, ∥up,1 − up,2∥H2(R2,RN ) ≤

≤ ∥Tg1up,1 − Tg1up,2∥H2(R2,RN ) + ∥Tg1up,2 − Tg2up,2∥H2(R2,RN ).

Estimate (2.14) gives us

∥Tg1up,1 − Tg1up,2∥H2(R2,RN ) ≤ εσ∥up,1 − up,2∥H2(R2,RN ),

where εσ < 1 because the map Tg1 : Bρ → Bρ under the given assumptions is a
strict contraction. Here and further down we use the positive constant

σ := M(∥u0∥H2(R2,RN ) + 1)

{
H2(∥u0∥H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

} 1
2

.

Hence, we arrive at

(3.1) (1− εσ)∥up,1 − up,2∥H2(R2,RN ) ≤ ∥Tg1up,2 − Tg2up,2∥H2(R2,RN ).

Evidently, for our fixed point Tg2up,2 = up,2. We designate ξ(x) := Tg1up,2. For
1 ≤ m ≤ N , we obtain

(3.2) (−∆)smξm(x) = εm

∫
R2

Hm(x− y)g1,m(u0(y) + up,2(y))dy,

(3.3) (−∆)smup,2,m(x) = εm

∫
R2

Hm(x− y)g2,m(u0(y) + up,2(y))dy,

with all 0 < sm <
1

2
. We denote here

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

Let us apply the standard Fourier transform (2.1) to both sides of formulas (3.2)
and (3.3). This gives us

ξ̂m(p) = εm2π
Ĥm(p)Ĝ1,2,m(p)

|p|2sm
, ûp,2,m(p) = εm2π

Ĥm(p)Ĝ2,2,m(p)

|p|2sm
.

Clearly,

∥ξm(x)− up,2,m(x)∥2L2(R2) = ε2m4π2

∫
R2

|Ĥm(p)|2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|2

|p|4sm
dp.
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Obviously, it can be estimated from above via (2.2) by

ε2∥Hm∥2L1(R2)

{
∥G1,2,m −G2,2,m∥2L1(R2)

4π

R2−4sm

1− 2sm
+

∥G1,2,m −G2,2,m∥2L2(R2)

R4sm

}
,

where R ∈ (0,+∞). Let us use the identity

G1,2,m(x)−G2,2,m(x) =

∫ 1

0
∇[g1,m − g2,m](t(u0(x) + up,2(x))).

(u0(x) + up,2(x))dt.

Hence
|G1,2,m(x)−G2,2,m(x)| ≤ ∥g1,m − g2,m∥C2(I)|u0(x) + up,2(x)|.

This yields

∥G1,2,m −G2,2,m∥L2(R2) ≤ ∥g1,m − g2,m∥C2(I)∥u0 + up,2∥L2(R2,RN ) ≤

≤ ∥g1,m − g2,m∥C2(I)(∥u0∥H2(R2,RN ) + 1).

We apply another useful representation formula for 1 ≤ j ≤ N and t ∈ [0, 1], namely

∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x))) =

=

∫ t

0
∇
[ ∂

∂zj
(g1,m − g2,m)

]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Hence, we arrive at ∣∣∣ ∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x)))

∣∣∣ ≤
≤

N∑
n=1

∥∥∥∥∥∂2(g1,m − g2,m)

∂zn∂zj

∥∥∥∥∥
C(I)

|u0(x) + up,2(x)|.

Therefore,

|G1,2,m(x)−G2,2,m(x)| ≤ ∥g1,m − g2,m∥C2(I)|u0(x) + up,2(x)|2,
such that

∥G1,2,m −G2,2,m∥L1(R2) ≤ ∥g1,m − g2,m∥C2(I)∥u0 + up,2∥2L2(R2,RN ) ≤

(3.4) ≤ ∥g1,m − g2,m∥C2(I)(∥u0∥H2(R2,RN ) + 1)2.

This allows us to obtain the estimate from above for the norm ∥ξm − up,2,m∥2L2(R2)

as ε2∥Hm∥2L1(R2)(∥u0∥H2(R2,RN ) + 1)2×

×∥g1,m − g2,m∥2C2(I)

[
(∥u0∥H2(R2,RN ) + 1)2R2−4sm

4π(1− 2sm)
+

1

R4sm

]
.

This expression can be easily minimized over R ∈ (0,+∞) due to Lemma 1.4. We
derive the upper bound ∥ξm(x)− up,2,m(x)∥2L2(R2) ≤

≤ ε2∥Hm∥2L1(R2)(∥u0∥H2(R2,RN ) + 1)2+4sm
∥g1,m − g2,m∥2C2(I)

(1− 2sm)(8πsm)2sm
,
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such that

∥ξ(x)− up,2(x)∥2L2(R2,RN ) ≤ ε2H2(∥u0∥H2(R2,RN ) + 1)2+4s
∥g1 − g2∥2C2(I,RN )

(1− 2s)(8πS)2S
.

Equalities (3.2) and (3.3) with 1 ≤ m ≤ N give us

−∆ξm(x) = εm(−∆)1−sm

∫
R2

Hm(x− y)G1,2,m(y)dy,

−∆up,2,m(x) = εm(−∆)1−sm

∫
R2

Hm(x− y)G2,2,m(y)dy.

Therefore, by virtue of (2.2) and (3.4) the norm ∥∆(ξm(x) − up,2,m(x))∥2L2(R2) can

be bounded from above by

ε2∥G1,2,m −G2,2,m∥2L1(R2)∥(−∆)1−smHm∥2L2(R2) ≤

≤ ε2∥g1,m − g2,m∥2C2(I)(∥u0∥H2(R2,RN ) + 1)4∥(−∆)1−smHm∥2L2(R2).

Therefore,
∑N

m=1 ∥∆(ξm(x)− up,2,m(x))∥2L2(R2) ≤

ε2∥g1 − g2∥2C2(I,RN )(∥u0∥H2(R2,RN ) + 1)4Q2.

Hence, we obtain ∥ξ(x)− up,2(x)∥H2(R2,RN ) ≤

≤ ε∥g1 − g2∥C2(I,RN )(∥u0∥H2(R2,RN ) + 1)2

[
H2(∥u0∥H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

] 1
2

.

By means of inequality (3.1), the norm ∥up,1−up,2∥H2(R2,RN ) can be estimated from

above by
ε

1− εσ
(∥u0∥H2(R2,RN ) + 1)2×

×

[
H2(∥u0∥H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

] 1
2

∥g1 − g2∥C2(I,RN ),

which completes the proof of our theorem. □

4. Auxiliary results

Let us state here the solvability conditions for the linear Poisson type equation
with a square integrable right side

(4.1) (−∆)sϕ = f(x), x ∈ R2, 0 < s < 1.

The inner product can be designated as

(4.2) (f(x), g(x))L2(R2) :=

∫
R2

f(x)ḡ(x)dx,

with a slight abuse of notations when the functions involved in (4.2) are not square
integrable, like for instance the one involved in orthogonality condition (4.3) of
Lemma 4.1 below. Indeed, if f(x) ∈ L1(R2) and g(x) ∈ L∞(R2), then the integral
in the right side of (4.2) is well defined. We have the following technical proposition,
which can be easily established by applying the standard Fourier transform (2.1)
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to both sides of problem (4.1) (see the part b) of the first theorem of [36] and for

s =
1

2
the part 2) of Lemma 3.1 of [34]).

Lemma 4.1. Let f(x) : R2 → R and f(x) ∈ L2(R2).
1) When 0 < s < 1

2 and additionally f(x) ∈ L1(R2), equation (4.1) possesses a

unique solution ϕ(x) ∈ H2s(R2).

2) When 1
2 ≤ s < 1 and in addition |x|f(x) ∈ L1(R2), problem (4.1) has a unique

solution ϕ(x) ∈ H2s(R2) if and only if the orthogonality relation

(4.3) (f(x), 1)L2(R2) = 0

holds.

Let us note that for the lower values of the power of the negative Laplacian

0 < s <
1

2
under the conditions stated above no orthogonality relations are required

to solve the linear Poisson type problem (4.1) in H2s(R2).
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in a two- dimensional rotating flow, Phys. Rev. Lett. 71 (1993), 3975–3978.

[21] V. Volpert, Elliptic partial differential equations. Volume 1: Fredholm theory of elliptic prob-
lems in unbounded domains, Monographs in Mathematics 101, Birkhäuser/Springer, (2011),
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