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Boltzmann–Shannon entropy and energy for specific parameters before conjecturing
and eventually proving their general form with the computer assistance. Armed with
closed forms, we will consider how the minimization of an entropy function changes
when the weighted average is replaced with a true homotopy.

The structure of this paper is as follows. In Subsection 1.1, we recall the prop-
erties of the Lambert W function that will prove instrumental in our analysis, and
in Subsection 1.2 we recall preliminaries on convex analysis. In Section 2, we recall
the basic properties of the proximal average. In Section 3 we consider proximal
averages which employ W, first the energy and Boltzmann–Shannon entropy in
Subsection 3.1, and then the energy with the exponential in Subsection 3.2; the two
are related, importantly, through duality. In Section 4, we introduce the problem of
minimizing an entropy functional subject to linear constraints, and in Subsection 4.1
we provide examples. We conclude in Section 5.

1.1. Lambert W preliminaries. Of particular interest to us is the Lambert W
function, which we take to be the real analytic inverse of x 7→ xex. The real inverse
is two-valued, and, for the sake of our exposition, we consider W to refer always
to the principal branch, shown in Figure 1.2. We will make use of the following
elementary identities.

Proposition 1.1. For any y in the appropriate respective domains, the following
identities hold:

(i) W(y)eW(y) = y;

(ii) eW(y) = y
W(y) ;

(iii) W(y) = log
(

y
W(y)

)
;

(iv) log (W(y)) = log(y)−W(y).
(v) log (W(ey)) = y −W(ey).

Proof. (i): This is true from the fact that W is the inverse of x 7→ xex.
(ii): Divide both sides of 1.1 by W(y).
(iii): Take the log of both sides of 1.1.

(iv): Since log
(

y
W(y)

)
= log(y)− log(W(y)), this follows from 1.1.

(v): Apply 1.1, substituting ey for y. □

An excellent overview of the methods used for symbolic differentiation and anti-
differentiation — and their history — is given by R.M. Corless, G.H. Gonnet, D.E.G.
Hare, D.J. Jeffrey, and D.E. Knuth [13]. We have, in particular, the following
characterization of the derivatives and antiderivative.

Proposition 1.2. The derivative of W is given by

W ′(x) =
1

(1 +W(x)) exp(W(x))

=
W(x)

x(1 +W(x))
, if x ̸= 0.



PROXIMAL AVERAGES FOR ENTROPY MINIMIZATION 507

Moreover, the nth derivative of W may be characterized as

dnW(x)

dxn
=

e−nW(x)pn(W(x))

(1 +W(x))2n−1
for n ≥ 1.

where pn(w) are polynomials that satisfy the recurrence relation given by

pn+1(w) = − (nw + 3n− 1) pn(w) + (1 + w)p′n(w), for n ≥ 1.

For details, see, for example, [13, Section 3].

Proposition 1.3. The antiderivative of W may be characterized as∫
W(x)dx =

(
W(x)2 −W(x) + 1

)
eW(x) + C

= x (W(x)− 1 + 1/W(x)) + C.

For details, see, for example, [13, Section 3].

Using Proposition 1.2, we also have the following.

Proposition 1.4. The following hold:

(i) d
dxW(ex) = W(ex)

1+W(ex) ;

(ii) d
dx

(
W(ex) + 1

2W(ex)2
)
= W(ex);

(iii) d
dxe

W(x) = 1
1+W(x) .

Proof. (i): Apply the chain rule along with the identity from Proposition 1.2 to
differentiate W(ex).

(ii): Apply the chain rule along with the identity from Proposition 1.2 to differ-
entiate

(
W(ex) + 1

2W(ex)2
)
.

(iii): Apply the chain rule along with the identity from Proposition 1.2 to differ-

entiate eW(x). □

1.2. Preliminaries on Convex Analysis. Throughout, X is a Hilbert space.

Definition 1.5. As in [3], we will work with the following set of functions:

F := {f : X → ]−∞,∞] | f is convex, lower semicontinuous, and proper} .

Definition 1.6 (Fenchel Conjugate). The Fenchel conjugate f∗ of a function f :
X → [−∞,∞] is defined as follows:

f∗ : X∗ → [−∞,∞]

f∗ : x 7→ sup
y∈X

{⟨x, y⟩ − f(y)} .

This is also often referred to as a convex conjugate or Fenchel-Moreau conjugate.

The function f∗ is always convex, i.e. its epigraph is convex. Moreover, we have
the following.

Proposition 1.7. [1, Proposition 16.4] Let f ∈ F and x ∈ dom ∂f . Then f∗∗ = f
and ∂f∗∗(x) = ∂f(x).
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Figure 1. The two real branches of Lambert W.

Definition 1.8 (Argmin operator p for Fenchel conjugates). Let f be a proper
convex function and f∗ its conjugate. We define pf to be a selection operator
satisfying

(1.1) pf (x) ∈ argmin
y∈X

{⟨x, y⟩ − f(y)} .

so that we may express the closed form for f∗ as

(1.2) f∗(x) = sup
y∈X

{⟨x, y⟩ − f(y)} = ⟨x,pf (x)⟩ − f(pf (x)).

2. Proximal averages

The systematic investigation of the proximal average started in 2008 [3], relying
crucially on an important result of Bauschke, E. Matous̆ková, and S. Reich [4,
Theorem 6.1]. Research on the topic continues to grow. One noteworthy recent
application is Y.L. Yu’s 2013 employment of the proximal average to analyse a
novel proximal gradient algorithm [18].

Definition 2.1 (Proximal Average). The proximal average operator is

P : F × [0, 1]×F → {f |f : X → [−∞,+∞]}

(f0, λ, f1) 7→
(
(1− λ)

(
f0 +

1
2∥ · ∥

2
)∗

+ λ
(
f1 +

1
2∥ · ∥

2
)∗)∗ − 1

2∥ · ∥
2.

See, for example, [3, Definition 4.1].

Remark 2.2 (Symmetric and convex properties of proximal averages). Let f0, f1 ∈
F and λ ∈ [0, 1]. Then we have that

(2.1) P(f0, 0, f1) = f0, P(f0, 1, f1) = f1, and P(f0, λ, f1) = P(f1, 1− λ, f0).

We also have that P(f0, λ, f1) is convex. See, for example, [3, Proposition 4.2].

Remark 2.3 (Conjugacy of proximal averages). When f0, f1 ∈ F and λ ∈ [0, 1] we
have that

(2.2) (P(f0, λ, f1))
∗ = P(f∗

0 , λ, f
∗
1 ).

See, for example, [3, Theorem 4.3] or [4, Theorem 6.1].
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Definition 2.4 (Simplified notation for proximal averages). We will follow a con-
venient convention from [3]. Let f0, f1 ∈ F and λ ∈ [0, 1]. Let

fλ := P(f0, λ, f1) and f∗
λ := P(f∗

0 , λ, f
∗
1 ).

From Remark 2.3 we have that (fλ)
∗ = (f∗)λ, which shows that f∗

λ is not ambiguous.

Definition 2.5 (epi-convergence and epi-topology). Let f and (fn)n∈N be functions
from X to ]−∞,+∞]. Then (fn)n∈N epi-converges to f if for every x ∈ X the
following hold.

(i) For every sequence (xn)n∈N inX converging to x, one has f(x) ≤ lim inf fn(xn).
(ii) There exists a sequence (yn)n∈N inX converging to x such that lim sup fn(yn) ≤

f(x).

In this case we write fn
e→ f . The epi-topology is the topology induced by epi-

convergence. See, for example, [3, Definition 5.1]. For greater detail, see [16].

Remark 2.6 (Continuity of P). Suppose that F is equipped with the epi-topology.
Then the proximal average operator P : F × [0, 1]×F → F is continuous. In other
words, where (fn)n∈N, (gn)n∈N are sequences in F and (λn)n∈N is a sequence in [0, 1]

such that fn
e→ f, gn

e→ g, and λn → λ, then we have that:

(2.3) P(fn, λn, gn)
e→ P (f, λ, g) as n → ∞.

For a proof, see, for example, [3, Theorem 5.4].

3. Proximal averages employing Lambert W

Definition 3.1. We define the negative Boltzmann–Shannon entropy as follows:

(3.1) ent : R → R ∪ {∞} : x 7→


x log x− x x ∈ ]0,∞] ;

0 x = 0;

∞ otherwise.

In [9] the authors considered the average (not the proximal average) given by

(3.2) ft(x) = (1− t)ent(x) + t
x2

2

for 0 ≤ t ≤ 1 so that f0 is the Boltzmann–Shannon entropy and f1 is the energy. For
clarity, we will refer to such an average as a weighted average, in order to distinguish
it from the proximal average, and we will consistently use t for the former and λ
for the latter.

Borwein and Lindstrom then obtained the conjugate as follows:

(3.3) f∗
t (y) =

(1− t)2

2t

W

 t

1− t
e

y

1− t

+ 2

W

 t

1− t
e

y

1− t

 .

Remark 3.2 (Limiting Cases for Weighted Average). In (3.2), if one considers the
limit for ft as t → 1 we obtain the positive energy, which is infinite at negative
points. In the limit as t → 0 we recover ent(x). For its conjugate in f∗

t in (3.3), if
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Figure 2. ft from (3.2) (left) and f∗
t from (3.3) (right).

one considers the limit as t → 0 we recover exp(x) which is the conjugate of ent(x).
In the limit as t → 1 we obtain

x 7→

{
x2

2 if x > 0

0 otherwise.

We would expect this, given that (·)2
2 is self-conjugate while ent(x) is infinite for

x < 0. Notice, however, that f∗
1 = 1

2 | · |
2, and so we do not reobtain f∗

1 in the
limiting case as t → 1.

Both ft and f∗
t may be seen in Figure 2.

However, instead of (3.2), it is more natural to consider fλ = P(ent, λ, (·)
2

2 ). We
will compute fλ and its conjugate f∗

λ , which is the natural analogue to (3.3).

3.1. Form and proof for fλ. Throughout the following λ ∈ ]0, 1[. In each case
where we compute a conjugate, we will be seeking the argmax of a concave function
that attains its maximum, and so it suffices to find a critical point.

Lemma 3.3. Let f0 := ent and f1 :=
1
2(·)

2. Then we have the following:

(i)
(
f0 +

1
2(·)

2
)∗

= 1
2W(ex) (W(ex) + 2)

(ii)
(
f1 +

1
2(·)

2
)∗

= 1
4(·)

2.

Proof. (i): By definition,(
f0 +

1

2
(·)2
)∗

(x) = sup
y∈R

{
xy − f0(y)−

1

2
y2
}
.

Differentiating the inner term with respect to y and setting equal to zero, we have
that the supremum is obtained when y satisfies x − log(y) − y = 0. Solving for y,
we obtain

log(y) = x− y,

and so y =
ex

ey
,

which simplifies to yey = ex,
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and so y = W(ex). Substituting this value back into xy− f0(y)− 1
2y

2, we have that(
f0 +

1

2
(·)2
)∗

(x) = xW(ex)−W(ex) log (W(ex)) +W(ex)− 1

2
W(ex)2.

Factoring and employing the fact that (log ◦W)(z) = log(z)−W(z) we obtain(
f0 +

1

2
(·)2
)∗

(x) =
1

2
W(ex) (2x+W(ex)− 2 log(ex) + 2) .

Because x is real, the right-hand side further simplifies to 1
2W(ex) (W(ex) + 2),

completing the proof of 3.3.
(ii): This is a well-known result and may be obtained by simple arithmetic. □
Note that we may recognize the term 1

2W(ex)(W(ex) + 2) as an antiderivative of
W(ex) (see Proposition 1.4), a fact we will exploit in the following lemma.

Lemma 3.4. Let φ be defined as follows

φ :=

(
(1− λ)

(
1

2
W(e(·))(W(e(·)) + 2)

)
+ λ

(
1

4
(·)2
))∗

.

Then it holds that

(3.4) pφ(x) = −
( 2λ − 2)W

((
2
λ − 1

)
e

2x
λ

)
2
λ − 1

+
2x

λ

so that we may explicitly write

φ(x) = xpφ(x)− (1− λ)

(
1

2
W(epφ(x))(W(epφ(x)) + 2)

)
− λ

4
pφ(x)

2.

Proof. By definition,

φ(x) = sup
y∈R

{
xy − (1− λ)

(
1

2
W(ey)(W(ey) + 2)

)
− λ

4
y2
}
.

Differentiating the inner term with respect to y and setting equal to zero, we obtain

(3.5) x− (1− λ)W(ey)− λ

2
y = 0.

We will show that (3.5) is true if y = pφ(x). First we will rewrite (3.5) using the

fact that W(a) = b if and only if beb = a, which allows us to remove the W(ey)
term as follows:

W(ey) =
x− λ

2y

1− λ
,(

x− λ
2y

1− λ

)
e

(
x−λ

2 y

1−λ

)
= ey,(

x− λ

2
y

)
e

yλ−2x
2(λ−1) = (1− λ)ey.

This is equivalent to the form returned by Maple,

(3.6) e
yλ−2x
2(λ−1) yλ− 2eyλ− 2xe

yλ−2x
2(λ−1) + 2ey = 0,
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and so again naivety need not inhibit the discovery. We will use Maple’s form. We
need only to show that

(3.7) e
pφ(x)λ−2x

2(λ−1) p(x)λ− 2epφ(x)λ− 2xe
pφ(x)λ−2x

2(λ−1) + 2epφ(x) = 0.

First consider the term epφ(x). Since for any a, b, z we have that

eaW (z)+b = (eW (z))aeb =

(
z

W (z)

)a

eb,

we may let

(3.8) a := −

(
2
λ − 2
2
λ − 1

)
, b :=

2x

λ
, z :=

(
2

λ
− 1

)
e

2x
λ ,

and thusly rewrite

(3.9) epφ(x) =

 (
2
λ − 1

)
e

2x
λ

W
((

2
λ − 1

)
e

2x
λ

)
−

2
λ
−2

2
λ
−1

e
2x
λ .

Next consider the term e
pφ(x)λ−2x

2(λ−1) . Using (3.9), we may rewrite it thusly:

e
pφ(x)λ−2x

2(λ−1) = e
−2x

2(λ−1)

(
epφ(x)

) λ
2(λ−1)

= e
−2x

2(λ−1)


 (

2
λ − 1

)
e

2x
λ

W
((

2
λ − 1

)
e

2x
λ

)
−

2
λ
−2

2
λ
−1

e
2x
λ


λ

2(λ−1)

= e
−2x

2(λ−1)

 (
2
λ − 1

)
e

2x
λ

W
((

2
λ − 1

)
e

2x
λ

)
− λ

λ−2

e
2x

2(λ−1)

=

 (
2
λ − 1

)
e

2x
λ

W
((

2
λ − 1

)
e

2x
λ

)
− λ

λ−2

=

(
2
λ − 1

)− λ
λ−2 e−

2x
λ−2

W
((

2
λ − 1

)
e

2x
λ

)− λ
λ−2

.(3.10)

Next consider the term e
pφ(x)λ−2x

2(λ−1) pφ(x)λ. Using (3.4) and (3.10), we may rewrite
it as follows:

e
pφ(x)λ−2x

2(λ−1) pφ(x)λ =
( 2
λ
−1)

−λ
λ−2 e

−2x
λ−2

W
(
( 2
λ
−1)e

2x
λ

) −λ
λ−2

−
( 2
λ
−2)W

(
( 2
λ
−1)e

2x
λ

)
2
λ
−1

+ 2x
λ

λ

=−
(
2
λ − 1

) −λ
λ−2

−1 ( 2
λ − 2

)
e−

2x
λ−2W

((
2
λ − 1

)
e

2x
λ

)(1+ λ
λ−2)

λ
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+
2x
(
2
λ − 1

)− λ
λ−2 e−

2x
λ−2

W
((

2
λ − 1

)
e

2x
λ

)− λ
λ−2

.(3.11)

Using (3.9), (3.10), and (3.11), we may have that the statement (3.7) — which we
want to show — is equivalent to:

0 = −
(
2

λ
− 1

) −λ
λ−2

−1( 2

λ
− 2

)
e−

2x
λ−2W

((
2

λ
− 1

)
e

2x
λ

)(1+ λ
λ−2)

λ

+
2x
(
2
λ − 1

)− λ
λ−2 e−

2x
λ−2

W
((

2
λ − 1

)
e

2x
λ

)− λ
λ−2

+ 2(1− λ)

 (
2
λ − 1

)
e

2x
λ

W
((

2
λ − 1

)
e

2x
λ

)
−

2
λ
−2

2
λ
−1

e
2x
λ

− 2x

(
2
λ − 1

)− λ
λ−2 e−

2x
λ−2

W
((

2
λ − 1

)
e

2x
λ

)− λ
λ−2

.

Now the positive and negative terms of the form

2x

(
2
λ − 1

)− λ
λ−2 e−

2x
λ−2

W
((

2
λ − 1

)
e

2x
λ

)− λ
λ−2

cancel each other out, leaving us with

0 = −
(
2

λ
− 1

) −λ
λ−2

−1( 2

λ
− 2

)
e−

2x
λ−2W

((
2

λ
− 1

)
e

2x
λ

)(1+ λ
λ−2)

λ

+ 2(1− λ)

 (
2
λ − 1

)
e

2x
λ

W
((

2
λ − 1

)
e

2x
λ

)
−

2
λ
−2

2
λ
−1

e
2x
λ .

Rewriting and simplifying, we obtain

0 = −
(
2

λ
− 1

) 2(1−λ)
λ−2

2 (1− λ) e−
2x

λ−2W
((

2

λ
− 1

)
e

2x
λ

)(1+ λ
λ−2)

+ 2(1− λ)

(
2

λ
− 1

) 2(1−λ)
λ−2

e
−2x
λ−2W

((
2

λ
− 1

)
e

2x
λ

)1+ λ
λ−2

,

which is true, completing the result. □

Theorem 3.5. Let f0, f1 be defined as in Lemma 3.3 and let p be defined as in
Lemma 3.4. Then

fλ(x) =
λ− 1

2
W

(
e

(
2λ−2
2−λ

W
(
( 2
λ
−1)e

2x
λ

)
+ 2x

λ

))2

− x2(λ− 2)

2λ

(3.12)
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Figure 3. fλ from Theorem 3.5

+ (λ− 1)W

(
e

(
2λ−2
2−λ

W
(
( 2
λ
−1)e

2x
λ

)
+ 2x

λ

))
− λ(λ−1)2

(λ−2)2
W
((

2
λ − 1

)
e

2x
λ

)2
.

Proof. Using Definition 2.1 together with Lemma 3.3 we have that

fλ =

(
(1− λ)

(
1

2
W(e(·))(W(e(·)) + 2)

)
+ λ

(
1

4
(·)2
))∗

− 1

2
(·)2.

This is just

fλ = φ− 1

2
(·)2

where φ,pφ are as defined as in Lemma 3.4. From this, we have that

fλ(x) = xpφ(x)− (1− λ)

(
1

2
W(epφ(x))(W(epφ(x)) + 2)

)
− λ

4
pφ(x)

2 − 1

2
x2,

which simplifies, by a great deal of arithmetic, to the form we see in (3.12), com-
pleting the result. □

Worthy of note is that this result (in particular, Lemma 3.4) could not be com-
puted by the SCAT, nor could Maple find the root of (3.6) on its own. The solution
was discovered by choosing specific values for λ, solving (3.6), observing, and finally
deducing the more general pattern. This serves as an example of the kind of fruitful
human-machine collaboration Borwein & Lindstrom sought to emphasize in [9].

Within minutes of choosing correctly we “knew” the answer, because we could
visually read off the functions f0 and f1 at left in Figure 3, even though a proof
took much longer.

3.2. Form and Proof for f∗
λ. While the complicated nature of fλ precludes com-

puting its conjugate in the usual way, we can still compute it using the convenient
identity (2.2) found in Remark 2.3. Specifically, since f∗

λ = P(f∗
0 , λ, f

∗
1 ), we can

forget, for the moment, about fλ and instead compute P(f∗
0 , λ, f

∗
1 ) in the same way

that we computed fλ, directly from Definition 2.1.

Remark 3.6. Let f0 = ent and f1 =
1
2 | · |

2. Then

f∗
0 = exp and f∗

1 =
1

2
| · |2 = f1.
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These are both well-known results.

Lemma 3.7. Let f0 := ent and f1 :=
1
2 | · |

2. Then we have the following

(i)
(
f∗
0 + 1

2 | · |
2
)∗

= 1
2 | · |

2 −W(e(·))− 1
2W(e(·))2

(ii)
(
f∗
1 + 1

2 | · |
2
)∗

= 1
4 | · |

2.

Proof. (i): By definition,

(3.13)

(
f∗
0 +

1

2
| · |2

)∗
(x) = sup

y∈R

{
xy − f∗

0 (y)−
1

2
y2
}

Differentiating the inner term with respect to y and setting equal to zero, we have
that the supremum is obtained when y satisfies ey = x − y. We will solve for y.
Here the Wikipedia page about Lambert W suggests a handy method [19]. Let
γ = x− y. Then ey = γ and so

γeγ = eyex−y = ex

and so we have γ = W(ex). Thus we have ey = W(ex). Taking the log of both
sides,

y = log(W(ex)) = log(ex)−W(ex) = x−W(ex).

Using this as the y value for the inner term in (3.13), we obtain(
f∗
0 +

1

2
| · |2

)∗
(x) = x(x−W(ex))− exp(x−W(ex))− 1

2
(x−W(ex))2 ,

which simplifies to the form in 3.7.

(ii): This is a well-known result and may be obtained by simple arithmetic. □

Lemma 3.8. Let θ be defined as follows

θ :=

(
(1− λ)

(
1

2
(·)2 −W(e(·))− 1

2
W(e(·))2

)
+ λ

(
1

4
(·)2
))∗

.

Then it holds that

(3.14) pθ(x) =

(
2

λ
− 2

)
W

(
λe

2x
2−λ

2− λ

)
+

2x

2− λ

and so we may write

θ(x) = xpθ(x)− (1− λ)

(
1

2
pθ(x)

2 −W(epθ(x))− 1

2
W(epθ(x))2

)
− λ

4
pθ(x)

2.

Proof. Now by definition

θ(x) = sup
y∈R

{
xy − (1− λ)

(
1

2
y2 −W(ey)− 1

2
W(ey)2

)
− λ

4
y2
}
,

which simplifies to

θ(x) = sup
y∈R

{
xy +

1

2
(1− λ)W(ey)2 + (1− λ)W(ey) +

1

4
(λ− 2)y2

}
.
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Differentiating the inner term with respect to y and setting equal to zero, we obtain

(3.15) (1− λ)W (ey) +

(
1

2
λ− 1

)
y + x = 0

We will show that (3.15) is true if y = pθ(x). First we will rewrite (3.15) using the
fact that W(a) = b if and only if beb = a which allows us to remove the W(ey) term
as follows:

W(ey) =

(
1− λ

2

)
y − x

1− λ

and so ey =

((
1− λ

2

)
y − x

1− λ

)
e

(
(1−λ

2 )y−x

1−λ

)
,

which simplifies to 0 = (λy + 2x− 2y)e

(
(λ−2)y+2x

2λ−2

)
− 2ey(λ− 1).

This is the form returned by Maple. We further consolidate y terms as follows,

(3.16) 0 =
(
(λ− 2)y + 2x

)
(ey)(

λ−2
2λ−2) e(

x
λ−1) − 2(λ− 1)ey,

which is the form we will use. We need only to show that

(3.17) ((λ− 2)pθ(x) + 2x) e(
x

λ−1)
(
epθ(x)

)( λ−2
2λ−2) − 2(λ− 1)epθ(x) = 0.

First consider the term epθ(x). Since for any a, b, z we have that

eaW (z)+b = (eW (z))aeb =

(
z

W (z)

)a

eb,

we may let

(3.18) a :=

(
2

λ
− 2

)
, b :=

2x

2− λ
, z :=

λe(
2x

2−λ)

2− λ
,

and thusly rewrite

epθ(x) =

 λe(
2x

2−λ)

(2− λ)W
(

λe(
2x

2−λ)
2−λ

)

( 2
λ
−2)

e(
2x

2−λ)

= (2− λ)(2−
2
λ) λ(

2
λ
−2)e(

2x
λ )W

(
λe(

2x
2−λ)

2− λ

)(2− 2
λ)

.(3.19)

From this, we have that

e(
x

λ−1)
(
ep(x)

)( λ−2
2λ−2)

= e(
x

λ−1)


 λe(

2x
2−λ)

(2−λ)W
(

λe
( 2x
2−λ)

2−λ

)

( 2
λ
−2)

e(
2x

2−λ)


λ−2
2λ−2
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= e(
x

λ−1)

 λe(
2x

2−λ)

(2− λ)W
(

λe(
2x

2−λ)
2−λ

)

( 2−λ

λ )

e(−
x

λ−1)

=

 λe(
2x

2−λ)

(2− λ)W
(

λe(
2x

2−λ)
2−λ

)

( 2−λ

λ )

= (2− λ)(
λ−2
λ )λ(

2−λ
λ )e

2x
λ W

(
λe(

2x
2−λ)

2− λ

)(λ−2
λ )

.(3.20)

Using (3.14), (3.19), and (3.20), we may rewrite (3.17) as follows:

0 = (λ− 2)

((
2
λ − 2

)
W
(

λe
2x

2−λ

2−λ

)
+ 2x

2−λ

)
(2− λ)(

λ−2
λ )λ(

2−λ
λ )e

2x
λ W

(
λe(

2x
2−λ)

2−λ

)(λ−2
λ )

+ 2x(2− λ)(
λ−2
λ )λ(

2−λ
λ )e

2x
λ W

(
λe(

2x
2−λ)

2− λ

)(λ−2
λ )

− 2(λ− 1) (2− λ)(2−
2
λ) λ(

2
λ
−2)e(

2x
λ )W

(
λe(

2x
2−λ)

2− λ

)(2− 2
λ)

.

The positive and negative terms of the form

2x(2− λ)(
λ−2
λ )λ(

2−λ
λ )e

2x
λ W

(
λe(

2x
2−λ)

2− λ

)(λ−2
λ )

cancel each other out, leaving

0 = (λ− 2)

((
2
λ − 2

)
W
(

λe
2x

2−λ

2−λ

))
(2− λ)(

λ−2
λ )λ(

2−λ
λ )e

2x
λ W

(
λe(

2x
2−λ)

2−λ

)(λ−2
λ )

− 2(λ− 1) (2− λ)(2−
2
λ) λ(

2
λ
−2)e(

2x
λ )W

(
λe(

2x
2−λ)

2− λ

)(2− 2
λ)

,

which further simplifies to

0 = 2(λ− 2)

(
1

λ
− 1

)(
2− λ

λ

)(λ−2
λ )

e(
2x
λ )W

(
λe(

2x
2−λ)

2− λ

)(2− 2
λ)

− 2(λ− 1)

(
2− λ

λ

)(2− 2
λ)

e(
2x
λ )W

(
λe(

2x
2−λ)

2− λ

)(2− 2
λ)

.
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Finally, (λ−2)
(
1
λ − 1

)
= (λ−1)

(
2−λ
λ

)
and so the above equation is true, completing

the result. □
Theorem 3.9. Let f0, f1 be defined as in Lemma 3.7. Then

f∗
λ(x) = (1− λ)W

(
e

(
( 2
λ
−2)W

(
λ

2−λ
e(

2x
2−λ)

)
+ 2x

2−λ

))
+

λx2

4− 2λ
(3.21)

+
1

2
(1− λ)W

(
e

(
( 2
λ
−2)W

(
λ

2−λ
e(

2x
2−λ)

)
+ 2x

2−λ

))2

(3.22)

+
(λ− 1)2(λ− 2)

λ2
W
(

λ

2− λ
e(

2x
2−λ)

)2

.

Proof. Using Definition 2.1 together with Lemma 3.7 we have that

f∗
λ =

(
(1− λ)

(
1

2
| · |2 −W(e(·))− 1

2
W(e(·))2

)
+ λ

(
1

4
(·)2
))∗

− 1

2
(·)2.

This is just

f∗
λ = θ − 1

2
(·)2,

where θ, pθ are as in Lemma 3.8. From this, we obtain

f∗
λ(x) = xpθ(x)− (1− λ)

(
1

2
pθ(x)

2 −W(epθ(x))− 1

2
W(epθ(x))2

)
− λ

4
pθ(x)

2 − 1

2
x2.

This simplifies, by a great deal of arithmetic, to the form we see in (3.21), completing
the result. □

Similarly to Theorem 3.5, the results admitting Theorem 3.9 (in particular,
Lemma 3.8) could not be obtained through the use of SCAT or Maple alone be-
cause these packages cannot invert (3.16). The solution was again discovered with
a method similar to that of Theorem 3.5.

Again within minutes of choosing correctly we “knew” the answer, because we
could visually read off the functions f∗

0 and f∗
1 in Figure 4, even though a proof

took much longer. Figures 3 and 4 highlight an advantageous characteristic of the
proximal average, which we provide in the following remark.

Remark 3.10. Let f0, f1 ∈ F and λ ∈ ]0, 1[. Let fλ := P (f0, λ, f1) . Suppose that
f0 or f1 has full domain and that f∗

0 or f∗
1 has full domain. Then the following hold:

(1) Both fλ and f∗
λ have full domain.

(2) If f0 or f1 is differentiable everywhere, then so is fλ.
(3) If f0 or f1 is strictly convex and its Fenchel conjugate has full domain, then

fλ is strictly convex.

For a proof, see [3, Theorem 6.2].

Figures 3 and 4 also illustrate another important difference between the behaviour
of limiting cases for the proximal average and for the ordinary average.
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Figure 4. f∗
λ from Theorem 3.9

Remark 3.11 (Limiting Cases for Proximal Average). In juxtaposition with Re-
mark 3.2, we obtain different limiting cases for fλ (3.12) and f∗

λ (3.21). For fλ, in
the limits at 0, 1, we reobtain f0 and f1 respectively. For f∗

λ in the limits at 0, 1,

we reobtain exp and 1
2 | · |

2. This is more natural, because these are f∗
0 and f∗

1 re-
spectively, and so our continuous transformation of our functions has corresponded
with a continuous transformation of their conjugates.

The juxtaposition in Remark 3.11 is both an immediate consequence and an
excellent illustration of Remark 2.6. Where f0, f1 ∈ F and (λn)n∈N is a sequence in
[0, 1], we have from Remark 2.6 that

if λn → 0 then P(f0, λn, f1)
e→P(f0, 0, f1) = f0

and P(f∗
0 , λn, f

∗
1 )

e→P(f∗
0 , 0, f

∗
1 ) = f∗

0

and if λn → 1 then P(f0, λn, f1)
e→P(f0, 1, f1) = f1

and P(f∗
0 , λn, f

∗
1 )

e→P(f∗
0 , 1, f

∗
1 ) = f∗

1 ,

which is both elegant and convenient.

4. Minimizing an entropy functional

In their 2016 paper [9] Borwein & Lindstrom illustrated the utility of the Lambert
W function by showing how it naturally arises in the problem of minimizing an
entropy functional of the form

If : L1([0, 1]) → R

by If : x 7→
∫ 1

0
f(x(s))ds,

where f is a proper, closed convex function. The problem is to minimize If subject
to finitely many continuous linear constraints of the form

⟨ak, x⟩ =
∫ 1

0
ak(s)x(s)ds = bk,
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for 1 ≤ k ≤ n. We may write this linear equality constraint concisely as

A : L1([0, 1]) → Rn

by A : x 7→
(∫ 1

0
a1(s)x(s)ds, . . . ,

∫ 1

0
an(s)x(s)

)
= b

where b := Aρ

where ρ, ak ∈ L∞([0, 1]) and ρ is a given function used to generate the data vector
b. When f∗ is smooth and everywhere finite on the real line, the problem

(4.1) inf
x∈L1

{If (x)|Ax = b}

reduces to solving a finite nonlinear equation

(4.2)

∫ 1

0
(f∗)′

 n∑
j=1

µjaj(s)

 ak(s)ds = bk (1 ≤ k ≤ n).

A discussion of why this is the case is given in [9, Section 7], which employs results
from Jonathan Borwein’s works co-authored with Adrian Lewis [8], Qiji Zhu [12],
and Jon Vanderwerff [10], and Liangjin Yao [11]. The matters of primal attainment
and constraint qualification are addressed in Borwein’s and Lewis’ article [7], and
an augmented discussion of strong duality is given in Lindstrom’s PhD dissertation
[15].

As was also true in the setting of [9], this problem and methods discussed in this
section are informed by methods found in all of these works, to which we refer the
reader for additional information about any underlying theory.

For the function f in the construction of If , Borwein et al. opted to use ft
from (3.2), for which the corresponding f∗

t has the form in (3.3) for 0 < t < 1 and
f∗
t = exp, 1

2 | · |
2 for t = 0, 1, respectively. For this choice:

(f∗
t )

′(x) =


1−t
t W

(
t

1−t exp
(

x
1−t

))
if t ∈ ]0, 1[

exp(x) if t = 0

x if t = 1.

In the limiting case as t approaches 0, (f∗
t ) approaches exp, while in the limiting

case as t approaches 1 we obtain max{0, x}, given the discussion of the limiting
cases of f∗

t in Remark 3.2.

Remark 4.1. Let f : X → ]−∞,+∞[ be proper. Then f∗ : X → ]−∞,+∞] is
proper. Let x, u ∈ X. Then

u ∈ ∂f∗(x) ⇐⇒ f(u) + f∗(x) = ⟨x, u⟩ ⇐⇒ x ∈ ∂f(u).

For details, see [1, proposition 16.9]. Thus we have that

ran(∂f∗) ⊂ dom(∂f) ⊂ dom(f).

Consequently, for all x ∈ X we have that:

( ∀t ∈ [0, 1[ ) f∗
t (x) ∈ dom(ft) = [0,∞[ .
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Figure 5. (f∗
t )

′ (left) and (f∗
λ)

′ (right)

For the function f in the construction of If , we consider fλ from (3.12), for which

the corresponding f∗
λ has the form in (3.21) for 0 < λ < 1 and f∗

λ = exp, 1
2 | · |

2 for
λ = 0, 1 respectively as explained in Remark 3.11 and as follows from Theorem 3.9
by differentiation. For this choice:

(f∗
0 )

′(x) = exp(x)

(f∗
1 )

′(x) = x

and for 0 < λ < 1,

(f∗
λ)

′(x) =
1

1 + ω(x)

(
2(1− λ)

λ

(
ω(x)− λ

λ− 2

)
W
(
e(

2
λ
−2)ω(x)+ 2x

2−λ

)
− 4(λ− 1)2

λ2
ω(x)2 +

λx

2− λ
ω(x) +

xλ

2− λ

)

where ω(x) = W
(

λ

2− λ
e

2x
2−λ

)
.

The functions (f∗
t )

′ and (f∗
λ)

′ may be seen in Figure 5. Figure 5 also serves to
highlight one of the consequences of Remark 3.10 in our case.

In juxtaposition with ft, which takes the value infinity for all negative real values,
fλ has full domain because f1 has full domain. Consequently the conjugate f∗

λ of fλ
decreases on part of its domain for values of λ ∈ ]0, 1]; this is in contrast with the
conjugate f∗

t of ft, which is nondecreasing except for the case t = 1. As a result,
the image of (f∗

λ)
′ contains negative numbers for λ ∈ ]0, 1] while the image of (f∗

t )
′

contains negative numbers only for t = 1. In terms of Remark 4.1, fλ differs from
ft in the sense that

(∀x ∈ H) (∀λ ∈ ]0, 1]) f∗
λ(x) ∈ dom(fλ) = ]−∞,∞[ .

Remark 4.2. In their original article [9], the authors have labelled solutions com-
puted for the limiting case lim

t→1
(f∗

t )
′ = max{·, 0} with the label t = 1; however, (f∗

0 )
′

is actually just the identity x 7→ x. This labelling confusion does not change any of
the key results of the paper; it affects only computed examples.
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Figure 6. Primal solutions from Example 4.3 appear quite similar.

Where µ1, . . . , µn are the optimal multipliers in (4.2), the primal solution xλ to
the primal problem (4.1) is then given by

xλ(s) = (f∗
λ)

′

 n∑
j=1

µjaj(s)

 .

A key difference between our setting and that of [9] is then immediately apparent:
for t ̸= 1, the primal solutions when optimizing with the conventional average ft
could not take on negative values. When instead using the proximal average, fλ, the
primal solutions may take on negative values so long as λ ̸= 0. The hard barrier (or
lack of hard barrier) against negative values may be considered either an advantage
or disadvantage depending upon one’s intentions.

4.1. Computed Examples. For all examples where we solve (4.1), we compute
with 8 moments (n = 8), and we follow the lead of Borwein & Lindstrom [9],
employing a Gaussian quadrature with 20 abscissas for the numerical integration
necessary to solve the system (4.2). One may consult Borwein & Lindstrom [9] for
an index on computation which explains a simple implementation with Newton’s
method. When reporting solutions for the weighted average ft, instead of the case
where t = 1, we choose to plot the limiting case:

lim
t→1

(f∗
t )

′ = max{·, 0}.

The first reason for this is that the exact cases t = 1 and λ = 1 coincide (see
Remark 3.11), and so comparing them is not as interesting. The second reason is
to be consistent with the method of reporting employed in [9] (see Remark 4.2).

We compute with vertical translations of the function we wish to reconstruct, the
function used by Borwein & Lindstrom,

(4.3) ρ : s 7→ 3

5
+

1

2
sin
(
3πs2

)
,

with which we compute in Example 4.3.
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Figure 7. Primal solutions from Example 4.4 are noticeably differ-
ent, particularly where the objective function is negative-valued.

Example 4.3 (Similarities between weighted average and proximal average).
Figure 6 shows similar-looking primal solutions obtained by computing with the
weighted average ft and the proximal average fλ where the objective function is as
in (4.3). Importantly, in this case ρ(s) ≥ 0 ∀s ∈ [0, 1].

The advantage of homotopy becomes apparent when the objective function has
negative output values, as it does in the next example.

Example 4.4 (Differences between weighted average and proximal average). For
the second example, we compute with a negative translation of the previous objec-
tive function:

ρ : s 7→ 7

20
+

1

2
sin
(
3πs2

)
.

Figure 7 shows the primal solutions for the weighted average ft at left and for the
proximal average fλ at right.

The presence of negative values for the objective function ρ illuminates an im-
portant advantage of the proximal average fλ. Because (f∗

λ)
′ is allowed to have

negative range values for λ > 0 (as shown in Figure 5), the primal solutions in
the proximal average case are able to have negative range values for λ > 0. As a
result, the primal solutions corresponding to the proximal average with λ > 0 are
a better fit for our objective function ρ than the primal solutions corresponding to
the weighted average.

For the advantage of homotopy—that primal solutions may take on negative
values when λ ̸= 0—there is a price to pay computationally. Namely, in con-
tradistinction with the case of the weighted average ft, Newton’s method no longer
reliably solves the problem for the proximal average fλ when the objective function
is permitted to take values below or near zero. This is shown in Example 4.5.

Example 4.5 (Computational challenge). To illustrate a computational disadvan-
tage of homotopy, we compute with the data vector b generated by

ρ : s 7→ 1

5
+

1

2
sin
(
3πs2

)
,
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Figure 8. Newton’s method is less reliable for the proximal average
in the case of Example 4.5.

which is another downward translation of the function used to generate the data
vector in Example 4.4. With the starting point of (12 , . . . ,

1
2) ∈ R8, Newton’s method

fails to find the optimal solution for the homotopy fλ while it still manages to find
the optimal solution for the weighted average ft. Figure 8 shows the primal solution
for ft at left and the primal output when Newton’s method is paused after 400
iterates for fλ at right.

Rather than using Newton’s method, one might instead use gradient descent to
solve the system (4.2), either by seeking to

(i) solve the dual problem directly, or
(ii) minimize the sum of the squares of the gradient components.

(i): In the former case, the gradient we use has the n components∫ 1

0
(f∗)′

 n∑
j=1

µjaj(s)

 ak(s)ds− bk (1 ≤ k ≤ n),

which is, of course, the system from (4.2).
(ii): In the latter case, the problem becomes:

Find µ ∈ Rn such that G(µ) :=
n∑

k=1

Gk(µ) = 0 where

Gk : µ 7→

∫ 1

0
(f∗)′

 n∑
j=1

µjaj(s)

 ak(s)ds− bk

2

, (1 ≤ k ≤ n).

Again using a Gaussian quadrature rule withm abscissas s1, . . . , sm and correspond-
ing weights w1, . . . , wm, we let

m∑
i=1

wi(f
∗)′

 n∑
j=1

µjaj(si)

 ak(si) :≈
∫ 1

0
(f∗)′

 n∑
j=1

µjaj(s)

 ak(s)ds
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Figure 9. Gradient descent may be insufficient as in Example 4.6.

and so (4.2) reduces to finding µ ∈ Rn such that:

G(µ) =
n∑

k=1

 m∑
i=1

wi(f
∗)′

 n∑
j=1

µjaj(si)

 ak(si)

− bk

2

= 0.(4.4)

To solve (4.4), we may use gradient descent where

∇G(µ) =
(

∂

∂µ1
G(µ), . . . , ∂

∂µn
G(µ)

)
.

Example 4.6 (Gradient Descent). When we implement gradient descent for either
of the above approaches with the same starting point and objective function from
Example 4.5, the method tends to stall. Consequently, the primal solutions yielded
do not correspond to the true solution for the problem and only roughly resemble
the function ρ used to generate the data. This is shown at right in Figure 9.

4.2. A homotopy method. As a remedy for stalling, we may employ a homotopy-
type method whereby we solve a sequence of problems. Suppose we seek a solution
where the objective function is given by

ρ : s 7→ 7

20
+

1

2
sin
(
3πs2

)
−∆.

Then we let

ρN : s 7→ 7

20
+

1

2
sin
(
3πs2

)
−Nδ, N ∈ {0, . . . , υ} ⊂ N, δ > 0, υδ = ∆.

We further define µN to be the solution to (4.2) for the problem corresponding to
the linear constraint generated by the function ρN . We can find µ0 with Newton’s
method (and did so in Example 4.4). We may then use µ0 as our starting point for
solving the problem corresponding to objective function ρ1. If we are successful,
we may then use the solution, µ1, as our starting point for finding µ2. Continuing
in this fashion we aim to solve a sequence of problems where the final problem
corresponds to the function with which we are concerned. The solution, µυ, is the
solution we seek.
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Figure 10. Primal values obtained by computing with weighted
average in Example 4.7.

This may be thought of as a homotopy method, in the sense that we solve a
sequence of problems corresponding to a sequence of perturbed linear constraints
b0, b1, b2, . . . where the solution corresponding to the constraint b0 is known and the
solution corresponding to the constraint bυ is the one we seek. We illustrate in the
following example.

Example 4.7 (Solving a sequence of minimization problems). We desire to solve
for the constraint Ax = b = Aρ with

ρ : s 7→ 7

20
+

1

2
sin
(
3πs2

)
− 3

10
=

1

20
+

1

2
sin
(
3πs2

)
.

Then, letting δ = 1
10 , and υ = 3, we may consider the sequence of problems corre-

sponding to the objective functions given by

ρN : s 7→ 7

20
+

1

2
sin
(
3πs2

)
−N

1

10
, N ∈ {0, .., 3}.

We computed µ0 using Newton’s method in Example 4.4. Using gradient descent
with a step size modifier of 1

10 and taking µ0 as our starting value, we obtain µ1.

In the same way, we use µ1 to find µ2; finally we use µ2 to find µ3, which is the
solution we seek for the minimization problem induced by the objective function ρ.
The corresponding primal values for various λ are shown in Figure 11.

Notice that the translated generating function ρ used to generate the linear con-
straint in Example 4.7 has actually been translated even further than the version
used to generate the linear constraint in both Examples 4.5 and 4.6. This homotopy
method appears also to solve the proximal version of the problem from Examples 4.5
and 4.6.

For comparison, we show the resultant primal values obtained by computing
with the weighted average in Figure 10. At left we computed with the function
G(µ), and at right we attacked the dual problem directly. The solutions for ft
at left are distinctly different from those at right, which more closely resemble
the weighted average solutions in Figure 8 from Example 4.5. In the table below
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we compare the errors from the linear constraint where xt is the primal solution
obtained by computing with ft. For Example 4.5 we used Newton’s method. For
Example 4.7, we computed 5 iterates for the first subproblems and 100 iterates for
the final subproblem. When working with G(µ), we used a gradient descent step
size modifier of 1/10; when attacking the dual problem directly, we used a size of 1.

Example 4.5 Example 4.7 Example 4.7
Newton’s G(µ) Dual direct

t value ∥Axt − b∥ ∥Axt − b∥ ∥Axt − b∥
0 7.46E−11 3.82E−2 7.91E−3
0.25 6.26E−11 3.61E−2 3.37E−2
0.5 2.09E−10 3.55E−2 7.33E−2
0.75 4.42E−10 3.24E−2 1.25E−1
→ 1 2.61E−3 2.04E−2 1.72E−1

Computing with the weighted average, we have solutions that do a poorer job of
satisfying the linear constraint than in Example 4.5, where ρ has been translated
downward by a smaller amount. While the observations we will make about the
proximal case below suggest that a better satisfaction of the linear constraint may
be possible if we continue to run more iterates, it is also likely that we have reached
the limitations of the data for which the weighted average can be successfully used.
The reasons are as follows.

Since ρ returns negative values, ρ /∈ dom(Ift). For this reason, it is difficult to
verify whether or not the conditions for strong duality hold unless we can find some
other x ∈ domIft such that Ax = b (for example, our numerically obtained solutions
for t < 1 from Example 4.5).

In fact, ρ may have been translated so far downward that it is no longer possible
to satisfy the linear constraint. This occurs if there does not exist an x ∈ dom(Ift)
such that Ax = b. Since b still lies in the positive orthant, it is difficult to verify
whether this has occurred for the present example. However, further translations
downward will eventually yield a data vector b that does not lie in the non-negative
orthant. Since the monomials a1(s), . . . , an(s) are non-negative on [0, 1], Ax may
only lie outside of the non-negative orthant if x(s) takes on negative values in [0, 1].
However, such an x(s) is not in the domain of Ift unless t = 1. In such a case, the
linear constraint cannot possibly be satisfied.

In other words, if ρ(s) ∈ L1([0, 1]) is non-negative, the constraint definitely can be
satisfied (indeed, it is satisfied by ρ). If Aρ lies outside of the non-negative orthant,
the constraint definitely cannot be satisfied. If ρ(s) takes on negative values in
[0, 1] but Aρ is still in the positive orthant, determining whether or not the linear
constraint can be satisfied may be more difficult.

From a numerical standpoint, we may attempt to check by taking the linear
system Mx = b — where M is the (#moments)× (#abscissas) matrix representing
a discretization of A, where cell i in a row j consists of the ith weight multiplied
by the values of aj evaluated at the ith abscissas — for x with the requirement
that x lie in the positive orthant. Decreasing the number of abscissas to match the
number of moments eliminates free variables, although we pay the price of having
possibly eliminated some feasible solutions (solutions lying in the positive orthant).
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Figure 11. Example 4.7 demonstrates that solving a sequence of
problems makes more solutions accessible.

With 8 moments and 8 abscissas, the unique solution x for Example 4.4 lies in the
positive orthant. For Example 4.5, x lies just outside of the positive orthant, but
the unit precision distance we obtained from the linear constraint with Newton’s
method indicates that by increasing the number of moments to 20 we have recovered
a feasible solution. For Example 4.7 with 8 moments and 8 abscissas, our uniquely
determined x lies twice as far from the positive orthant. Thus we have a certificate
of feasibility for Example 4.5, experimental evidence of feasibility for Example 4.6,
and reasonable doubt that feasibility is possible for Example 4.7.

The proximal average, by contrast, does not entail such theoretical problems.
After running the first subproblems to 5 iterates, with a gradient descent step size
modifier of 1/10 for minimizing G(µ) we record the errors from the linear constraint
after varying numbers of iterates for the final subproblem as follows.

100 iterates 1100 iterates 2100 iterates
λ value ∥Axλ − b∥ ∥Axλ − b∥ ∥Axλ − b∥
0 3.82E−2 1.96E−2 1.34E−2
0.25 2.97E−2 4.43E−3 4.35E−3
0.5 1.85E−2 1.77E−3 1.72E−3
0.75 1.12E−2 6.75E−4 6.53E−4
1 8.85E−3 1.90E−3 1.66E−3

For λ > 0, conditions for strong duality are still satisfied by ρ, and the problem is
still feasible. This, combined with the apparent visual fit for λ = 0.25, 0.5, 0.75, 1,
suggests that the homotopy method is working, albeit slowly.

When we attack the dual problem directly, the performance improves. We find
that we are able to obtain solutions with only two subproblems, solving first with
N = 0 and then with N = 3. After solving the N = 0 case with Newton’s method,
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we record the errors from the linear constraint after varying numbers of iterates
of gradient descent (with no step size modification) for the second subproblem as
follows.

100 iterates 1100 iterates 2100 iterates
λ value ∥Axλ − b∥ ∥Axλ − b∥ ∥Axλ − b∥
0 9.12E−3 4.01E−3 3.37E−3
0.25 2.35E−3 9.95E−4 5.59E−4
0.5 1.07E−3 4.00E−4 2.03E−4
0.75 4.79E−4 1.49E−4 7.89E−5
1 1.57E−4 7.58E−6 1.77E−6

The apparent necessity of homotopy methods when computing with proximal
averages when ρ returns lower negative values, particularly for λ nearer to 0, may
be related to the penalty for negative values becoming more and more extreme as
λ → 0, finally achieving a hard barrier at λ = 0.

5. Conclusion

In this paper, we have catalogued advantages and disadvantages of computing
with entropy functionals constructed from proximal averages instead of weighted
averages. The weighted average affords ease of computation with hard barriers,
but fewer problems may be solvable. In contrast, the proximal average allows us
to choose graphically a selection from the net of primal solutions which may afford
a better visual fit by being flexible with the enforcement of the barrier. We have
explained from a theoretical standpoint why this is the case, and have illustrated it in
practice with our examples, giving special attention to the computational challenges
one may encounter when working with steep penalties. We have also shown how the
Lambert W function is instrumental in both the weighted averages and proximal
averages. In so doing, we have shown how the human-machine collaboration so
frequently championed by Borwein may be used to compute hard proximal averages.

We suggest several possibilities for continued investigation.

(i) It is natural to consider also proximal averages employing the Fermi–Dirac
entropy, which admits hard barriers on both sides of a closed interval [0, 1].
The net produced by the proximal average of the Fermi–Dirac entropy with
the Boltzmann–Shannon entropy should admit a hard barrier against neg-
ative numbers and a flexible barrier against numbers greater than 1. One
could also consider the net produced by the Fermi–Dirac entropy with the
energy.

(ii) One may also consider the proximal average of two log barriers with empty
intersection of their domains.

(iii) It is quite natural to investigate the case where one replaces the energy (as
the proximal term in the construction of the proximal average) with another
supercoercive function.

(iv) Another natural question is: what might we say about the epigraphs of the
net of primal solutions for the entropy minimization problem when proximal
averages are employed? May we obtain results on some form of continuous
transformation of the primal solutions?
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Such investigations are likely to prove interesting, and will almost certainly de-
mand the use of similar human-machine collaboration techniques. This present work
is a step in that direction and is a natural template for such future investigation.
We conclude by noting that the visualization of the entire family fλ of functions
admitted by the proximal average illustrate epi-continuity in a beautiful and natural
way.
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