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We now present the way our paper is organized and, in this process, we present
further, more precise, details of the results and the methods we propose. After
the presentation of notation, we consider, in the second section, the main concepts
under study. Besides the standard notions of Pareto minimality, we recall the direc-
tional Pareto efficiencies introduced in [4] where the minimality is understood along
the directions of a set in input space. Then, the latter approach is slightly modified
in order to consider in output space a set of directions that defines the ordering
cone. The form of the part of the ball around the underlying point as it appears
in these definitions gives us the impetus to present a brief study of the properties
of such sets. On this basis, one can define an enlargement of the set of directions,
a tool we subsequently use to define a concept of directional proper efficiency in
input space. A situation when an approximate directional minimum can be seen as
a proper approximate efficient point is given at the end of the section. In the next
two sections, we choose the notion of directional Pareto efficiency and we present
penalization results and necessary optimality conditions. Firstly, in Section 3, we
consider Clarke type penalization and we discuss the nature of the Lipschitz condi-
tion that is necessary in our situation. Then, we devise a penalization result in the
case of a problem where the constraint is given in a generalized functional form. In
Section 4 we consider the latter problem and we use a result from [7] in order to for-
mulate Fritz John optimality conditions in terms of Mordukhovich’s differentiation
objects on finite dimensional spaces. We remark that, in the particular case of the
standard Pareto efficiency, the assumptions can be relaxed and we present a set of
hypotheses that allows to obtain a Karush-Kuhn-Tucker type result. Moreover, we
emphasize that similar results can be obtained for other types of minima described
in Section 2. An exemplification of possible additional information concerning the
multipliers that can be obtained for proper efficiency ends the section. The last
section presents some concluding remarks of our study.

Let us now present the notation we use throughout this paper. We assume that
X, Y, and Z are normed vector spaces over the real field R and on a product of
normed vector spaces we consider the sum norm. By B (x, ε) we denote the open
ball with center x and radius ε > 0 and by BX the open unit ball of X. In the same
manner, D(x, ε) and DX denote the corresponding closed balls. The symbol SX

stands for the unit sphere of X. By the symbol X∗ we denote the topological dual
of X.

Let F : X ⇒ Y be a set-valued map. The graph of F is

GrF := {(x, y) ∈ X × Y | y ∈ F (x)} ,
and the usual inverse of F is the set-valued map F−1 : Y ⇒ X given by (y, x) ∈
GrF−1 iff (x, y) ∈ GrF . Consider a nonempty subset A of X. Then, the image of
A through F is

F (A) := {y ∈ Y | ∃x ∈ A, y ∈ F (x)} .
Clearly, for B ⊂ Y,

F−1 (B) = {x ∈ X | F (x) ∩B ̸= ∅}.
Another kind of inverse image of a set through F is defined as

F+1(B) := {x ∈ X | F (x) ⊂ B}.
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If F has nonempty values, one says that it is (globally) upper semicontinuous if and
only if for any open set B ⊂ Y, F+1(B) is open. For more details concerning the
continuity properties of set-valued maps, the reader is referred to monograph [12].

One says that F is Lipschitz-like around (x, y) ∈ GrF if there are some neigh-
borhoods U of x and V of y, respectively, and L > 0 such that for all x′, x′′ ∈ U

F (x′) ∩ V ⊂ F (x′′) + L
∥∥x′ − x′′

∥∥DY .

A comprehensive study of this property in relation to other metric regularity prop-
erties of set-valued map is to be found in [14, Chapter 1].

The distance function associated to A ⊂ X is dA : X → R given by

dA (x) = d(x,A) := inf
a∈A

∥x− a∥ ,

while the topological interior, topological closure and conic hull of A are denoted,
respectively, by intA, clA, coneA.

The dual cone associated to A is

A+ := {x∗ ∈ X∗ | x∗ (a) ≥ 0,∀a ∈ A} .

It is clear that A+ = (clA)+ = (coneA)+ .

2. Concepts of directional efficiency

First of all, we recall the usual concepts related to Pareto efficiency for constrained
vector optimization problems governed by set-valued maps. Let K ⊂ Y be a proper
(that is, K ̸= {0}, K ̸= Y ) cone.

Take F : X ⇒ Y as a set-valued mapping, and let us consider the following
geometrically constrained optimization problem with multifunctions:

(P ) minimize F (x), subject to x ∈ A,

where A ⊂ X is a nonempty set. If the cone K is convex and pointed (that is,
K ∩−K = {0}), then it naturally induces a partial preorder relation (denoted ≤K)
on Y by y1 ≤K y2 if and only if y2 − y1 ∈ K, and the minimality for the above
problem is understood with respect to this relation.

The formal definition in the general setting we consider here (that is, K is not
necessarily convex or pointed) reads as follows.

Definition 2.1. A point (x, y) ∈ GrF ∩ (A× Y ) is a local Pareto minimum point
for F on A if there exists a neighborhood U of x such that

(2.1) (F (U ∩A)− y) ∩ −K ⊂ K.

The vectorial notion described by (2.1) covers as well the situation where f is a
function (in which case y = f(x) is not mentioned) and the situation of classical
local minima in scalar case (in which case we drop the label ”Pareto”). If K is
pointed, then (2.1) reduces to

(F (U ∩A)− y) ∩ −K = {0}.

A weaker notion operates when the cone K is solid, that is when it has nonempty
topological interior.
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Definition 2.2. If intK ̸= ∅, the point (x, y) ∈ GrF ∩ (A × Y ) is a local weak
Pareto minimum point for F on A if there exists a neighborhood U of x such that

(F (U ∩A)− y) ∩ − intK = ∅.

These concepts and many others are intensively studied in literature: see [8], [10],
[17], [9], [11], and the references therein.

In [4], a directional notion of efficiency was introduced and studied. We now
briefly recall it. Let L ⊂ SX be a nonempty closed set.

Definition 2.3. One says that (x, y) ∈ GrF ∩ (A×Y ) is a local directional Pareto
minimum point for F on A with respect to (the set of directions) L if there exists
a neighborhood U of x such that

(2.2) (F (U ∩A ∩ [x+ coneL])− y) ∩ −K ⊂ K.

Of course, this concept corresponds to the situation where the restriction has the
special form, depending on x, A∩ (x+ coneL) . When A = X in (2.2) then one says
that (x, y) ∈ GrF is a local directional Pareto minimum point for F with respect
to L.

If intK ̸= ∅, one defines as well the weak counterpart of the above notion.

Definition 2.4. One says that (x, y) ∈ GrF ∩ (A× Y ) is a local weak directional
Pareto minimum point for F on A with respect to (the set of directions) L if there
exists a neighborhood U of x such that

(F (U ∩A ∩ [x+ coneL])− y) ∩ − intK = ∅.

In all these notions, if one takes U = X, then one gets the corresponding global
concepts.

The main ideas we exploit in this work are coming from the fact that K =
coneSK , where SK := SY ∩K and, in order to get necessary optimality conditions
for the Pareto efficiency, it is sometimes enough to consider directions from SK

(see, for instance, [4, Proposition 3.16]). Another idea that leads us to consider
the framework we are going to present next is to allow a greater flexibility to the
order relation defining the efficiencies and it is inspired by the concept of directional
regularity introduced and studied in [6].

Definition 2.5. Let L ⊂ SX and M ⊂ SY be nonempty closed sets. One says that
(x, y) ∈ GrF ∩ (A× Y ) is a (L,M)−local directional Pareto minimum point for F
on A if there exists a neighborhood U of x such that

(F (U ∩A ∩ [x+ coneL])− y) ∩ − coneM ⊂ coneM.

We denote the set of (L,M)−local directional Pareto minimum point for F on A
by Min(F,A;L,M).

Remark 2.6. (i) Clearly, coneM is pointed if and only if M ∩−M = ∅ and in this
case the above relation become

(F (U ∩A ∩ [x+ coneL])− y) ∩ − coneM = {0}.
(ii) For U = X we speak about (L,M)−directional Pareto minimum point for F

on A.
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(iii) Basically, the notion of (L,M)−minimality replaces the focus on cone K by
the possibility to work with the set of directions that generates the ordering cone.

Several examples of this type of minimality was given in [4]. Here is another
example illustrating the set-valued case we consider in this work.

Example 2.7. Let F : R ⇒ R2,

F (x) :=

{
{x} ×

[
−
√
1− x2,

√
1− x2

]
, if x ∈ [−1, 1]

R2, otherwise.

Take A = [−1, 1] and M = SR2 ∩ R2
+. Then it is easy to see that

Min(F,A; {−1,+1},M) =
{
(x, y) ∈ R2 | x ∈ [−1, 0] , y = −

√
1− x2

}
,

Min(F,A; {+1},M) =
{
(x, y) ∈ R2 | x ∈ [−1, 1] , y = −

√
1− x2

}
,

Min(F,A; {−1},M) =
{
(x, y) ∈ R2 | x ∈ [−1, 0] , y = −

√
1− x2

}
.

Observe as well that

Min(F,A; {−1,+1},M) = Min(F,A; {+1},M) ∩Min(F,A; {−1},M).

Actually, the following facts are easy to see.

Proposition 2.8. Let L1, L2 ⊂ SX , M1,M2 ⊂ SY be closed sets.
(i) If L1 ⊂ L2, then Min(F,A;L2,M1) ⊂ Min(F,A;L1,M1).
(ii) If M1 ⊂ M2, then Min(F,A;L1,M2) ⊂ Min(F,A;L1,M1).
(iii) One has

Min(F,A;L1,M1) =
∩

l∈L1,m∈M1

Min(F,A; {l} , {m})

=
∩
l∈L1

Min(F,A; {l} ,M1)

=
∩

m∈M1

Min(F,A;L1, {m}).

The item (iii) suggests that one can consider single directions in SX or SY for
the study of (L,M)−minimality, a detail that will be exploited in Section 4.

Basically, in the above notation, a relation of the following form

(F (U ∩ [x+ coneL])− y) ∩ − coneM = {0},
can be equivalently written as

F (D(x, ε) ∩ [x+ coneL]) ∩ (y − coneM) = {y},
for some ε > 0. Now, observe that

D(x, ε) ∩ [x+ coneL] = x+ εDX ∩ coneL = x+ ε [0, 1]L

and this suggest a study of the set DL := [0, 1]L. Observe that

L = SX ∩ coneL and coneL = coneDL.
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Further, for ε > 0 define the ε−enlargement of L as

Lε = {x ∈ SX | d(x, L) ≤ ε}.

We record the following simple facts.

Proposition 2.9. Let ∅ ̸= L ⊂ SX and ε > 0. Then:

(i) L is closed if and only if DL is closed and if and only if coneL is closed;
(ii) L is compact if and only if DL is compact;
(iii) if X is a Banach space and L is weakly compact, then DL is weakly compact;
(iv) Lε is closed;
(v) coneL\{0} ⊂ int coneLε;
(vi) if L is closed, then∩

δ>0

Lδ = L,
∩
δ>0

DLδ
= DL and

∩
δ>0

coneLδ = coneL;

(vii) DL is convex if and only if coneL is convex.

Proof. (i), (ii) Standard arguments based on the characterization of closedness and
compactness with sequences, as well as the continuity of the norm prove the theses.

(iii) We use the Eberlein–Šmulian Theorem that states that, on Banach spaces,
the weak compactness can be characterized by sequences. Take (xn) ⊂ DL a se-
quence which, by the definition ofDL, can be expressed as (αnun) where (αn) ⊂ [0, 1]
and (un) ⊂ L. By the weak compactness of L and the Eberlein–Šmulian Theorem,
(un) admits a weakly convergent subsequence to some u ∈ L. In turn, (αn) is a
bounded sequence of real numbers, so we can assume, without loss of generality,
that it weakly converges, on the same subsequence, to an element α ∈ [0, 1]. Con-
sequently, (xn) has a subsequence weakly converging towards αu ∈ DL. Therefore,
DL is weakly compact.

(iv) It is clear that Lε is the intersection between SX and a level set of a continuous
function, whence it is closed.

(v) We show first that L ⊂ int coneLε. Take u ∈ L and suppose, by way of
contradiction, that for any natural number n > 0,

B(u, n−1) ∩ (X\ coneLε) ̸= ∅.

Then, there is a sequence (un) → u such that un /∈ coneLε for all n. Since ∥u∥ = 1,
we can suppose that un ̸= 0. Therefore,

∥un∥−1 un → u

and ∥un∥−1 un ∈ SX for any n. Since B(u, ε) ∩ SX ⊂ Lε, for n sufficiently large,

∥un∥−1 un ∈ Lε, whence un ∈ coneLε, which is a contradiction. Now, for v ∈
coneL \ {0}, there are α > 0 and u ∈ L with v = αu. From the previous step, there
is ρ > 0 such that B(u, ρ) ⊂ coneLε. Then, we have B(v, αρ) ⊂ coneLε, showing
that v ∈ int coneLε.

(vi) The inclusion

L ⊂
∩
δ>0

Lδ
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is always true. Assume now that L is closed and suppose that there would be

u ∈
∩

δ>0
Lδ \ L. Then, d(u, L) := µ > 0. In particular, this means that u /∈ L2−1µ,

which is a contradiction.
For the second equality, again, the inclusion

DL ⊂
∩
δ>0

DLδ

is obvious. Since L is closed, then, according to (i), DL is closed. If there exists

u ∈
∩

δ>0
DLδ

\ DL, then d(u,DL) := µ > 0. We show that this implies than

u /∈ DL3−1µ
, which is a contradiction. Indeed, otherwise, one can find u′ ∈ L3−1µ

and t ∈ [0, 1] such that u = tu′ and v ∈ L such that ∥u′ − v∥ < 2 · 3−1µ. Clearly,
tv ∈ DL. This implies

µ = d(u,DL) < ∥u− tv∥ =
∥∥tu′ − tv

∥∥ = t
∥∥u′ − v

∥∥ ≤ 2 · 3−1µ < µ.

The conclusion follows.
For the last equality, we proceed similarly. While

coneL ⊂
∩
δ>0

coneLδ

is clear, take, by way of contradiction, u ∈
∩

δ>0
coneLδ \ coneL. Then, u ̸= 0

and ∥u∥−1 u /∈ L, whence d(∥u∥−1 u, L) := µ > 0. If one has u ∈ coneL3−1µ, then

∥u∥−1 u ∈ L3−1µ, so one will have v ∈ L with∥∥∥∥u∥−1 u− v
∥∥∥ < 2 · 3−1µ.

Therefore,

µ = d(∥u∥−1 u, L) ≤
∥∥∥∥u∥−1 u− v

∥∥∥ < 2 · 3−1µ,

again a contradiction.
(vii) The obvious relations coneL = coneDL and DL = DX ∩ coneL are enough

in order to conclude. □

Remark 2.10. The converse of the item (iii) from Proposition 2.9 does not hold:
for instance, in a reflexive Banach space, L := SX is not weakly compact, while
DL = DX has this property. The cones with weakly compact intersection with the
unit ball are studied in [3] under the name of reflexive cones. Proposition 2.9 (iii)
shows that if L is weakly compact, then coneL is a reflexive cone.

Remark 2.11. As seen in the items (v) and (vi), the cone generated by Lε is a
solid enlargement of coneL. Another link with the existing literature concerning
enlargements of cones is given by the following inclusions:

DLε ⊂ {x ∈ DX | d(x,DL) ≤ ε ∥x∥}

and

coneLε ⊂ {x ∈ X | d(x, coneL) ≤ ε ∥x∥}.
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Indeed, if u ∈ DLε \ {0} then clearly u ∈ DX and ∥u∥−1 u ∈ Lε. Hence, for δ > 0

there is v ∈ L such that
∥∥∥∥u∥−1 u− v

∥∥∥ < ε+ δ, so ∥u∥ v ∈ DL and

d(u,DL) ≤
∥∥∥∥u∥ ∥u∥−1 u− ∥u∥ v

∥∥∥ = ∥u∥
∥∥∥∥u∥−1 u− v

∥∥∥ ≤ (ε+ δ) ∥u∥ .

Letting δ → 0, one obtains the desired relation. For the second inclusion, take
u ∈ coneLε. Then, there are α ≥ 0 and v ∈ Lε such that u = αv. In particular,
v ∈ DLε , whence, from the previous step, d(v,DL) ≤ ε ∥v∥ = ε and

d(u, coneL) = d(αv, coneL) ≤ d(αv, αDL) = αd(v,DL) ≤ αε = ε ∥u∥ .

Therefore, the enlargement given by Lε is smaller that the enlargement proposed
in [13], which, for a given cone K, reads as follows:

Kε := {u ∈ X | d(u,K) ≤ ε ∥u∥}.

Now, in view of the announced fact concerning the flexibility offered by our set-
ting in the study of different degrees of Pareto efficiency, we discuss the possibility to
devise some directional concepts for proper and approximate efficiency (see [17] for
a discussion on the standard case). We mention that both proper and approximate
minimality are very useful and studied in the framework of standard vector opti-
mization (see [10] and [8], for details). In order to keep the presentation as concise
as possible, we proceed with both these versions of minimality in the directional
case at once and for the unconstrained problem

(Pu) minimize F (x), subject to x ∈ X.

A concept of properness in the sense of Henig (see [8, p. 110]) by an enlargement
of coneM is easy to be written in our case. However, the directional character also
in input space of the Pareto efficiency we consider here allows to define a concept
of proper efficiency with respect to X.

Definition 2.12. Let L ⊂ SX and M ⊂ SY be nonempty closed sets. One says
that (x, y) ∈ GrF is a (L,M)−local directional proper in X and approximate in Y
Pareto minimum point for F (or for Problem (Pu)) if there exists a neighborhood
U of x, an element v ∈ M and two constants ε, δ > 0 such that

(F (U ∩ (x+ coneLε))− y) ∩ (− coneM − δv) = ∅.

The approximate character of the above concept is given by the presence of the
term δv, while the properness is given by the enlargement coneLε (in accordance
with Proposition 2.9). While the approximate character is similar with that in the
case of standard vector and scalar optimization (see [1] and the references therein)
the proper feature means that one can enlarge the set of direction in X with respect
to which (x, y) is a minimum.

In this way, any interested reader can generate several concepts of efficiency
and the study of such concepts is of potential interest. It is not our aim here
to exhaustively describe such possibilities, but we illustrate the above concept by
the next result where we give sufficient conditions to ensure that an approximate
minimum can be seen as a proper approximate minimum.
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Proposition 2.13. Let L ⊂ SX and M ⊂ SY be closed sets and (x, y) ∈ GrF.
Suppose that there exist a neighborhood U of x, an element v ∈ M and constants
δ > 0 such that

(F (U ∩ (x+ coneL))− y) ∩ (− coneM − δv) = ∅.

If F is upper semicontinuous and has nonempty values, and L is compact, then
there exists ε > 0 such that

(F (U ∩ (x+ coneLε))− y) ∩ (− coneM − δv) = ∅.

Proof. The relation

(F (U ∩ (x+ coneL))− y) ∩ (− coneM − δv) = ∅,

can be written as: there exists ρ > 0 such that

F (x+ ρ[0, 1]L) ⊂ y + Y \ (− coneM − δv),

that is

x+ ρ[0, 1]L ⊂ F+1 (y + Y \ (− coneM − δv)) .

Since the set y + Y \ (− coneM − δv) is open, and F is upper semicontinuous with
nonempty values the set in the right-hand side is open. According to Proposition
2.9 (ii), the compactness of L ensures the compactness of the left-hand set. Then
there exists µ > 0 such that∪

θ∈[0,1],u∈L

(x+B(ρθu, µ)) ⊂ F+1 (y + Y \ (− coneM − δv)) .

Now, in order to have the conclusion, it is enough to prove that there exists ε > 0
such that

ρ[0, 1]Lε ⊂
∪

θ∈[0,1],u∈L

B(ρθu, µ)

which is implied by

ρθLε ⊂
∪
u∈L

B(ρθu, µ),

for all θ ∈ (0, 1]. We show that the latter inclusion is true for ε ∈
(
0, ρ−1µ

)
. Indeed,

if it had not been the case, there would have existed v ∈ ρθLε \
∪

u∈L
B(ρθu, µ),

so (ρθ)−1v ∈ Lε and for all u ∈ L, ∥v − ρθu∥ ≥ µ. Then, for δ ∈ (ε, ρ−1µ) there is
w ∈ L with

∥∥(ρθ)−1v − w
∥∥ < δ, whence

ρ−1µ ≤ (ρθ)−1µ ≤
∥∥(ρθ)−1v − w

∥∥ < δ,

which is a contradiction. The proof is complete. □
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3. Exact penalization results

In order to obtain necessary optimality conditions for problem (P ), a fruitful
technique is the exact penalization, that consists of adding a penalty term to the
objective set-valued map F such that a given solution of the initial problem become
solution for an unconstrained optimization problem for which we have more tools of
investigation. Again, such results could be described as well for proper and/or ap-
proximate minimality. We restrict ourselves to the (L,M)−local directional Pareto
minimality. Of course, an infinite penalization technique can be envisaged for the
problems we study (see [5] and [14]), but in view of optimality conditions the Clarke
penalization offers more precise conclusions. Therefore, the first result is a Clarke-
type penalization (see [5] for the initial scalar version, and [15] for a vectorial form
of this principle).

Theorem 3.1. Let L ⊂ SX and M ⊂ SY be nonempty closed sets such that M ∩
−M = ∅ and coneM is convex. Let (x, y) ∈ GrF ∩ (A × Y ) be a (L,M)−local
directional Pareto minimum point for problem (P ) . Suppose that:

(i) A ∩ [x+ coneL] is locally closed at x;
(ii) there exist ℓ > 0, e ∈ M and U a neighborhood of x such that, for every

(x′, x′′) ∈ (U ∩ [x+ coneL])× (U ∩A ∩ [x+ coneL]),

F
(
x′
)
+ ℓ

∥∥x′ − x′′
∥∥ e ⊂ F

(
x′′

)
+ coneM.

Then, for every ℓ′ > ℓ, (x, y) is (L,M)−local directional Pareto minimum point for
the unconstrained problem

min F (x) + ℓ′d (x,A ∩ [x+ coneL]) e.

Proof. As already mentioned, the condition M ∩ −M = ∅ is equivalent to the fact
that coneM is pointed. Since (x, y) solves in the directional sense given above the
problem (P ), then there exists ε > 0 such that (see Remark 2.6)

(3.1) (F (B (x, ε) ∩A ∩ [x+ coneL])− y) ∩ − coneM = {0} .

Without loss of generality, one can suppose that B(x, ε) ⊂ U and A∩ [x+coneL]∩
D(x, ε) is closed.

Fix ℓ′ > ℓ and let ρ = min

(
εℓ

ℓ+ ℓ′
,
ε

3

)
. We proceed by contradiction, assuming

that (x, y) is not a (L,M)−local directional Pareto minimum point for the set-
valued mapping

F (·) + ℓ′d (·, A ∩ [x+ coneL]) e.

Then, one can find x ∈ B (x, ρ) ∩ [x+ coneL] for which(
F (x) + ℓ′d (x,A ∩ [x+ coneL]) e− y

)
∩ − coneM ̸= {0} .

We infer that there exists y ∈ F (x) satisfying the relation

(3.2) y − y − ℓ′d (x,A ∩ [x+ coneL]) e ∈ coneM \ {0} .

Now, we show there exists as well u ∈ A ∩ [x+ coneL] such that

∥u− x∥ ≤ ℓ′

ℓ
d (x,A ∩ [x+ coneL]) .
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Indeed, this assertion rests upon the following argument. If

d (x,A ∩ [x+ coneL]) > 0

the claim is obviously true since d (·, A ∩ [x+ coneL]) is an infimum. Otherwise,
d (x,A ∩ [x+ coneL]) = 0, whence x ∈ cl (A ∩ [x+ coneL]) , so there is a sequence
(xn) ⊂ A ∩ [x+ coneL] such that xn → x. Since x ∈ B(x, ρ) ⊂ B(x, ε), for n
large enough, xn ∈ B(x, ε) ⊂ D(x, ε). Then x ∈ cl (A ∩ [x+ coneL] ∩D(x, ε)) =
A ∩ [x+ coneL] ∩D(x, ε) and then we can take u := x. Consequently,

(3.3) ∥u− x∥ ≤ ℓ′

ℓ
d (x,A ∩ [x+ coneL]) ≤ ℓ′

ℓ
∥x− x∥ ≤ ℓ′

ℓ
ρ.

Whence

∥u− x∥ ≤ ∥u− x∥+ ∥x− x∥ ≤ ρ

(
ℓ′

ℓ
+ 1

)
< ε,

i.e.,

u ∈ B (x, ε) ∩A ∩ [x+ coneL] .

By hypothesis, we can guarantee the existence of v ∈ F (u) such that y − v +
ℓ ∥x− u∥ e ∈ coneM . Using (3.3) and the convexity of coneM , we obtain that

y − v + ℓ′d (x,A ∩ [x+ coneL]) e ∈ coneM.

Finally, by adding the last relation and relation (3.2), we obtain

y − v ∈ coneM \ {0}+ coneM ⊂ coneM \ {0} .

The relation above provides a contradiction with (3.1). Thus, the conclusion follows.
□

Remark 3.2. In the framework of Clarke penalization, in general, the objective
function is supposed to verify a vectorial Lipschitz property on an entire neigh-
borhood of the minimum point. In this sequel, it is properly to use the following
vectorial Lipschitz-like property: based on [15], if K is a cone, one says that F is
K−Lipschitz around x ∈ X of rank ℓ > 0 if there exist a neighborhood U of x and
an element e ∈ K ∩ SY such that for every x′, x′′ ∈ U ,

F
(
x′
)
+ ℓf

∥∥x′′ − x′
∥∥ e ∈ F

(
x′′

)
+K.

For our purpose, it is not necessary to require the above relation on an entire
neighborhood x. Indeed, take L = M := {1} , A := [0,+∞) , x := 0 and ε > 0. Let
us define f : R → R by

f (x) :=

{
x, x ≥ 0
ε, x < 0.

Then, for every x′ ∈ (−ε, ε) and x′′ ∈ [0, ε), we have that f (x′)+∥x′ − x′′∥−f (x′′) ∈
[0,+∞), so f satisfies the Lipschitz type condition needed in our result. However,
the latter inclusion is no longer true if x′′ ∈ (−ε, ε).

The next penalization result we propose refers to the case of generalized functional
constraints. More precisely, we consider the problem (P ) where one replaces the set
A with the set

{x ∈ X | 0 ∈ G(x) +Q} = G−1(−Q),
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where G : X ⇒ Z is a set-valued maps and Q ⊂ Z is a proper convex closed
cone. We denote the problem (P ) with this type of constraint by (Pf ) (”f” from

functional). The epigraphical set-valued map, G̃ : X ⇒ Z is given by G̃(x) =
G(x) + Q. With this notation, the set of feasible points of (Pf ) can be written as

G̃−1(0).
In order to deal with the directional concepts of efficiency we consider the minimal

time function used in [6] to introduce directional regularity notions for mappings.
Let ∅ ̸= L ⊂ SX and ∅ ̸= Ω ⊂ X be some sets (the set of directions and the

target set). Then, the function

TL(x,Ω) := inf {t ≥ 0 | ∃u ∈ L : x+ tu ∈ Ω}(3.4)

= inf {t ≥ 0 | (x+ tL) ∩ Ω ̸= ∅}
is called the directional minimal time function with respect to M.

Clearly, if L = SX , then TM (·,Ω) = d(·,Ω). Moreover, we use the convention
that TL(x, ∅) = ∞ for every x and we denote in what follows TL(x, {u}) by TL(x, u).
Obviously,

[TL(x, u) < +∞] ⇐⇒ [TL(x, u) = ∥u− x∥ and u− x ∈ coneL] .

Let F : X ⇒ Y be a set-valued mapping and (x, y) ∈ GrF, ∅ ̸= L ⊂ SX ,
∅ ̸= M ⊂ SY .

We recall the following concept of directional calmness introduced in [4]. One
says that F is directionally calm at (x, y) with respect to L and M with constant
α > 0 if there exist some neighborhoods U of x and V of y such that, for every
x ∈ U,

(3.5) sup
y∈F (x)∩V

TM (y, F (x)) ≤ αTL(x, x).

We use as well the convention supx∈∅ := 0.
In view of the properties of minimal time functions already mentioned, the di-

rectional calmness means that for every α′ > α and every y ∈ F (x) ∩ V with
x ∈ (x+ coneL) ∩ U, there is a positive t ≤ α′ ∥x− x∥ such that

(y + tM) ∩ F (x) ̸= ∅.
This means that for every α′ > α and x ∈ (x+ coneL) ∩ U,

F (x) ∩ V ⊂ F (x)−
[
0, α′ ∥x− x∥

]
·M.

We have the following result for the problem (Pf ) which is inspired by a technique
used in [16].

Theorem 3.3. Let L ⊂ SX be a nonempty closed set such that coneL is convex,
and M ⊂ SY be a nonempty closed set such that M ∩ −M = ∅ and coneM is
convex. Let (x, y) ∈ GrF ∩ (G−1(−Q) × Y ) be a (L,M)−local directional Pareto
minimum point for problem (Pf ) . Suppose that:

(i) there exist ℓ > 0, e ∈ M and U a neighborhood of x such that, for every
(x′, x′′) ∈ (U ∩ [x+ coneL])×

(
U ∩G−1(−Q) ∩ [x+ coneL]

)
,

F
(
x′
)
+ ℓ

∥∥x′ − x′′
∥∥ e ⊂ F

(
x′′

)
+ coneM.
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(ii) G̃−1 is is directionally calm at (0, x) with respect to SQ and L with constant
α > 0.

Then, for any α′ > α the point ((x, 0), y) is a ((L, SQ) ,M)−local directional Pareto

minimum point on Gr G̃ for the mapping

(x, z) ⇒ F (x) + ℓα′ ∥z∥ e.

Proof. Denote by ε a positive constant such that all the local properties from hy-
potheses hold on balls with radius ε around the underlying points. Take α′ > α. We
have to show that ((x, 0), y) is a ((L, SQ) ,M)−local directional Pareto minimum

point on Gr G̃ for the multifunction Γ : X × Z ⇒ Y,

Γ(x, z) := F (x) + ℓα′ ∥z∥ e.
Let (x, z) ∈ Gr G̃ ∩ B((x, 0),min{2−1, (2α′)−1} · ε) with x ∈ x + coneL and z ∈
0 + coneSQ = Q and suppose, by way of contradiction, that there exists y ∈ F (x)
such that

(3.6) y − y − ℓα′ ∥z∥ e ∈ coneM \ {0}.
By the calmness of G̃−1 at (0, x) with respect to SQ and L with constant α > 0 one
has that

x ∈ G̃−1(z) ∩ (B(x, 2−1ε)) ⊂ G̃−1(0)−
[
0, α′ ∥z∥

]
· L.

Consequently, there exists u ∈ G̃−1(0) such that

u− x ∈
[
0, α′ ∥z∥

]
· L.

In particular, u ∈ G−1(−Q) so u is a feasible point for the problem (Pf ), and

u ∈ x+
[
0, α′ ∥z∥

]
· L ⊂ x+ coneL+

[
0, α′ ∥z∥

]
· L

⊂ x+ coneL.

Moreover,
∥u− x∥ ≤ ∥u− x∥+ ∥x− x∥ ≤ 2−1ε+ 2−1ε < ε.

Therefore, from the Lipschitz property of F (assumption (i)) there exists v ∈ F (u)
such that

y + ℓ ∥x− u∥ e− v ∈ coneM,

whence, by the inequality ∥x− u∥ ≤ α′ ∥z∥ , and since e ∈ M,

(3.7) y + ℓα′ ∥z∥ e− v ∈ coneM.

Now, we add relations (3.6) and (3.7) and we get that

y − v ∈ coneM \ {0},
which contradicts the minimality of x. □

Combining Theorems 3.1 and 3.3, we get the following consequence that repre-
sents a genuine penalization result for the problem (Pf ).

Corollary 3.4. Let L ⊂ SX be a nonempty closed set such that coneL is convex,
and M ⊂ SY be a nonempty closed set such that M ∩ −M = ∅ and coneM is
convex. Let (x, y) ∈ GrF ∩ (G−1(−Q) × Y ) be a (L,M)−local directional Pareto
minimum point for problem (Pf ) . Suppose that
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(i) there exist ℓ > 0, e ∈ M and U a neighborhood of x such that, for every

(x′, x′′) ∈ (U ∩ [x+ coneL])×
(
U ∩ G̃−1(−Q ∪Q) ∩ [x+ coneL]

)
,

F
(
x′
)
+ ℓ

∥∥x′ − x′′
∥∥ e ⊂ F

(
x′′

)
+ coneM.

(ii) G̃−1 is is directionally calm at (0, x) with respect to SQ and L with constant
α > 0.

(iii) Gr G̃ ∩ ([x+ coneL]×Q) is locally closed at (x, 0).

Then, for any α′ > α and λ > max{ℓ, ℓα′}, the point ((x, 0), y) is an unconstrained
((L, SQ) ,M)−local directional Pareto minimum point for the mapping

X × Z ∋ (x, z) ⇒ F (x) + ℓα′ ∥z∥ e+ λd((x, z),Gr G̃ ∩ [(x+ coneL)×Q])e.

Proof. Consider again Γ : X × Z ⇒ Y,

Γ(x, z) := F (x) + ℓα′ ∥z∥ e.

SinceG−1(−Q) ⊂ G̃−1(−Q∪Q), by means of Theorem 3.3, ((x, 0), y) is a ((L, SQ) ,M)−local

directional Pareto minimum point for Γ on Gr G̃. Take(
(x′, z′), (x′′, z′′)

)
∈ ((U × Z) ∩ ((x, 0) + cone(L× SQ)))

×
(
(U × Z) ∩Gr G̃ ∩ ((x, 0) + cone(L× SQ))

)
.

Since z′′ ∈ G̃(x′′)+coneSQ = G̃(x′′) and z′′ ∈ Q (whence x′′ ∈ G̃−1(Q) ⊂ G̃−1(−Q∪
Q)), it is not difficult to see that, under assumption (i),

Γ(x′, z′) + max{ℓ, ℓα′}
∥∥(x′, z′)− (x′′, z′′)

∥∥ ⊂ Γ(x′′, z′′) + coneM.

This means that Γ satisfies the vectorial Lipschitz property needed for the objective
mapping in Theorem 3.1, with the constant max{ℓ, ℓα′}. Therefore, using also
assumption (iii), by Theorem 3.1 we get the result. □

4. Optimality conditions for functional constrained problems

In this section we obtain necessary optimality conditions for problem (Pf ). In

the above notation, define F̃ : X ⇒ Y by F̃ (x) := F (x) + coneM. Consider the

mapping
(
F̃ , G̃

)
: X ⇒ Y × Z,(

F̃ , G̃
)
(x) := F̃ (x)× G̃(x).

We have the following result.

Proposition 4.1. Let L ⊂ SX be a nonempty closed set, and M ⊂ SY be a
nonempty closed set such that M ∩ −M = ∅ and coneM is convex. Let (x, y) ∈
GrF ∩ (G−1(−Q) × Y ) and take q̄ ∈ Q ∩ −G(x). If (x, y) is a (L,M)−local direc-
tional Pareto minimum point for problem (Pf ) , then there is a neighborhood U of
x such that[(

F̃ , G̃
)
(U ∩ [x+ coneL])− (y,−q̄)

]
∩ (− coneM ×−Q) ⊂ {0} × −Q.
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Consequently, for any neighborhoods V of y and W of −q̄, and any point (v, q) ∈
M × (Q\{0}) , the inclusion

(V ×W ) ∩ [(y,−q̄)− cone{v, q}] ⊂
(
F̃ , G̃

)
(U ∩ [x+ coneL])

cannot hold.

Proof. In order to prove the first conclusion, let U be the neighborhood of x for
which the local minimality condition holds. Take any x ∈ U ∩ [x+ coneL] , and

(y, z) ∈
(
F̃ , G̃

)
(x) such that

(y, z)− (y,−q̄) ∈ (− coneM ×−Q) .

Then, one can find y′ ∈ F (x) and u ∈ coneM such that

y′ + u− y ∈ − coneM,

and there are q′ ∈ Q, z′ ∈ G(x) such that

z′ + q′ + q̄ ∈ −Q.

The last relation leads to z′ ∈ −Q, whence x ∈ U ∩ [x+ coneL] ∩G−1(−Q). More-
over,

y′ − y ∈ − coneM − u ⊂ − coneM.

Therefore, by assumption,

y′ − y = 0,

and this implies as well that

u ∈ − coneM ∩ coneM,

so u = 0. Consequently, y = y and the thesis follows.
For the second conclusion, take some neighborhoods V of y and W of −q̄, take

(v, q) ∈ M × (Q\{0}) and suppose, by way of contradiction, that

(V ×W ) ∩ [(y,−q̄)− cone{v, q}] ⊂
(
F̃ , G̃

)
(U ∩ [x+ coneL]).

Then,

(V ×W ) ∩ [(y,−q̄)− cone{v, q}]− (y,−q̄) ⊂
(
F̃ , G̃

)
(U ∩ [x+ coneL])− (y,−q̄) ,

whence, from the above step,

[(V ×W )− (y,−q̄)] ∩ − cone{v, q} ∩ − (coneM ×Q) ⊂ {0} × −Q.

This means

[(V ×W )− (y,−q̄)] ∩ − cone{v, q} ⊂ {0} × −Q,

and, in particular,

(V − y) ∩ − cone{v} ⊂ {0},
which is not possible. The proof is complete. □
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In what follows, we use the above proposition together with a result which is an
adapted version of [7, Theorem 3.7] where the authors obtain a directional openness
result for an epigraphical set-valued map, by using some methods from [6]. Before
presenting the mentioned result, we need some preparation concerning generalized
differentiation constructions developed by Mordukhovich and his collaborators (see
[14]).

Definition 4.2. Let X be a normed vector space, S be a non-empty subset of X
and let x ∈ S, ε ≥ 0. The set of ε−normals to S at x is

(4.1) N̂ε(S, x) :=

{
x∗ ∈ X∗ | lim sup

u
S→x

x∗(u− x)

∥u− x∥
≤ ε

}
.

If ε = 0, the elements in the right-hand side of (4.1) are called Fréchet normals,

and N̂(S, x) := N̂0(S, x) is the Fréchet normal cone to S at x.
Let x ∈ S. The limiting (or Mordukhovich) normal cone to S at x is

N(S, x) := {x∗ ∈ X∗ | ∃εn ↓ 0, xn
S→ x, x∗n

w∗
→ x∗, x∗n ∈ N̂εn(S, xn),∀n ∈ N}.

If X is an Asplund space, and S is locally closed at x, the formula for the limiting
normal cone takes a simpler form, namely:

(4.2) N(S, x) = {x∗ ∈ X∗ | ∃xn
S→ x, x∗n

w∗
→ x∗, x∗n ∈ N̂(S, xn),∀n ∈ N}.

Definition 4.3. Let F : X ⇒ Y be a set-valued map and (x, y) ∈ GrF. Then, the

Fréchet coderivative at (x, y) is the set-valued map D̂∗F (x, y) : Y ∗ ⇒ X∗ given by

D̂∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂(GrF, (x, y))}.
Similarly, the normal coderivative of F at (x, y) is the set-valued map D∗F (x, y) :
Y ∗ ⇒ X∗ given by

D∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(GrF, (x, y))}.

The version we use of Theorem 3.7 from [7] reads as follows.

Theorem 4.4. Let X,Y be finite dimensional, L ⊂ SX , M ⊂ SY be nonempty
closed sets such that coneL, coneM are convex and M ∩−M = ∅. Take v ∈ M and
let F : X ⇒ Y be a set-valued map and (x, y) ∈ GrF. Suppose that:

(i) GrF is locally closed at (x, y);
(ii) there exist c > 0, r > 0 such that for all y∗ ∈ (coneM)+ such that y∗(v) = 1,

and for every z∗ ∈ B(0, 2c), (x, y) ∈ GrF ∩ [B(x, r)×B(y, r)] and x∗ ∈
D̂∗F (x, y)(y∗ + z∗) there is u ∈ L that satisfies

−x∗(u) ≥ c ∥y∗ + z∗∥ .
Then there is ε > 0 such that for all a ∈ (0, c) and ρ ∈ (0, ε) one has

B(y, aρ) ∩ [y − cone{v}] ⊂ F (B(x, ρ) ∩ [x+ coneL]) + coneM

= F̃ (B(x, ρ) ∩ [x+ coneL]).

With these tools at hand, we propose the following result concerning necessary
optimality conditions of Fritz John type for (L,M)−local directional Pareto mini-
mality of problem (Pf ).
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Theorem 4.5. Let X,Y, Z be finite dimensional, L ⊂ SX , M ⊂ SY be nonempty
closed sets such that coneL, coneM are convex and M ∩ −M = ∅. Let (x, y) ∈
GrF ∩ (G−1(−Q)× Y ) and take q̄ ∈ Q ∩ −G(x). Assume that int coneM ̸= ∅ and
intQ ̸= ∅ and consider (v, q) ∈ int coneM × intQ. Suppose that

(i) GrF and GrG are locally closed at (x, y) and (x,−q̄), respectively;
(ii) F and G are Lipschitz-like around (x, y) and (x,−q̄), respectively.

If (x, y) is a (L,M)−local directional Pareto minimum point for problem (Pf ) , then

there exist x∗ ∈ L+, y∗ ∈ (coneM)+ , z∗ ∈ Q+ such that (y∗, z∗)(v, q) = 1 and

x∗ ∈ D∗F (x, y) (y∗) +D∗G (x,−q̄) (z∗).

Proof. The (L,M)−local minimality of (x, y) and Proposition 4.1 allow us to state
that the set-valued map (F,G) does not satisfy the openness conclusion from Theo-
rem 4.4, where instead of y one has (y,−q), instead of v one has (v, q) and instead of
coneM one has coneM×Q. Therefore, since the closedness of Gr(F,G) at (x, y,−q̄)
is assumed, the other assumption of Theorem 4.4 does not hold. Consequently,
for every n ∈ N \ {0}, there exist (xn, yn, zn) ∈ Gr(F,G) ∩ B

(
(x, y,−q̄), n−1

)
,

(y∗n, z
∗
n) ∈ (coneM ×Q)+ , with (y∗n, z

∗
n) (v, q) = 1, (v∗n, w

∗
n) ∈ B(0, 2n−1) ⊂ Y ∗×Z∗

and

x∗n ∈ D̂∗(F,G) (xn, yn, zn) ((y
∗
n, z

∗
n) + (v∗n, w

∗
n))

such that, for any u ∈ L,

(4.3) −x∗n (u) < n−1 ∥(y∗n, z∗n) + (v∗n, w
∗
n)∥ .

Clearly, v∗n → 0, w∗
n → 0. Due to the fact that (v, q) ∈ int coneM × intQ, [8,

Lemma 2.2.17] ensures that both sequences (y∗n) and (z∗n) are bounded. Since the
spaces are finite dimensional, we do not restrict the generality if we assume that
y∗n → y∗ ∈ (coneM)+ and z∗n → z∗ ∈ Q+. According to the definition of the Fréchet
coderivative,

(x∗n,−(y∗n + v∗n),−(z∗n + w∗
n)) ∈ N̂(Gr(F,G), (xn, yn, zn)).

Define

C1 := {(x, y, z) ∈ X × Y × Z | y ∈ F (x)}
C2 := {(x, y, z) ∈ X × Y × Z | z ∈ G(x)},

and observe that

Gr(F,G) = C1 ∩ C2.

Since X,Y, Z are finite dimensional, the approximate sum rule for the Fréchet
normals holds (see, e.g., [2]) and, consequently, there are the points (xin, yin, zin) ∈
B((xn, yn, zn), n

−1) ∩ Ci, i = 1, 2, such that

N̂(Gr(F,G), (xn, yn, zn)) ⊂ N̂(C1, (x1n, y1n, z1n)) + N̂(C2, (x2n, y2n, z2n))

+ n−1DX∗×Y ∗×Z∗ .

Then, there exist (x∗in,−y∗in,−z∗in) ∈ N̂(Ci, (xin, yin, zin)), i = 1, 2, and (u∗n, p
∗
n, q

∗
n) ∈

n−1DX∗×Y ∗×Z∗ such that

(x∗n,−y∗n − v∗n,−z∗n − w∗
n) = (x∗1n + x∗2n + u∗n,−y∗1n − y∗2n + p∗n,−z∗1n − z∗2n + q∗n).
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Furthermore,

N̂(C1, (x1n, y1n, z1n)) = N̂(GrF, (x1n, y1n))× {0} ,

N̂(C2, (x2n, y2n, z2n)) =
{
(x∗, y∗, z∗) | (x∗, z∗) ∈ N̂(GrG, (x2n, z2n)), y

∗ = 0
}
,

so y∗2n = 0 and z∗1n = 0. Therefore,

y∗1n = y∗n + v∗n + p∗n → y∗,

and

z∗2n = z∗n + w∗
n + q∗n → z∗.

Next, we observe that the sequences (x∗1n), (x
∗
2n) are bounded. Indeed, since for

all n,

x∗1n ∈ D̂∗F (x1n, y1n)(y
∗
1n)

and

x∗2n ∈ D̂∗G(x2n, y2n)(z
∗
2n),

due to the assumption (ii), and [14, Theorem 1.43 (i)] one gets the boundedness of
these sequences.

Consequently, because X is finite dimensional, we can suppose again, without
loss of generality, that (x∗1n), (x

∗
2n) are convergent to some x∗1, x

∗
2 ∈ X∗. Taking

into account the convergence of the sequences (xin, yin, zin) towards (x, y,−q̄) for
i = 1, 2, one gets

x∗1 ∈ D∗F (x, y) (y∗),

x∗2 ∈ D∗G (x,−q̄) (z∗).

Since (x∗1n + x∗2n) = (x∗n − u∗n) from (4.3) one deduces, by passing to the limit,
that for all u ∈ L,

−x∗1(u)− x∗2(u) ≤ 0,

whence x∗1 + x∗2 ∈ L+. Obviously, (y∗, z∗)(v, q) = 1 and the proof ends. □
Remark 4.6. In the particular case when L = SX , the conclusion of the above
theorem reduces to

0 ∈ D∗F (x, y) (y∗) +D∗G (x,−q̄) (z∗),

for some y∗ ∈ (coneM)+ and z∗ ∈ Q+ with (y∗, z∗)(v, q) = 1. In this particular
case, we obtain Fritz John multipliers without being necessary to consider that both
F and G have the Lipschitz-like property.

Indeed, suppose, for instance, that F is Lipschitz-like around (x, y). Then, for
any n ∈ N \ {0} and u ∈ L, we have

−x∗n (u) < n−1 ∥(y∗n, z∗n) + (v∗n, w
∗
n)∥ ,

for some (y∗n, z
∗
n) ∈ (coneM ×Q)+ , (y∗n, z

∗
n) (v, q) = 1, (v∗n, w

∗
n) ∈ B(0, 2n−1) ⊂

Y ∗×Z∗. Replacing u ∈ L by −u ∈ L in the last inequality and using the definition
of operator norm, we get that, for any u ∈ L,

|x∗n (u)| ≤ ∥x∗n∥ ≤ n−1 ∥(y∗n, z∗n) + (v∗n, w
∗
n)∥ .

Letting n → +∞ and knowing as above that (y∗n, z
∗
n) is a bounded sequence, one gets

that (x∗n) has the limit equal to 0. In addition, using the same notations exposed
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in previous proof, there exist (x∗in,−y∗in,−z∗in) ∈ N̂(Ci, (xin, yin, zin)), i = 1, 2, and
(u∗n, p

∗
n, q

∗
n) ∈ n−1DX∗×Y ∗×Z∗ such that

(x∗n,−y∗n − v∗n,−z∗n − w∗
n) = (x∗1n + x∗2n + u∗n,−y∗1n + p∗n,−z∗2n + q∗n)

with y∗1n → y∗ and z∗2n → z∗. Now, with the help of [14, Theorem 1.43 (i)], one
easily obtains that (x∗1n) is bounded because F is Lipschitz-like and, for any natural
number n,

x∗1n ∈ D̂∗F (x1n, y1n)(y
∗
1n).

Hence, the sequence (x∗2n) = (x∗n − x∗1n − u∗n) is bounded. Further, the argument
follows the same path as in the above proof. So, we conclude that x∗1 + x∗2 ∈ L+ =
S+
X = {0} and (y∗, z∗)(v, q) = 1.
Now, if we suppose that G is Lipschitz-like, then the only difference from the

above argument is that we obtain the boundedness of (x∗2n) instead of (x∗1n). Then,
the sequence (x∗1n) = (x∗n − x∗2n − u∗n) is bounded and the conclusion follows as
before.

Remark 4.7. The existence of y∗ ̸= 0 is guaranteed under the hypothesis that F is
Lipschitz-like around (x, y) and G is metrically regular around (x,−q). Let us prove
this statement arguing by contradiction. Assuming y∗ = 0, based on [14, Theorem
1.44 (i)], then D∗F (x, y) (y∗) = {0}. Now, we always have, for every y∗ ∈ Y ∗,

y∗ ∈ D∗G (x,−q̄) (z∗) ⇔ −z∗ ∈ D∗G−1 (−q, x) (−y∗) .

In particular, for y∗ = 0, we get that −z∗ ∈ D∗G−1 (−q, x) (0). Since G is metrically
regular around (x,−q), it follows that G−1 is Lipschitz-like around (−q, x), one can
see [14, Theorem 1.49 (i)], and hence

−z∗ ∈ D∗G−1 (−q, x) (0) = {0} .
This gives a contradiction, since (y∗, z∗)(v, q) = 1. Hence y∗ ̸= 0.

Similar results can be deduced by combining the facts described in the Sections 2,
3, and 4 for other types of minima such as approximate minima or proper minima.
Naturally, some new technical aspects can arise when discussing such results. To
illustrate this assertion, we present an example of such a situation. More precisely,
when one studies proper efficiency in the sense of Definition 2.12, it is natural that
the multiplier associated to the objective mapping lays in L+

ε = (coneLε)
+ , and

extra information can be obtained from this. We have the following result.

Proposition 4.8. If x∗ ∈ (coneLε)
+ , then for every u ∈ L,

x∗(u) ≥ (ε+ 2)−1ε ∥x∗∥ .

Proof. We have seen in Proposition 2.9 (v) that coneL\{0} ⊂ int coneLε. Actually,
we can show the more precise fact that for any u ∈ L, D(u, ρ) ⊂ coneLε, where
ρ := (ε+2)−1ε. Indeed, take u ∈ L and v ∈ D(u, ρ). Then, there is z ∈ D(0, ρ) such
that v = u+ z and∥∥∥u− ∥v∥−1 v

∥∥∥ =
∥∥∥u− ∥u+ z∥−1 (u+ z)

∥∥∥ = ∥u+ z∥−1 ∥∥u+ z∥u− u− z∥

≤ (1− ρ)−1 ∥(∥u+ z∥ − 1)u− z∥
≤ (1− ρ)−1 (|∥u+ z∥ − 1|+ ∥z∥) ≤ 2(1− ρ)−1 ∥z∥
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≤ 2ρ(1− ρ)−1 = ε.

Therefore, ∥v∥−1 v ∈ Lε, so v ∈ coneLε.
Now, taking x∗ ∈ (coneLε)

+ , one has that for all u ∈ L, and z ∈ D(0, ρ),

x∗(u+ z) ≥ 0,

that is

x∗(u) ≥ −x∗(z).

The latter relation leads to

x∗(u) ≥ sup
z∈D(0,ρ)

x∗(z) = ρ ∥x∗∥ ,

and this is the conclusion. □

5. Concluding remarks

The variety of directional vector efficiency concepts that can be defined by the
approach we propose in this paper covers many of the standard types of Pareto
efficiency. Moreover, by considering in input space a set of directions that, under
some circumstances, can be enlarged one can speak about degrees of directional
Pareto efficiency. The exact penalization results (Section 3) and necessary optimal-
ity conditions (Section 4) are illustrations, for prototype of (L,M)-directional Pareto
efficiency, of some principles and techniques that can be extended and specialized
for other types of minimality as proper directional minimality and approximate di-
rectional minimality. More developments on these topis will be the subject of future
research.
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