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example: f : R → ℓ2∞ defined for t by f(t) = (t, sin t) shows that it is not true if
an isometry is not surjective. For a general standard isometry f : X → Y , Figiel
[16, 1968] showed the following remarkable theorem: there is a linear operator
T : L(f) → X with ∥T∥ = 1 such that Tf = IX , the identity on X; i.e. every
isometry admits a linear left inverse of norm one! We also call the operator T
Figiel’s operator associated with the isometry f . Godefroy and Kalton [18, 2003]
studied the relationship between isometry and linear isometry, and showed the deep
result for a standard isometry f : X → Y , if X is separable then Y contains an
isometric linear copy of X; and for every nonseparable weakly compactly generated
space X, there exist a Banach space Y and an isometry f : X → Y , so that X is not
linearly isomorphic any subspace of Y . A further discussion about the relationship
of (ε-) isometries and linear isometries including localized settings can be found in
[13, 15], [32]-[36].

ε-isometry and stability. Hyers and Ulam [21, 1945] first studied ε-isometry
and proposed the following question (see, also [25]): whether for every surjective
ε-isometry f : X → Y with f(0) = 0 there exist a surjective linear isometry
U : X → Y and γ > 0 such that

(1.1) ∥f(x) − Ux∥ ≤ γε, for all x ∈ X.

An ε-isometry f : X → Y satisfying the inequality above is called a γ-approximate
linear ε-isometry. Since then, some partial affirmative answers had been obtained
by Hyers and Ulam [21, 22], D.G. Bourgin [3, 4, 5], R.D. Bourgin [6], Gruber [19]
and Gevietz [17]. After 50 year efforts of a number of mathematicians, the following
sharp estimate was finally obtained by Omladič and Šemrl [25, 1995]. (See, also, [2,
pp.360].)

Theorem 1.2 (Omladič-Šemrl). If f : X → Y is a standard surjective ε-isometry,
then there is a surjective linear isometry U : X → Y such that

∥f(x) − Ux∥ ≤ 2ε, for all x ∈ X.

We refer the reader to [10, 14, 29, 31, 32] for the recent development in this direction.

Since 90s of the last century, the study of stability property of non-surjective
ε-isometry has become an active area. A standard ε-isometry f : X → Y is said
to be (γ-) stable provided there exist a positive number γ and a bounded linear
operator T : L(f) → X such that

(1.2) ∥Tf(x) − x∥ ≤ γε, for all x ∈ X.

Qian [26, 1995] first studied such a problem, showed that the answer to the problem
is positive if both X and Y are Lp spaces for all 1 < p <∞. Šemrl and Väisälä [28,
2003] further presented a sharp estimate of (1.2) with γ = 2 if both X and Y are
Lp spaces for 1 < p < ∞. However, Qian [26] presented a simple counterexample
showing that if a separable Banach space Y contains a uncomplemented closed
subspace X then for every ε > 0 there is a standard ε-isometry f : X → Y which is
unstable. This disappointment made us to search for some appropriate (but weaker)
stability version. Cheng, Dong and Zhang [9, 2013] found a weak stability version
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for general standard ε-isometries. Cheng et al. [7, 2015] further improved it into
the following sharp one:

Theorem 1.3 (Cheng-Cheng-Tu-Zhang). Let f : X → Y be a standard ε-isometry.
Then for every x∗ ∈ X∗, there exists φ ∈ Y ∗ with ∥φ∥ = ∥x∗∥ ≡ r so that

(1.3)
∣∣⟨φ, f(x)⟩ − ⟨x∗, x⟩

∣∣ ≤ 2εr, for all x ∈ X.

Making use of the weak stability versions, various properties concerning general
ε-isometries have been extensively studied. It was shown in Cheng and Zhou [12]
that if there is an ε-isometry from X to Y , then there is a closed subspace N ⊂ Y ∗

so that X∗ is linearly isometric to Y ∗/N. In [1, 8], Banach spaces satisfying that
every standard ε-isometry is stable, i.e. “universal stability spaces” were studied.
Weak stability of ε-isometries defined on wedges of Banach spaces was also discussed
in [11]. Theorem 1.3 will play an essential rule in this paper.

In this paper, we first introduce a concept about stability which is called w∗-
stability of standard ε-isometries (Definition 2.1 ii)). w∗-stability is just the stability
whenever the Banach spaces in question are reflexive. But it is weaker than stability
in general (Example 2.3). Some evidence shows that this is perhaps the “right”
notion to study. Making use of the weak stability formula established in [7], we show
the two specific subspaces  L and N⊥ of Y ∗∗ associated with a standard ε-isometry
f : X → Y have many nice properties (Section 3). They play an important rule
in classification of ε-isometries. We prove that every such ε-isometry f deduces
a w∗-to-w∗ continuous linear isometry S

∣∣
 L : X∗ → Y ∗ whenever the domain of

S
∣∣
 L(X∗) is restricted to  L (Theorem 3.1). For a standard ε-isometry f : X → Y ,

we show that if there is a w∗-to-w∗ continuous projection P : L(f)∗∗ → N⊥ so
that Pf : X → N⊥ is an approximate linear δ-isometry for some δ ≥ 0, then f
is w∗-2δ/ε-stable (Theorem 4.1); Conversely, if f is w∗-γ-stable, then there is a
w∗-to-w∗ continuous projection P : L(f)∗∗ → N⊥ so that Pf : X → N⊥ is a γ-
approximate linear 2γε-isometry (Theorem 4.4). As its application, we show that
for every standard isometry f : X → Y there is a w∗-to-w∗ continuous projection
P : L(f)∗∗ → N⊥ so that Pf is a linear isometry (Corollary 4.5), and this can
be regarded as a refinement of Figiel’s theorem [16]. Stability (resp. w∗-stability)
of the ε-isometry f is also equivalent to that there is a linear w∗-to-w∗ continuous
(resp. continuous) selection x∗ → φ in the correspondence (1.3).

2. Preliminaries

All symbols and notations in this paper are standard. We use X to denote a real
Banach space and X∗ its dual. BX and SX denote the closed unit ball and the unit
sphere of X, respectively. For a subspace E ⊂ X, E⊥ denotes the annihilator of E,
i.e. E⊥ = {x∗ ∈ X∗ : ⟨x∗, e⟩ = 0 for all e ∈ E}. If E ⊂ X∗, then we use ⊥E to
denote the pre-annihilator of E: {x ∈ X : ⟨e, x⟩ = 0, ∀e ∈ E}. Given a bounded
linear operator T : X → Y , T ∗ : Y ∗ → X∗ stands for its conjugate operator. For
a subset A ⊂ X (X∗), A, (w∗-A) and co(A) stand for the closure (the w∗-closure),
and the convex hull of A, respectively. For a mapping g : X → Y , we denote by
L(g), the subspace of Y generated by g(X), i.e. L(g) = spang(X).
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Definition 2.1. Let f : X → Y be a standard ε-isometry, and γ > 0 be a constant.
Then

i) f is said to be γ-stable provided there exist a bounded linear operator T :
L(f) → X and a positive number γ so that

(2.1) ∥Tf(x) − x∥ ≤ γε, for all x ∈ X.

ii) We say that f is w∗-γ-stable provided there exist a continuous linear operator
T : L(f)∗∗ → X∗∗ and a positive number γ so that

(2.2) ∥Tf(x) − x∥ ≤ γε, for all x ∈ X.

iii) f is called a γ-approximate linear isometry if there is a surjective linear
isometry U : X → L(f) so that

(2.3) ∥f(x) − Ux∥ ≤ γε, for all x ∈ X.

Remark 2.2. With the stability notions above we should mention here that a)
an approximate linear isometry is stable, but the simple example f : R → ℓ2∞
defined for t ∈ R by f(t) = (t, |t|) says that a stable ε-isometry is not necessarily an
approximate linear isometry; b) a stable ε-isometry must be w∗-stable. However, the
following example shows that w∗-stability does not imply stability of an ε-isometry.

Example 2.3. Assume g : c0 → Bℓ∞ (the closed unit ball of ℓ∞) is a bijective (not
necessarily continuous) mapping with g(0) = 0. Given ε > 0, let f : c0 → ℓ∞ be
defined by

(2.4) f(x) = x+ (ε/2)g(x), for all x ∈ c0.

Clearly, f is an ε-isometry. Since L(f) = ℓ∞ and since c0 is not complemented
in ℓ∞, f is not stable. On the other hand, note L(f)∗∗ = ℓ∗∗∞ = ℓ∞ ⊕ ℓ⊥1 . Let
T : L(f)∗∗ → ℓ∞ = c∗∗0 be the projection along ℓ⊥1 . Then it satisfies

∥Tf(x) − x∥ = ∥f(x) − x∥ = (ε/2)∥g(x)∥ ≤ ε/2, for all x ∈ c0.

For an ε-isometry f : X → Y , we define the following (set-valued) mapping
ı : X∗ → L(f)∗ by

(2.5) ı(x∗) = {φ ∈ L(f)∗ : x∗ − φ ◦ f is bounded on X}.

Definition 2.4. i) A filter F on a set Ω is a collection of subsets of Ω satisfying a.
∅ /∈ F ; b. A,B ∈ F implies A∩B ∈ F and c. A ∈ F and A ⊂ B ⊂ Ω entail B ∈ F .

ii) A filter F is said to be free if ∩{F ∈ F} = ∅;
iii) A filter U is called an ultrafilter if for any A ⊂ Ω, either A ∈ U , or, Ω\A ∈ U .
iv) Let K be a topological space, and f : Ω → K be a function. We say f is

convergent to some k ∈ K with respect to a filter F if for every neighborhood U of
k, we have f−1(U) ∈ F ; in this case, we denote limF f = k.

The following property is classical and is easy to prove.

Proposition 2.5. Suppose that Ω is a nonempty set , K is a Hausdorff compact
space, and that f : Ω → K is a mapping. Then for every free ultrafilter U on Ω the
limit limU f exists and is unique.
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Lemma 2.6. [7, Lemma 2.1] Suppose that f : X → Y is a standard ε-isometry.
Then for any free ultrafilter U on N, the following w∗-free ultrafilter limits exist and
define an isometry Φ : X → L(f)∗∗.

(2.6) Φ(x) = w∗- lim
U

f(nx)

n
, for all x ∈ X.

Invariant mean procedure is applied in this paper. Now, we recall definition of
(left) mean of a semigroup and some related result, which can be found in Benyamini
and Lindenstrauss’ book [2] (pp.417-418).

Definition 2.7. Let G be a semigroup. A left-invariant mean on G is a linear
functional µ on ℓ∞(G) such that:

(i) µ(1) = 1,
(ii) µ(f) ≥ 0 for every f ≥ 0,
(iii) ∀f ∈ l∞(G), ∀g ∈ G, µ(fg) = µ(f), where fg is the left-translation of f by g;

i.e., fg(h) = f(gh), ∀h ∈ G.

Analogously, we can define right-invariant mean of G. An invariant mean is a
linear functional on ℓ∞(G) which is both left-invariant and right-invariant.

Clearly, an invariant mean of a semigroup G is just an index-translation invariant
positive functional of norm one on ℓ∞(G).

Note that (i) and (ii) are equivalent to µ(1) = ∥µ∥ = 1.

Lemma 2.8. Every Abelian semigroup G (in particular, every linear space) has an
invariant mean.

3. Several important subspaces associated with an ε-isometry

In this section, we shall discuss properties of the following three important sub-
spaces associated with an ε-isometry.

3.1. The subspace  L. Let f : X → Y be a standard ε isometry. Then, by Lemma
2.6, for any free ultrafilter U on N, the following w∗-free ultrafilter limits exist and
define an isometry Φ : X → L(f)∗∗.

(3.1) Φ(x) = w∗- lim
U

f(nx)

n
, for all x ∈ X.

On the other hand, applying Theorem 1.3, for every x∗ ∈ X∗, there exists φ ∈ Y ∗

with ∥φ∥ = ∥x∗∥ ≡ r so that

(3.2)
∣∣∣⟨φ, f(x)⟩ − ⟨x∗, x⟩

∣∣∣ ≤ 2εr, for all x ∈ X.

Note φ is w∗-continuous on Y ∗∗. We substitute nx for x, divide the both sides by
n ∈ N and take the w∗-U limit. Then we obtain

(3.3) ⟨φ,Φ(x)⟩ = ⟨x∗, x⟩, for all x ∈ X.

We denote by  L, the w∗-closure of the subspace span[Φ(X)] in Y ∗∗, i.e.  L =
spanw∗

Φ(X).
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Theorem 3.1. For a standard ε isometry f : X → Y ,
i) the correspondence (3.3) defines a w∗-to-w∗ continuous linear isometry S L :

X∗ →  L∗, i.e. S Lx
∗ = ψ ≡ φ| L ∈  L∗ with respect to the w∗-topologies of X∗ and

Y ∗;
ii) the isometry S L is just the conjugate operator of Figiel’s operator F :  L → X

associated with the isometry Φ defined as (3.1)

Proof. i) It is not difficult to check that for each x∗ ∈ X∗, ψ ≡ φ| L (the corre-
sponding functional φ in (3.2) restricted to  L) is a unique. If we define S Lx

∗ = ψ
for every x∗ ∈ X∗, then it follows again from (3.2) and (3.3) that S L : X∗ →  L∗ is
a w∗-to-w∗ continuous linear isometry with respect to the w∗-topologies of X∗ and
Y ∗. Indeed, Assume that {x∗α} ⊂ X∗ is a bounded net w∗-converging to x∗; and
assume that {φα} ⊂ Y ∗ satisfies∣∣⟨x∗α, x⟩ − ⟨φα, f(x)⟩

∣∣ ≤ 2εrα, for all x ∈ X.

It is easy to observe that for any w∗-cluster point ψ of {φα}, we have∣∣⟨x∗, x⟩ − ⟨ψ, f(x)⟩
∣∣ ≤ 2εr, for all x ∈ X,

where r = lim supα rα. We substitute nx for x, divide the both sides by n, and take
the w∗-ultrafilter limit. Then we get ⟨x∗, x⟩ = ⟨ψ,Φ(x)⟩ for all x ∈ X. Consequently,
S Lx

∗ = ψ| L, i.e. S L is a w∗-to-w∗ continuous linear isometry with respect to the
w∗-topologies of X∗ and Y ∗.

ii) It follows from i) that

⟨x∗, x⟩ = ⟨ψ,Φ(x)⟩ = ⟨S Lx
∗,Φ(x)⟩, x ∈ X, x∗ ∈ X∗.

Let

(3.4) ⟨S Lx
∗,Φ(x)⟩ = ⟨x∗, FΦ(x)⟩, x ∈ X, x∗ ∈ X∗.

Then

(3.5) ⟨x∗, FΦ(x)⟩ = ⟨x∗, x⟩, x ∈ X, x∗ ∈ X∗.

Thus, (3.5) defines an operator F :  L → X with ∥F∥ = 1 satisfying FΦ = IX , i.e.
the operator S L is the conjugate operator of Figiel’s operator F associated with the
isometry Φ. □

3.2. The subspace M . For standard ε-isometry f : X → Y , the subspace M ⊂ Y ∗

is defined in [9]. Let C(f) be the absolutely closed convex hull of the image f(X)
of f , i.e. C(f) = co(f(X) ∪ −f(X)). Let

(3.6) Mε = {φ ∈ Y ∗ : ∃ β > 0 so that φ is bounded on C(f) by βε}.
Since C(f) ⊂ Y is convex and symmetric, Mε is a subspace of Y . The subspace M
is the closure of Mε, i.e.

(3.7) M =

{
{φ ∈ Y ∗ is bounded on C(f)} , if ε > 0;

{φ ∈ Y ∗ : ⟨φ, y⟩ = 0, ∀y ∈ C(f)} , if ε = 0.

Let

(3.8) E = ⊥M = {y ∈ Y : ⟨m, y⟩ = 0, for all m ∈M}.
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Next, recall the mapping ı defined by (2.5), i.e.

(3.9) ı(x∗) = {φ ∈ Y ∗ : |x∗ − φ ◦ f | is bounded by βε on X for some β > 0}.
Finally, we define Q : X∗ → Y ∗/M for x∗ ∈ X∗ by

(3.10) Qx∗ = ı(x∗) +M.

Then it is easy to verify

(3.11) Qx∗ = ı(x∗) +M = φ+M, for each x∗ ∈ X∗ and for all φ ∈ ı(x∗).

The following theorem is [9, Theorem 4.4].

Theorem 3.2. With the subspaces M , E, the mappings f and Q as the same as
above, then

i) Q : X∗ → Y ∗/M is a linear isometry;
ii) if, in addition, M is w∗-closed in Y ∗ (in particular, Y is reflexive), then Q is

the conjugate operator for some surjective operator F : E → X of norm one.
iii) if ε = 0, then the corresponding operator F above is just Figiel’s operator

associated with the isometry f .

3.3. The subspace N . For a standard ε-isometry f : X → Y , the subspace N
associated with f is constructed in [12]. Because we shall need detailed discussion
on it, a sketch constructive procedure is presented as follows.

Note X is an abelian group with respect to the vector addition of X. By Lemma
2.8, there exists a translation invariant mean µ on ℓ∞(X). Fix any x ∈ X. Since f
is an ε-isometry,

(3.12) gx(z) = f(x+ z) − f(z), for all z ∈ X

defines a bounded mapping gx : X → Y . Therefore, ⟨φ, gx⟩ ∈ ℓ∞(X) for every
φ ∈ Y ∗. We also denote the invariant mean by µz or µz(·), emphasizing that the
mean is taken with respect to the variable z.

Next, we define a linear mapping R : Y ∗ → RX by

(3.13) ⟨Rφ, x⟩ = µ(⟨φ, gx⟩), φ ∈ Y ∗, x ∈ X.

We claim that
(1) Rφ ∈ X∗ for every φ ∈ Y ∗;
(2) ∥Rφ∥ ≤ ∥ϕ∥ for every φ ∈ Y ∗;
Given u, v ∈ X,

⟨Rφ, u+ v⟩ = µ(⟨φ, gu+v⟩) = µz(⟨φ, f(u+ v + z) − f(z)⟩)(3.14)

= µz(⟨φ, f(u+ v + z) − f(v + z)⟩) + µz(⟨φ, f(v + z) − f(z)⟩)
= µz(⟨φ, f(u+ z) − f(z)⟩) + µz(⟨φ, f(v + z) − f(z)⟩)

= µ(⟨φ, gu⟩) + µ(⟨φ, gv⟩) = ⟨Rφ, u⟩ + ⟨Rφ, v⟩.
That is, additivity of Rφ has been shown. It follows from additivity of Rφ,

(3.15) ⟨Rφ, λu⟩ = λ⟨Rφ, u⟩, for all rational number λ.

Therefore, (3.12)-(3.14) imply for all u, v ∈ X and k ∈ N,

|⟨Rφ, u⟩ − ⟨Rφ, v⟩| =
1

k
|⟨Rφ, ku⟩ − ⟨Rφ, kv⟩|
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= |µz(⟨φ,
(f(ku+ z) − f(z))

k
)⟩ − µz(⟨φ, (f(kv + z) − f(z))

k
⟩)|

= |µz(⟨φ, (f(ku+ z) − f(kv + z))

k
)⟩| ≤ ∥µ∥∥φ∥∥(f(ku+ z) − f(kv + z))

k
∥

≤ ∥µ∥∥φ∥∥(ku+ z) − (kv + z)∥ + ε

k
= ∥φ∥∥u− v∥ +

ε

k

→ ∥φ∥∥u− v∥, as k → ∞.

Hence

(3.16) |⟨Rϕ, u⟩ − ⟨Rϕ, v⟩| ≤ ∥ϕ∥∥u− v∥, for all u, v ∈ X.

We have proven that Rφ is continuous on X. (3.12)–(3.15) together imply that Rϕ
is linear and with ∥Rφ∥ ≤ ∥ϕ∥, that is, (1) and (2) hold. And this further entails
that R : Y ∗ → X∗ is a linear operator with ∥R∥ ≤ 1.

The closed subspace N of Y ∗ is defined as

(3.17) N = ker(R) ≡ {φ ∈ Y ∗ : Rφ = 0}.

The subspace N plays an essential rule in the study of stability of ε-isometries,
and also, in this paper.

Theorem 3.3. [12, Theorem 2.3] Suppose that f : X → Y is a standard ε-isometry,
N ⊂ Y ∗ is the subspace associated with f . Then

i) the mapping U : X∗ → Y ∗/N defined by

(3.18) Ux∗ = ı(x∗) +N, for all x∗ ∈ X∗

is a linear surjective isometry. Hence
ii) V ∗ ≡ (U∗)−1 : X∗∗ → N⊥ ⊂ Y ∗∗ is a w∗-to-w∗ continuous linear surjective

isometry.

Let

Θ(x∗) = φ
∣∣
N⊥ ,

where x∗ ∈ X∗, φ ∈ Y ∗ satisfy (3.2), and φ
∣∣
N⊥ denote the functional φ acting as

a functional on Y ∗∗ restricted to N⊥. The following result is a consequence of the
theorem above.

Corollary 3.4. For any standard ε-isometry f : X → Y , Θ : X∗ → (N⊥)∗ is a
w∗-to-w∗ continuous linear isometry with respect to the w∗-topologies of X∗ and Y ∗.

Proof. Since U : X∗ → Y ∗/N is defined for x∗ ∈ X∗ by

Ux∗ = φ+N, ∀ φ ∈ ı(x∗),

for any φ1, φ2 ∈ ı(x∗), φ1−φ2 = 0 on N⊥. Thus, Θ is a linear isometry. Its w∗-to-w∗

continuity follows from the same procedure of the proof of Theorem 3.1. □

Lemma 3.5. For any standard ε-isometry f : X → Y , the subspace M associated
with f is a subspace of N .
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Proof. Since R is continuous, it suffices to show Mε ⊂ kerR, where Mε is defined as
(3.5). Given φ ∈Mε, we have ⟨φ, f⟩ ∈ ℓ∞(X). For every x ∈ X, it follows from the
translation invariance of µ,

⟨Rφ, x⟩ = µz(⟨φ, f(x+ z) − f(z)⟩)

= µz(⟨φ, f(x+ z)⟩) − µz(⟨φ, f(z)⟩) = 0.

□
Remark 3.6. From the proof we see that R can also be regarded as a linear operator
from Y ∗/M to X∗ with ∥R∥ ≤ 1.

Theorem 3.7. Suppose that f : X → Y is a standard-ε isometry, and suppose
that the subspaces M,N , the linear operators Q : X∗ → Y ∗/M,R : Y ∗ → X∗ and
U : X∗ → Y ∗/N associated with f are defined previously. Then i) Q and U are
isometries and satisfying

(3.19) RQ = RU = IX∗ ,

i.e R is the left inverses of the two linear isometries Q and U .
ii) Both R∗ : X∗∗ →M⊥ and U∗−1 : X∗∗ → N⊥ are w∗-to-w∗ linear isometries.

Proof. i) We first show RQ = IX∗ . Let x∗ ∈ X∗. Note Qx∗ = ıx∗ + M . Since
M ⊂ N ≡ ker(R),

(3.20) RQx∗ = R(ı(x∗) +M) = R(ı(x∗)) = R(φ) for all φ ∈ ı(x∗).

By Theorem 1.3, there exists φ ∈ ı(x∗) so that

(3.21)
∣∣⟨φ, f(z)⟩ − ⟨x∗, z⟩

∣∣ ≤ 2ε∥x∗∥, for all z ∈ X.

Therefore, for all x ∈ X,

⟨Rφ, x⟩ = µz(⟨φ, f(x+ z) − f(z)⟩)
= µz{(⟨φ, f(x+ z)⟩ − ⟨x∗, x+ z⟩) − (⟨φ, f(z)⟩ − ⟨x∗, z⟩) + ⟨x∗, x⟩}
≤ µ(2ε∥x∗∥)+ ≤ µ(2ε∥x∗∥) + µz(⟨x∗, x⟩)
= 4ε∥x∗∥ + ⟨x∗, x⟩

or, equivalently,

⟨Rφ− x∗, x⟩ ≤ 4ε∥x∗∥ for all x ∈ X.

Consequently, Rφ− x∗ = 0. Therefore,

RQ(x∗) = (R ◦ ı)(x∗) = x∗, i.e. RQ = IX∗ .

Analogously, we can show RU = IdX∗ by substituting N for M in the procedure
above.

ii) According to Theorem 3.3, it suffices to show that R∗ is a w∗-to-w∗ continuous
linear isometry.

By definition of Q and by Theorem 1.3, we know that ∥Q∥ ≤ 1. By the facts
∥R∥ ≤ 1, and RQ = IX∗ that we have just proven, we obtain Q∗ : (Y ∗/M)∗ =
M⊥ → X∗∗, R∗ : X∗∗ → M⊥ with ∥R∗∥ = ∥R∥ ≤ 1, ∥Q∗∥ = ∥Q∥ ≤ 1 and
Q∗R∗ = (RQ)∗ = IX∗∗ . Therefore, for all x∗∗ ∈ X∗∗, we have

∥x∗∗∥ = ∥(Q∗R∗)x∗∗∥ ≤ ∥Q∗∥∥R∗(x∗∗)∥ ≤ ∥R∗(x∗∗)∥.
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On the other hand,
∥R∗(x∗∗)∥ ≤ ∥R∗∥∥x∗∗∥ ≤ ∥x∗∗∥.

Hence, R∗ : X∗∗ →M⊥ is a w∗-to-w∗ continuous linear isometry. □

For a standard ε-isometry f : X → Y and for every n ∈ N, let fn(x) = f(nx)
n , x ∈

X. Then fn is an ε
n -isometry. We denote by C(fn)∗∗ (resp. C(f)∗∗) the w∗-closure

of C(fn) ≡ co[fn(X)] (resp. C(f))) in Y ∗∗, and let C∗∗ =
∩∞

n=1C
∗∗(fn).

Theorem 3.8. With the standard ε-isometry f and associated subsets C(f)∗∗,
C(fn)∗∗ (n ∈ N) and the subspaces M,N ⊂ Y ∗ and  L ⊂ Y ∗∗ as previously de-
fined, we have

i) C∗∗ is the maximum w∗-closed subspace contained in C(f)∗∗;
ii) the three subspaces M⊥, N⊥ and  L are contained in C∗∗.

Proof. i) Clearly, C∗∗ is w∗-closed, convex and symmetric. Note C(fn)∗∗ = 1
nC(f)∗∗.

We observe that y∗∗ ∈ C∗∗ implies ny∗∗ ∈ C∗∗ for all n ∈ N. This and symmetric
convexity of C∗∗ entail that every Ry∗∗ ≡ {ry∗∗ : r ∈ R} ⊂ C∗∗, i.e. C∗∗ is a
subspace. C∗∗ is maximum because every subspace of C(f)∗∗ is again contained in
C∗∗.

ii) To show that  L ⊂ C∗∗, it suffices to prove Φ(X) ⊂ C∗∗. By the definition
of Φ (3.1), each y∗∗ ∈ Φ(X) is a w∗-cluster point of {f(nx)/n} for some x ∈ X.
Therefore, y∗∗ ∈ C(fn)∗∗ for all n ∈ N. Consequently, y∗∗ ∈ C∗∗.

Since M ⊂ N (Lemma 3.5), to show M⊥, N⊥ ⊂ C∗∗, we need only to show
M⊥ ⊂ C∗∗. Since C∗∗ is the maximum subspace of C(f)∗∗, it suffices to prove that
M⊥ ⊂ C(f)∗∗.

Suppose, to the contrary, that there is y∗∗ ∈M⊥ \C∗∗(f). Since the two sets are
w∗-closed convex in Y ∗∗, there is φ ∈ Y ∗ so that

(3.22) ⟨φ, y∗∗⟩ > sup{⟨φ, z∗∗⟩ : z∗∗ ∈ C∗∗(f)} ≥ 0.

Therefore, φ is bounded on C∗∗(f). Consequently, φ ∈ Mε ⊂ M , and ⟨φ, y∗∗⟩ = 0.
This contradicts to (3.22).

□

4. A projective characterization of stable ε-isometries

Suppose again that f : X → Y is a standard ε-isometry. In this section, we shall
show that a sufficient and necessary condition for f being w∗-stable (Definition 2.1
ii)) is that there is a w∗-to-w∗ continuous projection P : L(f)∗∗ → N⊥ so that
Pf : X → N⊥ is an approximate linear isometry.

Theorem 4.1. Suppose that X,Y are Banach spaces, and f : X → Y is a standard
ε-isometry for some ε > 0, and that N ⊂ L(f)∗ is the subspace associated with the
ε-isometry f . If there is a w∗-to-w∗ continuous projection P : L(f)∗∗ → N⊥ so
that g ≡ Pf is a δ-isometry for some δ ≥ 0, then there is a bounded linear operator
T : L(f)∗∗ → X∗∗ with ∥T∥ ≤ ∥P∥ so that

(4.1) ∥Tf(x) − x∥ ≤ 2δ, for all x ∈ X,

i.e. f is w∗-2δε -stable.
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Proof. Without loss of generality we assume L(f) = Y ; otherwise, we substitute Y
for L(f). Let N ⊂ Y ∗ be the subspace associated with the ε-isometry f .

Since P : Y ∗∗ → N⊥ is a w∗-to-w∗ continuous projection, there is a closed
subspace Nc of Y ∗ with N ∩ Nc = {0} so that Y ∗ = N + Nc = N ⊕ Nc, and the
projection P is just from Y ∗∗ = N⊥ ⊕N⊥

c to N⊥ along N⊥
c .

Note that, the ε-isometry f can regard as an ε-isometry from X to Y ∗∗. Suppose
that the subspace corresponding to f : X → Y ∗∗ is N1 ⊂ Y ∗∗∗. Then

(4.2) N1 = N + Y ⊥ = N ⊕ Y ⊥ ⊂ Y ∗∗∗ = Y ∗ ⊕ Y ⊥.

Note Y ⊥⊥ = Y ∗∗, and note if N is acting as a subspace of Y ∗∗∗, the annihilator of
N is N⊥⊥⊥ ⊂ Y ∗∗∗∗. Therefore,

(4.3) N⊥
1 = N⊥ ∩ Y ⊥⊥ = N⊥⊥⊥ ∩ Y ∗∗ = N⊥ ⊂ Y ∗∗,

that is,

(4.4) N⊥
1 = N⊥.

We define

(4.5) ȷ(x∗) = {φ ∈ Y ∗∗∗ : |x∗ − φ ◦ f | is bounded on X}.
Then U1 : X∗ → Y ∗∗∗/N1 defined for x∗ ∈ X∗ by

(4.6) U1(x
∗) = ȷ(x∗) +N1

is a surjective linear isometry, and it satisfies

(4.7) U1(x
∗) = φ+N1

for every φ ∈ ȷ(x∗). Therefore, U∗ : N⊥
1 = N⊥ → X∗∗ is again a linear surjective

isometry.

Since Pf : X → N⊥ ⊂ Y ∗∗ is a δ-isometry, by [7, Theorem 2.3], for every x∗ ∈ X∗

there is ψ ∈ Y ∗∗∗ with ∥ψ∥ = ∥x∗∥ so that

(4.8)
∣∣⟨x∗, x⟩ − ⟨ψ, Pf(x)⟩

∣∣ ≤ 2δ, for all x ∈ X;

or, equivalently,

(4.9)
∣∣⟨x∗, x⟩ − ⟨ψ ◦ P, f(x)⟩

∣∣ ≤ 2δ, for all x ∈ X.

Hence, ψ ◦ P ∈ ȷ(x∗), and

(4.10) U1(x
∗) = ψ ◦ P +N1.

Let T = U∗
1P . Then ∥T∥ ≤ ∥P∥. It follows from (4.4) that T is from Y ∗∗ to X∗∗,

and is a surjective isometry restricted to N⊥. For any fixed x ∈ X and α > 0, let
x∗ ∈ SX∗ so that

∥Tf(x) − x∥ − α < ⟨x∗, T f(x) − x⟩
= ⟨T ∗x∗, f(x)⟩ − ⟨x∗, x⟩
= ⟨U∗∗

1 x∗, Pf(x)⟩ − ⟨x∗, x⟩.
Since U∗∗

1 is just an extension of U1 from X∗ to X∗∗∗, we obtain

(4.11) ∥Tf(x) − x∥ − α < ⟨U∗∗
1 x∗, Pf(x)⟩ − ⟨x∗, x⟩ = ⟨U1x

∗, Pf(x)⟩ − ⟨x∗, x⟩.
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Let ψ ∈ Y ∗∗∗ with ∥ψ∥ = ∥x∗∥ satisfy (4.8). Then it follows from U1(x
∗) = ψ◦P+N1

that

⟨U1x
∗, Pf(x)⟩ − ⟨x∗, x⟩ = ⟨ψ ◦ P +N1, Pf(x)⟩ − ⟨x∗, x⟩

= ⟨ψ, Pf(x)⟩ − ⟨x∗, x⟩ ≤ 2δ.

Since x ∈ X and α > 0 are arbitrary, we have shown

∥Tf(x) − x∥ ≤ 2δ, for all x ∈ X,

and this says that f is 2δ/ε stable. □

Remark 4.2. 1. If ε = 0 in the theorem above, i.e. f is a standard isometry, by
Figiel’s theorem we know that f is 0-stable, since the Figiel operator T : L(f) → X
satisfy Tf = IX .

2. Making use of the weak stability theorem, i.e. Theorem 1.3, we can show that
the operator T in (4.1) restricted to  L is just Figiel’s operator associated with the
isometry Φ : X → Y ∗∗, i.e. TΦ = IX .

Before presenting the converse version of Theorem 4.1, we need the following
lemma. This is an analogous but slightly different result appeared in [12, Theorems
3.1 and 4.1].

Lemma 4.3. Suppose that f : X → Y is a standard w∗-stable ε-isometry, i.e. there
exist a bounded linear operator T : L(f)∗∗ → X∗∗ and a constant γ > 0 so that

(4.12) ∥Tf(x) − x∥ ≤ γε, for all x ∈ X.

Then N⊥ is complemented in L(f)∗∗.

Proof. We assume L(f) = Y and T : Y ∗∗ → X∗∗ is w∗-to-w∗ continuous; otherwise,
we denote by T |Y : Y → X∗∗, the restriction of T from Y ∗∗ to Y . Then T |Y ∗∗ :
Y ∗∗ → X∗∗∗∗ satisfies ∥T |Y ∗∗∥ = ∥T |Y ∥ and with (T |Y ∗∗)|Y = T |Y . Note X∗∗∗∗ =

X∗∗ ⊕X∗⊥. Let P1 : X∗∗∗∗ → X∗∗ be the natural projection (along X∗⊥). Then it
is w∗-to-w∗ continuous with respect to the w∗-topologies of X∗∗∗∗ and X∗∗. We are
done by letting T̃ = P1(T |Y )∗∗ and substituting T̃ for T .

Let the subspace N and the linear isometry U (defined by (3.17)) be associated
with f , and let V = U−1. Then V ∗ = U−1∗ = U∗−1, and V ∗ : X∗∗ → N⊥ is a
w∗-to-w∗ continuous linear isometry. We first show

(4.13) V ∗T |N⊥ = IN⊥ ,

or, equivalently,

(4.14) TV ∗ = IX∗∗ .

Note V ∗(X∗∗) = N⊥ ⊂ C(f)∗∗ (the w∗-closure of C(f) in Y ∗∗ [12, Corllary 2.5]).
For every x0 ∈ X∗∗, there exists a net (yα) ⊂ co(f(X) ∪ −f(X)) of the form: for
each α, there exist three finite sets Jα, (λαj )j∈Jα ⊂ R with

∑
j∈Jα |λαj | = 1, and

(xαj )j∈Jα ⊂ X such that

(4.15) yα =
∑
j∈Jα

λαj f(xαj ) → V ∗x0, in the w∗-topology of Y ∗∗.
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On the other hand, by Theorem 1.3, for each x∗ ∈ X∗, there exists φ ∈ Y ∗ with
∥φ∥ = ∥x∗∥ ≡ r so that

(4.16) |⟨φ, f(x)⟩ − ⟨x∗, x⟩| ≤ 2εr, for all x ∈ X.

Let xα =
∑n

j∈Jα λ
α
j x

α
j . Then (4.15), (4.16) and

∑
j∈Jα |λαj | = 1 together entail

|⟨ϕ, V ∗x0 − yα⟩| = |⟨φ, V ∗x0⟩ − ⟨φ, yα⟩|

= |⟨V ϕ, x0⟩ − ⟨φ, yα⟩| = |⟨x∗, x0 − xα⟩ − (⟨φ, yα⟩ − ⟨x∗, xα⟩)|
≥ |⟨x∗, x0 − xα⟩| − |⟨φ, yα⟩ − ⟨x∗, xα⟩)|

= |⟨x∗, x0 − xα⟩| − |
n∑

j=1

λj(⟨φ, f(xαj )⟩ − ⟨x∗, xαj ⟩)|

≥ |⟨x∗, x0 − xα⟩| − 2εr. .

Consequently,

(4.17) |⟨x∗, x0 − xα⟩| ≤ 4ε∥x∗∥ + |⟨φ, V ∗x0 − yα⟩|, for all x∗ ∈ X∗.

Since T : Y ∗∗ → X∗∗ is bounded and w∗-to-w∗ continuous, there is S : X∗ → Y ∗ so
that T = S∗ and with ∥S∥ = ∥T∥. This and (4.12) imply

(4.18) |⟨Sx∗, f(x)⟩ − ⟨x∗, x⟩| = |⟨x∗, T f(x) − x⟩| ≤ γε∥x∗∥.

Given δ > 0, let x∗ ∈ X∗ with ∥x∗∥ = 1 so that

(4.19) ⟨x∗, TV ∗x0 − x0⟩ ≥ ∥TV ∗x0 − x0∥ − δ.

Then (4.15)–(4.19) together imply

∥TV ∗x0 − x0∥ − δ ≤ |⟨x∗, TV ∗x0 − x0⟩|

≤ |⟨x∗, TV ∗x0 − Tyα⟩| + |⟨x∗, T yα − xα⟩| + |⟨x∗, xα − x0⟩|
= |⟨Sx∗, V ∗x0 − yα⟩| + |⟨Sx∗, yα⟩ − ⟨x∗, xα⟩| + |⟨x∗, xα − x0⟩|

≤ |⟨Sx∗, V ∗x0 − yα⟩| +
∑
j∈Jα

|λαj (⟨Sx∗, f(xαj )⟩ − ⟨x∗, xαj ⟩)|+

+|⟨x∗, xα − x0⟩|
≤ |⟨Sx∗, V ∗x0 − yα⟩| + γε+ |⟨x∗, xα − x0⟩|
≤ |⟨Sx∗, V ∗x0 − yα⟩| + |⟨φ, V ∗x0 − yα⟩| + (2 + γ)ε

−→ (2 + γ)ε.

Therefore, ∥TV ∗x0 − x0∥ ≤ (γ + 2)ε. Arbitrariness of x0 ∈ X∗∗ entails

∥(TV ∗ − IX∗∗)x∥ ≤ (γ + 2)ε, for all x ∈ X∗∗,

which, in turn, implies TV ∗ = IX∗∗ . Hence, (4.14) has been proven.
Let P = V ∗T . Then

P (Y ∗∗) = (V ∗T )(Y ∗∗) = V ∗(X∗∗) = N⊥.

This and (4.13) together entail that P : Y ∗∗ → N⊥ is a w∗-to-w∗ continuous
projection and with ∥P∥ ≤ ∥T∥. □
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Theorem 4.4. Suppose that X,Y are Banach spaces, and f : X → Y is a standard
ε-isometry for some ε ≥ 0, and that N ⊂ L(f)∗ is the subspace associated with f .
If f is w∗-stable, i.e. there exist a constant γ > 0 and a bounded linear operator
T : L(f)∗∗ → X∗∗ so that

(4.20) ∥Tf(x) − x∥ ≤ γε, for all x ∈ X,

then there is a w∗-to-w∗ continuous projection P : L(f)∗∗ → N⊥ so that g ≡ Pf :
X → N⊥ is a γ-approximate linear 2γε-isometry.

Proof. Without loss of generality, we can assume again that L(f) = Y and T :
Y ∗∗ → X∗∗ is w∗-to-w∗ continuous. It is easy to check that T : Y ∗∗ → X∗∗ is also
surjective. By Lemma 4.3, the corresponding projection P = V ∗T : Y ∗∗ → N⊥ is
w∗-to-w∗ continuous with ∥P∥ ≤ ∥T∥. Therefore,

∥Pf(x) − Pf(y)∥ − ∥x− y∥ = ∥V ∗(Tf(x) − Tf(y))∥ − ∥x− y∥
≤ ∥Tf(x) − Tf(y)∥ − ∥x− y∥

≤ ∥Tf(x) − x∥ + ∥Tf(y) − y∥ ≤ 2γε.

On the other hand,

∥x− y∥ − ∥Pf(x) − Pf(y)∥ = ∥x− y∥ − ∥V ∗(Tf(x) − Tf(y))∥
≤ ∥x− y∥ − ∥Tf(x) − Tf(y)∥

≥ −∥Tf(x) − x∥ − ∥Tf(y) − y∥ ≥ −2γε.

Consequently, Pf : X → N⊥ is a 2γε-isometry.
It remains to show that g ≡ Pf is γ-approximate linear. Note V ∗ = (U∗)−1 :

X∗∗ → N⊥ is a w∗-to-w∗ continuous linear surjective isometry (Theorem 3.3 ii)).
Then by (4.20), for all x ∈ X, we have

γε ≥ ∥Tf(x) − x∥ = ∥(V ∗T )f(x) − V ∗x∥
= ∥Pf(x) − V ∗x∥.

□

Corollary 4.5. Suppose that f : X → Y is an isometry. Then there is a projection
P : L(f)∗∗ → N⊥ of norm one so that

(4.21) Pf : X → N⊥ ⊂ Y ∗∗

is a linear isometry, where P = V ∗F ∗∗ and F is the Figiel operator associated with
f , i.e. Ff = IX with ∥F∥ = 1.

Proof. Note that every standard isometry is 0-stable. Let F : L(f) → X be Figiel’s
operator, i.e. ∥F∥ = 1 satisfies Ff = IX , the linear isometry V −1 = U : X∗ →
L(f)∗/N be defined as in Theorem 3.3, and N ⊂ L(f)∗ be the the subspace associ-
ated with f . Then by Theorem 4.4, P = V ∗F ∗∗ : L∗∗(f) → N⊥ is a projection so
that Pf : X → N⊥ is an isometry. It is linear because Pf = V ∗(F ∗∗f) = V ∗(Ff) =
V ∗IX . □
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Remark 4.6. For a standard isometry f : X → Y , let F : L(f) → X be Figiel’s
operator associated with f . It follows from (3.1) and Corollary 4.5 that f produces
another isometry Φ : X →  L ⊂ L(f)∗∗ ⊂ Y ∗∗. Though f and Φ are different in
general, they have the same linear left inverse F ∗∗ : L(f)∗∗ → X∗∗, i.e.

(4.22) F ∗∗Φ(x) = F ∗∗|L(f)f(x) = (Ff)(x) = x, for all x ∈ X,

Consequently, they further deduce the same projective linear isometries Pf and
PΦ, where P = V ∗F ∗∗ : L(f)∗∗ → N⊥ is the corresponding projection.

Theorem 4.7. Suppose that the three subspaces M⊥, N⊥ and  L are defined in
Section 3 associated with a standard ε-isometry f : X → Y . Then, up to a w∗-to-
w∗ continuous linear isometry, we have

i)  L ⊂M⊥; and
ii) N⊥ is isometry to a quotient space of  L.

Proof. i) Suppose, to the contrary, that there is y∗∗ ∈  L \M⊥. Then by separation
theorem, there is φ ∈ Y ∗ so that ⟨φ, y∗∗⟩ > sup⟨φ,M⊥⟩(= 0). Thus, φ ∈ M.
Density of Mε in M ((3.5) and (3.6)) allows us to assume φ ∈Mε, i.e. φ is bounded
on C(f). Consequently, φ is bounded on C(f)∗∗ ⊃  L. This is a contradiction.

ii) Since M ⊂ N ⊂ Y ∗, N⊥ ⊂M⊥. To show N⊥ ⊂  L up to a w∗-to-w∗ continuous
linear isometry, let Φ : X →  L be the isometry associated with f . Then, by Theorem
3.1 ii), f induces a w∗-to-w∗ continuous linear isometry S L : X∗ →  L∗ with respect
to the w∗-topologies of X∗ and Y ∗, respectively. And there is a linear operator
F :  L → X so that (FΦ)(x) = x for all x ∈ X. Therefore, F ∗∗ = S∗

 L :  L∗∗ → X∗∗ is

(w∗-to-w∗ continuous) linear surjective. Note that Z∗∗∗ = Z∗⊕Z⊥ for every Banach
space Z and the projection PZ∗ : Z∗∗∗ along Z⊥ is of norm one. Since  L is w∗-closed
in Y ∗∗,  L∗∗ =  L ⊕ (Y ∗/E)⊥, where E = ⊥  L ≡ {ψ ∈ Y ∗ : ψ is vanishing on  L}. Let
P L :  L∗∗ →  L be the projection along (Y ∗/E)⊥. Then it is w∗-to-w∗ continuous with
respect to the w∗-topologies of  L∗∗ and  L (the w∗-topology of Y ∗∗ but restricted to
 L). Therefore, F ∗∗ ◦ P L : L∗∗ → X∗∗ is again w∗-to-w∗ continuous. Consequently,

(F ∗∗ ◦ P| L)
∣∣
 L = F ∗∗∣∣

 L = F

is w∗-to-w∗ continuous. Since the w∗-topology on  L∗∗ is just the w∗-topology of  L
whenever it is restricted to  L. This says that F :  L → X∗∗ is w∗-to-w∗ continuous.
F (B L) ⊃ BX and w∗-compactness together imply that F (B L) = BX∗∗ .

On the other hand, let P = V ∗F , where V ∗ = U∗−1 : X∗∗ → N⊥ is a w∗-to-w∗

continuous linear isometry (Theorem 3.3). Then P :  L → N⊥ is surjective, and N⊥

is isometric to the quotient space  L/kerP .
□

5. stability characterizations of ε isometries

In this section, we shall present some characterizations for w∗-stability of ε-
isometries. To begin with, we recall that every standard ε-isometry f : X → Y
induces an isometry Φ : X →  L, where  L = spanw∗

Φ(X) ⊂ L(f)∗∗ ⊂ Y ∗∗. With

respect to the set-valued mapping ı : X∗ → 2L(f)
∗

defined as in (3.8), for any fixed
γ ≥ 2, we further define a mapping ıγ as follows.

(5.1) ıγ(x∗) = {φ ∈ L(f)∗ : sup |⟨x∗, x⟩ − ⟨φ, f(x)⟩| ≤ γε∥x∗∥, ∀x ∈ X}.
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By Theorem 1.3, ıγ is an everywhere nonempty set-valued mapping.

Theorem 5.1. Suppose that f : X → Y is a standard ε-isometry. Then it is
w∗-stable (resp. stable) if and only if there is a bounded linear (resp. w∗-to-w∗)

continuous selection S : X∗ → L(f)∗ for the set-valued mapping ıγ : X∗ → 2L(f)
∗

for some γ ≥ 2.

Proof. We assume again L(f) = Y .
Sufficiency. Let S : X∗ → Y ∗ be a linear bounded w∗-to-w∗ continuous selection

for the set-valued mapping ıγ : X∗ → 2Y
∗

defined as (5.1). Since S is injective,
there is a surjective linear operator T : Y → X so that T ∗ = S and ∥T∥ = ∥S∥.
Thus, for all x∗ ∈ SX∗ ,

(5.2)
∣∣∣⟨x∗, x⟩ − ⟨x∗, T f(x)⟩ =

∣∣∣⟨x∗, x⟩ − ⟨Sx∗, f(x)⟩
∣∣∣ ≤ γε, for all x ∈ X.

Clearly, (5.2) is equivalent to

(5.3) ∥Tf(x) − x∥ ≤ γε, for all x ∈ X,

i.e. f is stable.

If S : X∗ → Y ∗ is a linear bounded selection for the set-valued mapping ıγ :

X∗ → 2Y
∗
, then T ≡ S∗ : Y ∗∗ → X∗∗ is surjective, and for all x∗ ∈ SX∗ ,

(5.4)
∣∣∣⟨x∗, x⟩ − ⟨x∗, T f(x)⟩ =

∣∣∣⟨x∗, x⟩ − ⟨Sx∗, f(x)⟩
∣∣∣ ≤ γε, for all x ∈ X.

i.e. f is w∗-stable.

Necessity. If f is stable, i.e. there is a linear bounded operator T : Y → X so
that (5.3) holds, then we take S = T ∗. It is easy to observe that S : X∗ → Y ∗ is
a bounded w∗-to-w∗ continuous selection for ıγ . If f is w∗- stable, i.e. there is a
continuous linear operator T : Y ∗∗ → X∗∗ , without loss of generality, we assume
that T is w∗-to-w∗ continuous, so that (5.3) holds, then we take S : X∗ → Y ∗ to be
the pre-conjugate operator of T . □

As its application of the characterization above, we show the following stability
theorem for standard ε- isometries.

Theorem 5.2. Suppose that X,Y are Banach spaces, and f : X → Y is a standard
ε-isometry. If Y ∗ is strictly convex, and  L is w∗ 1-complemented in L(f)∗∗, then f
is 2-stable.

Proof. By Theorem 1.3, for each x∗ ∈ X∗, there is φ ∈ Y ∗ with ∥φ∥ = ∥x∗∥ ≡ r so
that

(5.5)
∣∣∣⟨x∗, x⟩ − ⟨φ, f(x)⟩

∣∣∣ ≤ 2εr, for all x ∈ X.

Since Y ∗ is strictly convex, the functional φ corresponding to x∗ in the inequality
above is unique. Indeed, Assume that φ1, φ2 ∈ Y ∗ with ∥φ1∥ = ∥φ2∥ = r satisfy
(5.5). Then

(5.6)
∣∣∣⟨x∗, x⟩ − ⟨φ1 + φ2

2
, f(x)⟩

∣∣∣ ≤ 2εr, for all x ∈ X.
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Choose any {xn} ⊂ X with ∥xn∥ = 1 so that ⟨x∗, xn⟩ → ∥x∗∥ = r. Then it follows
from

(5.7)
∣∣∣⟨x∗, xn⟩ − ⟨φ1 + φ2

2
,
f(nxn)

n
⟩
∣∣∣ ≤ 2εr

n
, for all x ∈ X, n ∈ N,

and ∥f(nxn)/n∥ → 1 that ∥φ1+φ2

2 ∥ ≥ r. Strict convexity of Y ∗ further entails
φ1 = φ2. Let Sx∗ = φ for every x∗ ∈ X∗, where φ satisfies (5.5). Then it is easy to
observe that S : X∗ → Y ∗ is a norm-to-w∗ continuous norm-preserving mapping.

To show that S is linear, note S can be regarded as a mapping from X∗ to
 L∗ ⊂ L(f)∗∗∗. Let S L : X∗ →  L∗ be defined for x∗ ∈ X∗ by

(5.8) S L(x∗) = S(x∗)
∣∣∣
 L
, the restriction of S(x∗) from L(f)∗∗ to  L.

Then Theorem 3.1 says that S L is a w∗-to-w∗ continuous linear isometry with
respect to the w∗- topology of L(f)∗. Since  L is w∗ 1-complemented in L(f)∗∗,
there is a w∗-to-w∗ continuous projection P : L(f)∗∗ →  L of norm one. Therefore,
for each x∗ ∈ X∗, S(x∗) ◦ P satisfies

(5.9) ∥S(x∗) ◦ P∥ = ∥S(x∗)∥ = ∥x∗∥.

Without any difficulty to check that S(x∗)◦P restricted to L(f) has the same norm
as ∥S(x∗) ◦ P∥. Strict convexity of Y ∗ implies S(x∗) ◦ P = S(x∗). This entails that
S : X∗ → L(f)∗ is a w∗-to-w∗ continuous linear isometry. Let T : L(f) → X be the
pre-conjugate operator of S. Then, ∥T∥ = ∥S∥ = 1. By definition of S, we obtain

2ε∥x∗∥ ≥
∣∣∣⟨x∗, x⟩ − ⟨S(x∗), f(x)⟩

∣∣∣
=

∣∣∣⟨x∗, x⟩ − ⟨x∗, T f(x)⟩
∣∣∣.

Clearly, the inequality above is equivalent to

∥Tf(x) − x∥ ≤ 2ε, for all x ∈ X.

□

Applying Corollary 3.4 and by the same procedure of the proof of Theorem 5.2
but substituting N⊥ for  L , we can show the following theorem.

Theorem 5.3. Suppose that X,Y are Banach spaces, and f : X → Y is a standard
ε-isometry. If Y ∗ is strictly convex, and N⊥ is w∗ 1-complemented in L(f)∗∗, then
f is 2-stable.

The following theorem is an improvement of [9, Theorem 4.3].

Theorem 5.4. Suppose that X is a n-dimensional Banach space. Then every
standard ε-isometry is 2n-stable.

Proof. Suppose dimX = n < ∞, and f : X → Y is a standard ε-isometry. By
Theorem 3.1 i), we obtain a w∗-to-w∗ continuous linear isometry S L : X∗ →  L∗

with

(5.10) S Lx
∗ = φ| L ≡ ψ, where φ satisfies (5.5).
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We can choose n linearly independent extreme points x∗1, x
∗
2, . . . , x

∗
n of the closed

unit ball BX∗ of X∗ with 1
nBX∗ ⊂ CX∗ ≡ co{±x∗j}nj=1. It is easy to see that

ψ1, ψ2, . . . , ψn are also n linearly independent extreme points of the closed unit ball
BZ of Z ≡ span{ψj : 1 ≤ j ≤ n}.

Let
CY ∗ = co{±φj}nj=1, and CZ = co{±ψj : 1 ≤ j ≤ n}).

Then they are convex, symmetric and have (relative) nonempty interiors, where

{x∗j , φj} satisfy (5.5), ψj = S L(x∗j ) = φj | L, for 1 ≤ j ≤ n,

Note 1
nBX∗ ⊂ CX∗ . Next, we define a (continuous) linear operator

S̃ : X∗ → Z̃ ≡ span{φ1, φ2, . . . , φn}
by

(5.11) S̃
( n∑

j=1

αjx
∗
)

=
n∑

j=1

αjφj , ∀αj ∈ R, 1 ≤ j ≤ n.

Let T : Y → X be the pre-conjugate operator of S̃. In the following, we show
S̃ is a linear operator required. Given x ∈ X, let x∗ ∈ 1

nSX∗ ⊂ CX∗ so that

⟨x∗, x− Tf(x)⟩ ≥ 1
n∥x− Tf(x)∥. Then there exists {αj}nj=1 ⊂ R with

∑
j |αj | ≤ 1

so that x∗ =
∑

j αjx
∗
j . Therefore,

1

n
∥x− Tf(x)∥ ≤ ⟨x∗, x− Tf(x)⟩ = ⟨x∗, x⟩ − ⟨S̃x∗, f(x)⟩

= ⟨x∗, x⟩ − ⟨φ, f(x)⟩ ≤ 2ε.

This says that f is 2n-stable. □
Theorem 5.5. Suppose that f : X → Y is a standard ε-isometry. If the corre-
sponding subspace  L ⊂ L(f)∗∗ is complemented, i.e. there is a continuous projection
P : L(f)∗∗ →  L along some closed subspace of L(f)∗∗, then for every α ≥ 2 there
exist a selection ℏ : X∗ → L(f)∗ of the set-valued mapping

(5.12) ıα∥x∗∥(x
∗) = {φ ∈ Y ∗ : |⟨x∗, x⟩ − ⟨φ, f(x)⟩| ≤ αε∥x∗∥, ∀x ∈ X},

and a bounded w∗-to-w∗ continuous linear operator T from the w∗-closure of
span[ℏ(X∗)] ⊂ L(f)∗ onto X∗ so that Tℏ = IX∗, i.e. ℏ has a linear w∗-to-w∗

continuous left inverse.

Proof. We assume again that L(f) = Y . Since f : X → Y is a standard ε-isometry,
by Theorem 1.3, for each x∗ ∈ X∗ there is φ ∈ Y ∗ with ∥φ∥ = ∥x∗∥ ≡ r so that

(5.13)
∣∣∣⟨x∗, x⟩ − ⟨φ, f(x)⟩

∣∣∣ ≤ 2εr, for all x ∈ X.

According to Theorem 3.1,

(5.14) Sx∗ = ψ ≡ φ| L, x∗ ∈ X∗

defines a w∗-to-w∗ continuous linear isometry S : X∗ →  L∗, and the isometry S is
just the conjugate operator of the Figiel operator F associated with the isometry
Φ defined as (3.1); where x∗, φ satisfy (5.5), and φ| L denotes the restriction of the
functional φ to  L.
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Since  L is ∥P∥-complemented in Y ∗∗, there is a closed subspace  Lc of Y ∗∗ so that
 L +  Lc =  L ⊕  Lc = Y ∗∗ and the projection P : Y ∗∗ →  L is just along  Lc.

Step 1. By (5.6), we claim that there is a selection ℏ : SX∗ → Y ∗ for the set-valued
mapping

(5.15) ı2∥x∗∥(x
∗) = {φ ∈ Y ∗ : |⟨x∗, x⟩ − ⟨φ, f(x)⟩| ≤ 2ε∥x∗∥, ∀x ∈ X}

satisfying the following conditions:
a) ∥ℏ(x∗)∥ = ∥x∗∥;
b) ℏ(kx∗) = kℏ(x∗),∀k ∈ R, x∗ ∈ X∗.

Thus, the isometry S : X∗ →  L∗ defined as (5.14) satisfies

(5.16) Sx∗ = ℏ(x∗)
∣∣
 L, ∀x∗ ∈ X∗.

Step 2. Let C = co[ℏ(BX∗)], the convex hull of K ≡ ℏ(BX∗). Then C ⊂ BY ∗ , and
the set ext(C) of all extreme points of C is contained in K. We use C| L to denote
the restriction of C, i.e. (each φ ∈ C acting as a w∗-to-w∗ continuous functional on
Y ∗∗)

(5.17) C L = {φ| L : φ ∈ C}.

This and (5.14) entail that S L(BX∗) ⊂ C L, in particular,

(5.18) ext[S L(BX∗)] ⊂ ext(C L).

Step 3. Now, we define a linear operator Θ from H ≡ span(C) = ∪α>0αC to  L∗

as follows.
Let p be the Minkowski functional on H generated by C, i.e. p(φ) = inf{α > 0 :

φ ∈ αC}. Then it is a (not necessarily equivalent) norm on H. Note φ ∈ C if and
only if p(φ) ≤ 1; and note co

(
ext(C)

)
= C.

(5.19) Θ(φ) =


∑

j λjφj

∣∣∣
 L
, if φ =

∑
j λjφj , λj ≥ 0,

∑
j λj = 1, φj ∈ ext(C);

p(φ)Θ
(
φ/p(φ)

)
, if p(φ) > 1.

Since Θ : H →  L∗ is just a restriction, it is necessarily continuous and of norm one
with respect to the new norm p. In the following, we show that Θ is also continuous
with respect to the original norm of Y ∗ on H whenever  L is complemented in Y ∗∗.

Suppose that {φn} ⊂ H is a null sequence. Then both {φn◦P} and {φn◦(I−P )}
are null sequences. Since φn ◦ P restricted to  L is just Θ(φn), Θ is continuous. By
Theorem 3.1, S−1

 L : S(X∗) → X∗ is a w∗-to-w∗ continuous isometry with respect

to the w∗-topologies of Y ∗ and X∗. It is easy to check that Θ is also w∗-to-w∗

continuous with respect to the w∗-topology of Y ∗ . Since S L : X∗ →  L∗ is an
isometry, it maps each extreme point of BX∗ into an extreme point of BS L(BX∗ ).

Consequently, for every extreme point x∗ of BX∗ , ℏ(x∗) ≡ φ is an extreme point of
C. Therefore, S−1Θ(ℏ(x∗)) = x∗ for every x∗ ∈ ext(BX∗). Let T = S−1Θ. By the
Krein-Milman theorem (for instance, [27, Theorem 3.23, p.75]), S−1

 L Θ(ℏ(x∗)) = x∗

for every x∗ in the w∗ dense subspace span[ext(BX∗)]. Let T = S−1

 L Θ. Then, (up

to the natural extension) T is a bounded linear w∗-to-w∗ continuous operator from
the w∗- closure of H in Y ∗ onto X∗. □



574 L. CHENG, Q. FANG, M. KATO, AND L. SUN

Again by Corollary 3.4, similarly, we can show the following result.

Theorem 5.6. Suppose that f : X → Y is a standard ε-isometry. If the corre-
sponding subspace N⊥ ⊂ L(f)∗∗ is w∗ complemented, then for every α ≥ 2 there
exist a selection ℏ : X∗ → L(f)∗ of the set-valued mapping

(5.20) ıα∥x∗∥(x
∗) = {φ ∈ Y ∗ : |⟨x∗, x⟩ − ⟨φ, f(x)⟩| ≤ αε∥x∗∥, ∀x ∈ X},

and a bounded w∗-to-w∗ continuous linear operator T from the w∗-closure of
span[ℏ(X∗)] ⊂ L(f)∗ onto X∗ so that Tℏ = IX∗, i.e. ℏ has a linear w∗-to-w∗

continuous left inverse.

6. Classification of ε isometries by their stability

Now, we can classify standard ε-isometries f from a Banach space X to another
Banach space Y by their w∗-stability, stability and approximate property. Charac-
terizations and properties are listed as follows.

6.1. Properties of standard ε-isometries. a) Every standard ε-isometry f :
X → Y admits w-stability [7, Theorem 2.3]: For each x∗ ∈ X∗, there is φ ∈ Y ∗

with ∥φ∥ = ∥x∗∥ ≡ r so that

(6.1)
∣∣⟨x∗, x⟩ − ⟨φ, f(x)⟩

∣∣ ≤ 2εr, for all x ∈ X.

b) [7, Lemma 2.1] The stability formula above induces an isometry Φ : X →
L(f)∗∗ satisfying

(6.2) ⟨x∗, x⟩ = ⟨φ,Φ(x)⟩, for all x ∈ X,

where the pair x∗ ∈ X∗, φ ∈ Y ∗ satisfy (6.1) and
c) (Theorem 3.1) the correspondence x∗ → φ

∣∣
 L (the restriction of φ from Y ∗∗ to

 L ≡ spanw∗
[Φ(X)]) defines a w∗-to-w∗ continuous linear isometry S L : X∗ →  L∗

with respect to the w∗ topologies of X∗ and Y ∗.
d) [12] Making use of (6.1) and invariant mean procedure, we can further induce

a closed subspace N of Y ∗ (also, L(f)∗) so that there is a surjective linear isometry
U : X∗ → Y ∗/N , hence, U∗ : N⊥ → X∗∗ is a w∗-to-w∗ continuous linear isometry
[12, Theorem 2.3].

e)  L ⊂M⊥ and N⊥ is linear isometry to a quotient space of  L (Theorem 4.7).

6.2. w∗-stable ε-isometries. a) If a standard ε-isometry f : X → Y is w∗-stable,
then the subspace N⊥ is w∗-complemented in L(f)∗∗ (Lemma 4.3).

b) Every w∗-γ-stable ε-isometry f : X → Y admits a projection P : L∗∗(f) → N⊥

so that Pf : X → N⊥ is a w∗-γ approximate 2γε-isometry (Theorem 4.4). Thus,
every standard isometry admits a projection P : L(f)∗∗ → N⊥ of norm one so
that Pf : X → N⊥ is a linear isometry (Corollary 4.5). Conversely, if a standard
ε-isometry f : X → Y admits a projection P : L∗∗(f) → N⊥ so that Pf : X → N⊥

is a δ-isometry, then f is w∗-β-stable, where β = 0, if ε = 0;=(2δ)/ε, if ε > 0
(Theorem 4.1).

c) (Theorem 5.1) A standard ε-isometry f : X → Y is w∗-stable if and only if
there exist γ > 0 and a continuous linear selection ℏ : X∗ → L(f)∗ for the set-valued
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mapping

(6.3) ıγ(x∗) = {φ ∈ ∥x∗∥SL∗(f) :
∣∣⟨x∗, x⟩ − ⟨φ, f(x)⟩

∣∣ ≤ γε∥x∗∥, ∀x ∈ X}.

6.3. Stable ε-isometries. a) Every stable ε-isometry is w∗-stable, but the converse
is not true (Example 2.3). If Y is reflexive, then the two notions coincide.

b) A standard ε-isometry f : X → Y is stable if and only if there exist γ > 0 and
a continuous linear selection ℏ : X∗ → L(f)∗ for the set-valued mapping ıγ defined
as (6.3) [Theorem 5.1].

c) If Y ∗ is strictly convex, and the subspace  L, or, N⊥ associated with f is
1-complemented in L(f)∗∗, then f is 2-stable (Theorems 5.2 and 5.3).

d) If both X and Y are Lp-spaces (1 < p < ∞), then every standard ε-isometry
f : X → Y is 2-stable [28].

6.4. Approximate linear ε-isometries. Every standard surjective ε-isometry is
2-approximate linear ([25]). More general, every standard ε-isometry f : X → Y
admitting a sublinear net (i.e.

τ(f) ≡ sup
y∈SY

inf
t→∞,x∈X

∥ty − f(x)∥/|t| = 0)

is 2-approximate linear ([7, 31, 34]), which is equivalent to τ(f) < 1
2 [10].
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