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ON THE TRANSFINITE MEAN VALUE INTERPOLATION OF
DYKEN AND FLOATER

MICHEL C. DELFOUR AND ANDRE GARON

ABSTRACT. The object of this paper is the Transfinite Mean Value Interpolation
(TMI) introduced by Dyken and Floater [3] and its generalization (k-TMI) by
Delfour and Garon [2] for a special family of vector weight functions. Mathemat-
ically, it amounts to construct a continuous extension of a continuous function
f defined on the compact locally Lipschitzian boundary I' of an open subset 2
of R" to €2, to its complement ¢, or to R"™. The extension property has been
proved for €2 convex and for m-polytopes which are not necessarily convex. In
general, it requires an additional local boundedness condition on I', but an ex-
plicit characterization of such I'’s is not yet available. In this paper we first prove
that, if f is Lipschitz continuous on I', no additional condition on I is required
for the continuous interpolation from I' to all R™. In a second part, we prove
that for m > 1 and k > n+m the partial derivatives of the enhanced (m, k)-TMI
introduced by Delfour and Garon [2] continuously interpolate the correspond-
ing partial derivatives of f up to order m, when f and its partial derivatives
up to order m are Lipschitz continuous in a tubular neighbourhood of I". Our
construction completely solves the problem raised by Floater and Schulz [5] in
2008.

1. INTRODUCTION

The Transfinite Mean Value Interpolation (TMI) was introduced by Dyken and
Floater [3] in 2009 and Bruvoll and Floater [1] in 2010 in the context of Imaging
and finite elements mesh adaptation. Given an open subset {2 of R"™ with compact
locally Lipschitzian boundary I'" and a continuous function f on I', they introduced
the infinitely continuously differentiable function
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where ng(€) is the unit exterior normal to €2, and some conditions on I" to make it
a continuous extension of f from I' to 2. This problem was generalized by Delfour
and Garon [2] from the exponent (n + 1) to a real exponent k > n (k-TMI) for the
special family of vector weight functions x/||z||* with a relaxation of some of the
conditions in [3]. Conditions were also given for the continuous interpolation to the
complement Q¢ = R™\Q of Q and to the whole space R™.
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In order to establish that continuously interpolates f, the limit
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must exists for all x € I' and all continuous functions f. This is true for {2 convex
([3]) and for n-polytopes ([7]) that are not necessarily convex, but, in general, some
non-trivial additional conditions on I' seem to be required and a complete explicit
characterization of such I's is still not available.

In this paper we first show that the continuous interpolation from I' to R” is
obtained for Lipschitz continuous functions f : I' — RP?, p > 1, without additional
assumptions on I'. This indicates that there is some trade-off between the properties
of f and I'. The proof is not trivial and requires a theorem of independent interest
for the mean value interpolation of a bounded continuous function f : O — RP,
where O is an open subset of R™ with compact locally Lipschitzian boundary I'.

In a second part, we consider the enhanced (m,k)-TMI
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introduced in [2] for an integer m > 1, a real number k£ > n 4+ m, and a function
f such that f and its partial derivatives up to order m are Lipschitz continuous
in a tubular neighbourhood of I, where a = (aq,...,a,) € N" is a multi-index,
z® = [[I, 2" for x € R™, |a] = Y1, oy, and a! = aql ! ... ap!. We prove that
the partial derivatives of F up to order m continuously interpolate the corresponding
partial derivatives of f up to order m. Our construction solves the problem raised
by Floater and Schulz [5] in 2008.

2. INTERPOLATION FROM AN OPEN SUBSET O OF R"

Theorem 2.1. Let O be an open subset of R™ with compact locally Lipschitzian
boundary 00, k > n a real number, and g : O — RP, p > 1, a bounded continuous
function. Then the function

g(y)7 Yy < O7
(2.1) Cw) ™ § Jo9 O de 20
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is bounded and continuously interpolates g from O to R™.

Proof. For k > n, the following integral is finite since for y € R™\O
1
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where [, is the surface area of the unit sphere in R™. Hence, the integral
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is well-defined and finite for g bounded and continuous. For z € 90,
Jo [9(6) — g@)] 1ehine de
1
Jo =g %

and for € > 0 there exists § > 0 such that, for any ¢ € O such that ||§ — x| < 6,
lg(§) — g(z)|| < e. So, we have the following estimate
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G(y) — g(x) = , yeRMO,

fOﬂB(;(x) 19(&) — g(@)]| ||§,1ka dg§
G(y) —glo)| <
1G(y) — g(2)]| < Jo el de

n fo\Bé(z) l9(€) —IQ(QT)H m dg
Jo re=yyF 4

1
Jovs@) fEae %

<e+2supg(Q)
€0 Jo ey 6

By assumption, g is bounded in O. For k > n and 0 compact and locally Lips-
chitzian, the denominator of the second term goes to infinity as y — « (cf. [2, Thm.
2.7]).1 Tts numerator is bounded for ||§ — z|| > 6 and ||y — z|| < §/2. Indeed, for
ly — =l <6/2,

1
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Therefore, G(y) — g(x) as y — z and the continuous bounded function G defined
in (2.1) continuously interpolates g from O to R". O

1¥rom the proof of [2, Thm. 2.7] for an open subset © of R™ with compact locally Lipschitzian
boundary

1 c(9) 1
d —.
/o 1€ —yll* <2 doo(y)F—n n 2k

where ¢(0)) is the n-volume of the conical sector of angle 6 and radius 1.
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3. THE k-TMI FOR A LIPSCHITZ FUNCTION f:I'— RP

In view of the computations of Dyken and Floater [3] to establish that the (n+1)-
TMI is an interpolation, some assumptions on the fluctuations of the boundary I’
and/or of the function f are needed. The limit

=y
oo na(§)
i [ 19 I ar = f(a)

y—z,yeQ Jp fF Tl nq(¢) dl
must exist for all continuous functions f : I' — RP and all z € T'.

In [2] the following local boundedness condition was used for H"!-almost all?
x € I': there exists § = d(z) > 0 and ¢(x) > 0 such that

fr ‘ ||§;yyuk nQ(f) dr

Jo et - ma(¢) dr

This is true for Q convex ([3]) and for n-polytopes ([7] for all y € Bs(x)\I') that are
not necessarily convex, but, in general, some additional conditions on I' seem to be
required. Condition (3.1) forces the linear functionals

o )
Jo St - ma(©)dr
to be continuous and uniformly bounded for all y € Bs(z) N Q.

It turns out that, under an additional condition on f, the continuous interpolation

occurs in R” when T is only compact and locally Lipschitzian. Let C%(T;RP), p > 1
an integer, denote the vector space of Lipschitz continuous functions from I' to RP.

(3.1) Vy € Bs(z) N9,

(3.2) fes / £6) CO(T) - R

Theorem 3.1. Let Q2 be an open subset of R™ with compact locally Lipschitzian
boundary T, k > n a real number, and f € COY(I;RP), p > 1, with Lipschitz
constant c¢(f;T"). Then

£ 7 - no(8)
(3.3) I G dr, yeR™MT,
/ fF ll¢— yH’“ ’

-ng(() dl
continuously interpolates f from I' to R™.

Proof. We want to use the divergence theorem to change the integrals over I' into
integrals over Q¢ = R™\Q and apply Theorem 2.1. To do that we need a bounded
continuous extension of f to Q¢ = R™\Q. Given a Lipschitz continuous function
f ' — RP, there exists a Lipschitzian extension to R™ with Lipschitz constant
c(f) < v/me(f;T) ([4, Thm. 1, p. 80]) but their extension is not bounded in Q¢
when Q¢ is not bounded. In order to apply Theorem 2.1, we need to modify f away
from I" to obtain a function bounded in R™. We use the following cut-off function
for some fixed h > 0

1—r/h, 0<r<h

(3.4) rHs(r)déf{Q = }:[O,oo)—)R

2H"~' denotes the (n — 1)-dimensional Hausdorff measure in R".
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with Lipschitz constant 1/h and the Lipschitz function

(3.5) y s s(dr(y)) i R* - R, dp(z) & inf [}y — ).

Since dr is also Lipschitzian of constant one, we have

s(dr(y)) — s(dr ()| < ly = 'l /h,  Vy(s(dr(y)) = s'(dr(y)) Vydr(y).

Finally, define the extension

(3.6) z f(z) ¥ f(2)s(dp(z)) : R — RP.

Since I' is compact, the tubular neighbourhood {z € R" : dr(z) < h} is compact,
the support supp f C {z € R" : dp(x) < h} is compact, f is continuous and bounded
in R”, and f is bounded in {z € R™ : dp(z) < h}. It remains to show that f is
Lipschitz in R™. For x such that dr(z) < h

F(o) - F(@) = [Fy) — F@)] stde(w)) + F(a) [s(dr(y)) — s(dr(x))]
17(9) = )l < 17t = S su (o)
n ( sup Hf(xH) 1s(dr () — s(dr(2))]

dr(z)<h

<c(f) Hy—mHySEqu\S(d r(y)+ sup Hf( )H%Hy—ﬂfH-

dr(z)<

<1
By interchanging the role of z and vy, for y such that dr(y) < h
~ ~ - - 1
I76) - F@l <[+ su 17 3]y - 21,
dr(z)<h

For dp(z) > h and dp(y) > h, f(y) — f(z) = 0. Finally,

1)~ F@ll <elPlly —all, e(f) e+ s [F -

dr(z)<h

So f is Lipschitzian and bounded in R”. Since f f = f on I', we can replace

f:T = RP by f:R" — RP in the definition (3.3) of

It is now sufficient to prove the theorem for p = 1. Slnce for kK > n and y € Q,
the function ¢ + 1/|¢ — y||* is integrable in the complement Q¢ = R™\Q, use the
divergence theorem for the numerator and the denominator
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But div§”§_;yy”k = (n—k)/||lz — &||* and
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As f is continuous and bounded in R™\Q, the second integral converges to f (x) =
f(x) asy — x € T from Theorem 2.1. As for the first integral, it goes to zero as
y — x € I'. The gradient Vf is bounded almost everywhere by the constant c(f)
and is zero on the set {£ € R" : dr(§) > h}. Therefore,
3 1 1
ch Vf(f) ’ (5 - y) " TE=yl® d§ < c f) f{éeﬂc:dp(£)<h} TE—y[[F—1 d§
I =7 1 :
£) Jor ey % ko Joe ey 46
Since I is compact, {£ € R™\Q : dp(§) < h} is compact and there exists a sufficiently

small 6 > 0 and a sufficiently large R > 0 such that, for all y € Bs(z), {{ € R"\Q:
dr(§) < h} C Br(y). So

1 1
1 96 </ 1 4§
/{feﬂczdp(£)<h} 1€ — yll*1 RWN\Bap ) 1€ =yl

dr(y) pk_l "

b 1
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Finally, from [2] the denominator is greater or equal to 1/(cdr(y)*~") and

1
Jieeaeirie)<ny e % < Bn [ ! S } cdp(y)*"
Bnc dr(y)*"
= m dI‘(y) - W =0

asy — x €I for k > n. So, F continuously interpolates f from I' to 2. The proof
that F' continuously interpolates f from I' to €2¢ is similar. O

An interesting consequence of the construction in the proof of the last theorem is
that it provides a new way to compute the k-TMI interpolant. We need the function
g(z) = s(dp(zx)) which is equal to 1 on I' for the denominator. Now

Jo 1(&) g - ne(@dr iy F(©) ”%f”k -ng(€) dT
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+
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For k = n + 1 the formula is similar to the enhanced (m,k)-TBI with E = {£ €
R™M\Q :dr(§) < h} and m =1 ([2, sec. 4.1 |) but E has dimension n

fI‘ (6 Hé_;yy”k -nq (&) dl B f{éeﬂc;dr(§)<h} f:(g) + Vf(E): (xz— f)} ||5_1ka dg
) (= §)] H,E_ly”k d§ '

fFHﬁgf;;H’“'nQ(f)dr  Jiecorape<ny 906 + Vi

I

Both volume formulae do not require a knowledge of the normal.

In a finite element set up in dimension n = 2 with triangular elements, f and
1 can be approximated by piecewise linear functions through each boundary node.
Construct a layer of triangles next to I' of thickness roughly A in Q€. Construct on
each triangle linear functions f and g with value 0 at the nodes in ¢ and matching
f and 1 at the boundary nodes. So, the gradient is constant in each triangle and the
above formula is easy to implement. The parameter h is arbitrary but is bounded

above by some constant h that depends on the locally Lipschizian compact boundary
T.

4. THE ENHANCED (m, k)-TMI

The Enhanced (m, k)-TMI introduced in [6] is solving a problem raised by M.
S. Floater and C. Schulz [5] in 2008. We have already proved that it preserves
P™HL(R™), the space of polynomials on R™ of degree less than or equal to m + 1
and P™T1(R" : RP), the space of polynomials on R into R? of degree less than or
equal to m 4+ 1 for p > 1. We now complete the picture with the following theorem
for the interpolation of the partial derivatives of f.

Theorem 4.1. Let 2 be an open subset of R™ with compact locally Lipschitzian
boundary I', m > 1 an integer, k > n+m a real number, and a function f such that
f and its partial derivatives up to order m are Lipschitz continuous in a tubular
neighbourhood {y € R™ : dr(y) < h} of I' of thickness h > 0. Then the partial
derivatives of the function

] s ()

) S L ge ey —
wy  Fe* [ [f(€)+;a§n ot - 7| L ar,
|ar|=¢
def y_§ n
(4.2) Ply) = /F W”Q(f) dl', yeR"T,

continuously interpolate the corresponding partial derivatives of f up to order m.
By applying the theorem component by component, the results also hold for a vector
function f:{y € R" :dr(y) < h} - RP, p> 1.

Remark 4.2. Note that the assumption on f is verified for any polynomial vector
function f: R™ — RP. O
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Proof. We give the proof for p =1 and m = 1. The cases m > 1 use the same tech-
nique but the number of terms increases beyond what is reasonable. By definition

F(y) - f(y)
- Sy — ) — y—¢
_gb(y) /1“ [f(E) + Vf(g) (y 5) f(y)] ||y _ £||k Q(f) dl’
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For the gradients

VE(y) — V()

1 1
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Since Vf is Lipschitzian there exists a constant ¢ such that
(43) 1976 ~ VW < clle—yll, IDEFE)] < c ae.,

and there exists 6 € (0,1) such that

F6) = 1O+ V) =9+ 5 [ DUHE+0u- =) r=€ s

Since D?f is bounded a.e.

FEO+VIE) - (y—€) — fly) = 2 / D2F(E+0(y— ) (y—€) - (y— €) df
(4.4) FE)+VFE) (y—8& — fly) <cly—¢&|*
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The first four terms on the right-hand side of VE (y) — Vf(y) are bounded by

, 1 1 , 1 1 -
dé = di d
oW S Ty —g T % =¢ \¢<y>\k—1—n/c ey =gt —avﬂ :

Ied fp # : ’IIQ(&) dl’

= - < "dr(y)
k—1—n frﬁ'”ﬂ(@dr

for some generic constants since

-y
rlly =&+t
-y
r [ly — &Il
from [2, Thms. 2.1 and 2.7]. Hence, this requires & > n + 1 to make the first four

terms go to zero as y — x € I
We now look at the fifth term

~ Vé(y)

0< no(€)dl < ¢ dp(y)" " * Vit k—1>n

ng(€)dl > dp(y)" *if k> n

y—=E&
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For the first factor involving ¢(y)
_ y—&
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and from Delfour-Garon [2, Thms. 2.1 and 2.7]
|6(y)| > edr(y)"
1 .
IV < k(=) | e de < cde) 0

for k > n and k > n — 1, respectively, Finally, for £k > n

—(k+1)
(4.5) ‘ FF(( )) 20n—k) cdr(y)* "
For the second factor of the fifth term
y—2¢&
(y—¢&) — i dr'
J 1@+ 95 (0=~ )] e -mal©)ar.

the direct use of the divergence theorem necessitates the stronger condition k > n+2
instead of the condition k > n+1 for the first four terms. To get around this, we use
the tubular neighbourhood {y € R" : dr(y) < h} of I and the truncation s(dr(y))
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introduced in (3.4)-(3.5) in the proof of Theorem 3.1:

[ 1O +9©) -9 - £ = na(e) st () dr
A v —el

— [ (@4 95O =0~ £0] (5= ) g ) s

_ 2 L) -6 )
/CQDﬂ@@ &)y 5Nm—aw>(“@”%
- [ 10 +95©) - = = 1) =iz - Vst ) ar

and, using the inequalities (4.3) and (4.4) and the fact that s(dr(y)) = 0 and
Vy(s(dr(y))) = 0 for dr(y) > h,

/F FO +VFE) -y —&) — f(w)] M g (€) dr

1
SC/ s dE.
Qen{yeR:dp(y)<h} |y — &|[k—2

Since I' is compact, {£ € R"\Q : dr(§) < h} is compact and there exists a sufficiently
small 6 > 0 and a sufficiently large R > 0 such that, for all y € Bs(z), {{ € R"\Q:
dr(§) < h} C Br(y). So

1
T d§ S/ TP —T—T
/{5e9c:dp(g)<h} € — yll*~2 Bry)\Bap @) 1€ — ylF2

=t
= — Bup" " dp
dr(y) pk 2

dg

! 1
- k—n—2 dr(y)k—Q—n Rk—2—n '

Finally, using inequality (4.5),
\VA —

o(y)? ly = €*F
1 1 d k—n—1
< cdr(y)k_"_l [dr(y)k_Q_n - Rk—?—n] =c |:dF(y) + %]

that goes tozeroasy - x € ['if k >n+ 1. O

/F O +VIE) - —&) — F(w)]
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