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feasibility problem, which has been studied extensively, especially in the case when
each fi is convex; see for example the survey [1] by Bauschke and Borwein. In [19],
Robinson proposed the following algorithm (which is called the extended Newton
method) for solving (1.1) (assuming that C is a closed convex cone) with starting
point x0:

Algorithm A(x0). For k = 0, 1, . . . , having xk, determine xk+1 as follows.
If D∞(xk) ̸= ∅, choose dk ∈ D∞(xk) to satisfy ∥dk∥ = mind∈D∞(xk) ∥d∥, and set

xk+1 = xk + dk, where D∞(x) is defined by

(1.3) D∞(x) := {d ∈ Rv : F (x) + F ′(x)d ∈ C} for each x ∈ Rv.

Since D∞(x) may be empty for some x ∈ Rv, the above algorithm is not necessar-
ily well defined in some unfavorable cases (we say that an algorithm is well defined
if it generates at least one sequence). Robinson made two important assumptions
in [19]. One is

(1.4) Range(Tx0) = Rm,

where Tx0 is the convex process defined by

(1.5) Tx0d = F ′(x0)d− C for each d ∈ Rv.

The second assumption is that F ′ is Lipschitz continuous (say with modulus K).
Under these assumptions (so in particular, T−1

x0
is normed: ∥T−1

x0
∥ < ∞), it was

proved in [19] that a sequence {xk} generated by Algorithm A(x0) converges to a
solution x∗ satisfying F (x∗) ∈ C provided that the following “convergence criterion”
is satisfied:

(1.6) ∥x1 − x0∥ ≤ 1

2K∥T−1
x0 ∥

.

In the present paper, we prove the same result with a sharper convergence crite-
rion and under weaker assumptions (allowing particularly that ∥T−1

x0
∥ = ∞). Simi-

larly, we establish a convergence result regarding an algorithm in the Gauss-Newton
method for solving problem (1.2). This algorithm has been studied in [5, 10, 16, 29]
and in a recent work [11] of ours. The main feature of our present approach is
that the norm of T−1

x0
is allowed to be infinite. Moreover, our convergence criterion

for the convergence of a sequence generated by the algorithm is not only sharper
than the earlier results but also has the so-called affine invariant property, namely
it is unchanged if f = h ◦ F is also represented as f = h̃ ◦ F̃ , where h̃ = h ◦ A−1,
F̃ = A ◦ F and A is an inversible transformation.

The paper is organized as follows. In section 2, we list some basic concepts and
known facts needed in the sequel. We introduce in section 3 the new notion of the
weak-Robinson condition for convex processes and prove some related results for
use of the proof of our main result, which is given in section 4. Applications to two
special and important cases (Kantorovich’s type condition and Smale’s condition)
are provided in section 5, where we also present a kind of point estimate results for
(1.1) and (1.2) which are inspired by the corresponding results of Smale [2, 24, 25]
for analytic equations. We end section 5 with some examples about the comparison
of the present paper with the known ones.



CONVERGENCE ANALYSIS OF THE GAUSS-NEWTON METHOD 593

2. Preliminaries

Let B(x, r) stand for the open unit ball in Rv or Rm with center x and radius

r while the corresponding closed ball is denoted by B(x, r). The closed unit ball
in Rv is denoted by BRv . Let S be a closed convex subset of Rv or Rm. We use
d(x, S) to denote the distance from x to S. Let h : Rm → R be a convex function,
F a nonlinear Fréchet differentiable map from Rv to Rm, and C the set of minimum
points of h. We begin with the Gauss-Newton method. Let ∆ ∈ (0,+∞], x ∈ Rv

and let D∆(x) represent the set of all d ∈ Rv satisfying ∥d∥ ≤ ∆ and

(2.1) h(F (x) + F ′(x)d) = min{h(F (x) + F ′(x)d′) : d′ ∈ Rv, ∥d′∥ ≤ ∆}.
Clearly, d ∈ D∆(x) if and only if d is a solution of the convex minimization problem:

(2.2) min{h(F (x) + F ′(x)d′) : d′ ∈ Rv, ∥d′∥ ≤ ∆}.
Let

(2.3) D∆(x) = {d ∈ Rv : ∥d∥ ≤ ∆, F (x) + F ′(x)d ∈ C}.
Since C is the set of minimum points of h, we note that D∆(x) ⊆ D∆(x) for each
x ∈ Rv.

Remark 2.1. (a) If ∆ < +∞, then D∆(x) ̸= ∅ for each x ∈ Rv.
(b) If F (x∗) ∈ C then x∗ solves (1.2).
(c) Suppose that D∆(x) ̸= ∅. Then for each d ∈ Rv with ∥d∥ ≤ ∆, the following

equivalences hold.

(2.4) d ∈ D∆(x) ⇐⇒ d ∈ D∆(x) ⇐⇒ d ∈ D∞(x) ⇐⇒ d ∈ D∞(x).

Following [5, 10, 16, 29], we consider the following algorithm (which is called the
Gauss-Newton method) for solving (1.2); let η ≥ 1,∆ ∈ (0,+∞] and x0 ∈ Rv.

Algorithm A(η,∆, x0). For k = 0, 1, . . . , having xk, determine xk+1 as follows.
If h(F (xk)) = min{h(F (xk) + F ′(xk)d) : d ∈ Rv, ∥d∥ ≤ ∆}, then stop; otherwise,

choose dk ∈ D∆(xk) to satisfy ∥dk∥ ≤ ηd(0, D∆(xk)), and set xk+1 = xk + dk.
Throughout, unless explicitly mentioned otherwise, we use L to denote a positive-

valued increasing absolutely continuous function on [0,Λ) such that Λ ≤ +∞ and∫ Λ
0 L(τ) dτ = +∞. For α > 0, let rα ∈ (0,Λ) and bα > 0 be defined by

α

∫ rα

0
L(τ) dτ = 1 and bα = α

∫ rα

0
L(τ)τ dτ ;(2.5)

thus (see[11, p.615])

(2.6) bα < rα.

Fix a constant ξ ≥ 0, and define

ϕα(t) = ξ − t+ α

∫ t

0
L(τ)(t− τ) dτ for each t ∈ [0,Λ).(2.7)

Thus

ϕ′
α(t) = −1 + α

∫ t

0
L(τ) dτ, ϕ′′

α(t) = αL(t) for each t ∈ [0,Λ)
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and ϕ′′′
α (t) exists almost everywhere thanks to the assumption that L is absolutely

continuous. Let tα,n denote the sequence generated by Newton’s method for ϕα

with initial point tα,0 = 0:

tα,n+1 = tα,n − ωα(tα,n) for each n = 0, 1, . . . ,(2.8)

where ωα : [0,Λ) → R is defined by

(2.9) ωα(t) := ϕ′
α(t)

−1ϕα(t) for each t ∈ [0,Λ).

In particular, by (2.7) and (2.8),

tα,1 = ξ.(2.10)

The following lemmas are known; see for example [11, 26].

Lemma 2.2. Suppose that 0 < ξ ≤ bα. Then the following assertions hold.
(i) ϕα is strictly decreasing on [0, rα] and strictly increasing on [rα,Λ) with

ϕα(ξ) > 0, ϕα(rα) = ξ − bα ≤ 0, lim
t→Λ+

ϕα(t) ≥ ξ > 0.

Moreover, if ξ < bα, ϕα has two zeros, denoted respectively by r∗α and r∗∗α , such that

ξ < r∗α <
rα
bα

ξ < rα < r∗∗α ,(2.11)

and, if ξ = bα, ϕα has a unique zero r∗α in (ξ,Λ) (in fact r∗α = rα).
(ii) {tα,n} is strictly monotonically increasing and converges to r∗α.
(iii) The convergence of {tα,n} is of quadratic rate if ξ < bα, and linear if ξ = bα.
(iv) ωα is increasing on [0, r∗α).

Lemma 2.3. Let rα, bα and ϕα be defined by (2.5) and (2.7). Let α′ > α with the
corresponding ϕα′. Then the following assertions hold.

(i) The functions α 7→ rα and α 7→ bα are strictly decreasing on (0,+∞).
(ii) ϕα < ϕα′ on (0,Λ).
(iii) The function α 7→ r∗α is strictly increasing on the interval I(ξ), where I(ξ)

denotes the set of all α > 0 such that ξ ≤ bα.

Lemma 2.4. Let 0 ≤ c < Λ. Define

χ(t) =
1

t2

∫ t

0
L(c+ τ)(t− τ) dτ for each t ∈ [0,Λ− c).

Then χ is increasing on [0,Λ− c).

3. Convex process and the weak-Robinson condition

The concept of convex process (which was introduced by Rockafeller [21, 22] for
convexity problems) plays a key role in the study of this section.

Definition 3.1. A set-valued mapping T : Rv → 2R
m

is called a convex process
from Rv to Rm if it satisfies

(a) T (x+ y) ⊇ Tx+ Ty for all x, y ∈ Rv;
(b) T (λx) = λTx for all λ > 0, x ∈ Rv;
(c) 0 ∈ T0.
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Thus T : Rv → 2R
m
is a convex process if and only if its graph Gr(T ) is a convex

cone in Rv × Rm. As usual, the domain, range and inverse of a convex process T
are respectively denoted by D(T ), R(T ) and T−1; i.e.,

D(T ) = {x ∈ Rv : Tx ̸= ∅}, R(T ) =
∪

{Tx : x ∈ D(T )}

and
T−1y = {x ∈ Rv : y ∈ Tx}.

Obviously T−1 is a convex process from Rm to Rv. Furthermore, for a nonempty
set A in Rv or Rv, it would be convenient to use the notation ∥A∥ to denote its
distance to the origin, that is,

∥A∥ := inf{∥a∥ : a ∈ A}.(3.1)

We also make the convention that A + ∅ = ∅ for each set A. For the whole paper,
we always assume that the domain of any convex process is nonempty.

Definition 3.2. Let T be a convex process. Define

∥T∥ = sup{∥Tx∥ : x ∈ D(T ), ∥x∥ ≤ 1} ≤ +∞.

If ∥T∥ < +∞, we say that the convex process T is normed.

Let T, S : Rv → 2R
m

and Q : Rm → 2R
l
be convex processes. Recall that T ⊆ S

means that Gr(T ) ⊆ Gr(S), that is, Tx ⊆ Sx for each x ∈ D(T ). By definition,
one can verify easily that ∥T∥ ≥ ∥S∥ if T ⊆ S and D(T ) = D(S). Moreover, T ⊆ S
if and only if T−1 ⊆ S−1. The sum T + S, composite QS and multiple λT (with
λ ∈ R) are processes defined respectively by

(T + S)(x) = Tx+ Sx for each x ∈ Rv,

QS(x) = Q(S(x)) =
∪

y∈S(x)

Q(y) for each x ∈ Rv

and
(λT )(x) = λ(Tx) for each x ∈ Rv.

It is well known (and easy to verify) that T + S, QS, λT are still convex processes
and the following assertions hold:

∥T + S∥ ≤ ∥T∥+ ∥S∥, ∥QS∥ ≤ ∥Q∥ ∥S∥ and ∥λT∥ = |λ|∥T∥.
We also require two propositions below: the first one is known in [20] while the

second is a direct consequence of the first one and [19, Theorem 5].

Proposition 3.3. Suppose that T is a convex process from Rv to Rm. If D(T ) = Rv,
then T is normed. Consequently, T−1 is normed if R(T ) = Rm.

Proposition 3.4. Let S1 and S2 be convex processes from Rv to Rm with D(S1) =
D(S2) = Rv and R(S1) = Rm. Suppose that ∥S−1

1 ∥∥S2∥ < 1 and that (S1 + S2)(x)

is closed for each x ∈ Rv. Then R(S1+S2) = Rm and ∥(S1+S2)
−1∥ ≤ ∥S−1

1 ∥
1−∥S−1

1 ∥∥S2∥
.

The following definition is a modified version of the corresponding notions in [11].
Let L and Λ be as in section 2 and let L(Rv,Rm) denote the Banach space of all
linear operators from Rv to Rm. Let x0 ∈ Rv and r ∈ (0,+∞).
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Definition 3.5. Let T : Rm → 2R
l
be a convex process and H : Rv → L(Rv,Rm)

be a mapping. Let 0 < r ≤ Λ. The pair (T,H) is said to satisfy
(a) the weak L-average Lipschitz condition on B(x0, r) if

∥T (H(x)−H(x0))∥ ≤
∫ ∥x−x0∥

0
L(τ) dτ for each x ∈ B(x0, r);

(b) the L-average Lipschitz condition on B(x0, r), if

∥T (H(x)−H(x′))∥ ≤
∫ ∥x−x′∥+∥x′−x0∥

∥x′−x0∥
L(τ) dτ

for all x, x′ ∈ B(x0, r) with ∥x− x′∥+ ∥x′ − x0∥ < r.
Moreover, in the case when L is a positive constant, we say that (T,H) is
(c) Lipschitz continuous on B(x0, r) with modulus L if

∥T (H(x)−H(y))∥ ≤ L∥x− y∥ for all x, y ∈ B(x0, r),

that is T ◦H is Lipschitz continuous on B(x0, r) in the usual sense.

Note that, when L is a positive constant, (b) and (c) are mutually equivalent. An
important class of (T,H) satisfying (b) arises from our attempt to extend Smale’s
α-theory to the inclusion problem (1.1) and the optimization problem (1.2) instead
of his nonlinear analytic equations; see section 5.

Lemma 3.6. Let g : [0, 1] → R and G : [0, 1] → Rm be continuous functions, and let

T : Rm → 2R
l
be a convex process such that D(T ) ⊇ R(G). Then

∫ 1
0 G(τ) dτ ∈ D(T ).

Suppose in addition that

(3.2) ∥TG(t)∥ ≤ g(t) for each t ∈ [0, 1].

Then

(3.3)

∥∥∥∥T ∫ 1

0
G(τ) dτ

∥∥∥∥ ≤
∫ 1

0
g(τ) dτ.

Proof. Note first that the convex hull co (R(G)) of R(G) is contained in D(T ). Let
0 ≤ a < b ≤ 1. Since G is a continuous and [a.b] is compact, R(G) is compact in
Rm and so is co (R(G)). Moreover, we have that

1

b− a

∫ b

a
G(τ) dτ = lim

k→∞

1

k

k∑
i=1

G(a+
i

k
(b− a)).

This implies that 1
b−a

∫ b
a G(τ) dτ ∈ co (R(G)) ⊆ D(T ). In particular,

∫ 1
0 G(τ) dτ ∈

D(T ). Furthermore, there exist {τi}l+1
i=1 ⊆ [a, b] and {αi}l+1

i=1 ⊆ [0, 1] with
∑l+1

i=1 αi =
1 such that

1

b− a

∫ b

a
G(τ) dτ =

l+1∑
i=1

αiG(τi).

Then

T

∫ b

a
G(τ) dτ = (b− a)T

(
1

b− a

∫ b

a
G(τ) dτ

)
⊇ (b− a)

l+1∑
i=1

αiTG(τi),
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and it follows from (3.2) that∥∥∥∥T ∫ b

a
G(τ) dτ

∥∥∥∥ ≤ (b− a)
l+1∑
i=1

αi∥TG(τi)∥ ≤ (b− a)
l+1∑
i=1

αig(τi).

Hence, by the mean valued theorem,

(3.4)

∥∥∥∥T ∫ b

a
G(τ) dτ

∥∥∥∥ ≤ (b− a)g(t) for some t ∈ [a, b].

In particular, for each k = 1, 2, . . . and i = 1, 2, . . . , k, we apply the above discussion
to [ i−1

k , i
k ] in place of [a, b] and so there exists tki ∈ [ i−1

k , i
k ] such that∥∥∥∥∥T

∫ i
k

i−1
k

G(τ) dτ

∥∥∥∥∥ ≤ 1

k
g(tki ) for each k = 1, 2, . . . and i = 1, 2, . . . , k.

Consequently, for each k = 1, 2, . . . ,∥∥∥T ∫ 1
0 G(τ) dτ

∥∥∥ =

∥∥∥∥T∑k
i=1

∫ i
k
i−1
k

G(τ) dτ

∥∥∥∥
≤

∑k
i=1

∥∥∥∥T ∫ i
k
i−1
k

G(τ) dτ

∥∥∥∥
≤ 1

k

∑k
i=1 g(t

k
i ).

Letting k → +∞, (3.3) holds and the proof is complete. □

For the remainder of the present paper, we shall always assume that C is a
nonempty closed convex cone in Rm, and that F : Rv → Rm is a smooth function,
that is, its Fréchet derivative is continuous. For x ∈ Rv and, we define a convex
process Tx by

(3.5) Txd = F ′(x)d− C for each d ∈ Rv.

Note that D(Tx) = Rv, and T−1
x is given by

(3.6) T−1
x y = {d ∈ Rv : F ′(x)d ∈ y + C} for each y ∈ Rm.

Moreover,

(3.7) D∞(x) = T−1
x (−F (x)) = T−1

x (−F (x) + C)

(since C + C = C). Recall that r1 is defined by (2.5) with α = 1, that is,

(3.8)

∫ r1

0
L(τ) dτ = 1.

Lemma 3.7. Let x0 ∈ Rv and 0 < r ≤ r1. Suppose that

(3.9) R(F ′(x)) ⊆ R(Tx0) for each x ∈ B(x0, , r)

and that (T−1
x0

, F ′) satisfies the weak L-average Lipschitz condition on B(x0, r):

(3.10) ∥T−1
x0

(F ′(x)− F ′(x0))∥ ≤
∫ ∥x−x0∥

0
L(τ)dτ for each x ∈ B(x0, r).
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Then, for each x ∈ B(x0, , r), it holds that R(Tx0) ⊆ R(Tx),

(3.11) D(T−1
x F ′(x0)) = Rv and ∥T−1

x F ′(x0)∥ ≤

(
1−

∫ ∥x−x0∥

0
L(τ) dτ

)−1

.

Proof. Let x ∈ B(x0, , r). Let S1 = I (the identity map on Rv) and let S2 =
T−1
x0

(F ′(x) − F ′(x0)). By (3.9), R(F ′(x) − F ′(x0)) ⊆ R(Tx0) and so D(S2) = Rv.
Note further that S2 is a normed convex process with closed graph and that

∥S2∥ ≤
∫ ∥x−x0∥

0
L(τ) dτ <

∫ r1

0
L(τ) dτ = 1

(by (3.10) and (3.8)). Thus, by Proposition 3.4, R(I+ S2) = Rv, and

(3.12) ∥ (I+ S2)
−1 ∥ ≤ ∥I−1∥

1− ∥I−1∥∥S2∥
≤ 1

1−
∫ ∥x−x0∥
0 L(τ) dτ

.

Further, since T−1
x0

F ′(x0) ⊇ F ′(x0)
−1F ′(x0) ⊇ I and T−1

x0
F ′(x) ⊇ T−1

x0
(F ′(x) −

F ′(x0)) + T−1
x0

F ′(x0), it follows that

(3.13) T−1
x0

F ′(x) ⊇ S2 + I.

So R(T−1
x0

F ′(x)) ⊇ R(S2 + I) = Rv and

(3.14)

∥ −
(
T−1
x0

F ′(x)
)−1 ∥ = ∥

(
T−1
x0

F ′(x)
)−1 ∥

≤ ∥ (I+ S2)
−1 ∥

≤ 1

1−
∫ ∥x−x0∥
0 L(τ) dτ

.

Moreover, for any y, z ∈ Rv, the following equivalences are valid:

z ∈ −
(
T−1
x0

F ′(x)
)−1

y ⇐⇒ y ∈ T−1
x0

F ′(x)(−z)
⇐⇒ F ′(x0)y ∈ F ′(x)(−z) + C
⇐⇒ F ′(x)z ∈ (−F ′(x0)y) + C
⇐⇒ z ∈ T−1

x (−F ′(x0))y.

Then T−1
x (−F ′(x0)) = −

(
T−1
x0

F ′(x)
)−1

. Hence

D(T−1
x F ′(x0)) = R(T−1

x0
F ′(x)) = Rv,

and (3.14) implies that

(3.15) ∥T−1
x (−F ′(x0))∥ ≤ 1

1−
∫ ∥x−x0∥
0 L(τ) dτ

;

thus (3.11) is shown (since F ′(x0) is linear, it is evident that ∥T−1
x (−F ′(x0))∥ =

∥T−1
x F ′(x0)∥).
To prove the inclusion R(Tx0) ⊆ R(Tx), let y ∈ F ′(x0)u − C for some u ∈

Rv. Then, by what we have already proved, there exists w ∈ Rv such that −u ∈
T−1
x0

F ′(x)w, that is, F ′(x0)(−u) ∈ F ′(x)w + C. Then F ′(x0)u ∈ F ′(x)(−w) − C.
Since C is a (convex) cone, it follows that y ∈ F ′(x0)u−C ⊆ F ′(x)(−w)−C ⊆ R(Tx).
This proves that R(Tx0) ⊆ R(Tx) and completes the proof. □
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In his study of the convex inclusion problem (1.1), Robinson imposed an impor-
tant condition that Tx0 is surjective (henceforth to be referred to as the Robinson
condition; see [11]). In light of the preceding lemma, we put forward the following
definition giving conditions weaker than the Robinson condition.

Definition 3.8. Let x0 ∈ Rv and r > 0. The inclusion (1.1) is said to satisfy the
(first) weak-Robinson condition at x0 on B(x0, r) if

(3.16) −F (x0) ∈ R(Tx0) and R(F ′(x)) ⊆ R(Tx0) for each x ∈ B(x0, r).

Similarly, the inclusion (1.1) is said to satisfy the second weak-Robinson condition
at x0 on B(x0, r) if F is C2 and

(3.17) −F (x0) ∈ R(Tx0) and R(F ′′(x)) ⊆ R(Tx0) for each x ∈ B(x0, r).

To study the relationship between these two notions, we first verify below a
lemma, which will be also used in Section 5.

Lemma 3.9. Let k ≥ 2, δ > 0 and assume that F is Ck. Suppose that R(Tx0) is
closed and that the inclusion (1.1) satisfies the weak-Robinson condition at x0 on
B(x0, δ). Then, for each i ∈ 1, k,

(3.18) R(F (i)(x)) ⊆ R(Tx0) for all x ∈ B(x0, δ).

Proof. We proceed by mathematical induction. By the assumed weak-Robinson
condition, the result (3.18) holds for i = 1. Assume that (3.18) holds for i =
j < k. Let x ∈ B(x0, δ) and z1, z2, . . . , zj+1 ∈ Rv. Then, by (3.18), there exists

δ0 > 0 such that R(F (j)(x + tzj+1)) ⊆ R(Tx0) for all t with |t| ≤ δ0. In particular,

F (j)(x+ tzj+1)(±z1, z2, . . . , zj) ∈ R(Tx0) and so

−F (j)(x)(z1, z2, . . . , zj) = F (j)(x)((−z1), z2, . . . , zj) ∈ R(Tx0).

Since R(Tx0) is a cone, it follows that

F (j)(x+ tzj+1)(z1, z2, . . . , zj)− F (j)(x)(z1, z2, . . . , zj)

t
∈ R(Tx0)

for all t with |t| ≤ δ0. Passing to the limits and since R(Tx0) is closed, one has

F (j+1)(x)(z1, z2, . . . , zj+1) ∈ R(Tx0) and (3.18) is shown. □

Proposition 3.10. Suppose that the inclusion (1.1) satisfies the second weak-
Robinson condition at x0 on B(x0, r). Then the inclusion (1.1) satisfies the weak-
Robinson condition at x0 on B(x0, r). The converse is also true if R(Tx0) is closed.

Proof. Let x ∈ B(x0, r). By (3.17), we have for each t ∈ [0, 1] that R(F ′′(x0+ t(x−
x0))) ⊆ R(Tx0) and it follows from Lemma 3.6 that

R

(∫ 1

0
F ′′(x0 + t(x− x0))dt

)
⊆ R(Tx0)

and hence that

R
(
F ′(x)− F ′(x0)

)
= R

(∫ 1

0
F ′′(x0 + t(x− x0))(x− x0)dt

)
⊆ R(Tx0).
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Since R(Tx0) is a convex cone containing R(F ′(x0)), this implies that R(F ′(x)) is
contained in R(Tx0) and the first assertion of the proposition is clear. The second
assertion follows directly from Lemma 3.9. □

We remark that R(Tx0) is closed if ∥T−1
x0

∥ < ∞; see [12, Fact 4.1].

Remark 3.11. Let A⊖ denote the negative polar of the subset A of Rm:

A⊖ := {z ∈ Rm : ⟨z, a⟩ ≤ 0 for all a ∈ A}.
Following [5] and [11] respectively, x0 ∈ Rv is called

(a) a regular point of the inclusion (1.1) if

ker(F ′(x0)
T ) ∩ (C − F (x0))

⊖ = {0};(3.19)

(b) a quasi-regular point of the inclusion (1.1) if there exist r ∈ (0,+∞] and an
increasing positive-valued function β on [0, r) such that D∞(x) ̸= ∅ and

d(0,D∞(x)) ≤ β(∥x− x0∥) d(F (x), C) for all x ∈ B(x0, r).(3.20)

Furthermore, let rx0 denote the supremum rx0 of r such that (3.20) holds for some
increasing positive-valued function β on [0, r), and βx0 the infimum of β such that
(3.20) holds on [0, rx0). We call rx0 and βx0 respectively the quasi-regular radius
and the quasi-regular bound function of the quasi-regular point x0. Then from [11],
the following implications hold for the inclusion (1.1) when C is a closed convex
cone:

Robinson condition at x0 =⇒ x0 is a regular point
⇓ ⇓

weak-Robinson condition at x0 x0 is a quasi-regular point.

Moreover, the converse of each implication above is not true (see [11]).

The following proposition establishes the relationship between the weak-Robinson
condition and the quasi-regularity. To verify this proposition, we need first a lemma,
which will also be used in the next section. The pair L,Λ are as explained in section
2.

Lemma 3.12. Let x0, x, x
′ ∈ Rv be such that ∥x − x′∥ + ∥x′ − x0∥ < Λ and

R(F ′(z)) ⊆ R(Tx0) for each z in the line-segment [x′, x]. Suppose that

(3.21)
∥T−1

x0
(F ′(z)− F ′(x′))∥

≤
∫ ∥z−x′∥+∥x′−x0∥
∥x′−x0∥ L(τ) dτ for each z ∈ [x′, x].

Then T−1
x0

∫ 1
0 (F

′(x′ + τ(x− x′))− F ′(x′))(x′ − x) dτ ̸= ∅ and

(3.22)

∥∥∥T−1
x0

∫ 1
0 (F

′(x′ + τ(x− x′))− F ′(x′))(x′ − x) dτ
∥∥∥

≤
∫ ∥x−x′∥
0 L(∥x′ − x0∥+ τ)(∥x− x′∥ − τ) dτ.

Proof. Define G and g respectively by

G(t) := (F ′(x′ + t(x− x′))− F ′(x′))(x′ − x) for each t ∈ [0, 1]

and

g(t) :=

∫ t∥x−x′∥+∥x′−x0∥

∥x′−x0∥
L(τ)∥x− x′∥ d τ for each t ∈ [0, 1].
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Then G and g are continuous on [0, 1], and, by (3.21), (3.2) holds with T replaced
by T−1

x0
. Note further that D(T−1

x0
) ⊇ R(G). Thus, Lemma 3.6 is applicable and it

follows by elementary calculus that∥∥∥T−1
x0

∫ 1
0 (F

′(x′ + τ(x− x′))− F ′(x′))(x′ − x)
∥∥∥

≤
∫ 1
0 d t

∫ t∥x−x′∥+∥x′−x0∥
∥x′−x0∥ L(τ)∥x− x′∥ d τ

=
∫ ∥x−x′∥
0 L(∥x′ − x0∥+ τ)(∥x− x′∥ − τ) dτ.

The proof is complete. □

Proposition 3.13. Let x0 ∈ Rv and 0 < r ≤ r1. Suppose that (1.1) satisfies the
weak-Robinson condition at x0 on B(x0, r) and that (T−1

x0
, F ′) satisfies the weak

L-average Lipschitz condition on B(x0, r). Then the following assertions hold.
(i) For each x ∈ B(x0, r),

(3.23) D∞(x) ̸= ∅.

(ii) If F (x0) /∈ C, then x0 is a quasi-regular point.
(iii) If T−1

x0
is normed, then x0 is a quasi-regular point with the quasi-regular

radius rx0 and the quasi-regular bound function βx0 satisfying rx0 ≥ r and

βx0(t) ≤ ∥T−1
x0

∥
(
1−

∫ t

0
L(τ) dτ

)−1

for each t ∈ [0, r].

Proof. (i). By a straightforward verification and making use of the fact that C+C =
C, one has that

(3.24) T−1
x F ′(x0)T

−1
x0

⊆ T−1
x for each x ∈ X.

Let x ∈ B(x0, r). Thanks to the given assumptions, Lemmas 3.7 and 3.12 are
applicable to [x0, x] in place of [x′, x]. Hence,

(3.25) T−1
x F ′(x0)(x0 − x) ̸= ∅

and

T−1
x0

∫ 1

0
(F ′(x0 + t(x− x0))− F ′(x0)) (x0 − x)d t ̸= ∅.

This together with (3.11) implies that

(3.26) T−1
x F ′(x0)T

−1
x0

∫ 1

0
(F ′(x0 + t(x− x0))− F ′(x0)) (x0 − x)d t ̸= ∅.

Since T−1
x is a convex process and

F (x0)− F (x) =
∫ 1
0 F ′(x0 + t(x− x0)) (x0 − x)d t

=
∫ 1
0 (F

′(x0 + t(x− x0))− F ′(x0)) (x0 − x)d t+ F ′(x0)(x0 − x),

it follows (3.24) that

(3.27)

T−1
x (F (x0)− F (x))

⊇ T−1
x F ′(x0)T

−1
x0

(∫ 1
0 (F

′(x0 + t(x− x0))− F ′(x0)) (x0 − x)d t
)

+(T−1
x F ′(x0))(x0 − x) ̸= ∅,
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where the nonemptiness assertion holds by (3.25) and (3.26). Similarly, by (3.11),
(3.16) and (3.24) again, we have that

(3.28) ∅ ̸= T−1
x F ′(x0)T

−1
x0

(−F (x0)) ⊆ T−1
x (−F (x0)).

From the convex process property,

(3.29) T−1
x (−F (x)) ⊇ T−1

x (−F (x0)) + T−1
x (F (x0)− F (x)),

we make use of (3.27) and (3.28) to conclude that T−1
x (−F (x)) ̸= ∅, that is, (3.23)

holds (because of (3.7)).
(ii). Assume that F (x0) /∈ C. Then there exists 0 < r̄ < r such that F (x) /∈ C for

each x ∈ B(x0, r̄). Set ρ := min{d(F (x), C) : x ∈ B(x0, r̄)}. Then ρ > 0. By (i),
D∞(x) ̸= ∅ for each x ∈ B(x0, r̄). Below we will show that there exists a constant
θ > 0 such that

(3.30) d(0,D∞(x)) ≤ θ for each x ∈ B(x0, r̄).

Granting this, one sees that

d(0,D∞(x)) ≤ θ

ρ
d(F (x), C) for each x ∈ B(x0, r̄),

and so x0 is a quasi-regular point. To verify (3.30), let x ∈ B(x0, r̄). By (3.27),
(3.31)

∥T−1
x (F (x0)− F (x))∥

≤ ∥T−1
x F ′(x0)∥

(∥∥∥T−1
x0

∫ 1
0 (F

′(x0 + t(x− x0))− F ′(x0)) (x0 − x)d t
∥∥∥+ r̄

)
≤ ∥T−1

x F ′(x0)∥
(∫ r̄

0 L(τ)(r̄ − τ) d τ + r̄
)
,

where the last inequality holds because, by (3.22) (applied to [x0, x] in place of
[x′, x]),∥∥∥∥T−1

x0

∫ 1

0
(F ′(x0 + t(x− x0))− F ′(x0)) (x0 − x)d t

∥∥∥∥ ≤
∫ ∥x−x0∥

0
L(τ)(∥x−x0∥−τ) d τ.

Further, by (3.28),

(3.32) ∥T−1
x (−F (x0))∥ ≤ ∥T−1

x F ′(x0)∥∥T−1
x0

(−F (x0))∥.

By (3.29), (3.31) and (3.32), we have that

(3.33) ∥T−1
x (−F (x))∥ ≤ θ,

where

θ := ∥T−1
x F ′(x0)∥

(
∥T−1

x0
(−F (x0))∥+

∫ r̄

0
L(τ)(r̄ − τ) d τ + r̄

)
.

Note that θ < +∞ by (3.11)), (3.16) and the fact that ∥x− x0∥ ≤ r̄ < r ≤ r1. By
(3.7), (3.33) means that d(0,D∞(x)) ≤ θ and so (3.30) is shown.
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(iii). Assume that Tx0 is normed. Then, by (3.7), (3.24) and Lemma 3.7, one has
that, for each x ∈ B(x0, r),

d(0,D∞(x)) = ∥T−1
x (C − F (x))∥

≤ ∥T−1
x ∥d(F (x), C)

≤ ∥T−1
x F ′(x0)T

−1
x0

∥d(F (x), C)

≤ ∥T−1
x0

∥
(
1−

∫ ∥x−x0∥
0 L(τ) dτ

)−1
d(F (x), C).

Recalling the definition of β defined in Remark 3.11, we complete the proof. □
Remark 3.14. (i) In general, the quasi-regularity at point x0 doesn’t imply the
weak-Robinson condition at x0 even in the case when (T−1

x0
, F ′) is Lipschitz contin-

uous, see [11, Example 6.1].
(ii) It may happen that ∥T−1

x0
∥ = ∞; see [12, Example 4.2].

4. Convergence criteria

This section is devoted to establish our main two convergence results in the Gauss-
Newton method: the first concerns with the AlgorithmA(η,∆, x0) for problem (1.2)
while the second concerns with A(x0) for problem (1.1).

For the remainder of this paper, we make the following blanket arrangement on
notations. Fix a point x0 ∈ Rv and constants η ≥ 1, ∆ ∈ (0,+∞]. Define ξ and α
by

(4.1) ξ = η∥T−1
x0

(−F (x0))∥ and α =
η

1 + (η − 1)
∫ ξ
0 L(τ) dτ

.

Let bα be defined as in (2.5) while r∗α denotes the smaller zero of ϕα defined by
(2.7).

For simplicity of statements, C will always denote a closed convex cone in Rm,
and when the convex-composite minimization (1.2) or the Algorithms A(x0, η,∆)
are considered such as in Theorems 4.1, 5.2, 5.7 and 5.9, we assume further that
C := argmin h.

Theorem 4.1. Let {xn} be a sequence generated by Algorithm A(η,∆, x0). Suppose
that the inclusion (1.1) satisfies the weak-Robinson condition at x0 on B(x0, r

∗
α) and

that (T−1
x0

, F ′) satisfies the L-average Lipschitz condition on B(x0, r
∗
α). Assume that

(4.2) ξ ≤ min{bα,∆}.
Then {xn} converges to some x∗ such that F (x∗) ∈ C, and the following assertions
hold for each n = 1, 2, . . . :

(4.3) ∥xn+1 − xn∥ ≤ (tα,n+1 − tα,n)

(
∥xn − xn−1∥
tα,n − tα,n−1

)2

,

(4.4) ∥xn − xn−1∥ ≤ tα,n − tα,n−1,

(4.5) F (xn−1) + F ′(xn−1)(xn − xn−1) ∈ C

and

(4.6) ∥xn−1 − x∗∥ ≤ r∗α − tα,n−1.
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Proof. Since (4.6) follows directly from (4.4), it suffices to show (4.3)-(4.5). Let us
first note that, for each n ≥ 1,

(4.7) ξ ≤ tα,n < r∗α ≤ r1.

In fact, since ξ ≤ r∗α ≤ rα, it follows from (2.5) that∫ ξ

0
L(τ) dτ ≤

∫ rα

0
L(τ)dτ =

1

α
.

This together with the definition of α implies that α ≥ η

1+(η−1) 1
α

. This means that

α ≥ 1 and so r∗α ≤ rα ≤ r1 by Lemma 2.3 (i). Hence (4.7) holds thanks to Lemma
2.2. We shall use mathematical induction to verify (4.3)-(4.5). For this end, let
k ≥ 1 and use 1, k to denote the set of all integers n satisfying 1 ≤ n ≤ k. We first
verify the following implication:

(4.8)

{
(4.4) holds for all n ∈ 1, k,
(4.5) holds for n = k

=⇒
{

(4.3) holds for n = k,
(4.5) holds for n = k + 1.

To do this, suppose that (4.4) holds for each n ∈ 1, k and (4.5) holds for n = k.
Write

xτk = τxk + (1− τ)xk−1 for each τ ∈ [0, 1].(4.9)

Note that

∥xk − x0∥ ≤
k∑

i=1

∥xi − xi−1∥ ≤
k∑

i=1

(tα,i − tα,i−1) = tα,k(4.10)

and

∥xk−1 − x0∥ ≤ tα,k−1 ≤ tα,k.(4.11)

It follows from (4.9) and (4.7) that xτk ∈ B(x0, r
∗
α) ⊆ B(x0, r1) for each τ ∈ [0, 1].

Note in particular that, by Remark 2.1 and (3.23) in Proposition 3.13 (applied to
r∗α in place of r),

(4.12) D∞(xk) = D∞(xk) ̸= ∅
(where D∞(xk) and D∞(xk) are defined by (2.1) and (2.3) respectively). By (4.10)
and (3.11) in Lemma 3.7 (applied to xk, r

∗
α in place of x, r), we have

(4.13) ∥T−1
xk

F ′(x0)∥ ≤

(
1−

∫ ∥xk−x0∥

0
L(τ) dτ

)−1

≤
(
1−

∫ tα,k

0
L(τ) dτ

)−1

.

We claim that

(4.14) ∅ ̸= (T−1
xk

F ′(x0))T
−1
x0

[−F (xk)+F (xk−1)+F ′(xk−1)(xk −xk−1)] ⊆ D∞(xk).

By (3.11), to prove the above nonemptiness assertion, it is sufficient to show that

(4.15) T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)] ̸= ∅.
Since

−F (xk) + F (xk−1) =

∫ 1

0
F ′(xk−1 + τ(xk − xk−1))(xk−1 − xk) d τ,
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(4.15) follows from Lemma 3.12 (applied to [xk−1, xk] in place of [x′, x] and noting
that ∥xk − xk−1∥+ ∥xk−1 − x0∥ ≤ tα,k < r∗α < Λ). This and (3.22) imply that

(4.16)

∥T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)]∥
=

∥∥∥T−1
x0

∫ 1
0 (F ′(xτk)− F ′(xk−1)(xk−1 − xk)) dτ

∥∥∥
≤

∫ ∥xk−xk−1∥
0 L(∥xk−1 − x0∥+ τ)(∥xk − xk−1∥ − τ) dτ

≤
∫ ∥xk−xk−1∥
0 L(tα,k−1 + τ)(∥xk − xk−1∥ − τ) dτ

(recalling that L is increasing and ∥xk−1 − x0∥ ≤ tα,k−1 by (4.11)). Similar but
using (2.7), (2.8) and (2.8), we have that

ϕα(tα,k) = α
∫ tα,k−tα,k−1

0 L(tα,k−1 + τ)(tα,k − tα,k−1 − τ) dτ

≥ α
(tα,k−tα,k−1)

2

∥xk−xk−1∥2
∫ ∥xk−xk−1∥
0 L(tα,k−1 + τ)(∥xk − xk−1∥ − τ) dτ

(see Lemma 2.4), and it follows from (4.16) that
(4.17)∥∥T−1

x0
[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)]

∥∥ ≤
ϕα(tα,k)

α

(
∥xk − xk−1∥
tα,k − tα,k−1

)2

.

We next show the inclusion in (4.14). Let z = −F (xk)+F (xk−1)+F ′(xk−1)(xk−
xk−1) and d ∈ (T−1

xk
F ′(x0))T

−1
x0

(z), that is, d ∈ (T−1
xk

F ′(x0))u for some u ∈ T−1
x0

(z).
We have to show that d ∈ D∞(xk). Note that F

′(xk)d ∈ F ′(x0)u+C and F ′(x0)u ∈
z +C, so F ′(xk)d ∈ z +C +C = z +C, since C is a convex cone. Since (4.5) holds
for n = k, it follows from the definition of z that

F (xk) + F ′(xk)d ∈ F (xk−1) + F ′(xk−1)(xk − xk−1) + C ⊆ C + C = C,

that is d ∈ D∞(xk) as required to show. Therefore, (4.14) is valid and it follows
from (4.13) and (4.17) that

(4.18)

d(0, D∞(xk))
≤ ∥

(
T−1
xk

F ′(x0)
)
T−1
x0

[−F (xk) + F (xk−1) + F ′(xk−1)(xk − xk−1)]∥

≤
(
1−

∫ tα,k

0 L(τ) dτ
)−1 ϕα(tα,k)

α

(
∥xk−xk−1∥
tα,k−tα,k−1

)2
≤ − 1

η
ϕα(tα,k)
ϕ′
α(tα,k)

(
∥xk−xk−1∥
tα,k−tα,k−1

)2
,

where the last inequality holds because, by (4.7) and (4.1),

1 ≤ η = α

(
1 + (η − 1)

∫ ξ

0
L(τ) dτ

)
≤ α

(
1 + (η − 1)

∫ tα,k

0
L(τ) dτ

)
(since tα,k ≥ tα,1 = ξ), and so

η

α

(
1−

∫ tα,k

0
L(τ) dτ

)−1

≤
(
1− α

∫ tα,k

0
L(τ) dτ

)−1

= −ϕ′
α(tα,k)

−1.

By (4.18) and (2.8), we have

(4.19)
ηd(0, D∞(xk)) ≤ −ϕα(tα,k)

ϕ′
α(tα,k)

(
∥xk−xk−1∥
tα,k−tα,k−1

)2
= (tα,k+1 − tα,k)

(
∥xk−xk−1∥
tα,k−tα,k−1

)2
.
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Since
(

∥xk−xk−1∥
tα,k−tα,k−1

)2
≤ 1 by assumptions of (4.8), it follows from (4.19) that

(4.20) d(0, D∞(xk)) ≤ ηd(0, D∞(xk)) ≤ tα,k+1 − tα,k.

Noting that, by Lemma 2.2(iv),

tα,k+1 − tα,k = −ϕ′
α(tα,k)

−1ϕα(tα,k) ≤ −ϕ′
α(tα,0)

−1ϕα(tα,0) = ξ ≤ ∆,

it follows that d(0, D∞(xk)) ≤ ∆, which together with (4.12) implies that there
exists d0 ∈ Rv with ∥d0∥ ≤ ∆ such that F (xk) + F ′(xk)d0 ∈ C. Consequently, by
Remark 2.1,

D∆(xk) = D∆(xk) ̸= ∅
and

(4.21) d(0, D∆(xk)) = d(0, D∞(xk)).

In particular, in view of Algorithm A(η,∆, x0), (4.5) holds for n = k+1. Moreover,
(4.21) together with (4.19) implies that

∥xk+1 − xk∥ = ∥dk∥ ≤ ηd(0, D∆(xk)) ≤ (tα,k+1 − tα,k)

(
∥xk − xk−1∥
tα,k − tα,k−1

)2

.

That shows that (4.3) holds for n = k and implication (4.8) is proved.
Now we are ready to prove that (4.3)-(4.5) hold for each n = 1, 2 . . . . By the

weak-Robinson condition assumption, we have from (3.7) that

(4.22) D∞(x0) = D∞(x0) = T−1
x0

(−F (x0)) ̸= ∅.

Hence, by (4.1) and (2.10),

(4.23) ηd(0, D∞(x0)) ≤ η∥T−1
x0

(−F (x0))∥ = ξ = tα,1 − tα,0 ≤ ∆.

Since η ≥ 1, it follows from (4.22) that there exists d ∈ D∞(x0) such that ∥d∥ ≤ ∆.
Thus, d(0, D∆(x0)) = d(0, D∞(x0)) and, by Remark 2.1,

D∆(x0) = D∆(x0) ̸= ∅.

In particular, it follows from Algorithm A(η,∆, x0) that F (x0)+F ′(x0)d1 ∈ C and
so (4.5) holds for n = 1. Furthermore, by (4.23) and Algorithm A(η,∆, x0), one
has that ∥d1∥ ≤ ηd(0, D∞(x0)) ≤ tα,1− tα,0, i.e., ∥x1−x0∥ ≤ tα,1− tα,0. This shows
that (4.4) holds for n = 1. Thus implication (4.8) is applicable to concluding that
(4.3) holds for n = 1. Assume that (4.4), (4.3) and (4.5) hold for all n ∈ 1, k. Then,
we have that

∥xk+1 − xk∥ ≤ (tα,k+1 − tα,k)

(
∥xk − xk−1∥
tα,k − tα,k−1

)2

≤ tα,k+1 − tα,k.

This shows that (4.4) holds for n = k + 1. Furthermore, we apply (4.8) to get that
(4.5) holds for n = k+1. Finally, applying (4.8) to k+1 in place of k, one has that
(4.3) holds for n = k + 1. This completes the proof. □

Recall that b1 and the function ϕ1 are defined respectively by (2.5) and (2.7)
with α = 1. Let r∗1 be the smaller zero point of the function ϕ1 (see the opening
paragraph of this section for notation arrangements).
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Theorem 4.2. Suppose that the inclusion (1.1) satisfies the weak-Robinson condi-
tion at x0 on B(x0, r

∗
1) and that (T−1

x0
, F ′) satisfies the L-average Lipschitz condition

on B(x0, r
∗
1). Let ξ be given by (4.1) with η = 1 and assume that

(4.24) ξ ≤ b1.

Then, Algorithm A(x0) is well-defined and any sequence {xn} so generated con-
verges to a solution x∗ of (1.1) satisfying (4.3)-(4.6) with α = 1 for each n = 1, 2, . . . .
Moreover, any sequence generated by Algorithm A(x0) is also a sequence generated
by Algorithm A(1,+∞, x0) and vice versa.

Proof. Let h be the distance function of C defined by

(4.25) h(y) := d(y, C) = inf
z∈C

∥y − z∥ for each y ∈ Rm.

Let ∆ = +∞ and η = 1 (so α = 1 by (4.1)). Since D∞(x0) ̸= ∅ by the weak-
Robinson condition, there exists x1 ∈ Rv such that d1 := x1 − x0 ∈ D∞(x0) and
∥d1∥ = d(0,D∞(x0)). Noting that D∞(x0) = D∞(x0) by Remark 2.1 (c), x1 can
be regarded as a point obtained by Algorithm A(η,∆, x0) at its first iteration.
Then Theorem 4.1 is applicable; it follows from (4.5) and Remark 2.1 that there
exists x2 ∈ Rv such that d2 := x2 − x1 ∈ D∞(x1) = D∞(x1) with the minimal
norm. Hence, x2 is also a point obtained by Algorithm A(η,∆, x0) at its second
iteration. Inductively, we see that, for each k, ∅ ̸= D∞(xk) = D∞(xk), and this
means that Algorithm A(x0) is well-defined and any sequence {xk} so generated is
also a sequence generated by Algorithm A(η,∆, x0). Thus, the conclusion follows
from Theorem 4.1 and the proof is complete. □
Remark 4.3. The convergence criteria given in Theorems 4.1 and 4.2 are affine
invariant in the sense described below. Let A be am×m nonsingular matrix. Define
functions h̃ := h ◦ A−1 and F̃ := A ◦ F and define C̃ = A(C). Then argmin h̃ = C̃

and h ◦F = h̃ ◦ F̃ . Hence the minimization problem (1.2) and so the corresponding
inclusion problem (1.1) can be rewritten respectively as

(4.26) min
x∈Rn

(h̃ ◦ F̃ )(x)

and

(4.27) F̃ (x) ∈ C̃.

Moreover T̃x0 = A◦Tx0 and T̃−1
x0

= T−1
x0

◦A−1, where T̃x0 denotes the convex process
(associated with (4.27)) defined by

(4.28) T̃x0d := F̃ ′(x0) d− C̃.

Then the weak-Robinson condition assumed in Theorem 4.1 for (1.1) is equivalent
to the corresponding one for (4.27). Likewise, the L-average Lipschitz condition for

(T−1
x0

, F ′) is equivalent to that for (T̃−1
x0

, F̃ ′). Moreover, ξ = η∥T−1
x0

(−F (x0))∥ =

η∥T̃−1
x0

(−F̃ (x0))∥. Therefore, the convergence criteria given in Theorems 4.1 and
4.2 for (1.2) and (1.1) coincide respectively with the corresponding ones for (4.26)
and (4.27), that is to say, such convergence criteria are affine invariant. Note that
the convergence criteria given in [11, Theorem 4.1] and [19, Theorem 2] do not have
such property.



608 C. LI AND K. F. NG

Remark 4.4. We exclude the trivial case when L ≡ 0 in our study because, in this
trivial case, if (T−1

x0
, F ′) satisfies the weak L-average Lipschitz condition on B(x0, r),

then

F (x)− F (x0)− F ′(x0)(x− x0) ∈ C for each x ∈ B(x0, r),

and therefore, under the assumption made in Theorems 4.1 and 4.2, the Gauss-
Newton method stops at the first step, that is, F (x1) ∈ C.

5. Applications

This section is divided into three subsections: for the first two we consider ap-
plications of our main results specializing respectively in Kantorovich’s type and in
the type of the weak γ-condition studied by Wang and Han in [28]. The last sub-
section is devoted to a similar study of the famous Smale point estimate theory (for
analytic equations) for the inclusion problem (1.1) with F assumed to be analytic.
We introduce a new notion of the weak-Smale condition for (1.1), and show, under
a mild and reasonable assumption, that the weak-Smale condition implies the weak
γ-condition and the weak-Robinson condition. Recall the blanket assumption made
at the beginning of section 4; in particular, x0 ∈ Rv, η ∈ [1,+∞), and ∆ ∈ (0,+∞).
Moreover, unless explicitly mentioned otherwise, ξ and α are defined by (4.1).

5.1. Kantorovich’s type condition. Throughout this subsection, we assume that
that L is a positive constant function on [0,+∞). Then, by (2.5) and (2.7), we have
for all α > 0 that

rα =
1

αL
, bα =

1

2αL
(5.1)

and

ϕα(t) = ξ − t+
αL

2
t2 for each t ≥ 0.

Moreover, the zeros of ϕα are given by

r∗α
r∗∗α

}
=

1∓
√
1− 2αLξ

αL
,(5.2)

provided that ξ ≤ 1
2αL . It is also known (see for example [9, 18, 27]) that {tα,n} has

the closed form

tα,n =
1− q2

n−1
α

1− q2nα
r∗α for each n = 0, 1, . . . ,(5.3)

where

qα :=
r∗α
r∗∗α

=
1−

√
1− 2αLξ

1 +
√
1− 2αLξ

.(5.4)

The following lemma is direct by definition.

Lemma 5.1. Let α be defined by (4.1), that is,

(5.5) α =
η

1 + (η − 1)Lξ
.



CONVERGENCE ANALYSIS OF THE GAUSS-NEWTON METHOD 609

Then bα, r
∗
α and qα defined at the beginning of this subsection are given by

(5.6) bα =
1 + (η − 1)Lξ

2Lη
,

r∗α =
1 + (η − 1)Lξ −

√
1− 2Lξ − (η2 − 1)(Lξ)2

Lη
(5.7)

and

qα =
1− Lξ −

√
1− 2Lξ − (η2 − 1)(Lξ)2

Lηξ
.(5.8)

In particular, in the case when η = 1 (and so α = 1),

r∗1 =
1−

√
1− 2Lξ

L
(5.9)

(5.10) q1 =
1− Lξ −

√
1− 2Lξ

Lξ
.

Theorem 5.2. Let {xn} be a sequence generated by Algorithm A(η,∆, x0). Let
L ∈ (0,+∞) and let α be defined by (5.5) (so r∗α and qα are given in (5.7) and
(5.8)). Suppose that the inclusion (1.1) satisfies the weak-Robinson condition at x0
on B(x0, r

∗
α), and that (T−1

x0
, F ′) is Lipschitz continuous on B(x0, r

∗
α) with modulus

L. Assume that

ξ ≤ min

{
1

L(η + 1)
,∆

}
.(5.11)

Then {xn} converges to some x∗ with F (x∗) ∈ C and

∥xn − x∗∥ ≤ qα
2n−1∑2n−1

i=0 qαi
r∗α for each n = 0, 1, . . . .(5.12)

Proof. By (5.6), the following equivalences hold:

ξ ≤ bα ⇐⇒ ξ ≤ 1 + (η − 1)Lξ

2Lη
⇐⇒ ξ ≤ 1

L(1 + η)

(where the second equivalence holds by elementary verification). Thus (4.2) and
(5.11) are the same and so the conclusions in Theorem 4.1 hold. Moreover, by
(5.3), we have that

r∗α − tα,n = r∗α − 1− q2
n−1

α

1− q2nα
r∗α = r∗α

(
1− qα
1− q2nα

)
q2

n−1
α

and so (5.12) holds from (4.6). □

Letting ∆ = +∞, and η = 1 (so α = 1 and b1 = 1
2L in (5.5) and (5.6)), the

following result follows immediately from (5.3), Theorems 4.2 and 5.2.
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Theorem 5.3. Let L ∈ (0,+∞), ξ = ∥T−1
x0

(−F (x0))∥, and let r∗1, q1 be defined by
(5.9), (5.10). Suppose that the inclusion (1.1) satisfies the weak-Robinson condition
at x0 on B(x0, r

∗
1) and that (T−1

x0
, F ′) is Lipschitz continuous on B(x0, r

∗
1) with

modulus L. Assume that

ξ ≤ 1

2L
.(5.13)

Then Algorithm A(x0) is well-defined and any sequence {xn} so generated converges
to a solution x∗ of (1.1) satisfying (5.12) with α = 1.

Corollary 5.4. (Robinson[19]) Suppose that Tx0 is surjective and that F ′ is Lips-

chitz continuous on B(x0, R̂) with modulus K > 0:

(5.14) ∥F ′(x)− F ′(y)∥ ≤ K∥x− y∥ for all x, y ∈ B(x0, R̂),

where

(5.15) R̂ =
1−

√
1− 2K∥T−1

x0 ∥ξ
K∥T−1

x0 ∥
and ξ = ∥T−1

x0
(−F (x0))∥.

Assume that

(5.16) ∥x1 − x0∥ ≤ 1

2K∥T−1
x0 ∥

.

Then the conclusions of Theorem 5.3 hold with r∗1 = R̂ and

(5.17) q1 =
1−K∥T−1

x0
∥ξ −

√
1− 2K∥T−1

x0 ∥ξ
K∥T−1

x0 ∥ξ
.

Proof. Since Tx0 is surjective, it follows that ∥T−1
x0

∥ < +∞ and the inclusion (1.1)

satisfies the weak-Robinson condition at x0 on B(x0,+∞). Let L := K∥T−1
x0

∥.
Then, (5.10) and (5.17) are consistent. Likewise, r∗1 given in (5.9) equals R̂. Fur-
thermore, by the assumed Lipschitz continuity (5.14), one has that

∥T−1
x0

(F ′(x)− F ′(y))∥ ≤ ∥T−1
x0

∥∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥

for all x, y ∈ B(x0, r
∗
1). This means that (T−1

x0
, F ′) is Lipschitz continuous on

B(x0, r
∗
1) with modulus L. Since ξ = ∥T−1

x0
(−F (x0))∥ = ∥x1 − x0∥ by Algorithm

A(x0) and (3.7), we see that (5.13) and (5.16) are the same. Therefore, the result
follows from Theorem 5.3. □

5.2. Weak γ-condition. Throughout this subsection, γ denotes an arbitrary but
fixed positive constant. The notion of the γ-condition for operators in Banach spaces
was introduced in [28] by Wang and Han to study the Smale point estimate theory,
which is recently extended in [15] to suit the setting of vector fields or mappings on
Riemannian manifolds. Below we give an analogue of this notion to suit the setting
of inclusion problems.

Let k ≥ 1 and assume that F is Ck (kth continuously differentiable) on Rv (or

on a neighbouthbood of x0). Fix x ∈ Rv. The kth derivative F (k)(x) at x is a
k-multilinear operator from (Rv)k to Rm. It follows that, for any k − 1 points
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z1, z2, . . . , zk−1 ∈ Rv, T−1
x0

(F (k)(x)(z1, z2, . . . , zk−1)) is a convex process from Rv to
Rm. Define

(5.18) ∥T−1
x0

F (k)(x)∥ := sup{∥T−1
x0

(F (k)(x)(z1, z2, . . . , zk−1))∥ : {zi}k−1
i=1 ⊂ BRv}.

In particular, for each j ≤ k,

(5.19) ∥T−1
x0

F (k)(x)zj∥ ≤ ∥T−1
x0

F (k)(x)∥∥z∥j for each z ∈ Rv,

where and in the sequel, the zj denotes, as usual, (z, . . . , z) ∈ (Rv)j = Rv×· · ·×Rv

for each z ∈ Rv; moreover, if z1, . . . , zl ∈ Rv, then zjz1 . . . zl denotes the correspond-
ing element in Rj+l.

Definition 5.5. Let 0 < r ≤ 1
γ . Suppose that F is of the continuous second

derivative F ′′ on B(x0, r). We say that (T−1
x0

, F ) satisfies the weak γ-condition at
x0 on B(x0, r) if

(5.20) ∥T−1
x0

F ′′(x)∥ ≤ 2γ

(1− γ∥x− x0∥)3
for each x ∈ B(x0, r).

Assume, for the remainder of this subsection, that L is the function defined by

L(t) =
2γ

(1− γt)3
for each t with 0 ≤ t <

1

γ
.(5.21)

Note that
∫ 1

γ

0 L(t)dt = +∞; also, by (2.5), (2.7) and elementary calculation (cf.
[26]), one has that for all α > 0,

rα =

(
1−

√
α

1 + α

)
1

γ
, bα =

(
1 + 2α− 2

√
α(1 + α)

) 1

γ
(5.22)

and

ϕα(t) = ξ − t+
αγt2

1− γt
for each t with 0 ≤ t <

1

γ
.(5.23)

Hence,

ξ ≤ bα ⇐⇒ ξ ≤
1 + 2α− 2

√
α(1 + α)

γ
.(5.24)

Moreover, it is known in [26] that, if ξ ≤ 1+2α−2
√

α(1+α)

γ , the zeros of ϕα are given

by

r∗α
r∗∗α

}
=

1 + γξ ∓
√
(1 + γξ)2 − 4(1 + α)γξ

2(1 + α)γ
(5.25)

and the sequence {tα,n} has the closed form:

tα,n =
1− q2

n−1
α

1− q2
n−1

α pα
r∗α for each n = 0, 1, . . . ,(5.26)

where

qα =
1− γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

1− γξ +
√
(1 + γξ)2 − 4(1 + α)γξ

(5.27)
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and

pα :=
1 + γξ −

√
(1 + γξ)2 − 4(1 + α)γξ

1 + γξ +
√

(1 + γξ)2 − 4(1 + α)γξ
.(5.28)

Elementarily, it follows that, if ξ ≤ bα,

(5.29) qα ≤ 1

2
⇐⇒ γξ ≤

4 + 9α− 3
√
α(9α+ 8)

4
,

(5.30) qα =
1

2
⇐⇒ γξ =

4 + 9α− 3
√
α(9α+ 8)

4
,

and

tα,n+1 − tα,n
tα,n − tα,n−1

≤ qα
2n−1 for each n = 0, 1, . . .(5.31)

(see [26] for example).

Proposition 5.6. Let 0 < r ≤ 1
γ . Suppose that the inclusion (1.1) satisfies the

second weak-Robinson condition at x0 on B(x0, r) and that (T−1
x0

, F ) satisfies the

weak γ-condition at x0 on B(x0, r). Then (T−1
x0

, F ′) satisfies the L-average Lipschitz
condition on B(x0, r).

Proof. Let x, x′ ∈ B(x0, r) be such that ∥x− x′∥+ ∥x′ − x0∥ < r. Let u ∈ Rv with
∥u∥ ≤ 1. We have to show that

(5.32) ∥T−1
x0

(F ′(x)− F ′(x′))u∥ ≤
∫ ∥x−x′∥+∥x′−x0∥

∥x′−x0∥
L(τ)dτ.

By the assumed weak γ-condition,

∥T−1
x0

F ′′(x′ + t(x− x′))(x− x′)u∥ ≤ 2γ∥x− x′∥
(1− γ(∥x′ − x0∥+ t∥x− x′∥))3

.

By Lemma 3.6, it follows that

∥T−1
x0

(F ′(x)− F ′(x′))u∥ =
∥∥∥T−1

x0

∫ 1
0 F ′′(x′ + t(x− x′))(x− x′)ud t

∥∥∥
≤

∫ 1
0

2γ∥x−x′∥
(1−γ(∥x′−x0∥+t∥x−x′∥))3d t

=
∫ ∥x−x′∥+∥x′−x0∥
∥x′−x0∥ L(τ)dτ.

This proves (5.32) and completes the proof. □

As mentioned at the beginning of this section, we assume, unless explicitly men-
tioned, that x0 ∈ Rv, η ∈ [1,+∞), ∆ ∈ (0,+∞) and ξ = η∥T−1

x0
(−F (x0))∥. Let

(5.33) α =
η(1− γξ)2

(η − 1) + (2− η)(1− γξ)2
.

Using the fact that η ∈ [1,+∞) and (1−γξ)2 ≤ 1, one checks that 0 ≤ (1−γξ)2

(η−1)+(2−η)(1−γξ)2
≤

1, and that

(5.34) 0 ≤ α ≤ η.
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Recall that γ denotes any fixed positive constant and that r∗α < 1
γ by (2.11) and

(5.22).

Theorem 5.7. Let {xn} be a sequence generated by Algorithm A(η,∆, x0). Let
r∗α and qα be given respectively by (5.25) and (5.27) with α defined by (5.33). Sup-
pose that the inclusion (1.1) satisfies the second weak-Robinson condition at x0 on
B(x0, r

∗
α) and that (T−1

x0
, F ) satisfies the weak γ-condition at x0 on B(x0, r

∗
α). As-

sume that

ξ ≤ min

{
1 + 2η − 2

√
η(1 + η)

γ
, ∆

}
.(5.35)

Then {xn} converges at a quadratic rate to some x∗ with F (x∗) ∈ C and the fol-
lowing assertions hold:

∥xn+1 − xn∥ ≤ q2
n−1

α ∥xn − xn−1∥ for all n = 1, 2, . . . ,(5.36)

and

∥xn − x∗∥ ≤ qα
2n−1r∗α for all n = 0, 1, . . . .(5.37)

Proof. Let L be defined as in (5.21). Thanks to the given assumptions, Proposition
5.6 implies that (T−1

x0
, F ′) satisfies the L-average condition on B(x0, r

∗
α). Note fur-

ther that, by (5.21),
∫ ξ
0 L(t) dt = (1−γξ)−2−1; hence α given in (5.33) is consistent

with (4.1). Moreover, since the function t 7→ 1 + 2t − 2
√

t(1 + t) is monotonically

decreasing (because 1 + 2t− 2
√

t(1 + t) = (1 + 2t+ 2
√

t(1 + t))−1 for each t ≥ 0),
it follows from (5.34) that

1 + 2η − 2
√

η(1 + η)

γ
≤

1 + 2α− 2
√

α(1 + α)

γ
;

so (4.2) holds by (5.35) and (5.24). Hence the conclusions of Theorem 4.1 hold. By
(5.31) and (4.3), we have (5.36). Combining (5.26) and (4.6), we have that

∥xn − x∗∥ ≤ r∗α − tα,n = r∗αq
2n−1
α

(
1− pα

1− q2
n−1

α pα

)
for each n = 0, 1, . . .

and so (5.37) holds. □
Theorem 5.8. Let ξ = ∥T−1

x0
(−F (x0))∥ (that is, η = 1), and let r∗1 and q1 be

defined respectively by (5.25) and (5.27) with α = 1, that is,

r∗1 =
1 + γξ −

√
(1 + γξ)2 − 8γξ

4γ
and q1 =

1− γξ −
√

(1 + γξ)2 − 8)γξ

1− γξ +
√

(1 + γξ)2 − 8γξ
.

Suppose that the inclusion (1.1) satisfies the second weak-Robinson condition at x0
on B(x0, r

∗
1) and that (T−1

x0
, F ) satisfies the weak γ-condition at x0 on B(x0, r

∗
1).

Assume that

ξ ≤ 3− 2
√
2

γ
.(5.38)

Then Algorithm A(x0) is well-defined and any sequence {xn} so generated converges
at a quadratic rate to a solution x∗ of the inclusion problem (1.1), and (5.36) and
(5.37) hold with α = 1.
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Proof. Let ∆ = +∞ and η = 1. Then (5.33) and α = 1 are consistent. By (5.38),
(5.35) holds. Therefore, Theorem 5.7 is applicable (recall from Theorem 4.2 that
{xn} is a sequence generated by Algorithm A(1,+∞, x0)). □

As in [11], x0 ∈ Rv is called an (η,∆)-approximate solution of (1.2) if any sequence
{xn} generated by Algorithm A(η,∆, x0) converges to a limit x∗ solving (1.2) and
satisfies Smale’s condition:

∥xn+1 − xn∥ ≤
(
1

2

)2n−1

∥xn − xn−1∥ for each n = 1, 2, . . . .(5.39)

Similarly, with respect to Algorithm A(x0), one can define the notion of an approx-
imate solution of (1.1). For the following theorem, we note that

4 + 9η − 3
√

η(9η + 8)

4γ
<

1 + 2η − 2
√
η(1 + η)

γ
(5.40)

(thanks to η+8
√
η(1 + η) < 3

√
η(9η + 8), which in turn follows from 2

√
η(1 + η) <

1 + 2η by squaring on both sides).

Theorem 5.9. Let rη be defined as in (5.22), that is,

rη =

(
1−

√
η

1 + η

)
1

γ
.

Suppose that the inclusion (1.1) satisfies the second weak-Robinson condition at x0
on B(x0, rη) and that (T−1

x0
, F ) satisfies the weak γ-condition at x0 on B(x0, rη).

Assume that

ξ ≤ min

{
4 + 9η − 3

√
η(9η + 8)

4γ
, ∆

}
.(5.41)

Then, x0 is an (η,∆)-approximate solution of (1.2). In fact, any sequence {xn}
generated by Algorithm A(η,∆, x0) converges to a limit x∗ with F (x∗) ∈ C such
that (5.39) holds.

Proof. Let {xn} be any sequence generated by Algorithm A(η,∆, x0). Let α be
as in Theorem 5.7. An elementary calculation shows that the function t 7→ r∗t is
monotonically increasing and it follows from (5.34) that r∗α ≤ r∗η. Consequently,

one has that r∗α ≤ r∗η ≤ rη. Thus, by the assumption, (T−1
x0

, F ) satisfies the weak
γ-condition at x0 on B(x0, r

∗
α). Moreover, one sees from (5.40) that (5.41) implies

(5.35). Therefore, one can apply Theorem 5.7 to conclude that the sequence {xn}
converges to a solution x∗ of (1.2) and (5.36) holds. For (5.39), we need only to show
that qα ≤ 1

2 . To do this, we need to emphasize the dependence on the parameters
and so we write q(α, ξ) for qα defined by (5.27). Then one checks that q(α, ξ) is
monotonically increasing with respect to each of its variables, and sees by (5.29)

and (5.30) that q

(
α,

4+9α−3
√

α(9α+8)

4γ

)
= 1

2 for each 0 < α ≤ η. It follows that

q(α, ξ) ≤ q(η, ξ) ≤ q

(
η,

4 + 9η − 3
√
η(9η + 8)

4γ

)
=

1

2
,

completing the proof. □
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Theorem 5.10. Let x0 ∈ Rv and let ξ = ∥T−1
x0

(−F (x0)∥ (that is, η = 1). Sup-
pose that the inclusion (1.1) satisfies the second weak-Robinson condition at x0

on B(x0, (1 −
√
2
2 ) 1γ ) and that (T−1

x0
, F ) satisfies the weak γ-condition at x0 on

B(x0, (1−
√
2
2 ) 1γ ). Assume that

ξ ≤ 13− 3
√
17

4γ
.(5.42)

Then, x0 is an approximate solution of (1.1).

Proof. Let ∆ = ∞, η = α = 1. Then γη = (1 −
√
2
2 ) 1γ , and (5.41)⇐⇒(5.42).

Therefore, the result follows from Theorem 5.9 (as in the proof of Theorem 5.8). □

5.3. Weak-Smale condition. In his fundamental work on point estimate theory
regarding Newton’s method for solving the nonlinear analytic equation F = 0, where
F is an analytic function from a Banach space to another, Smale (cf. [2, 24, 25])
made an important use of his assumption (on initial point x0) that

(5.43) F ′(x0) is surjective.

In the course of his study, the quantity γF (x0) ∈ R defined by

(5.44) γF (x0) := sup
k≥2

∥∥∥∥∥F ′(x0)
†F (k)(x0)

k!

∥∥∥∥∥
1

k−1

,

also plays a key role, where F ′(x0)
† stands for the Moore-Penrose inverse of F ′(x0).

The present subsection is devoted to an attempt to address similar issues for the
inclusion problem (1.1). Here and for the whole subsection, F is assumed to be
analytic as in Smale’s theory. Recall from [13, Page 653] that the inclusion (1.1)
satisfies the weak-Smale condition at x0 if

(5.45) −F (x0) ∈ R(Tx0), R(F (k)(x0)) ⊆ R(Tx0) for each k = 2, 3, . . .

and

(5.46) γ(F,C)(x0) := sup
k≥2

∥∥∥∥∥T−1
x0

F (k)(x0)

k!

∥∥∥∥∥
1

k−1

< ∞,

where ∥T−1
x0

F (k)(x0)∥ is defined as in (5.18).

Remark 5.11. (a) By definition, one sees that if ∥T−1
x0

∥ < ∞ and (5.45) holds,
then the inclusion (1.1) satisfies the weak-Smale condition.

(b) By Lemma 3.9, we have that if R(Tx0) is closed and that the inclusion (1.1)
satisfies the weak-Robinson condition on B(x0, δ) for some δ > 0, then the inclusion
(1.1) satisfies (5.45).

(c) As explained in [13, Remark 4.1], in the case when C = {0}, one has that
γ(F,C)(x0) = γF (x0) if (5.43) holds.

Without loss of generality, we assume for the remainder that γ(F,C)(x0) > 0 (see
Remark 4.4). The assertion (a) in following proposition holds trivially by definition
while (b) is known in [13, Proposition 4.1].
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Proposition 5.12. Let γ := γ(F,C)(x0) (see (5.46)) and suppose that the inclusion
(1.1) satisfies the weak-Smale condition at x0. Then

(a) the inclusion (1.1) satisfies the second weak-Robinson condition at x0 on
B(x0,

1
γ );

(b) (T−1
x0

, F ) satisfies the weak γ-condition at x0 on B(x0,
1
γ ).

We end this paper with some comparison of our results in section 4 with that
reported in [11]. To do this, we continue to use ξ to denote η∥T−1

x0
(−F (x0))∥

as in sections 4 and 5. Recall that in the discussion of the main results of [11]
(see Corollary 4.3 there), it was assumed that ∥T−1

x0
∥ < +∞ and that the quantity

η∥T−1
x0

∥d(F (x0), C) (to be denoted by ξ̂) played an important role in the convergence
criterion in [11]. Noting the obvious inclusion

(5.47) T−1
x0

(C − F (x0)) ⊆ T−1
x0

(−F (x0)),

one has that

∥T−1
x0

(−F (x0))∥ ≤ ∥T−1
x0

(C − F (x0))∥ ≤ ∥T−1
x0

∥d(F (x0), C),

that is,

(5.48) ξ ≤ ξ̂.

Note also that

(5.49) ∥T−1
x0

(F ′(x)− F ′(y))∥ ≤ ∥T−1
x0

∥∥F ′(x)− F ′(y)∥ for all x, y ∈ R.

Therefore, if F ′ satisfies the (weak) L̂-average condition onB(x0, r) for some positive-

valued increasing absolutely continuous function L̂, then (T−1
x0

, F ′) satisfies the
(weak) L-average condition on B(x0, r) with

(5.50) L(τ) ≤ ∥T−1
x0

∥L̂(τ) for each 0 < τ < r.

Thus Theorem 4.1 extends [11, Corollary 4.3]. The example below shows that the
extension is proper and it points to the situation that Theorem 4.1 is applicable but
not [11, Corollary 4.3] (note in particular that the strict inequalities in (5.48) and
(5.50) hold in this example).

Example 5.13. Let v = 1, m = 2 and λ ∈ (14 ,
1
2 ], and take x0 = 0. Let F and h be

defined by

F (x) =

[
x− cosx+ 1 + λ

1
2x

2 + x+ λ

]
for each x ∈ R

and

h(y1, y2) = max{y1, 0}+max{0, y2}| for each y = (y1, y2)
T ∈ R2,

respectively. Thus, C = {(t1, t2) ∈ R2 : t1 ≤ 0, t2 ≤ 0}, and

(h ◦ F )(x) = max{x− cosx+ 1 + λ, 0}+max{0, 1

2
x2 + x+ λ} for each x ∈ R.

Note that F ′(x) =

[
sinx+ 1
x+ 1

]
(for each x ∈ R), and that

(5.51) ∥T−1
x0

∥ = 1, ∥T−1
x0

(−F (x0))∥ = λ.
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It follows that, for all x, x′ ∈ R,

(5.52) ∥F ′(x)− F ′(x′)∥ =
√
(sinx′ − sinx)2 + (x′ − x)2 ≤

√
2 |x− x′|.

Note by definition that T−1
x0

y = (−∞,min{y1, y2}] for each y = (y1, y2)
T ∈ R2.

Hence, for all x, x′ ∈ R,

(5.53) ∥T−1
x0

(F ′(x)− F ′(x′))∥ ≤ max{| sinx− sinx′|, |x− x′|} = |x− x′|.

Hence, (T−1
x0

, F ′) is Lipschitz continuous on R with modulus L = 1. Let η = 1 and

∆ = +∞ (and so α, defined in [11, Corollary 4.3], is equal to ∥T−1
x0

∥ = 1). Then by

(5.51) ξ = λ ≤ 1
2 = 1

2L . Hence (5.13) is satisfied and so Theorem 5.3 is applicable.
Below we shall show that [11, Corollary 4.3] is not applicable with the initial point
x0. In fact, otherwise, there exist some positive constants Λ, r and a positive-valued

increasing absolutely continuous function L̂ defined on [0,Λ) with
∫ Λ
0 L̂(t) dt = +∞

and 1 < r ≤ Λ such that F ′ satisfies the L̂-average Lipschitz condition on B(x0, r)
in the sense defined in [11, Definition 2.5] and

(5.54) ξ̂ ≤ b̂1, r̂∗1 ≤ r

where ξ̂ := ∥T−1
x0

∥d(F (x0), C) is defined as in [11, (4.1)] with η = 1 and ∥T−1
x0

∥ in

place of βx0 , and b̂1, r̂
∗
1 are the corresponding bα, r

∗
α defined as in (2.5) with α = 1

and L̂ in place of L, i.e.,∫ r1

0
L̂(τ) dτ = 1 and b1 =

∫ r1

0
L̂(τ)τ dτ.

Then, by (5.52) and the assumed L̂-average Lipschitz condition, we have

∥F ′(x′)− F ′(x)∥ =
√
(sinx′ − sinx)2 + (x′ − x)2 ≤

∫ |x′−x|+|x|

|x|
L̂(τ) dτ

holds for all x′, x ∈ (−r, r) with |x′ − x|+ |x| < r. In particular,√
sin2 t+ t2 ≤

∫ t

0
L̂(τ) dτ for all t ∈ [0, r),

where the equality holds when t = 0. Differentiating on both sides at t = 0, it
follows that L̂(0) ≥

√
2. Hence

(5.55) L̂(t) ≥ L̂(0) ≥
√
2 for each t ∈ [0,Λ)

because L̂ is increasing. Let ϕ̂1 (resp. ϕ̄1) denote the function ϕ1 defined in (2.7)

with α = 1, ξ = ξ̂ but with L replaced by L̂ (resp.
√
2), namely,

ϕ̂1(t) = ξ̂ − t+

∫ t

0
L̂(τ) (t− τ) dτ for each t ∈ [0,Λ)

and

ϕ̄1(t) = ξ̂ − t+

∫ t

0

√
2(t− τ) dτ = ξ̂ − t+

√
2

2
t2 for each t ∈ [0,Λ).
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Then ϕ̄1 ≤ ϕ̂1 by (5.55), and hence ϕ̄1(r̂
∗
1) ≤ ϕ̂1(r̂

∗
1) = 0 with r̂∗1 ≤ r < Λ (see

(5.54)). This means that ϕ̄1 has a zero in (0,Λ). Noting that ϕ̄1 is a quadratic
function with real zeros, we have that

(5.56) ξ̂ ≤ 1

2
√
2
.

Noting that d(F (x0), C) =
√
2λ, it follows that ξ̂ = ∥T−1

x0
∥d(F (x0), C) =

√
2λ.

This, together with (5.56), implies that
√
2λ ≤ 1

2
√
2
, which contradicts that λ > 1

4 .
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