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particular, we recall some fixed point theorems from [15], which will be used for the
proof of the existence theorems in this paper.

In Sections 3 and 4, we study ordered topological spaces and ordered t.v.s.. We
prove some chain-complete properties and universally inductive properties of com-
pact subsets in ordered topological spaces.

In Sections 5 and 6, we introduce the concepts of order-semi continuities and
order-convexities. By these concepts, we prove the existence of order-clustered
extended Nash equilibrium and extended Nash equilibrium for set-valued mappings
in ordered t.v.s..

In Section 7, we study the existence of vector Nash equilibrium for single valued
mappings in ordered t.v.s., which are considered as applications of the results from
Sections 5 and 6. In Section 8, we introduce the concept of order-cluster invariant
mappings, which is a condition for mappings to have an extended Nash equilibrium
reduced from order-clustered extended Nash equilibrium.

2. Preliminaries on preordered sets

2.1. The order-clustered sets of preordered sets. In this section, we recall
some notations and concepts regarding to (general) preordered sets (see [1, 5, 13–
15], for more details). These notations and concepts will be used for preordered
topological spaces and preordered t.v.s. in the following sections.

In general, let (Z,≽) be a preordered set, in which except the ordering relation
≽ equipped on Z, neither algebraic structure nor topological structure is required.
Consider z1, z2 ∈ Z. If z2 ≽ z1 and z1 ≽ z2 both hold, then it is denoted by z1 ∽ z2
and z1 and z2 are said to be ≽-equivalent. For every z ∈ Z, we denote

(2.1) [z]≽ := {t ∈ Z : t ∽ z}.
[z]≽ is simply denoted by [z] if there is no confusion caused. [z] is called the

≽-cluster in Z containing z (or simply called the cluster in Z containing z). The
binary relation ∽ induced by ≽ is an equivalence relation on Z and the set of all
clusters forms a partition of Z, which is written as

[Z]≽ = [Z] = {[z] : z ∈ Z}.
[Z] is called the ≽ cluster space (simply called the cluster space) of Z with respect

to the preorder ≽. For any nonempty subset A ⊆ Z, (A,≽) is also a preordered set.
We denote

(2.2) [A]≽ = [A] = {[z] : z ∈ A},
where [z] is defined in (2.1), which is with respect to ≽ on X (not with respect to
the restriction of ≽ to A).

For z ∈ Z, we identify z with {z}.
Furthermore, we have

z ∈ [z], for every z ∈ Z, and A ⊆ ∪[A] = ∪z∈A[z], for any A ⊆ Z.

The collection of preordering relations on a nonempty set Z includes partial orders
as special cases. Notice that a preordered set (Z,≽) is a partially ordered set if and
only if

z = [z], for every z ∈ Z, or A = [A], for every A ⊆ Z.
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In [25] and [15], the concept of fixed point for both of single valued mappings and
set-valued mappings on partially ordered sets were generalized to order-clustered
fixed point on preordered sets.

Let (Z,≽) be a preordered set and A a nonempty subset of Z. Let f : A → A
be a single valued mapping. A point z ∈ A is called a ≽-clustered fixed point (or
simply, a clustered fixed point) of f if z ∈ [f(z)].

Let F : A → 2A \ {∅} be a set-valued mapping. A point z ∈ A is called a ≽-
clustered fixed point (or simply, a clustered fixed point) of F if z ∈ [v], for some
v ∈ F (z). By the notation (2.1), it is z ∈ F (z).

We use the notation F(F ) for the set of ≽-clustered fixed points of F and F(F )
for the set of fixed points of F . In general, we have

F(F ) ⊆ F(F ).

If (Z,≽) is a partially ordered set, then F(F ) = F(F ).

2.2. Ordering relations on power sets. Let (Z,≽) be a preordered set. In [15],
based on ≽, three preordering relations are defined on the power set 2Z , which
are called the power preorder, upward power preorder and the downward power
preorder. These set relations are well known in set optimization, see Jahn and Ha [9],
Kuroiwa [17], [18], [21]. For earlier references, see Nishnianidze [23], Young [27].

We recall these definitions below for easy reference.

(a) The power preorder, denoted by ≽P . For any A,B ∈ 2Z , we say that
A ≼P B if the following two conditions are satisfied:
(U) upward condition: for any a ∈ A, there is b ∈ B such that b ≽ a ;
(D) downward condition: for any b ∈ B, there is a ∈ A such that a ≼ b .

(b) The upward power preorder, denoted by ≽U . For any A,B ∈ 2Z , we say
that A ≼U B if the upward condition (U) is satisfied.

(c) The downward power preorder, denoted by ≽D. For any A,B ∈ 2Z , we say
that A ≼D B if the downward condition (D) is satisfied.

Remark 2.1. Observe that

A ⪯D B ⇐⇒ B ⪯′U A,

where a ⪯′
b if b ⪯ a. So, the results on fixed points for ⪯D can be deduced from

those related to ⪯U while those for ≽P putting together those for ≽U and ≽D.

2.3. Order-clustered fixed point theorems. We recall some order-clustered
fixed point theorems proved in [15], where we are using the following chain-
completeness concept. Let (Z,≽) be a (general) preordered set and let A be a
nonempty subset of Z. A is said to be ≽-chain-complete (or chain-complete) when-
ever every ≽-chain {zα} in A has at least one least ≽-upper bound (it may not be
unique). The set of the least ≽-upper bounds of this given chain is a ≽-cluster in
Z and it is denoted by ∨{zα}. A is said to be ≽-re-chain-complete (simply said to
be re-chain-complete), if every ≽-chain {zα} in A has at least one greatest ≽-lower
bound (it may not be unique). The set of the greatest ≽-lower bounds of this given
chain is a ≽-cluster in Z and it is denoted by ∧{zα}. If A is both chain-complete
and re-chain-complete, then it is said to be bi-chain-complete.
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Hence, a nonempty subset A in a preordered set (Z,≽) is chain-complete (re-
chain-complete), whenever, for any chain {zα} in A, one has ∨{zα} ̸= ∅ (∧{zα} ̸= ∅).

For notions of inductivities, see Section 3.2.

Theorem 2.2 ([15, Theorem 2.1]). Let (Z,≽) be a ≽-chain-complete preordered
set with the ≽-cluster space [Z]. Let F : Z → 2Z \ {∅} be a set-valued mapping.
Suppose that F satisfies the following conditions:

(i) F is order increasing with respect to ≽ and ≽U ;
(ii) for every fixed z ∈ Z, [F (z)] is universally inductive in ([Z],≽U );
(iii) there is z1 ∈ Z such that {z1} ≼U F (z1).

Then, F has a ≽-clustered fixed point. Moreover, we have

(a) F(F ) is a nonempty inductive preordered subset of Z;
(b) F has a ≽-maximal clustered fixed point u1 with u1 ≽ z1.

Theorem 2.3 ([15, Theorem 2.3]). Let (Z,≽) be a bi-chain-complete preordered set
with cluster space [Z]. Let F : Z → 2Z \ {∅} be a set-valued mapping. Suppose that
F satisfies the following conditions:

(i) F is order increasing with respect to ≽ and ≽P ;
(ii) for every fixed z ∈ Z, [F (z)] is bi-universally inductive in

(
[Z],≽P

)
;

(iii) there are z1, z2 ∈ Z such that {z1} ≼U F (z1) and {z2} ≽D F (z2).

Then, F has a ≽-clustered fixed point. Moreover, we have

(a) F(F ) is a nonempty bi-inductive preordered subset of Z;
(b) F has a ≽-maximal clustered fixed point u1 with u1 ≽ z1;
(c) F has a ≽-minimal clustered fixed point u2 with u2 ≼ z2.

In particular, if (Z,≽) is a partially ordered set in [15, Theorem 2.3], which is
considered as a special case of preordered sets, then we obtain some fixed point
theorems on partially ordered sets proved by Fujimoto [6], Li [13,14] and others.

Corollary 2.4. Let (Z,≽) be a bi-chain-complete partially ordered set. Let F :
Z → 2Z be a set- valued mapping. Suppose that F satisfies the following conditions:

(i) F is order increasing with respect to ≽ and ≽P ;
(ii) for every fixed z ∈ Z,F (z) is bi-universally inductive in (Z,≽);
(iii) there are z1, z2 ∈ Z such that {z1} ≼U F (z1) and {z2} ≽D F (z2).

Then, F has a fixed point. Moreover, we have

(a) F(F ) is a nonempty bi-inductive subset of (Z,≽);
(b) F has a ≽-maximal fixed point u1 with u1 ≽ z1;
(c) F has a ≽-minimal fixed point u2 with u2 ≼ z2.

2.4. The induced partial order on the ≽-cluster space. On the ≽-cluster
space [Z]≽ = [Z] = {[z] : z ∈ Z}, we defined an order relation ≽̂ as follows: for any
[z1], [z2] ∈ [Z],

(2.3) [z1] ≽̂ [z2] if and only if z1 ≽ z2.

One can check that the relation ≽̂ on the ≽-cluster space [Z] is well defined and it
is said to be induced by ≽ on Z. It has some useful properties, which are listed as
a proposition below.
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Proposition 2.5. Let (Z,≽) be a preordered set with the ≽-cluster space [Z]. Let
≽̂ be the order relation on [Z] induced by ≽ on Z. One has

(a) ≽̂ is a partial order on [Z];
(b) As restricted to [Z], the preorders ≽P , ≽U , ≽D all are partial orders and

coincide with the partial order ≽̂ on [Z]. That is,

≽P |[Z] = ≽U |[Z] = ≽D |[Z] = ≽̂.

Proof. The proof of the assertion is straightforward and it is omitted here. □

3. Ordered topological spaces

3.1. Chain-completeness on preordered topological spaces. In this section,
we discuss the chain-completeness and universally inductivities of ordered topo-
logical spaces, in which a topological structure and an ordering relation both are
equipped. It prepares for us to study ordered t.v.s., in which, in addition to the
topological structure and the algebraic structure, an ordering relation is equipped
in the following sections.

Let (Z, τ) be a topological space equipped with an ordering relation ≽ on Z. In
this paper, ≽ is said to be a preorder (partial order) on Z if it is a preordering
relation (partial ordering relation) on Z and, in addition, it satisfies the following
condition:

(O4) For every u ∈ Z, the ≽-intervals (u] := {z ∈ Z : z ≼ u} and [u) := {z ∈
Z : z ≽ u} all are τ -closed.

Then, (Z, τ,≽) is called a preordered (partially ordered) topological space. It is
simply written as (Z,≽), in where the topology τ on Z is hidden and its existence
is understood. It follows immediately that, in a preordered (partially ordered)
topological space (Z, τ,≽), for any z ∈ Z, the cluster [z] is always τ -closed.

In [14], Li proved that every nonempty compact subset in a partially ordered
topological space is both chain-complete and universally inductive. In this sub-
section, we extend these properties to preordered topological space. The proof is
similar to that in [14].

Proposition 3.1. Every nonempty compact subset in a preordered Hausdorff topo-
logical space is bi-chain-complete.

Proof. Let (Z,≽) be a preordered Hausdorff topological space and let A be a
nonempty compact subset of Z. We first prove that A is ≽-chain-complete. Take
an arbitrary ≽-chain {zα} ⊆ A. We show that ∨{zα} ̸= ∅. At first, we prove that

(3.1) (∩α[zα)) ∩A = (∩α{z ∈ Z : z ≽ zα}) ∩A ̸= ∅.
Assume controversially that ∩α{z ∈ Z : z ≽ zα} ∩ A = ∅. For every index α, we
write

[zα)
C := {z ∈ Z : z ̸≽ zα} = {z ∈ Z : z ≺ zα or z ̸∽ zα}.

Then, [zα)
C is open, for every index α. Since ∪α([zα)

C) = (∩α[zα))
C , from the

controversial assumption of (3.1), it yields that {[zα)C} is an open cover of A. Since
A is compact, then A has a finite cover contained in {[zα)C}. There is a positive
integer n such that

{[zi)C : i = 1, 2, . . . , n} ⊆ {[zα)C}
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is an open cover of A. Without loss of the generality, we suppose that z1 ≼ z2 ≼
. . . ≼ zn. It implies that [z1)

C ⊆ [z2)
C ⊆ . . . ⊆ [zn)

C . We obtain that A ⊆ [zn)
C .

Since zn ∈ A, it implies zn ̸≽ zn. It is a contradiction. That proves (3.1).

Let B = {zα} be the topological closure of the chain {zα} ⊆ A. Then, B is a
compact subset contained in A. It is clear that {zα} is also a chain in B. Similarly,
to the proof of (3.1), we can prove that

(∩α[zα)) ∩B = (∩α{z ∈ Z : z ≽ zα}) ∩B ̸= ∅.
It is clear that

(∩α[zα)) ∩B ⊆ (∩α[zα)) ∩A.

Take an arbitrary point z ∈ (∩α[zα)) ∩ B. In the case that z ∈ {zα}, then

z ∈ ∨{zα}. Otherwise, we have that z ∈ {zα} and z is a ≽-upper bound of the
chain {zα}. Let y be an arbitrary given ≽-upper bound of the chain {zα}. Then,

{zα} ⊆ (y]. Since z ∈ {zα} and (y] is closed, it implies z ∈ (y]. That is, z ≼ y.
From the fact that z is a ≽-upper bound of the chain {zα}, it implies z ∈ ∨{zα}.
Hence, A is ≽-chain-complete.

Similarly, to the above proof, we can show that ∧{zα} ̸= ∅. So, A is also re-
chain-complete. □
3.2. Universally inductivities on preordered topological spaces. A nonempty
subset A of a preordered set (Z,≽) is said to be universally inductive in (Z,≽) if,
for any given ≽-chain {xα} ⊆ Z satisfying that every element xβ ∈ {xα} has a
≽-upper bound in A, then this ≽-chain {xα} has a ≽-upper bound in A.

A is said to be re-universally inductive in (Z,≽) if, for any given ≽-chain {xα} ⊆
Z satisfying that every element xβ ∈ {xα} has a ≽-lower bound in A, then this
≽-chain {xα} has a ≽-lower bound in A. A is said to be bi-universally inductive in
(Z,≽) if, A is both universally inductive and re-universally inductive in (Z,≽).

The empty subset ∅ of a preordered set (Z,≽) is automatically bi-universally
inductive in (Z,≽).

Proposition 3.2. Every compact subset in a preordered Hausdorff topological space
is bi-universally inductive.

Proof. Let (Z,≽) be a preordered Hausdorff topological space and let A be a
nonempty compact subset of Z. We first show that A is universally inductive
in (Z,≽). Take an arbitrary chain {zα} ⊆ Z satisfying that, for every element
zβ ∈ {zα}, there is a point uβ ∈ A such that zβ ≼ uβ. It implies that

[zα) ∩A ̸= ∅, for every index α.

Then, this proposition will be proved if the following is true,

(3.2) (∩α[zα)) ∩A = (∩α{z ∈ Z : z ≽ zα}) ∩A ̸= ∅.
Assume controversially that ∩α{z ∈ Z : z ≽ zα} ∩ A = ∅. For every index α, we
define

[zα)
C := {z ∈ Z : z ̸≽ zα} = {z ∈ Z : z ≺ zα or z ̸∽ zα}.
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Then, [zα)
C is open, for every index α. Since ∪α([zα)

C) = (∩α[zα))
C , from the

controversial assumption to (3.2), it yields that {[zα)C} is an open cover of A.
Since A is compact, then A has a finite cover contained in {[zα)C}. There is a
positive integer n such that

{[zi)C : i = 1, 2, . . . , n} ⊆ {[zα)C}
and {[zi)C : i = 1, 2, . . . , n} is an open cover of A. Without loss of the generality,
we suppose that z1 ≼ z2 ≼ . . . zn. It implies that [zi)

C ⊆ [z2)
C ⊆ . . . ⊆ [zn)

C . We
obtain that A ⊆ [zn)

C . Since un ∈ A, it implies un ∈ [zn)
C . It contradicts to the

selection of un that satisfies zn ≼ un. So, (3.2) is proved. It implies that the whole
chain {zα} has a ≽-upper bound in (A,≽). Hence, A is universally inductive in
(Z,≽). Similarly, to the above proof, we can show that, for an arbitrary ≽-chain
{zα} ⊆ Z satisfying that, for every element zβ ∈ {zα}, there is a point vβ ∈ A such
that vβ ≼ zβ, then the whole chain {zα} has a ≽-lower bound in (A,≽). Hence A
is re-universally inductive in (Z,≽). It implies that A is bi-universally inductive in
(Z,≽). □

By [15, Propositions 2.1 and 2.2], as consequences of Propositions 3.1 and 3.2,
and using the partial order ≽̂ on the ≽-cluster space [Z] in Proposition 2.5, we
obtain the following corollaries. They will be used in the proofs of the existence
theorems.

Corollary 3.3. Let (Z,≽) be a preordered Hausdorff topological space with the
cluster space [Z] equipped with the partial order ≽̂. Let A be a nonempty compact
subset of Z. Then,

([A], ≽̂) is ≽̂-bi-chain-complete.

Consequently, from Proposition 2.5, one has

([A],≽N ) is ≽N -bi-chain-complete for N = P,U,D.

Corollary 3.4. Let (Z,≽) be a preordered Hausdorff topological space with the
cluster space [Z] equipped with the partial order ≽̂. Let A be a nonempty compact
subset of Z. Then,

([A], ≽̂) is -bi-universally inductive in ([Z], ≽̂).

Consequently, from Proposition 2.5, one has

([A],≽N ) is -bi-universally inductive in ([Z],≽N ) for N = P,U,D.

3.3. Order-clustered fixed point theorems in preordered Hausdorff topo-
logical spaces. By [15, Theorem 2.1 and Corollary 2.2] and from Corollaries 3.3
and 3.4, we obtain the following order-clustered fixed point theorems in preordered
Hausdorff topological spaces.

The order monotonicity of mappings play important role for the existence of fixed
point of the considered mapping. We recall the related definitions below.

In general, let (S1,≽1) and (S2,≽2) be preordered sets. A mapping g : S1 → S2

is said to be ≽1-≽2 increasing (decreasing), (or order increasing (decreasing) with
respect to ≽1 and ≽2), whenever, for any s, t ∈ S1,

(3.3) s ≼1 t implies g(s) ≼2 g(t) (g(s) ≽2 g(t)).
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Theorem 3.5. Let (Z,≽) be a preordered Hausdorff topological space with the clus-
ter space [Z]. Let A be a nonempty compact subset of Z. Let F : A → 2A \ {∅} be
a set-valued mapping. Suppose that F satisfies the following conditions:

(i) F is ≽-≽U -increasing;
(ii) for every fixed z ∈ A, F (z) is closed in A;
(iii) there is z1 ∈ A such that {z1} ≽U F (z1).

Then, F has a ≽-clustered fixed point. That is, there are z∗, u ∈ A with u ∽ z∗

such that
u ∈ F (z∗).

Moreover, we have

(a) F(F ) is a nonempty inductive preordered subset of (A,≽);
(b) F has a ≽-maximal clustered fixed point u1 with u1 ≽ z1.

Theorem 3.6. Let (Z,≽) be a preordered Hausdorff topological space with the clus-
ter space [Z]. Let A be a nonempty compact subset of Z. Let F : A → 2A \ {∅} be
a set-valued mapping. Suppose that F satisfies the following conditions:

(i) F is ≽-≽P -increasing;
(ii) for every fixed z ∈ A, F (z) is closed in A;
(iii) there are z1, z2 ∈ A such that {z1} ≼U F (z1) and {z2} ≽D F (z2).

Then, F has a ≽-clustered fixed point. Moreover, we have

(a) F(F ) is a nonempty bi-inductive preordered subset of (A,≽);
(b) F has a ≽-maximal clustered fixed point u1 with u1 ≽ z1;
(c) F has a ≽-minimal clustered fixed point u2 with u2 ≼ z2.

4. Ordered topological vector spaces

4.1. Proper cones and pointed cones in t.v.s. Let (Z, τ) be a t.v.s. equipped
with an ordering relation ≽ on Z. We are using the notion u ≻ v if it implies u ̸= v.
In this paper, ≽ is said to be a (nontrivial) preorder (partial order) on Z if it is
a preordering relation (partial ordering relation) on Z and, in addition, it satisfies
the following conditions:

(O1) u ≽ v implies u+ w ≽ v + w, for u, v, w ∈ Z;
(O2) u ≽ v implies αu ≽ αv, for u, v ∈ Z and α ≥ 0;
(O3) there are distinct points u, v ∈ Z satisfying u ≻ v;
(O4) for every u ∈ Z, the ≽-intervals (u] = {z ∈ Z : z ≼ u} and [u) = {z ∈ Z :

z ≽ u} all are τ -closed.

Then, (Z,≽) is called a preordered (partially ordered) topological vector space.

Remark 4.1. Let Z be a vector space equipped with a preorder (partial order)
relation≽ on Z. If ≽ satisfies conditions (O1−O3), then (Z,≽) is called a preordered
(partially ordered) vector space. In this paper, we concentrate to ordered t.v.s..

Since ordering relations on t.v.s. satisfying conditions (O1 − O4) are totally
determined by the corresponding cones in the given spaces, we recall some concepts
regarding to cones which are used in this paper. Let K be a nonempty subset of a
t.v.s. Z. K is called a cone in Z if K satisfies the following condition:

For any z ∈ K and for any real number λ ≥ 0, λz ∈ K.
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A cone K in Z is called a proper cone, if K also satisfies the following condition:

K ̸= {0} and K ̸= Z (it means that K is nontrivial).

In addition to the above two conditions, if a proper coneK satisfiesK∩(−K) = {0},
then K is called a pointed cone in Z. Every pointed cone is a proper cone.

Let K be a proper closed and convex cone in Z. As usual, an ordering relation
≽K on Z is defined by

(4.1) z2 ≽K z1 if and only if z2 − z1 ∈ K, for z1, z2 ∈ Z.

We consider the preordered topological vector spaces as special cases of preordered
sets. If there is no confusion caused, we simply write ≽K as ≽ in the following
sequel. By (4.1), this proper closed and convex cone K defines a preorder on Z
satisfying conditions (O1 − O4), that is said to be induced by K (sometimes, we
write this ordering notation by ≽K to indicate that this ordering relation is induced
by K. If there is no confusion caused, it is simply written as ≽). So, (Z,≽) is a
preordered t.v.s. induced by the proper closed and convex cone K. Moreover, if K
is a pointed closed and convex cone in Z, then the ordering relation ≽ becomes a
partial order on Z and (Z,≽) is a partially ordered t.v.s. induced by the pointed
closed and convex cone K.

Observations 4.2. For any given t.v.s. Z, through the definition (4.1),

(i) there is a one to one correspondence between the set of proper closed and
convex cones in Z and the set of preordering relations on Z satisfying con-
ditions (O1 −O4);

(ii) there is a one to one correspondence between the set of pointed closed and
convex cones in Z and the set of partial ordering relations on Z satisfying
conditions (O1 −O4).

Let (Z,≽) be a preordered topological vector space, in which the preorder ≽ on
Z is induced by a proper closed and convex cone K in Z. Let

EK := K ∩ (−K) = {z ∈ K : −z ∈ K}.

One can easily check that EK is a closed subspace of Z. EK is called the ≽-cluster
kernel or the K-cluster kernel (simply called the cluster kernel), or it is called the
∽-equivalence space (simply called the equivalence space) of the preorder ≽ (or the
cone K) on Z.

The preorder ≽ on Z induced by K is a partial order if and only if the ≽-cluster
kernel EK is the singleton {0} (EK is trivial if EK ∈ {{0}, Z}).

One can see that, for any z1, z2 ∈ Z, z1 ∽ z2 if and only if z2 − z1 ∈ EK . It
implies that in the preordered t.v.s. (Z,≽), the ≽-clusters are represented by the
≽-cluster kernel as following

(4.2) [z]≽ = [z] = z + EK , for every z ∈ Z.

It follows that every ≽-cluster [z] in (Z,≽) is an “affine space” in Z passing through
the point z and “parallel” to the closed subspace EK in Z. As the set of ≽-clusters
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in (Z,≽), from (2.2), the cluster space of (Z,≽) induced by K has the following
presentation:

(4.3) [Z]≽ = [Z] = {z + EK : z ∈ Z}.
Let A be a nonempty subset of a preordered vector space (Z,≽), in which the

preorder ≽ on Z is induced by a proper convex cone K. Let F : A → 2A \ {∅} be a
set-valued mapping. Then, every ≽-clustered fixed point of F (recalled in Section
2) is also called a K-clustered fixed point of F .

4.2. Ordering relations on power sets of ordered t.v.s. Let (Z,≽) be a pre-
ordered t.v.s. induced by a proper closed and convex cone K in Z. In the literature
of set optimization theory on ordered t.v.s., some authors define an ordering relation
≿ on the power set 2Z as follows: for any A,B ∈ 2Z ,

(4.4) B ≿ A if and only if B −A ⊆ K.

As we discussed about this ordering relation on the power set of Z in [15], we think
that this definition is “too strong” which may not be applicable in the real word.
It is because that, following (4.4), B2 ≿ B1 if and only if

x2 − x1 ∈ K, for every x2 ∈ B2, and x1 ∈ B1.

It is a very strong condition. (As a general example, which may not be in preordered
topological vector spaces, suppose that during a game competition, let A and B be
two distinct teams. Then that team B is “better” than team A in the sense of
definition (4.4) means that every given player in team B is “better” than every
other player in team A. One can see that it is “too strong”). So, in [15] (recalled
in Section 2 in this paper), some more applicable definitions of ordering relations
among the subsets of ordered sets (see Jahn and Ha [9], Kuroiwa [17–19, 21]) were
used, which are called the power preorder, upward power preorder and downward
power preorder. They are denoted by ≽P , ≽U and ≽D, respectively. These ordering
relations on power sets should be more useful than the ordering ≿ defined in (4.4)
in the set optimization theory and vector optimization theory on ordered t.v.s..

Let (Z,≽) be a preordered t.v.s. induced by a proper closed and convex coneK in
Z. Then, the power preorder, upward power preorder and downward power preorder
on 2Z denoted by ≽P , ≽U and ≽D (see Jahn and Ha [9], Kuroiwa [17–19,21], [15],
recalled in Section 2 in this paper) can be redefined in terms of the proper closed
and convex cone K in Z as follows: For any A,B ∈ 2Z ,

(a) (power preorder ≽P ) A ≼P B if and only if
(U) (upward condition) for any a ∈ A, there is b ∈ B such that b ≽ a, that

is, b− a ∈ K;
(D) (downward condition) for any b ∈ B, there is a ∈ A such that a ≼ b,

that is, b− a ∈ K.
In terms of the cone K, it is rewritten as: A ≼P B if and only if

(U)’ (upward condition) (B − a) ∩K ̸= ∅ , for every a ∈ A,
(D)’ (downward condition) (b−A) ∩K ̸= ∅ , for every b ∈ B,

(b) (upward preorder ≽U ) A ≼U B if and only if the upward condition (U) or
(U)’ holds,
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(c) (downward preorder ≽D) A ≼D B if and only if the downward condition
(D) or (D)’ holds.

Figure 1. A ≼D B (B ⊆ A+K)

Figure 2. A ≼U B (A ⊆ B −K)

From Subsection 2.2 in [15], one gets the following results immediately
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Lemma 4.2. Let (Z,≽) be a preordered t.v.s. induced by a proper closed and convex
cone K in Z. Then, (2Z ,≽P ), (2Z ,≽U ) and (2Z ,≽D) all are preordered sets; and
([Z],≽P ), ([Z],≽U ) and ([Z],≽D) all are equivalent partially ordered sets.

4.3. The cluster space of a preordered t.v.s. is a partially ordered vector
space. Let (Z,≽) be a preordered t.v.s. induced by a proper closed and convex
cone K in Z. In this subsection, we define addition and scalar multiplication on the
≽-cluster space [Z], so that it becomes a vector space. For any [z1], [z2] ∈ [Z] and
any real number λ, we define

(4.5) [z1] + [z2] = [z1 + z2] and λ[z1] = [λz1].

Lemma 4.3. Let (Z,≽) be a preordered t.v.s. induced by a proper closed and
convex cone K in Z. With the two addition and scalar multiplication operators on
[Z] defined in (4.5), one has

(a) [Z] is a vector space;
(b) ([Z],≽K), ([Z],≽U ) and ([Z],≽D) all are equivalent partially ordered vector

spaces. [0] = EK is the origin of [Z].

Proof. The preorder ≽ on Z satisfies conditions (O1−O2). It implies that the equiv-
alence relation ∽ on Z corresponding to ≽ has the following linearity properties.

(O1)’ u1 ∽ v1 and u2 ∽ v2 imply u1 + u2 ∽ v1 + v2, for u1, u2, v1 and v2 ∈ Z;
(O2)’ u ∽ v implies αu ∽ αv, for u, v ∈ Z and α ≥ 0.

Since the K-cluster kernel EK is a subspace of Z, in terms of the proper closed and
convex cone K in Z, (O1)’ and (O2)’ can be rewritten as:

(O1)” u1 − v1 ∈ EK and u1 − v1 ∈ EK imply (u1 + u2) − (v1 + v2) ∈ EK , for
u1, u2, v1 and v2 ∈ Z;

(O2)” u− v ∈ EK implies αu− αv ∈ EK , for u, v ∈ Z and α ≥ 0.

By these properties, one can check that the addition operator and scalar multipli-
cation operator defined in (4.5) are well defined on [Z]; and [Z] is a vector space.
From Lemma 4.2, ≽P ,≽U and ≽D all are equivalent partial orders on [Z]. To en-
sure that ([Z],≽K), ([Z],≽U ) and ([Z],≽D) all are partially ordered vector space
(see Remark 4.1), we need to check that the partial ordering relations ≽P ,≽U and
≽D on [Z] all satisfy conditions (O1), (O2) and (O3). It is straightforward to check,
and it is omitted here. □

4.4. Order-clustered fixed point theorems on ordered t.v.s. By Theorems
3.5 and 3.6 in the previous section, we immediately obtain some order-clustered fixed
point theorems on preordered (partially ordered) t.v.s., in which the conditions are
directly presented by the cones. So that these theorems can be easily used in vector
optimization theory and vector variational inequalities. For this purpose, we explain
the order-clustered fixed point in t.v.s. with respect to the proper closed and convex
cones.

Let Z be a t.v.s. and K a proper closed and convex cone in Z with the K-cluster
kernel EK , which induces a preorder ≽ on Z. Let A be a nonempty subset of Z
and let F : A → 2A \ {∅} be a set-valued mapping. A point z ∈ A is a K-clustered
fixed point of F if there is u ∈ F (z) such that z∗ − u ∈ EK .
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Theorem 4.4. Let (Z,≽) be a preordered Hausdorff t.v.s. induced by a proper
closed and convex cone K in Z with the K-cluster kernel EK . Let A be a nonempty
compact subset of Z. Let F : A → 2A \ {∅} be a set-valued mapping. Suppose that
F satisfies the following conditions:

(i) for any t1, t2 ∈ A, t2 − t1 ∈ K implies that

(F (t2)− z1) ∩K ̸= ∅, for every z1 ∈ F (t1), (U)′

and

(z2 − F (t1)) ∩K ̸= ∅, for every z2 ∈ F (t2). (D)′

(ii) for every z ∈ A, F (z) is closed;
(iii) there are s1, s2 ∈ A such that

(4.6) (F (s1)− s1) ∩K ̸= ∅ and (s2 − F (s2)) ∩K ̸= ∅.
Then, F has a K-clustered fixed point. That is, there are z∗ ∈ A and u ∈ F (z∗)
such that

(4.7) z∗ − u ∈ EK .

Moreover, we have

(a) F(F ) is a nonempty bi-inductive preordered subset of (A,≽);
(b) F has a ≽-maximal K-clustered fixed point u1 with u1 − s1 ∈ K;
(c) F has a ≽-minimal K-clustered fixed point u2 with s2 − u2 ∈ K.

Proof. For the preordered Hausdorff t.v.s. (Z,≽) induced by the proper closed and
convex cone K, from Proposition 3.1, (A,≽) is ≽-chain complete.

Let ≽P ,≽U and ≽D be the power, upward power and downward power preorders,
respectively, on the power set 2Z . The conditions (U)’ and (D)’ in condition (i) in
this theorem imply that F is order-increasing with respect to ≽ and ≽P . So, F
satisfies condition (i) in Theorem 2.3 in [15] recalled in in Section 2. From condition
(ii) in this theorem, for every z ∈ A, F (z) is a closed subset of a compact set A.
So, it is compact. From Proposition 3.2, F (z) is bi-universally inductive in (A,≽).
By Proposition 2.2 in [15], [F (z)] is bi-universally inductive in ([A],≽P ). Then, F
satisfies condition (ii) in Theorem 2.3 in [15]. Conditions (4.6) in condition (iii)
in this theorem imply that {s1} ≼U F (s1) and {s2} ≽D F (s2). Hence F satisfies
all conditions in Theorem 2.3 in [15]. Then, F has a ≽-clustered fixed point. The
conclusions (a), (b) and (c) immediately follow from (a), (b) and (c) of Theorem
2.3 in [15], respectively. □

Next, we consider Banach spaces which are considered as special cases of Haus-
dorff t.v.s.. Let (Z, ∥ · ∥, τ) be a Banach space with norm ∥ · ∥ and weak topology
τ . Let K be a proper convex cone in Z. Then, K is closed with respect to the
τ -topology if and only if K is weakly closed with respect to the τ -topology. Let ≽
be the ordering relation on Z induced by K, then (Z, ∥ · ∥,≽) is a preordered t.v.s.
if and only if (Z, τ,≽) is a preordered topological vector space. Applying Theorem
4.4 to preordered reflexive Banach spaces, we have the following result.

Corollary 4.5. Let (Z, ∥ · ∥) be a reflexive Banach space and K a proper closed
and convex cone in Z. Let A be a nonempty norm-bounded closed convex subset of
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Z. Let F : A → 2A \ {∅} be a set-valued mapping. Suppose that F satisfies the
conditions (i) and (iii) in Theorem 4.4, and

(ii)’ F (z) is weakly closed, for every z ∈ A.

Then, the conclusions of Theorem 4.4 remain true.

Proof. Let τ be the weak topology on Z. Then, K is weakly closed with respect to
the τ -topology. So, (Z, τ,≽) is a preordered τ -topological vector space. Since A is
a nonempty norm-bounded closed convex subset in this reflexive Banach space Z,
then A is weakly compact (τ - compact). By applying the weak topology τ on Z,
this corollary follows from Theorem 4.4 immediately. □

5. The solvability of extended equilibrium problems in ordered t.v.s.

5.1. The semicontinuity and convexity with respect to ordered power sets.
In this subsection, we introduce the concepts of order-semicontinuity and order-
convexity, which will be used in the proof of the existence of extended equilibrium
for set-valued mappings in ordered t.v.s. by Fan-KKM theorem.

Definition 5.1. Let X and Y be t.v.s.. Let (Z,≽) be a preordered t.v.s. induced
by a proper closed and convex cone K in Z. Let ≽P ,≽U and ≽D be the power
preorder, upward power preorder and downward power preorder on 2Z , respectively.
Let C, D be nonempty closed and convex subsets of X and Y , respectively. Let
f : C → 2Z \ {∅}, g : C → 2Z \ {∅} and T : C × D → 2Z \ {∅} be set-valued
mappings.

(i) g is said to be ≽U -lower semicontinuous on D with respect to T , whenever
the set

{(x, y) ∈ C ×D : g(y) ≼U T (x, y)}
is a closed subset in C × D with respect to the product topology of the
topologies of X and Y . Corresponding to the cone K, it is equivalently
restated as:

{(x, y) ∈ C ×D : (T (x, y)− z) ∩K ̸= ∅, for every z ∈ g(y)}
is a closed subset in C × D with respect to the product topology of the
topologies of X and Y .

(ii) f is said to be ≽D-upper semicontinuous on C with respect to T , whenever
the set

{(x, y) ∈ C ×D : f(x) ≽D T (x, y)}
is a closed subset in C × D with respect to the product topology of the
topologies of X and Y . Corresponding to the cone K, it is equivalently
restated as:

{(x, y) ∈ C ×D : (z − T (x, y)) ∩K ̸= ∅, for every z ∈ f(x)}
is a closed subset in C × D with respect to the product topology of the
topologies of X and Y .

(iii) g is said to be ≽U -convex on D , whenever, for given arbitrary positive
integer k, for any y1, y2, . . . , yk ∈ D , and for any 0 ≤ αi ≤ 1, i = 1, 2, . . . , k,

with
∑k

i=1 αi = 1, there is at least one j = 1, 2, . . . , k, such that
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g(

k∑
i=1

αiyi) ≼U g(yj).

Corresponding to the cone K, it is equivalently restated as:

(g(yj)− z) ∩K ̸= ∅, for every z ∈ g(
k∑

i=1

αiyi), for some j = 1, 2, . . . , k.

(iv) f is said to be ≽D-concave on C, whenever, for given arbitrary positive
integer k, for any x1, x2, . . . , xk ∈ C, and for any 0 ≤ αi ≤ 1, i = 1, 2, . . . , k,

with
∑k

i=1 αi = 1, there is at least one j = 1, 2, . . . , k, such that

f(

k∑
i=1

αixi) ≽D f(xj).

Corresponding to the cone K, it is equivalently restated as:

(z − f(xj)) ∩K ̸= ∅, for every z ∈ f(

k∑
i=1

αixi), for some j = 1, 2, . . . , k.

(v) T : C ×D → 2Z \ {∅} is said to be convex saddle, whenever, for any given
positive integer k and k points (x1, y1), (x2, y2), . . . , (xk, yk) ∈ C × D, and

for any 0 ≤ αi ≤ 1, i = 1, 2, . . . , k, with
∑k

i=1 αi = 1, there is at least one
1 ≤ j ≤ k, such that

T (xj ,
k∑

i=1

αiyi) ≼U T (
k∑

i=1

αixi,
k∑

i=1

αiyi) ≼D T (
k∑

i=1

αixi, yj).

Corresponding to the cone K, it is equivalently restated as:

(T (

k∑
i=1

αixi,

k∑
i=1

αiyi)− z1) ∩K ̸= ∅, for every z1 ∈ T (xj ,

k∑
i=1

αiyi),

and

(z2 − T (
k∑

i=1

αixi,
k∑

i=1

αiyi)) ∩K ̸= ∅, for every z2 ∈ T (
k∑

i=1

αixi, yj).

(vi) T : C ×D → 2Z \ {∅} is said to be quasi-convex saddle, whenever, for any
given positive integer k and k points (x1, y1), (x2, y2), . . . , (xk, yk) ∈ C ×D,

and for any 0 ≤ αi ≤ 1, i = 1, 2, . . . , k, with
∑k

i=1 αi = 1, there is at least a
pair 1 ≤ m,n ≤ k, such that

T (xm,

k∑
i=1

αiyi) ≼U T (

k∑
i=1

αixi,

k∑
i=1

αiyi) ≼D T (

k∑
i=1

αixi, yn).

Corresponding to the cone K, it is equivalently restated as:

(T (
k∑

i=1

αixi,
k∑

i=1

αiyi)− z1) ∩K ̸= ∅, for every z1 ∈ T (xm,
k∑

i=1

αiyi),
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and

(z2 − T (
k∑

i=1

αixi,
k∑

i=1

αiyi)) ∩K ̸= ∅, for every z2 ∈ T (
k∑

i=1

αixi, yn).

Remark 5.2. (a) On page 199 in [7], the order-lower semicontinuous and order-
upper semicontinuous are defined for order monotone Cauchy sequences.
Since the order monotone sequences are not sufficient for the proof of the
main theorem in this paper, so we define the order- lower semicontinuities
for arbitrary Cauchy sequences.

(b) On page 319 in [12], saddle points are defined in ordered spaces. That is a
directly extension of the concept of saddle points from the ordinary order
in real analysis to nonlinear order in order theory. The concept of convex
saddle in part (v) of Definition 5.1 is a global concept, which deals any
combination of a finite number (at least two) of points in the domain of the
considered mappings.

It is clear that a mapping T : C×D → 2Z \{∅} is convex saddle implies that T is
quasi-convex saddle. We provide an example below to demonstrate the concept of
“quasi-convex saddle property” is indeed more general than the concept of convex
saddle property.

Example 5.3. In part (v) of Definition 5.1, take X, Y and Z to be the real number
set R with ordinary real order ≥. Let T : R × R → R be a real valued function
defined by

T (x, y) := −x2 + y2, for every (x, y) ∈ R× R.
The point (0, 0) is the unique saddle point of T . Take an arbitrary given positive
integer k, arbitrary distinct k points (x1, y1), (x2, y2), . . . , (xk, yk) ∈ R× R and any

given 0 ≤ αi ≤ 1, i = 1, 2, . . . , k, with
∑k

i=1 αi = 1. For any 1 ≤ j ≤ k, we have

T (
k∑

i=1

αixi,
k∑

i=1

αiyi) = −(
k∑

i=1

αixi)
2 + (

k∑
i=1

αiyi)
2;

T (xj ,

k∑
i=1

αiyi) = −x2j + (

k∑
i=1

αiyi)
2;

T (

k∑
i=1

αixi, yj) = −(

k∑
i=1

αixi)
2 + y2j .

In case if (
∑k

i=1 αixi,
∑k

i=1 αiyi) = (0, 0), which is the saddle point of F , then for
any 1 ≤ j ≤ k, the following inequalities hold:

(5.1) T (xj ,
k∑

i=1

αiyi) ≤ T (
k∑

i=1

αixi,
k∑

i=1

αiyi) ≤ T (
k∑

i=1

αixi, yj).

Take k = 2 and take two points (3, 0) and (2, 1). Let 0 < α1, α2 < 1. One can
check that there does not exist j = 1, 2 such that (5.1) holds. It implies that T does
not have the convex saddle property on R×R. Furthermore, we can check that, for
any closed intervals C and D in R both containing 0 as an interior point, T does
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not have the convex saddle property on C×D. In Example 5.6 below, we will show
that T has the quasi-convex saddle property on R× R.

5.2. Existence of extended equilibrium with convex saddle property. From
Example 5.3, we see that the convex saddle property is much stronger than the quasi-
convex saddle property; and there are some mappings which do not have convex
saddle property and have equilibrium. In this subsection, we prove an existence
theorem of extended equilibrium for some set-valued mappings with the convex
saddle property.

In this subsection and throughout the following subsections in Section 5, (Z,≽)
denotes a preordered t.v.s. induced by a proper closed and convex cone K in Z.
Based on the preorder ≽ on Z, ≽P ,≽U and ≽D denote the power, upward power
and downward power preorders on 2Z , respectively.

Theorem 5.4. Let X and Y be Hausdorff topological vector spaces (H.t.v.s.). Let
(Z,≽) be a preordered topological vector space. Let C ⊆ X and D ⊆ Y be nonempty
closed and convex subsets and let T : C × D → 2Z \ {∅} be a set-valued mapping.
Suppose that T satisfies the following conditions:

(i) for every fixed (x, y) ∈ C × D , T (x, ·) is ≽U -lower semicontinuous on D
and T (·, y) is ≽D-upper semicontinuous on C both with respect to T (·, ·);

(ii) T is convex saddle on C ×D ;
(iii) there is (x0, y0) ∈ C ×D such that {(s, t) ∈ C ×D : T (x0, t) ≼U T (s, t) ≼D

T (s, y0)} is compact.

Then, there is (x∗, y∗) ∈ C ×D such that

(5.2) T (x, y∗) ≼U T (x∗, y∗) ≼D T (x∗, y), for every (x, y) ∈ C ×D.

Proof. Define a mapping F : C ×D → 2C×D \ {∅} by

F (x, y) = {(s, t) ∈ C ×D : T (x, t) ≼U T (s, t) ≼D T (s, y)}, for (x, y) ∈ C ×D.

Since for (x, y) ∈ C×D, (x, y) ∈ F (x, y), F is well defined from C×D to 2C×D\{∅}.
Since C and D are nonempty closed and convex subsets of X and Y , respectively,
then C × D is a closed and convex subset of X × Y with respect to the product
topology. We first prove that, for any (x, y) ∈ C ×D, F (x, y) is a closed subset in
C ×D.

From Definition 5.1 and condition (i) in this theorem, for any (x, y) ∈ C ×D, we
have that

{(s, t) ∈ C ×D : T (x, t) ≼U T (s, t)} and {(s, t) ∈ C ×D : T (s, t) ≼D T (s, y)}

both are closed subsets in C × D with respect to the product topology of the
topologies of X and Y . As intersection of closed subsets, it implies that F (x, y) is
closed in C ×D.

Let (x1, y1), (x2, y2), . . . , (xk, yk) be k points in C ×D , for some positive integer
k > 1. Take an arbitrary linear combination of these k points:

(s, t) = α1(x1, y1) + α2(x2, y2) + · · ·+ αk(xk, yk),
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where αi ≥ 0, for i = 1, 2, . . . , k satisfying α1 + α2 + · · ·+ αk = 1. From condition
(ii) in this theorem, T : C×D → 2Z \{∅} is convex saddle. Then, there is 1 ≤ j ≤ k
such that

T (xj ,
k∑

i=1

αiyi) ≼U T (
k∑

i=1

αixi,
k∑

i=1

αiyi) ≼D T (
k∑

i=1

αixi, yj).

That is,

T (xj , t) ≼U T (s, t) ≼D T (s, yj).

It implies that (s, t) ∈ F (xj , yj). Hence, F is a KKM mapping. From condition (iii)
of this theorem, F (x0, y0) is compact. So, applying the Fan-KKM theorem, one has

∩{F (x, y) : (x, y) ∈ C ×D} ̸= ∅.

Take an arbitrary (x∗, y∗) ∈ ∩{F (x, y) : (x, y) ∈ C×D}. (x∗, y∗) satisfies (5.2). □

Observations. In game theory, the point (x∗, y∗) ∈ C × D in (5.2) is called
an extended (or generalized) Nash equilibrium of some two-person strategic games
with the utility function T . We examine the conclusion of Theorem 5.4 as a result
in game theory.

If the utility function T satisfies the conditions in Theorem 5.4, then there is a
strategy profile (x∗, y∗) satisfying (5.2). The first order inequality in (5.2) means
that as the second player selects his strategy y∗ ∈ D to play, then for any strategy
x ∈ C for the first player to select, for any given element u in the utility set T (x, y∗),
there is an utility w ∈ T (x∗, y∗) such that u ≼ w. The second inequality in (5.2)
means that, as the first player selects his strategy x∗ ∈ C to play, then for any
strategy y ∈ D for the second player to select, for any given element v in the utility
set T (x∗, y), there is an utility w ∈ T (x∗, y∗) such that w ≼ v.

5.3. On the quasi-convex saddle property. In Example 5.3, the real valued
function

T (x, y) = −x2 + y2, for every (x, y) ∈ R× R
does not have the convex saddle property and it has an equilibrium (a saddle point)
(0, 0). So, in Theorem 5.4, the convex saddle property is a sufficient condition for
the existence of an equilibrium (a saddle point) of a set-valued mapping, which is
not a necessary condition.

On the other hand, the function T in Example 5.3 has the quasi-convex saddle
property and it has a saddle point. It raises the question: in addition to the convex
saddle property, what is the condition to assure the existence of an equilibrium (a
saddle point) of a mapping?

Like the proof of Theorem 5.4, we can prove the following results regarding to the
quasi-convex saddle property. It will be used for the proof of the existence theorem.

Lemma 5.5. Let X and Y be H.t.v.s.. Let (Z,≽) be a preordered topological vector
space. Let C ⊆ X and D ⊆ Y be nonempty closed and convex subsets and let
T : C × D → 2Z \ {∅} be a set-valued mapping. Suppose that F satisfies the
following conditions:
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(i) for every fixed (x, y) ∈ C×D,T (x, ·) is ≽U -lower semicontinuous on D and
T (·, y) is ≽D-upper semicontinuous on C both with respect to T (·, ·);

(ii) F is quasi-convex saddle on C ×D ;
(iii) there is (x0, y0) ∈ C ×D such that the following two subsets are compact

{(s, t) ∈ C ×D : T (x0, t) ≼U T (s, t)} and {(s, t) ∈ C ×D : T (s, t) ≼D T (s, y0)}.
Then, there are (x′, y′), (x′′, y′′) ∈ C ×D such that

(5.3) T (x, y′) ≼U T (x′, y′) and T (x′′, y′′) ≼D T (x′′, y), for every (x, y) ∈ C ×D.

Proof. Define mappings F1 : C × D → 2C×D and F2 : C × D → 2C×D by, for
(x, y) ∈ C ×D,

F1(x, y) = {(s, t) ∈ C ×D : T (x, t) ≼U T (s, t)},
and

F2(x, y) = {(s, t) ∈ C ×D : T (s, t) ≼D T (s, y)}.
Since for every (x, y) ∈ C × D, (x, y) ∈ F1(x, y) and (x, y) ∈ F2(x, y), F1 and F2

both are well defined from C×D to 2C×D \ {∅} . Rest of the proof is similar to the
proof of Theorem 5.4. □
Example 5.6. Let T be defined in Example 5.3. We can check that, for any closed
intervals C and D in R both containing 0 as an interior point, T does not have the
convex saddle property on C × D. On the other hand, one can check that T has
the quasi-convex saddle property on R×R and F satisfies all conditions in Lemma
5.6. Moreover, we have that, for every y′ ∈ R, the point (0, y′) satisfies

T (x, y′) ≼U T (0, y′), for every (x, y) ∈ R× R.
And, for every x′′ ∈ R, the point (x′′, 0) satisfies

T (x′′, 0) ≼D T (x′′, y), for every (x, y) ∈ R× R.
Lemma 5.5 does not guarantee the existence of a saddle point of T (even through
T has one saddle point (0, 0)).

6. Vector extended equilibrium problems with set-valued mappings

6.1. Definitions of vector extended Nash equilibrium problems with set-
valued mappings. Let (X,≽X) and (Y,≽Y ) be preordered t.v.s. induced by
proper closed and convex cones I ⊆ X and J ⊆ Y . Let EI , EJ be the I-cluster
kernel and the J-cluster kernel of (X,≽X) and (Y,≽Y ), respectively.

Let ≽XY be the component-wise preorder of ≽X and ≽Y on X × Y satisfying
that, for any (x1, y1), (x2, y2) ∈ X × Y ,

(x2, y2) ≽XY (x1, y1) if and only if x2 ≽X x1 and y2 ≽Y y1.

Then, (X × Y,≽XY ) is a preordered t.v.s. with the product topology and the
preorder ≽XY is induced by the proper closed and convex cone I × J in X × Y .
The ≽XY -cluster kernel of (X × Y,≽XY ) is EI × J satisfying

EI×J = EI × EJ .

In particular, the preordered t.v.s. (X,≽X) and (Y,≽Y ) are partially ordered t.v.s.,
then I and J both are pointed closed and convex cones in X and Y , respectively,
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and the ≽-cluster kernels EI and EJ are singletons. In this case, I × J is a pointed
closed and convex cone in X × Y and (X × Y,≽XY ) is a partially ordered t.v.s. as
well.

If (X,≽X) and (Y,≽Y ) both are preordered H.t.v.s., then (X × Y,≽XY ) is also
a preordered Hausdorff topological vector space.

Let (Z,≽) be a preordered topological vector space, in which the preorder ≽ on
Z is induced by a proper closed and convex cone K in Z. Let C ⊆ X and D ⊆ Y
be nonempty subsets and let T : C ×D → 2Z be a set-valued mapping.

Definition 6.1. A point (x0, y0) ∈ C×D is called an EI×J -clustered extended Nash
equilibrium for a set-valued mapping T : C ×D → 2Z , if there is (x1, y1) ∈ C ×D
with (x0, y0) ∽XY (x1, y1) such that

T (x, y0) ≼U T (x1, y0) and T (x0, y1) ≼D T (x0, y), for all (x, y) ∈ C ×D.

Corresponding to the cone K, it is equivalently restated as: there is (x1, y1) ∈
C ×D with

(x0, y0)− (x1, y1) ∈ EI×J

such that, for all (x, y) ∈ C ×D,

(T (x1, y0)− z) ∩K ̸= ∅, for every z ∈ T (x, y0)

and

(z − T (x0, y1)) ∩K ̸= ∅, for every z ∈ T (x0, y).

The set of all order-clustered extended Nash equilibriums of T is denoted by
E(T ).

For the preordered t.v.s. (Z,≽), as usual, we let ≽P , ≽U and ≽D be the power
preorder, upward power preorder and downward power preorder on 2Z correspond-
ing to ≽, respectively.

With respect to the set-valued mapping T : C×D → 2Z , we define two set-valued
mappings Φ : C → 2D and Ψ : D → 2C as follows:

Φ(s) = {t ∈ D : T (s, t) is a ≽D -lower bound of {T (s, y) : y ∈ D}}
= {t ∈ D : (z − T (s, t)) ∩K ̸= ∅, for every z ∈ T (s, y), for every y ∈ D},

for any s ∈ C.

Ψ(t) = {s ∈ C : T (s, t) is a ≽U -upper bound of {T (x, t) : x ∈ C}}
= {s ∈ C : (T (s, t)− z) ∩K ̸= ∅, for every z ∈ T (x, t), for every x ∈ C},

for any t ∈ D.

Regarding to the order monotonicity which is defined in (3.3), it becomes the fol-
lowing form with respect to the cones that induce the orders.

Remark 6.2. Let T : C ×D → 2Z \ {∅} be a set-valued mapping. Corresponding
to the cones, by the definition of order monotonicity in (3.3), we have
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(a) For every x ∈ C, T (x, ·) : D → 2Z \ {∅} is ≽Y -≽U increasing if and only if,
for any t1, t2 ∈ D, t2 − t1 ∈ J implies

(T (x, t2)− z) ∩K ̸= ∅, for every z ∈ T (x, t1).

(b) For every y ∈ D, T (·, y) : C → 2Z \ {∅} is ≽X -≽D decreasing if and only if,
for any s1, s2 ∈ C, s2 − s1 ∈ I implies

(z − T (s2, y)) ∩K ̸= ∅, for every z ∈ T (s1, y).

Corresponding to [15, Definition 3.5], we interpreter the concepts of order-upper
and order-lower consistency in terms of the closed and convex cones. These concepts
are related to the concept of closed graph of mappings with vector set-values.

Definition 6.3. Let T : C ×D → 2Z be a set-valued mapping.

(a) T is said to be ≽U -upper consistent on C, whenever, for any t1, t2 ∈ D, if,

T (x, t1) ≼U T (x, t2), for every x ∈ C, implies Ψ(t1) ⊆ Ψ(t2).

More precisely, for some s ∈ C, that T (s, t1) is a ≽U -upper bound of
{T (x, t1) : x ∈ C} implies that T (s, t2) is a ≽U -upper bound of {T (x, t2) :
x ∈ C}.
It means that, if T (x, t1) ≼U T (x, t2), for every x ∈ C, then, for some s ∈ C,

s ∈ Ψ(t1) =⇒ s ∈ Ψ(t2).

Corresponding to the cone K, it is equivalently restated as: if for every
x ∈ C, the following inclusion holds

(T (x, t2)− z) ∩K ̸= ∅, for every z ∈ T (x, t1),

then, for some s ∈ C,

(T (s, t1)− z) ∩K ̸= ∅, for every z ∈ T (u, t1), for every u ∈ C,

implies

(T (s, t2)− z) ∩K ̸= ∅, for every z ∈ T (u, t2), for every u ∈ C.

(b) T is said to be ≽D-lower consistent on D, whenever, for any s1, s2 ∈ C, if

T (s1, y) ≽D T (s2, y), for every y ∈ D, implies Φ(s1) ⊆ Φ(s2).

More precisely, for some t ∈ D, that T (s1, t) is a ≽D-lower bound of
{T (s1, y) : y ∈ D} implies that T (s2, t) is a ≽D-lower bound of {T (s2, y) :
y ∈ D}.
It means that, if T (s1, y) ≽D T (s2, y), for every y ∈ D, then, for some t ∈ D,

t ∈ Φ(s1)) =⇒ t ∈ Φ(s2).

Corresponding to the cone K, it is equivalently restated as: if, for every
y ∈ D, the following inclusion holds

(z − T (s2, y)) ∩K ̸= ∅, for every z ∈ T (s1, y),

then, for some t ∈ D,

(z − T (s1, t)) ∩K ̸= ∅, for every z ∈ T (s1, v), for every v ∈ D,
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implies

(z − T (s2, t)) ∩K ̸= ∅, for every z ∈ T (s2, v), for every v ∈ D.

6.2. Existence of order-clustered extended Nash equilibrium. Now, we prove
an existence theorem of order-clustered Nash equilibrium for some set-valued map-
pings on preordered t.v.s..

Theorem 6.4. Let (X,≽I) and (Y,≽J) be preordered H.t.v.s. induced by proper
closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a preordered vector space
induced by a proper closed and convex cone K in Z. Let C ⊆ X and D ⊆ Y be
nonempty compact subsets and let T : C ×D → 2Z \ {∅} be a set-valued mapping.
Suppose that T satisfies the following conditions:

(i) for every x ∈ C, T (x, ·) : D → 2Z \ {∅} satisfies that, for any t1, t2 ∈ D,
t2 − t1 ∈ J implies

(T (x, t2)− z) ∩K ̸= ∅, for every z ∈ T (x, t1);

(ii) for every y ∈ D, T (·, y) : C → 2Z \ {∅} satisfies that, for any s1, s2 ∈ D,
s2 − s1 ∈ I implies

(z − T (s2, y)) ∩K ̸= ∅, for every z ∈ T (s1, y);

(iii) T is ≽U -upper consistent on C and ≽D-lower consistent on D;
(iv) for every (s, t) ∈ C ×D , Φ(s) is closed in D and Ψ(t) is closed in C;
(v) there are (s0, t0), (u0, v0) ∈ C ×D with v0 ∈ Φ(s0) and u0 ∈ Ψ(t0) such that

u0 − s0 ∈ I and v0 − t0 ∈ J.

Then, T has an EI×J -clustered extended Nash equilibrium. That is, there are
(x0, y0), (x1, y1) ∈ C ×D with

x0 − x1 ∈ EI and y0 − y1 ∈ EJ .

such that, for all(x, y) ∈ C ×D, the following inclusions hold

(6.1) (T (x1, y0)− z) ∩K ̸= ∅, for every z ∈ T (x, y0)

and

(6.2) (z − T (x0, y1)) ∩K ̸= ∅, for every z ∈ T (x0, y).

Moreover, one has

(a) E(T ) is a nonempty inductive subset in (C ×D,≽XY );
(b) T has a ≽XY -maximal EI×J -clustered extended Nash equilibrium

(x0, y0) ≽XY (s0, t0).

Proof. One can prove this theorem by using Theorems 3.1 and 4.4 in [18]. In here,
we give a direct proof. Notice that ≽I , ≽J and ≽ are preorders on X, Y and Z,
which are equivalently represented by the proper closed and convex cones I ⊆ X,
J ⊆ Y and K ⊆ Z, respectively. Since C and D are compact, so C×D is compact in
the Hausdorff t.v.s. X×Y with respect to the product topology. From Proposition
3.1, (C ×D,≽XY ) is ≽XY -chain complete.

By using the preordering relations ≽I , ≽J and ≽, condition (i) in this theorem
means that, for every x ∈ C, T (x, ·) : D → 2Z \ {∅} is order-increasing on D with
respect to ≽Y and ≽U , which is condition (i) in [15, Theorem 3.1]. Similarly,
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condition (ii) in this theorem implies condition (ii) in [15, Theorem 3.1]. From
condition (iv) in this theorem, for every (s, t) ∈ C×D , Φ(s) and Ψ(t) are closed in
the compact sets D and C, respectively. So, they are compact. From Proposition
3.2, Φ(s) is universally inductive in (D,≽J) and Ψ(t) is universally inductive in
(C,≽I). So, T satisfies conditions (iv) and (v) in [15, Theorem 3.1]. Condition (v)
in this theorem implies that T satisfies condition (vi) in [15, Theorem 3.1]. Hence,
T satisfies all conditions in [15, Theorem 3.1].

Then, by using the preordering relations ≽I , ≽J and ≽ , T has a ≽XY -clustered
extended Nash equilibrium. That is, there is (x0, y0) ∈ C ×D satisfying that there
exists (x1, y1) ∈ C ×D with (x0, y0) ∽XY (x1, y1) such that

(6.3) T (x, y0) ≼U T (x1, y0) and T (x0, y1) ≼D T (x0, y), for all (x, y) ∈ C ×D.

We see that (x0, y0) ∽XY (x1, y1) is equivalent to x0 − x1 ∈ EI and y0 − y1 ∈ EJ ,
and (6.3) is equivalent to (6.1), (6.2). When the preordering relations ≽I , ≽J and ≽
are equivalently represented by their corresponding cones I, J and K, respectively,
rest of the conclusions of this theorem follow from the conclusions of [15, Theorem
3.1] immediately. □

6.3. Existence of extended Nash equilibrium. When we consider a special
case in Theorem 6.4 proved in the previous subsection that (X,≽I) and (Y,≽J)
are partially ordered H.t.v.s., we obtain an existence theorem for extended Nash
equilibrium, which is a different version of Theorem 3.2 in [18].

Theorem 6.5. Let (X,≽X) and (Y,≽Y ) be partially ordered H.t.v.s. induced by
pointed closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a preordered
vector space induced by a proper closed and convex cone K in Z. Let C ⊆ X and
D ⊆ Y be nonempty compact subsets and let T : C ×D → 2Z \ {∅} be a set-valued
mapping. Suppose that T satisfies the conditions (i-v) in Theorem 6.4 Then, T has
an extended Nash equilibrium. That is, there is (x0, y0) ∈ C×D such that, for every
(x, y) ∈ C ×D , the following inclusions hold

(T (x0, y0)− z) ∩K ̸= ∅, for every z ∈ T (x, y0)

and

(z − T (x0, y0)) ∩K ̸= ∅, for every z ∈ T (x0, y).

Moreover, one has

(a) E(T ) is a nonempty inductive subset in (C ×D,≽XY );
(b) T has a ≽XY -maximal extended Nash equilibrium (x0, y0) ≽XY (s0, t0).

6.4. Existence of extended Nash equilibrium in ordered Banach spaces.
Notice that in a Banach space, a nonempty convex cone is closed with respect to
the norm topology if and only if it is closed with the weak topology. Then, we have
the following consequences of Theorems 6.4 and 6.5.

Corollary 6.6. Let (X,≽I) and (Y,≽J) be preordered Banach spaces induced by
proper closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a preordered vector
space induced by a proper closed and convex cone K in Z. Let C ⊆ X and D ⊆ Y
be nonempty weakly compact subsets and let T : C ×D → 2Z \ {∅} be a set-valued
mapping. Suppose that T satisfies conditions (i-iii) and (v) in Theorem 6.4 and
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(iv)’ for every (s, t) ∈ C × D , Φ(s) is weakly closed in D and Ψ(t) is weakly
closed in C.

Then, T has an EI×J -clustered extended Nash equilibrium; and all conclusions of
Theorem 6.4 hold.

In particular, if X and Y are reflexive Banach spaces, we have

Corollary 6.7. Let (X,≽I) and (Y,≽J) be preordered reflexive Banach spaces in-
duced by proper closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a
preordered vector space induced by a proper closed and convex cone K in Z. Let
C ⊆ X and D ⊆ Y be nonempty norm-bounded closed and convex subsets and let
T : C ×D → 2Z \ {∅} be a set-valued mapping. Suppose that T satisfies conditions
(i-iii) and (v) in Theorem 6.4 and condition (iv)’ in Corollary 6.6. Then, T has an
EI×J -clustered extended Nash equilibrium; and all conclusions of Theorem 6.4 hold.

If (X,≽I) and (Y,≽J) are partially ordered Banach spaces, then we have the
following existence results for extended Nash equilibrium.

Corollary 6.8. Let (X,≽I) and (Y,≽J) be partially ordered Banach spaces induced
by pointed closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a preordered
vector space induced by a proper closed and convex cone K in Z. Let C ⊆ X and
D ⊆ Y be nonempty weakly compact subsets and let T : C × D → 2Z \ {∅} be a
set-valued mapping. Suppose that T satisfies conditions (i-iii) and (v) in Theorem
6.4 and condition (iv)’ in Corollary 6.6. Then, T has an extended Nash equilibrium;
and all conclusions of Theorem 6.5 hold.

Corollary 6.9. Let (X,≽I) and (Y,≽J) be partially ordered reflexive Banach spaces
induced by pointed closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a
preordered vector space induced by a proper closed and convex cone K in Z. Let
C ⊆ X and D ⊆ Y be nonempty bounded closed and convex subsets and let T :
C × D → 2Z \ {∅} be a set-valued mapping. Suppose that T satisfies conditions
(i-iii) and (v) in Theorem 6.4 and condition (iv)’ in Corollary 6.6. Then, T has an
extended Nash equilibrium; and all conclusions of Theorem 6.5 hold.

7. Applications to vector equilibrium problems with single valued
mappings

7.1. Vector Nash equilibrium problems for single valued mappings on or-
dered topological vector spaces. In this section, like [15, Section 4], we discuss
the existence of vector Nash equilibrium for single valued mappings as applications
of the existence theorem proved in the previous section.

Let (Z,≽) be a preordered t.v.s. induced by a proper closed and convex cone
K in Z with power, upward power and downward power preorders ≽P , ≽U and
≽D on 2Z , respectively. In general, (2Z ,≽P ), (2Z ,≽U ) and (2Z ,≽D) are different
preordered sets with the same underlying set 2Z .

Write Z = {{z} ∈ 2Z : z ∈ Z}. Then, Z ⊆ 2Z . When the preorders ≽P , ≽U

and ≽D are restricted on Z, they are equivalent to ≽. We write

(7.1) (Z,≽P ) = (Z,≽U ) = (Z,≽D) = (Z,≽).
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By the connections (7.1), we discuss the solvability of vector Nash equilibrium
problems for single valued mappings as applications of the existence theorems of
order extended Nash equilibrium for set-valued mappings proved in the previous
section.

Let (X,≽I), (Y,≽J) and (Z,≽K) be preordered t.v.s. induced by proper closed
and convex cones I ⊆ X, J ⊆ Y and K ⊆ Z. Let C ⊆ X and D ⊆ Y be nonempty
subsets and let T : C × D → Z be a single-valued mapping. With respect to the
mapping T , the optimization set-valued mappings Φ : C → 2D and Ψ : D → 2C ,
for single valued mappings become the following forms:

Φ(s) = {t ∈ D : T (s, t) is a ≽K -lower bound of {T (s, y) : y ∈ D}}, for any s ∈ C

= {t ∈ D : T (s, y)− T (s, t) ∈ K, for every y ∈ D}, for any s ∈ C.

Ψ(t) = {s ∈ C : T (s, t) is a ≽K -upper bound of {T (x, t) : x ∈ C}}, for any t ∈ D.

= {s ∈ C : T (s, t)− T (x, t) ∈ K, for every x ∈ C}, for any t ∈ D.

Considering single-valued mappings as special cases of set-valued mappings in
Definition 6.3, the vector upper consistent and vector lower consistent properties
become the following forms.

(a) T is said to be ≽-upper consistent on C, whenever, for any t1, t2 ∈ D, if

T (x, t1) ≼K T (x, t2), for every x ∈ C,

then, Ψ(t1) ⊆ Ψ(t2). That is, for s ∈ C, T (s, t1) is a ≽K-upper bound of
{T (x, t1) : x ∈ C} implies that T (s, t2) is a ≽-upper bound of {T (x, t2) :
x ∈ C}.

Corresponding to the cone K, it is restated as: if

T (x, t2)− T (x, t1) ∈ K, for every x ∈ C,

then, for some s ∈ C,

T (s, t1)−T (x, t1) ∈ K, for all x ∈ C, implies T (s, t2)−T (x, t2) ∈ K, for all x ∈ C.

(b) T is said to be ≽-lower consistent on D, whenever, for any s1, s2 ∈ C, if

T (s1, y) ≽K T (s2, y), for every y ∈ D,

then, Φ(s1) ⊆ Φ(s2). That is, for t ∈ D, T (s1, t) is a ≽K-lower bound of
{T (s1, y) : y ∈ D} implies that T (s2, t) is a ≽K-lower bound of {T (s2, y) :
y ∈ D}.

Corresponding to the cone K, it is restated as: if

T (s1, y)− T (s2, y) ∈ K, for every y ∈ D,

then, for some t ∈ D,

T (s1, y)−T (s1, t) ∈ K, for all y ∈ D, implies T (s2, y)−T (s2, t) ∈ K, for all y ∈ D.
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Recall: EI×J -clustered vector Nash equilibrium for single valued mappings:
A point (x0, y0) ∈ C ×D is called an EI×J -clustered vector Nash equilibrium for

a set-valued mapping T : C ×D → Z, if there is (x1, y1) ∈ C ×D with

(x0, y0) ∽XY (x1, y1)

such that T (x, y0) ≼ T (x1, y0) and T (x0, y1) ≼ T (x0, y), for all (x, y) ∈ C ×D .
Corresponding to the cone K, it is restated as:

(x0, y0)− (x1, y1) ∈ EI×J

such that

T (x1, y0)− T (x, y0) ∈ K and T (x0, y)− T (x0, y1) ∈ K, for all (x, y) ∈ C ×D,

The set of all order-clustered vector Nash equilibriums of this single valued mapping
T is denoted by E(T ) as well.

As a consequence of Theorem 6.4, we have the following result for order-clustered
Nash equilibrium for single valued mappings. Since Theorem 6.4 is a different
version of Theorem 3.1 in [18], one may consider the following two corollaries as
different versions of Corollaries 4.1 and 4.2 in [18] in the present context.

Corollary 7.1. Let (X,≽I) and (Y,≽J) be preordered H.t.v.s. induced by proper
closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽K) be a preordered vector space
induced by a proper closed and convex cone K in Z. Let C ⊆ X and D ⊆ Y be
nonempty compact subsets and let T : C ×D → Z \ {∅} be a single valued mapping.
Suppose that T satisfies the following conditions:

(i) for every x ∈ C, T (x, ·) : D → Z satisfies that, for any t1, t2 ∈ D,

t2 − t1 ∈ J implies T (x, t2)− T (x, t1) ∈ K;

(ii) for every y ∈ D, T (·, y) : C → Z satisfies that, for any s1, s2 ∈ D,

s2 − s1 ∈ I implies T (s1, y)− T (s2, y) ∈ K;

(iii) T is ≽-upper consistent on C and ≽K-lower consistent on D;
(iv) for every (s, t) ∈ C ×D , Φ(s) is closed in D and Ψ(t) is closed in C;
(v) there are (s0, t0), (u0, v0) ∈ C ×D with v0 ∈ Φ(s0) and u0 ∈ Ψ(t0) such that

u0 − s0 ∈ I and v0 − t0 ∈ J.

Then, T has an EI×J -clustered vector Nash equilibrium. That is, there are (x0, y0),
(x1, y1) ∈ C ×D with

x0 − x1 ∈ EI and y0 − y1 ∈ EJ .

such that

T (x1, y0)− T (x, y0) ∈ K and T (x0, y)− T (x0, y1) ∈ K, for all (x, y) ∈ C ×D.

Moreover, one has

(a) E(T ) is a nonempty inductive subset in (C ×D,≽XY );
(b) T has a ≽XY -maximal clustered vector Nash equilibrium (x0, y0) ≽XY (s0, t0).

If the considered ordered spaces in Corollary 7.1 are partially ordered spaces, by
Theorem 6.5, we have the following result for the existence of vector Nash equilib-
rium for single valued mappings.
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Corollary 7.2. Let (X,≽X) and (Y,≽Y ) be partially ordered H.t.v.s. induced by
pointed closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽) be a preordered
vector space induced by a proper closed and convex cone K in Z. Let C ⊆ X and
D ⊆ Y be nonempty compact subsets and let T : C×D → Z \{∅} be a single valued
mapping. Suppose that T satisfies the conditions (i-v) in Corollary 7.2. Then, T
has a vector Nash equilibrium. That is, there is (x0, y0) ∈ C ×D such that

T (x0, y0)− T (x, y0) ∈ K and T (x0, y)− T (x0, y0) ∈ K, for all (x, y) ∈ C ×D.

Moreover, one has

(a) E(T ) is a nonempty inductive subset in (C ×D,≽XY );
(b) T has a ≽XY -maximal vector Nash equilibrium (x0, y0) ≽XY (s0, t0).

7.2. Vector equilibrium problems for single valued mappings on ordered
Banach spaces. From Corollaries 7.1 and 7.2, (like Corollaries 6.6 to 6.9) we
obtain results of existence of vector Nash equilibrium for single valued mappings on
ordered Banach spaces.

Corollary 7.3. Let (X,≽I) and (Y,≽J) be preordered Banach spaces induced by
proper closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽K) be a preordered
vector space induced by a proper closed and convex cone K in Z. Let C ⊆ X and
D ⊆ Y be nonempty weakly compact subsets and let T : C×D → Z \{∅} be a single
valued mapping. Suppose that T satisfies conditions (i-iii) and (v) in Corollary 7.1
and

(iv)” for every (s, t) ∈ C×D, Ψ(s) is weakly closed in D and Ψ(t) is weakly closed
in C.

Then, T has an EI×J -clustered vector Nash equilibrium; and all conclusions of
Corollary 7.1 hold.

If X and Y are reflexive Banach spaces, we have

Corollary 7.4. Let (X,≽I) and (Y,≽J) be preordered reflexive Banach spaces in-
duced by proper closed and convex cones I ⊆ X and J ⊆ Y . Let (Z,≽K) be a
preordered vector space induced by a proper closed and convex cone K in Z. Let
C ⊆ X and D ⊆ Y be nonempty norm bounded closed and convex subsets and let
T : C×D → Z \{∅} be a single valued mapping. Suppose that T satisfies conditions
(i-iii) and (v) in Theorem 6.4 and condition (iv)” in Corollary 7.3. Then, T has an
EI×J -clustered vector Nash equilibrium; and all conclusions of Corollary 7.1 hold.

Regarding to the applications of Corollary 7.2 to ordered Banach spaces, if
(X,≽I) and (Y,≽J) are partially ordered Banach spaces, then we have the following
existence results for vector Nash equilibrium.

Remark 7.5. In Corollaries 7.3 and 7.4, if the ordering relations ≽I and ≽J are
partial orders; that is, I ⊆ X and J ⊆ Y both are pointed closed and convex cones,
then T has a vector Nash equilibrium; and all conclusions of Corollary 7.1 hold,
where E(T ) is replaced by E(T ).
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8. Order-cluster invariant mappings

From the contents of Sections 6 and 7, one sees that order-clustered extended
Nash equilibrium for set-valued mappings and order-clustered vector Nash equilib-
rium for single valued mappings will become extended Nash equilibrium and vector
Nash equilibrium if the considered ordered t.v.s. are partially ordered. To obtain
extended Nash equilibrium and vector Nash equilibrium, excepting the restriction of
the underlying spaces, one can change the conditions for the considered mappings.

In economic theory and game theory, sometimes, the utilities will remain the
same on different but order equivalent possible outcomes. It leads us to introduce
the concepts of order-cluster invariant mappings on ordered sets (see [15, Definition
3.4]). We recall this definition on ordered t.v.s..

Definition 8.1. Let (X,≽I), (Y,≽J) and (Z,≽K) be a preordered t.v.s. induced
by closed and convex cones I ⊆ X, J ⊆ Y and K ⊆ Z, respectively. EI×J is
the ≽I×J -cluster kernel or the I × J-cluster kernel of the product ordered t.v.s.
(X × Y,≽I×J). Let C ⊆ X and D ⊆ Y be nonempty subsets. A set-valued
mapping T : C ×D → 2Z \ {∅} is said to be ≽XY -cluster invariant or EI×J -cluster
invariant if, for any points (x1, y1), (x2, y2) ∈ C ×D,

(x2, y2)− (x1, y1) ∈ EI×J

implies that, for every m,n = 1, 2, one has

(U)” (T (xm, ym)− zn) ∩K ̸= ∅, for every zn ∈ T (xn, yn),

and

(D)” (zm − T (xn, yn)) ∩K ̸= ∅, for every zm ∈ T (xm, ym).

This mapping T : C ×D → 2Z is said to be strongly ≽XY -cluster invariant if, for
any points (x1, y1), (x2, y2) ∈ C ×D,

(x2, y2) ∽XY (x1, y1) implies T (x2, y2) = T (x1, y1).

(x2, y2)− (x1, y1) ∈ EI×J implies that T (x2, y2) = T (x1, y1).

A single-valued mapping T : C ×D → Z is said to be ≽XY -cluster invariant if, for
any points (x1, y1), (x2, y2) ∈ C ×D,

(x2, y2)− (x1, y1) ∈ EI×J implies T (x2, y2)− T (x1, y1) ∈ EK .

That is equivalent to, for every m,n = 1, 2, one has

T (xm, ym)− T (xn, yn) ∈ K.

Notice that if I ⊆ X, J ⊆ Y and K ⊆ Z, are pointed closed and convex cones,
then the induced ordered spaces (X,≽I), (Y,≽J) and (Z,≽) become partially or-
dered topological vector spaces. If follows that, for any nonempty subsets C ⊆ X
andD ⊆ Y , any single-valued mapping T : C×D → Z is automatically ≽XY -cluster
invariant.

Proposition 8.2. Let the preordered H.t.v.s. (X,≽I) and (Y,≽J), the preordered
t.v.s. (Z,≽) and the set-valued mapping T : C ×D → 2Z \ {∅} be given in Theorem
6.4. Suppose that, in addition to condition (i-v) in Theorem 6.4, T satisfies the
following condition:
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(vi) T is ≽XY -cluster invariant.

Then, T has a vector Nash equilibrium. That is, there is (x0, y0) ∈ C×D such that,
for all (x, y) ∈ C ×D, the following inclusions hold

(8.1) (T (x0, y0)− z) ∩K ̸= ∅, for every z ∈ T (x, y0)

and

(8.2) (z − T (x0, y0)) ∩K ̸= ∅, for every z ∈ T (x0, y).

Moreover, one has

(a) E(T ) is a nonempty inductive subset in (C ×D,≽IJ);
(b) T has a ≽XY -maximal vector Nash equilibrium (x0, y0) ≽IJ (s0, t0).

Proof. From Theorem 6.4, there is (x0, y0) ∈ C × D satisfying that there exists
(x1, y1) ∈ C ×D with

(x0, y0) ∽XY (x1, y1) i.e., x0 − x1 ∈ EI and y0 − y1 ∈ EJ .

such that, for all (x, y) ∈ C ×D, the following inclusions hold

(8.3) (T (x1, y0)− z) ∩K ̸= ∅, for every z ∈ T (x, y0),

and

(8.4) (z − T (x0, y1)) ∩K ̸= ∅, for every z ∈ T (x0, y).

From (x0, y0) ∽XY (x1, y1), we get (x1, y0) ∽XY (x0, y0) ∽XY (x0, y1). Since T
is ≽XY -cluster invariant, it follows that

(8.5) T (x1, y0) ∽P T (x0, y0) ∽P T (x0, y1).

Substituting (8.5) into (8.3) and (8.4), we obtain (8.1), (8.2). That is

T (x, y0) ≼U T (x0, y0) ≼D T (x0, y), for all (x, y) ∈ C ×D.

□
For single valued mappings, we have

Proposition 8.3. Let the preordered H.t.v.s. (X,≽I) and (Y,≽J), the preordered
t.v.s. (Z,≽) and the single mapping T : C × D → Z \ {∅} be given in Corollary
7.1. Suppose that, in addition to condition (i-v) in Corollary 7.1, T satisfies the
following condition:

(vi) T is ≽XY -cluster invariant.

Then, T has a vector Nash equilibrium. That is, there is (x0, y0) ∈ C×D such that

T (x0, y0)− T (x, y0) ∈ K and T (x0, y)− T (x0, y0) ∈ K, for all (x, y) ∈ C ×D,

Moreover, one has

(a) E(T ) is a nonempty inductive subset in (C ×D,≽XY );
(b) T has a ≽XY -maximal vector Nash equilibrium (x0, y0) ≽XY (s0, t0).

Acknowledgements. The authors are very grateful to the anonymous reviewers
for their suggestions and comments that improved the presentation of this paper.
Author Li thanks the National Natural Science Foundation of China (11771194) for
partially support about this research.



650 J. LE AND CHR. TAMMER

References

[1] A. Auslender, Optimization: Methods Numerous, Masson, Paris, 1976.
[2] J. M. Borwein, Multivalued convexity and optimization: A unified approach to inequality and

equality constraints, Math. Program. 13 (1977), 183–199.
[3] J. M. Borwein, On the existence of Pareto efficient points, Math. Oper. Res. 8 (1983), 64–73.
[4] G. Eichfelder, and J. Jahn, Vector optimization problems and their solution concepts, in: Re-

cent Developments in Vector Optimization. Springer, Berlin, 2012, pp. 1–27.
[5] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305–310.
[6] A. Fujimoto, An extension of Tarskis fixed point theorem and its applications to isotone com-

plementarity problems, Math. Program. 28 (1984), 116–118.
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