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are satisfied for x ∈ S1 ∩ S2. One method of deriving such conditions employs the
convex kernels of these cones, defined for S ⊂ X and x ∈ S by

T∞(S, x) := {z ∈ X | y + z ∈ T (S, x) ∀y ∈ T (S, x)}

and

A∞(S, x) := {z ∈ X | y + z ∈ A(S, x) ∀y ∈ A(S, x)}.
Since T (S, x) and A(S, x) are closed cones, T∞(S, x) and A∞(S, x) are always

closed convex cones [1, §4.5.1]. Note also that since 0 ∈ T (S, x) and 0 ∈ A(S, x),
we have T∞(S, x) ⊂ T (S, x) and A∞(S, x) ⊂ A(S, x).

In [6] Penot gave the following direct characterization of the convex kernel of the
adjacent cone:

Proposition 1.2 (6, Proposition 4.6). Let S ⊂ X, x ∈ S. Then

A∞(S, x) = {y | ∀xj →S x,∀tj → 0+ with lim
j→∞

(xj − x)/tj ∈ A(S, x),

∃ yj → y with xj + tjy
j ∈ S},

where xj →S x means that xj → x with each xj ∈ S.

Proposition 1.2 turns out to be quite useful in the development of the calculus
of the contingent and adjacent cones, as Penot went on to show in [6]. Along with
the characterization of A∞ in Proposition 1.2, one can make use of a corresponding
open tangent cone to establish this calculus.

Definition 1.3. Let S be a subset of X and x ∈ S. Define

IA∞(S, x) := {y | ∀xj →S x,∀tj → 0+ with lim
j→∞

(xj − x)/tj ∈ A(S, x),

∀ yj → y, xj + tjy
j ∈ S for large enough j }.

For all S ⊂ X and x ∈ S, IA∞(S, x) is an open convex (possibly empty) cone.
By definition, IA∞(S, x) ⊂ A∞(S, x).

Proposition 1.2 raises the question of finding an analogous direct characterization
for the convex kernel of the contingent cone. One natural candidate would be

P (S, x) := {y | ∀xj →S x, ∀tj → 0+ such that lim
j→∞

(xj − x)/tj exists,

∃ yj → y with xj + tjy
j ∈ S},

which is referred to in [6] as the prototangent cone or pseudo-strict tangent cone, and
in [7] as the moderate tangent cone. Note that the existence of limj→∞(xj − x)/tj
is equivalent to the requirement that limj→∞(xj − x)/tj ∈ T (S, x).

It is easy to show that P (S, x) is a closed convex cone with P (S, x) ⊂ T∞(S, x) for
all S ⊂ X and x ∈ S. As Penot notes in [7, p. 395], P (S, x) = A∞(S, x) = T∞(S, x)
whenever A(S, x) = T (S, x). However, P (S, x) is not equal to T∞(S, x) in general.
The following example illustrates this fact.

Example 1.4. Let X = R, and let Z be the set of integers. Define S := {0} ∪
{±2n |n ∈ Z}. It is easy to see that T (S, 0) = R, so that T∞(S, 0) = R as well. On
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the other hand, let xj = 2−j and tj = 2−(j+1) for j ≥ 1. Then limj→∞(xj − x)/tj
exists, but for the interval (0, 2), we have

[xj + tj(0, 2)] ∩ S = ∅.

It follows that 1 /∈ P (S, x). It can be shown similarly that −1 /∈ P (S, x), and we
conclude that P (S, x) = {0}.

Example 1.4 shows that P (S, x) is unsuccessful as a candidate for a sequential
characterization of T∞(S, x). In this paper, we present a successful candidate and
use it to augment the calculus of the contingent and adjacent cones and their asso-
ciated epiderivatives.

The paper is organized as follows. In §2, we begin with our sequential charac-
terization of T∞ in Theoerem 2.1 and use this result as the basis for the definition
of a corresponding “interior cone” IT∞. We then establish conditions under which
inclusions (1.2) and (1.3) are satisfied, and we show that these conditions can be sat-
isfied in some cases where the metric subregularity hypotheses of [2] do not hold. In
§3 we develop the calculus of the epiderivatives associated with the contingent and
adjacent cones, again making use of the convex kernels of these cones. Then in §4 we
apply the calculus of epiderivatives to prove necessary optimality condtions of Fritz
John and Karush-Kuhn-Tucker type for a mathematical program with inequality
and set constraints.

We conclude this introduction with a listing of some notation used throughout
the paper. Let X be a real normed space with dual space X∗. For a set S ⊂ X,
we will denote the interior of S by intS and the closure of S by clS. The indicator
function of S is defined by

iS(x) :=

{
0 if x ∈ S

+∞ otherwise,

and the distance function is defined for x ∈ X and S ⊂ X by

d(x, S) := inf{∥x− s∥ : s ∈ S}.

The polar cone of S is the set

S◦ := {x∗ ∈ X∗ | ⟨x∗, x⟩ ≤ 0 ∀x ∈ S}.

Let R̄ = R∪{±∞} be the set of extended real numbers. For a function f : X → R̄,
define

dom f := {x ∈ X | f(x) < +∞}.

We will say that f is proper if dom f is nonempty and f never takes on the value
−∞. The epigraph of f is the set

epi f := {(x, r) ∈ X × R | f(x) ≤ r}.

For a convex function f : X → R̄ that is finite at x̄, the subdifferential of f at x̄ is
the set

∂f(x̄) := {x∗ ∈ X∗ | ⟨x∗, x⟩ ≤ f(x)− f(x̄) ∀x ∈ X}.
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2. The characterization and tangent cone calculus

We begin this section with our main result, a direct sequential characterization
of the convex kernel of the contingent cone.

Theorem 2.1. Let S ⊂ X and x ∈ S. Then

T∞(S, x) = {y | ∀xj →S x,∀tj → 0+ with (xj − x)/tj convergent,

∃ tj ′ → 0+, ∃ yj → y with x+ tj
′(yj + (xj − x)/tj) ∈ S}.

Proof. Denote the set on the right-hand side by Ω. To show that T∞(S, x) ⊂ Ω, let
y ∈ T∞(S, x), and let xj →S x and tj → 0+ with (xj − x)/tj → z for some z ∈ X.
Then z ∈ T (S, x), and so y+ z ∈ T (S, x). Hence there exist sequences tj

′ → 0+ and
wj → y + z such that x+ tj

′wj ∈ S. Let zj = (xj − x)/tj and yj = wj − zj . Then
yj → y and

x+ tj
′(yj + (xj − x)/tj) = x+ tj

′(yj + zj) = x+ tj
′wj ∈ S,

establishing that y ∈ Ω. Therefore T∞(S, x) ⊂ Ω.
To demonstrate the opposite inclusion, let y ∈ Ω and w ∈ T (S, x). We want to

show that y + w ∈ T (S, x). Since w ∈ T (S, x), there exist tj → 0+ and wj → w
such that x+ tjw

j ∈ S. Now set xj = x+ tjw
j . We have xj →S x and (xj − x)/tj

convergent. Since y ∈ Ω, there exist sequences tj
′ → 0+ and yj → y satisfying

x + tj
′(yj + (xj − x)/tj) ∈ S. Noting that yj + (xj − x)/tj → y + w, we see that

y + w ∈ T (S, x), implying that y ∈ T∞(S, x). Therefore Ω ⊂ T∞(S, x). □

Theorem 2.1 can help us to identify conditions under which inclusion (1.2) is
satisfied. Some of those conditions involve an “interior cone” corresponding to T∞.

Definition 2.2. For S ⊂ X and x ∈ S, define

IT∞(S, x) := {y | ∀xj →S x,∀tj → 0+ with (xj − x)/tj convergent,∃tj ′ → 0+

such that ∀yj → y, x+ tj
′(yj + (xj − x)/tj) ∈ S for large enough j}.

We observe that IT∞(S, x) is a (possibly empty) cone. To see this, suppose that
y ∈ IT∞(S, x) and α > 0, and let xj →S x, tj → 0+ with (xj − x)/tj convergent.
Then there exists tj

′ → 0+ such that for all yj → y, we have x+tj
′(yj+(xj−x)/tj) ∈

S for j large enough. Now let zj → αy. Since zj/α → y, it follows that

x+
tj

′

α
(zj + (xj − x)/tj) = x+ tj

′(zj/α+ (xj − x)/tj) ∈ S

for large enough j. Noting that tj
′/α → 0+, we conclude that αy ∈ IT∞(S, x).

We can give an alternate characterization of IT∞(S, x) in terms of neighborhoods.

Proposition 2.3. Let S ⊂ X and x ∈ S. For ε > 0, let

Bε(x) := {y | ∥y − x∥ < ε}.
Then IT∞(S, x) = Ω(S, x), where

Ω(S, x) := {y | ∀z ∈ T (S, x), ∃ε > 0 such that ∀λ > 0, t ∈ (0, ε), v ∈ Bε(0)

with x+ t(z + v) ∈ S, ∃t′ ∈ (0, λ) with x+ t′(z + v + y +Bε(0)) ⊂ S }.
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Proof. To show Ω(S, x) ⊂ IT∞(S, x), suppose y ∈ Ω(S, x). Let xj →S x, tj → 0+

with zj := (xj − x)/tj → z ∈ T (S, x), and let yj → y. There exists ε > 0 such that
for all λ > 0 and for all t ∈ (0, ε), v ∈ Bε(0) with x + t(z + v) ∈ S, there exists
t′ ∈ (0, λ) with x+ t′(z + v + y +Bε(0)) ⊂ S.

Let vj := zj − z. For j large enough, we have vj ∈ Bε(0), tj ∈ (0, ε), and
yj − y ∈ Bε(0). Moreover, for each j, x + tj(z + vj) = xj ∈ S. So for all j large
enough, there exists tj

′ ∈ (0, 1/j) such that

x+ tj
′(yj+(xj−x)/tj) = x+ tj

′(z+vj+y+yj−y) ∈ x+ tj
′(z+vj+y+Bε(0)) ⊂ S.

Therefore y ∈ IT∞(S, x).
To prove the opposite inclusion, suppose y /∈ Ω(S, x). Then there exists z ∈

T (S, x) such that for all ε > 0, there exist λ > 0, t ∈ (0, ε), and v ∈ Bε(0) with
x+ t(z + v) ∈ S such that for all t′ ∈ (0, λ), there exists v′ ∈ Bε(0) with

x+ t′(z + v + y + v′) /∈ S.

To show that y /∈ IT∞(S, x), let tj
′ → 0+ and N a natural number. For ε = 1/N ,

there exist λN > 0, tN ∈ (0, 1/N), and vN ∈ B1/N (0) with x+ tN (z+ vN ) ∈ S such
that for all t′ ∈ (0, λN ), there exists vN

′ ∈ B1/N (0) with x+ t′(z+vN +y+vN
′) /∈ S.

Now let j(0) = 1, and define j(N) for each natural number N to be a natural
number such that

• j(N) ≥ N ;
• j(N) > j(N − 1);
• tj(N)

′ ∈ (0, λN ).

Let tj(N) = tN ∈ (0, 1/N), vj(N) = vN ∈ B1/N (0) with x+ tj(N)(z + vj(N)) ∈ S and
vj(N)

′ ∈ B1/N (0) such that

x+ tj(N)
′(z + vj(N) + y + vj(N)

′) /∈ S.

For j ∈ (j(N − 1), j(N)), let tj = tj(N), vj = vj(N), vj
′ = vj(N)

′. Define xj =

x + tj(z + vj), y
j = y + vj

′. Then tj → 0+, xj ∈ S, (xj − x)/tj → z, and for each
j = j(N),

x+ tj
′(yj + (xj − x)/tj) = x+ tj

′(z + vj + y + vj
′) /∈ S.

Therefore y /∈ IT∞(S, x). □

The following fact follows quickly from Proposition 2.3.

Corollary 2.4. Let S ⊂ X and x ∈ S. Then IT∞(S, x) is an open set.

Proof. Let y ∈ IT∞(S, x) = Ω(S, x). There exists ε > 0 such that for all λ > 0
and for all t ∈ (0, ε), v ∈ Bε(0) with x + t(z + v) ∈ S, there exists t′ ∈ (0, λ) with
x + t′(z + v + y + Bε(0)) ⊂ S. Let y′ ∈ y + Bε/2(0), z ∈ T (S, x), λ > 0. Let
t ∈ (0, ε/2), v ∈ Bε/2(0) with x+ t(z + v) ∈ S. Then there exists t′ ∈ (0, λ) with

x+ t′(z + v + y′ +Bε/2(0)) ⊂ x+ t′(z + v + y +Bε(0)) ⊂ S.

Therefore y′ ∈ IT∞(S, x). We conclude that y ∈ int IT∞(S, x), which means that
IT∞(S, x) is open. □
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It is instructive to compare IT∞ with the interior Clarke tangent cone

IC(S, x) = {y | ∀xj →S x,∀tj → 0+, ∀yj → y, xj + tjy
j ∈ S for large enough j}.

Taking tj
′ = tj , we can see that IC(S, x) ⊂ IT∞(S, x), which means in particular

that IT∞(S, x) is nonempty whenever IC(S, x) is nonempty. Sets for which IC(S, x)
is nonempty are said to be “epi-Lipschitzian at x” [8, Theorem 3; 9, pp. 20-21].

We next present some simple calculus rules involving the contingent and adja-
cent cones and their convex kernels. Proposition 2.5 gives information about the
relationships between closed tangent cones and their corresponding interior cones.
For S ⊂ X and x ∈ S, we define interior cones corresponding to the contingent and
adjacent cones by

IT (S, x) := {z ∈ X | ∃ tj → 0+ such that ∀zj → z, x+ tjz
j ∈ S for large enough j }

and

IA(S, x) := {z ∈ X | ∀ tj → 0+,∀ zj → z, x+ tjz
j ∈ S for large enough j },

respectively.

Proposition 2.5. Let S ⊂ X and x ∈ S. Then

(a) T (S, x) + IT∞(S, x) ⊂ IT (S, x).
(b) T∞(S, x) + IT∞(S, x) ⊂ IT∞(S, x).
(c) A(S, x) + IA∞(S, x) ⊂ IA(S, x).
(d) A∞(S, x) + IA∞(S, x) ⊂ IA∞(S, x).

Proof. To establish (a), suppose y ∈ T (S, x), w ∈ IT∞(S, x). There exist tj → 0+,
yj → y with x+ tjy

j ∈ S. Let xj := x+ tjy
j . Then xj →S x and (xj−x)/tj = yj →

y. Since w ∈ IT∞(S, x),∃tj ′ → 0+ such that ∀wj → w, x+ tj
′(wj+(xj−x)/tj) ∈ S

for large enough j. Let bj → y + w. Then bj − yj → w. Thus

x+tj
′bj = x+tj

′(bj−yj+yj) = x+tj
′(bj−yj+(xj−x)/tj) ∈ S for j large enough.

Therefore y + w ∈ IT (S, x).
To prove (b), suppose that y ∈ T∞(S, x), w ∈ IT∞(S, x). Let xj →S x, tj → 0+

with (xj − x)/tj convergent. There exist tj
′ → 0+ and yj → y such that zj :=

x+ tj
′(yj +(xj −x)/tj) ∈ S. Since zj →S x and (zj −x)/tj

′ converges, there exists
tj

′′ → 0+ such that ∀wj → w, x+ tj
′′(wj + (zj − x)/tj

′) ∈ S for j large enough. Let
bj → y + w. Since bj − yj converges to w,

x+ tj
′′(bj + (xj − x)/tj) = x+ tj

′′(bj − yj + (zj − x)/tj
′) ∈ S for j large enough.

So y + w ∈ IT∞(S, x).
Parts (c) and (d), which are stated in Propositions 4.3 and 4.6 of [6], have proofs

analogous to those of (a) and (b). □
Note that since IT∞(S, x) ⊂ T∞(S, x) and IA∞(S, x) ⊂ A∞(S, x), parts (b) and

(d) of Proposition 2.5 imply that

IT∞(S, x) + IT∞(S, x) ⊂ IT∞(S, x)

and
IA∞(S, x) + IA∞(S, x) ⊂ IA∞(S, x),
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from which it follows that IT∞(S, x) and IA∞(S, x) are always convex.

Corollary 2.6. Let S ⊂ X and x ∈ S. If IT∞(S, x) ̸= ∅, then T (S, x) = cl IT (S, x)
and T∞(S, x) = cl IT∞(S, x). Analogously, if IA∞(S, x) ̸= ∅, then A(S, x) =
cl IA(S, x) and A∞(S, x) = cl IA∞(S, x).

Proof. Since IT (S, x) ⊂ T (S, x) and T (S, x) is closed, it follows that cl IT (S, x) ⊂
T (S, x). To prove the opposite inclusion, suppose that IT∞(S, x) ̸= ∅, and let
y ∈ T (S, x), v ∈ IT∞(S, x). Then for all t > 0, y + tv ∈ IT (S, x), implying that
y ∈ cl IT (S, x). The proofs of the other assertions are analogous to this one. □
Corollary 2.7. Let S ⊂ X and x ∈ S. If IT∞(S, x) ̸= ∅, then IT∞(S, x) =
intT∞(S, x). Similarly, if IA∞(S, x) ̸= ∅, then IA∞(S, x) = intA∞(S, x).

Proof. Since IT∞(S, x) ⊂ T∞(S, x) and IT∞(S, x) is open, we have IT∞(S, x) ⊂
intT∞(S, x). To prove the opposite inclusion, let y ∈ intT∞(S, x). Since IT∞(S, x) ̸=
∅, there exists z ∈ IT∞(S, x). Choose λ > 0 small enough so that for all t ∈ (0, λ),
y − tz ∈ T∞(S, x). Then by Proposition 2.5(b), for all t ∈ (0, λ) it follows that

y = y − tz + tz ∈ T∞(S, x) + IT∞(S, x) ⊂ IT∞(S, x).

Hence intT∞(S, x) ⊂ IT∞(S, x), completing the proof of the first assertion. The
proof of the second assertion is analogous (see Corollary 4.4 in [6]). □

We next utilize Proposition 2.5 to present conditions under which inclusions (1.2)
and (1.3) are satisfied.

Theorem 2.8. Let S1, S2 ⊂ X and x ∈ S1 ∩ S2.

(a) If A∞(S1, x) ∩ IT∞(S2, x) ̸= ∅ or IA∞(S1, x) ∩ T∞(S2, x) ̸= ∅, then
(2.1) A(S1, x) ∩ T (S2, x) ⊂ T (S1 ∩ S2, x) ⊂ T (S1, x) ∩ T (S2, x).

(b) If A∞(S1, x) ∩ IA∞(S2, x) ̸= ∅, then
(2.2) A(S1, x) ∩A(S2, x) = A(S1 ∩ S2, x).

Proof. In (a) the right-hand inclusion always holds. To prove the left-hand inclusion,
suppose that A∞(S1, x) ∩ IT∞(S2, x) ̸= ∅, and let y ∈ A(S1, x) ∩ T (S2, x), v ∈
A∞(S1, x) ∩ IT∞(S2, x). Then for all t > 0,

y + tv ∈ A(S1, x) ∩ IT (S2, x)

by Proposition 2.5 (a). Since the inclusion A(S1, x) ∩ IT (S2, x) ⊂ T (S1 ∩ S2, x) is
always satisfied, we then have y + tv ∈ T (S1 ∩ S2, x). It follows that y ∈ clT (S1 ∩
S2, x), and since T (S1 ∩ S2, x) is closed, the left-hand inclusion in (a) is true.

Similarly, suppose that IA∞(S1, x) ∩ T∞(S2, x) ̸= ∅, and let y ∈ A(S1, x) ∩
T (S2, x), v ∈ IA∞(S1, x) ∩ T∞(S2, x). Then for all t > 0,

y + tv ∈ IA(S1, x) ∩ T (S2, x)

by Proposition 2.5 (c). It is easy to see that IA(S1, x) ∩ T (S2, x) ⊂ T (S1 ∩ S2, x),
and so y + tv ∈ T (S1 ∩ S2, x). Then y ∈ clT (S1 ∩ S2, x) = T (S1 ∩ S2, x), and again
the left-hand inclusion in (a) is true. The proof of (b) is similar. □

The inclusions in Theorem 2.8 also have been derived under metric subregularity
conditions [2]. The following result is a special case of [2, Theorem 3.1]:
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Theorem 2.9. Let X be a real Banach space, and let S1, S2 ⊂ X be closed sets
with x ∈ S1 ∩ S2. Suppose that there exist δ > 0, M > 0, such that for all (y, z) ∈
B((x, x), δ) ∩ (S1 × S2),

(2.3) d((y, z), {(w,w) |w ∈ S1 ∩ S2} ) ≤ M∥y − z∥.
Then (2.1) and (2.2) hold.

We will contrast (2.3) with the hypotheses of Theorem 2.8 in the next two ex-
amples. In these examples, for (y, z) ∈ X × X in (2.3), we will use the norm
∥(y, z)∥ := ∥y∥+ ∥z∥, following [2]. Our first example illustrates the fact that there
are instances in which the hypotheses of Theorem 2.9 are satisfied but those of
Theorem 2.8 are not.

Example 2.10. Let X := R2, S1 := {(y1, 0) | y1 ∈ R}, S2 := {(0, z2) | z2 ∈ R},
x := (0, 0). In this example, T (Si, x) = A(Si, x) = Si for i = 1, 2, and T (S1∩S2, x) =
A(S1 ∩ S2, x) = {(0, 0)}, so (2.1) and (2.2) hold. For (y1, 0) ∈ S1, (0, z2) ∈ S2,
inequality (2.3) reduces to

|y1|+ |z2| ≤ M
√
y12 + z22,

which is satisfied with M =
√
2. On the other hand, IT∞(Si, x) = IA∞(Si, x) = ∅,

so the hypotheses of Theorem 2.8 are not satisfied.

There are other examples in which the hypotheses of Theorem 2.8 are satisfied
but the metric subregularity condition (2.3) does not hold.

Example 2.11. Let X := R2, S1 := {(y1, y2) | y2 ≤ −y1} ∪ {(y,−y2) | y = 2−n, n =
1, 2, 3, . . . }, S2 := {(z1, z2) | z1 ≤ 0, z2 ≥ z1} ∪ {(z1, z2) | z1 ≥ 0, z2 ≥ z1

2}, and
x := (0, 0). In this example A(S1, x) = {(y1, y2) | y2 ≤ −y1} and

T (S2, x) = A(S2, x) = {(z1, z2) | z1 ≤ 0, z2 ≥ z1} ∪ {(z1, z2) | z1 ≥ 0, z2 ≥ 0},
while T (S1 ∩ S2, x) = A(S1 ∩ S2, x) = S1 ∩ S2, so (2.1) and (2.2) hold. Moreover,
A∞(S1, x) = A(S1, x) and

IT∞(S2, x) = IA∞(S2, x) = {(z1, z2) | z1 ≤ 0, z2 > 0} ∪ {(z1, z2) | z1 ≥ 0, z2 > z1},
so that conditions

(2.4) A∞(S1, x) ∩ IT∞(S2, x) ̸= ∅
and

(2.5) A∞(S1, x) ∩ IA∞(S2, x) ̸= ∅
are satisfied. On the other hand, if we take y = (2−n,−2−2n) and z = (2−n, 2−2n)
in Theorem 2.9, inequality (2.3) reduces to

2n
√
1 +

1

22n
≤ M,

which is not satisfied for any real number M .

We can extend Theorem 2.8 inductively to a situation involving any finite number
of sets by making use of the following lemma.
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Lemma 2.12. Let Si, 1 ≤ i ≤ n be subsets of X and x ∈ ∩n
i=1Si. Then

(2.6) A∞(S1, x) ∩ ∩n
i=2IA

∞(Si, x) ⊂ A∞(∩n
i=1Si, x)

and

(2.7) ∩n
i=1IA

∞(Si, x) ⊂ IA∞(∩n
i=1Si, x).

Proof. To prove (2.6), let y ∈ A∞(S1, x) ∩ ∩n
i=2IA

∞(Si, x), and let xj →∩n
i=1Si x,

tj → 0+ with (xj − x)/tj → w ∈ A(∩n
i=1Si, x). Then w ∈ A(S1, x), so there

exists yj → y with xj + tjy
j ∈ S1. For each i = 2, . . . , n we have w ∈ A(Si, x),

so xj + tjy
j ∈ Si for large enough j. Therefore we have for large enough j that

xj + tjy
j ∈ ∩n

i=1Si, which means that y ∈ A∞(∩n
i=1Si, x). The proof of (2.7) is

analogous to this one. □

Theorem 2.13. Let Ei, 1 ≤ i ≤ n be subsets of X and x ∈ ∩n
i=1Ei.

(a) If

(2.8) A∞(E1, x) ∩ ∩n−1
i=2 IA

∞(Ei, x) ∩ IT∞(En, x) ̸= ∅

or

(2.9) ∩n−1
i=1 IA

∞(Ei, x) ∩ T∞(En, x) ̸= ∅,

then

(2.10) ∩n−1
i=1 A(Ei, x) ∩ T (En, x) ⊂ T (∩n

i=1Ei, x) ⊂ ∩n
i=1T (Ei, x).

(b) If

(2.11) A∞(E1, x) ∩n
i=2 IA

∞(Ei, x) ̸= ∅,

then

(2.12) ∩n
i=1A(Ei, x) = A(∩n

i=1Ei, x).

Proof. The right-hand inclusion in (2.10) is easily seen to be true. In deriving the
remaining inclusions, we begin with the case where n = 3. To prove (a), suppose
that (2.8) holds, and let S1 = E1 ∩ E2, S2 = E3.. By Lemma 2.12, A∞(E1, x) ∩
IA∞(E2, x) ⊂ A∞(S1, x), so (2.8) implies that A∞(S1, x) ∩ IT∞(S2, x) ̸= ∅. By
Theorem 2.8(a), A(E1 ∩E2, x)∩T (E3, x) ⊂ T (E1 ∩E2 ∩E3, x). It also follows from
(2.8) that

A∞(E1, x) ∩ IA∞(E2, x) ̸= ∅,
so by Theorem 2.8(b), A(E1, x) ∩A(E2, x) = A(E1 ∩E2, x). Therefore (2.10) holds
for n = 3. The proofs of the remaining assertions when n = 3 are similar.

Now proceed inductively, assuming that (a) and (b) are true for the case of n− 1
sets. To prove (a), suppose that (2.8) holds, and let S1 = ∩n−1

i=1 Ei, S2 = En. By
Lemma 2.12,

A∞(E1, x) ∩ ∩n−1
i=2 IA

∞(Ei, x) ⊂ A∞(∩n−1
i=1 Ei, x),

and so (2.8) implies that

A∞(S1, x) ∩ IT∞(S2, x) ̸= ∅.
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By Theorem 2.8(a),

A(∩n−1
i=1 Ei, x) ∩ T (En, x) ⊂ ∩n

i=1T (Ei, x).

Moreover, since (2.8) also gives

A∞(E1, x) ∩ ∩n−1
i=2 IA

∞(Ei, x) ̸= ∅,
we have by the induction hypothesis in part (b) that

∩n−1
i=1 A(Ei, x) = A(∩n−1

i=1 Ei, x).

Therefore (2.10) holds. Again, the proofs of the remaining assertions are similar. □

3. Epiderivative calculus

Convex kernels and their corresponding interior cones can also be used in devel-
oping the calculus of directional derivative functions associated with the contingent
and adjacent cones. To explain how this is done, we begin by reviewing the concept
of the epiderivative associated with a tangent cone [1].

Let R denote some concept of tangent cone. (Examples defined in this paper
include R = T,A, P, IT, IA, T∞, A∞, IT∞, IA∞.) Suppose that f : X → R̄ is finite
at x. We define the R-epiderivative of f at x in the direction y ∈ X by

(3.1) fR(x; y) = inf{r | (y, r) ∈ R(epi f, (x, f(x)))}.
Notice that in cases where R is always a closed cone (e.g., R = T,A, P, T∞, A∞),

then (3.1) implies that

(3.2) epi fR(x; ·) = R(epi f, (x, f(x))).

The case of the indicator function is also worth noting. When C ⊂ X and x ∈ C,
we have

iC
R(x; y) = inf{r | (y, r) ∈ R(C × [0,+∞), (x, 0))} = iR(C,x)(y) ∀y ∈ X

for R = T,A, P, IT, IA, T∞, A∞, IT∞, IA∞.
More explicit formulae for a number of epiderivatives can readily be obtained [1,

Chapter 6; 11, Theorem 5.4]. For example,

fT (x; y) = sup
ϵ>0

sup
λ>0

inf
0<t<λ

inf
∥v−y∥<ϵ

(f(x+ tv)− f(x))/t;

fA(x; y) = sup
ϵ>0

inf
λ>0

sup
0<t<λ

inf
∥v−y∥<ϵ

(f(x+ tv)− f(x))/t;

f IA(x; y) = inf
ϵ>0

inf
λ>0

sup
0<t<λ

sup
∥v−y∥<ϵ

(f(x+ tv)− f(x))/t;

f IT (x; y) = inf
ϵ>0

sup
λ>0

inf
0<t<λ

sup
∥v−y∥<ϵ

(f(x+ tv)− f(x))/t.

The results of §2 can be applied to derive calculus rules for epiderivatives of
pointwise maxima of functions. Let fi : X → R̄, i = 1, · · ·m, and I = {1, · · · ,m}.
Define

(3.3) f(x) = max
i∈I

fi(x).
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It follows quickly from (3.3) that

(3.4) epi f = ∩i∈I epi fi.

Now define
I(x) = {i ∈ I | f(x) = fi(x)}.

Then if i ∈ I\I(x) and fi is finite and continuous at x, we have (x, f(x)) ∈ int epi fi,
which implies that

(3.5) R(epi fi, (x, f(x))) = X × R
for R = T,A, P, IT, IA, T∞, A∞, IT∞, IA∞.

Keeping (3.4) and (3.5) in mind, we can deduce the following result from Theorem
2.13.

Theorem 3.1. Suppose that each fi is finite at x, and that fi is continuous at x
for all i ∈ I\I(x).

(a) If there exist j, k ∈ I(x) such that

(3.6) dom fj
A∞

(x; ·) ∩ dom fk
IT∞

(x; ·) ∩ ∩i∈I(x)\{j,k} dom fi
IA∞

(x; ·) ̸= ∅,
then

(3.7) fT (x; y) ≤ max{fkT (x; y), fiA(x; y), i ∈ I(x)\{k}} ∀y ∈ X.

(b) If there exists k ∈ I(x) such that

(3.8) dom fk
T∞

(x; ·) ∩ ∩i∈I(x)\{k} dom fi
IA∞

(x; ·) ̸= ∅,
then

(3.9) fT (x; y) ≤ max{fkT (x; y), fiA(x; y), i ∈ I(x)\{k}} ∀y ∈ X.

(c) If there exists j ∈ I(x) such that

(3.10) dom fj
A∞

(x; ·) ∩ ∩i∈I(x)\{j} dom fi
IA∞

(x; ·) ̸= ∅,
then

(3.11) fA(x; y) = max
i∈I(x)

fi
A(x; y) ∀y ∈ X.

Proof. To prove (a), suppose that z is an element of the intersection of sets in (3.6).
Then there exists a real number r such that

(z, r) ∈ A∞(epi fj , (x, f(x))) ∩ IT∞(epi fk, (x, f(x)))

∩ ∩i∈I(x)\{j,k}IA
∞(epi fi, (x, f(x))).

By Theorem 2.13, we have

T (epi fk, (x, f(x))) ∩ ∩i∈I(x)\{k}A(epi fi, (x, f(x))) ⊂ T (∩i∈I(x) epi fi, (x, f(x))).

By (3.4) and (3.5),

T (epi f, (x, f(x))) = T (∩i∈I epi fi, (x, f(x))) = T (∩i∈I(x) epi fi, (x, f(x))),

and so

T (epi fk, (x, f(x))) ∩i∈I(x)\{k} A(epi fi, (x, f(x))) ⊂ T (epi f, (x, f(x))),

which implies (3.7). The proofs of (b) and (c) are analogous to the proof of (a). □
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To put Theorem 3.1 in context, it is helpful to keep in mind that if f is Lips-
chitzian near x, then dom fR(x; ·) = X for R = T,A, P, IT, IA, T∞, A∞, IT∞, IA∞.
As a result, Theorem 3.1 covers the case where the fi are locally Lipschitzian, along
with much more.

We can also develop epiderivative calculus rules for sums of functions. We start
with some basic inequalities that follow quickly from the definitions of the relevant
tangent cones.

Proposition 3.2. Let f1 : X → R̄, f2 : X → R̄ be finite at x ∈ X. Then ∀y ∈ X,

(3.12) (f1 + f2)
T (x; y) ≤ f1

A(x; y) + f2
IT (x; y).

(3.13) (f1 + f2)
A(x; y) ≤ f1

A(x; y) + f2
IA(x; y).

Next we make use of Propositions 3.2 and 2.5 to derive sum rules for contingent
and adjacent epiderivatives.

Theorem 3.3. Let f1 : X → R̄, f2 : X → R̄ be finite at x ∈ X.

(a) If dom f1
A∞

(x; ·)∩dom f2
IT∞

(x; ·) ̸= ∅ or dom f1
IA∞

(x; ·)∩dom f2
T∞

(x; ·) ̸=
∅, then ∀y ∈ X,

(3.14) (f1 + f2)
T (x; y) ≤ f1

A(x; y) + f2
T (x; y).

(b) If dom f1
A∞

(x; ·) ∩ dom f2
IA∞

(x; ·) ̸= ∅, then ∀y ∈ X,

(3.15) (f1 + f2)
A(x; y) ≤ f1

A(x; y) + f2
A(x; y).

Proof. To prove (a), suppose that f1
A(x; y) + f2

T (x; y) ≤ r. Then there exist
r1, r2 ∈ R with r1 + r2 ≤ r and f1

A(x; y) ≤ r1, f1
T (x; y) ≤ r2. It follows that

(y, r1) ∈ A(epi f1, (x, f1(x))) and (y, r2) ∈ T (epi f2, (x, f2(x))). If

dom f1
A∞

(x; ·) ∩ dom f2
IT∞

(x; ·) ̸= ∅,
there exist d ∈ X, s ∈ R such that

(d, s) ∈ A∞(epi f1, (x, f1(x))) ∩ IT∞(epi f2, (x, f2(x))).

So for all t > 0,the definition of A∞ and Proposition 2.5(a) imply that (y, r1) +
t(d, s) ∈ A(epi f1, (x, f1(x))) and (y, r2) + t(d, s) ∈ IT (epi f2, (x, f2(x))). By (3.12),

(f1 + f2)
T (x; y + td) ≤ f1

A(x; y + td) + f2
IT (x; y + td) ≤ r1 + r2 + 2ts,

so (y + td, r1 + r2 + 2ts) ∈ T (epi(f1 + f2), (x, (f1 + f2)(x))). Since T is closed,
(y, r1 + r2) ∈ T (epi(f1 + f2), (x, (f1 + f2)(x))), and therefore (f1 + f2)

T (x; y) ≤ r.
We conclude that (3.14) holds. The proofs of the remaining assertions are analogous
to this one. □

Chain rules for contingent and adjacent epiderivatives can also be developed via
the approach of this paper, as in [12].

We close this section with a technical result that will come into play in §4. The
analogous result for the epiderivatives associated with A∞ and IA∞ is given in [5,
Theorem 2.8].

Proposition 3.4. Let f : X → R ∪ {+∞} be finite at x ∈ X. If there exists
y ∈ dom f IT∞

(x; ·) such that −∞ < fT∞
(x; y), then
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(a) fT∞
(x; ·) is continuous on the interior of its domain, which is nonempty;

and
(b) dom f IT∞

(x; ·) = int dom fT∞
(x; ·).

Proof. We begin by showing that (a) implies (b). Suppose that (a) holds, and let
y ∈ dom f IT∞

(x; ·). Then there exists r ∈ R with (y, r) ∈ IT∞(epi f, (x, f(x))).
By Corollary 2.7, (y, r) ∈ intT∞(epi f, (x, f(x))), and so y ∈ int dom fT∞

(x; ·).
Therefore dom f IT∞

(x; ·) ⊂ int dom fT∞
(x; ·).

Now let y ∈ int dom fT∞
(x; ·). By (a), there exists r ∈ R such that fT∞

(x; ·) is
bounded above by r on a neighborhood of y, so that (y, r) ∈ intT∞(epi f, (x, f(x))) =
IT∞(epi f, (x, f(x))). Therefore y ∈ dom f IT∞

(x; ·) and int dom fT∞
(x; ·) ⊂

dom f IT∞
(x; ·).

To prove part (a), let y ∈ dom f IT∞
(x; ·) with −∞ < fT∞

(x; y) ≤ f IT∞
(x; y) <

r. By [3, Proposition 2.5, p. 12], it suffices to show that f IT∞
(x; ·) is bounded

above on a neighborhood of y. Let (z, s) ∈ T (epi f, (x, f(x))). Since (y, r) ∈
IT∞(epi f, (x, f(x))), by Proposition 2.3 there exists ε > 0 such that for all λ > 0,
t ∈ (0, ε), and (v, s′) ∈ Bε(0)× (−ε, ε) with (x, f(x)) + t(z+ v, s+ s′) ∈ epi f , there
exists t′ ∈ (0, λ) such that

(x, f(x)) + t′(z + v + y +Bε(0), s+ s′ + r + (−ε, ε)) ⊂ epi f.

Let (ŷ, r̂) ∈ Bε/2(y) × (r − ε/2, r + ε/2). Let λ > 0. Suppose (v, s′) ∈ Bε/2(0) ×
(−ε/2, ε/2) with (x, f(x)) + t(z + v, s+ s′) ∈ epi f . Then with t′ ∈ (0, λ) chosen as
above, we have

(x, f(x)) + t′(z + v + ŷ +Bε/2(0), s+ s′ + r̂ + (−ε/2, ε/2))

⊂ (x, f(x)) + t′(z + v + y +Bε(0), s+ s′ + r + (−ε, ε)) ⊂ epi f.

Therefore (ŷ, r̂) ∈ IT∞(epi f, (x, f(x))), and it follows that f IT∞
(x; y′) < r for all

y′ ∈ y +Bε/2(0). □

4. Necessary optimality conditions for a nonsmooth program

We next consider the mathematical program

(4.1) min{f(x) | gi(x) ≤ 0, i ∈ J, x ∈ C},

where f, gi : X → R̄, J = {1, · · · ,m}, and C ⊂ X. In this section, we establish
necessary conditions for local optimality in problem (4.1). These conditions will be
stated in terms of subdifferentials associated with closed convex tangent cones that
are contained in the contingent or adjacent cone.

Definition 4.1. (a) Let R1 and R2 be tangent cones. We will say that R1 ⊂ R2 if
R1(S, x) ⊂ R2(S, x) for all S ⊂ X and x ∈ S.
(b) We will say that a tangent cone R has a certain property (e.g., “R is closed”,
or “R is convex”) if R(S, x) has that property for all S ⊂ X and x ∈ S.
(c) Let f : X → R̄ be finite at x ∈ X, and let R be a convex tangent cone such that
fR(x; ·) is proper. We define the R-subdifferential of f at x by

∂Rf(x) := {p ∈ X∗ | ⟨p, y⟩ ≤ fR(x; y) ∀y ∈ X}.
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Remark 4.2. (a) In Definition 4.1(c), since fR(x; ·) is proper, we have fR(x; 0) = 0.
This means that

∂Rf(x) = {p ∈ X∗ | ⟨p, y⟩ ≤ fR(x; y)− fR(x; 0) ∀y ∈ X},
and so ∂Rf(x) is ∂(fR(x; ·))(0), the subdifferential of the convex function fR(x; ·)
at 0.
(b) Closed convex tangent cones contained in the contingent cone include, in par-
ticular, T∞, P , and the Clarke tangent cone

C(S, x) := {z ∈ X | ∀xj →S x,∀tj → 0+, ∃{zj} → z with xj + tjz
j ∈ S}.

Closed convex tangent cones contained in the adjacent cone include A∞, P , and C.

In deriving our optimality condtions, we will need to work with expressions of
the form λfR(x; y), where λ ≥ 0. When λ = 0, we will follow the convention
that 0fR(x; y) = idom fR(x;·)(y), so that ∂R(0f)(x) = (dom fR(x; ·))◦. The equa-

tion ∂R(λf)(x) = λ∂Rf(x) will then hold for all λ ≥ 0 if we define 0∂f(x) to be
(dom fR(x; ·))◦. Keeping this convention in mind, we can state the following result.

Theorem 4.3. Let x̄ be a local minimizer for (4.1), and define I(x̄) = {i ∈
J | gi(x̄) = 0}. Assume that gi is continuous at x̄ for each i ∈ J\I(x̄), that fT (x̄; ·)
and gi

A(x̄; ·), i ∈ I(x̄), are proper, and that

(4.2) dom f IT∞
(x̄; ·) ∩A∞(C, x̄) ∩ ∩i∈I(x̄) dom gi

IA∞
(x̄; ·) ̸= ∅.

Suppose that R0 ⊂ T , R,Ri ⊂ A for i ∈ I(x̄), are convex tangent cones containing
the origin. There there exist λi ≥ 0, i ∈ I(x̄) ∪ {0}, not all equal to zero, such that

(4.3) 0 ∈ λ0∂
R0f(x̄) +

∑
i∈I(x̄)

λi∂
Rigi(x̄) + (R(C, x̄))◦.

If in addition

(4.4) dom f IT∞
(x̄; )̇ ∩A∞(C, x̄) ∩ ∩i∈I(x̄){y | giIA

∞
(x̄; y) < 0} ̸= ∅,

then (4.3) holds with λ0 = 1.

Proof. For S ⊂ X, x ∈ S, let D0(S, x) = cl(R0(S, x) + T∞(S, x)), D(S, x) =
cl(R(S, x) + A∞(S, x)), and Di(S, x) = cl(Ri(S, x) + A∞(S, x)), i ∈ I(x̄). Then D
and each Di are nonempty closed, convex tangent cones with R0 ⊂ D0, T

∞ ⊂ D0,
R ⊂ D, A∞ ⊂ D, and Ri ⊂ Di, A

∞ ⊂ Di for i ∈ I(x̄). In addition, we have
D0 ⊂ T , since

D0(S, x) ⊂ cl(T (S, x) + T∞(S, x)) = clT (S, x) = T (S, x).

Similarly, D ⊂ A and Di ⊂ A, i ∈ I(x̄).
Next define

F (x) = max{f(x) + iC(x)− f(x̄), g1(x), . . . , gm(x)}.
Since x̄ is a local minimizer of (4.1), x̄ is also a local minimizer of F . Then for all
y ∈ X, we have by (4.2) and Theorem 3.1 that

0 ≤ F T (x̄; y) ≤ max{(f + iC)
T (x̄; y), gi

A(x̄; y), i ∈ I(x̄)}
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≤ max{fT (x̄; y) + iA(C,x̄)(y), gi
A(x̄; y), i ∈ I(x̄)} (by Theorem 3.3)

≤ max{fD0(x̄; y) + iD(C,x̄)(y), gi
Di(x̄; y), i ∈ I(x̄)}.

Now let q = |I(x̄)| + 1, where |I(x̄)| is the cardinality of I(x̄). Define sets S1 =
{z ∈ Rq | z ≤ 0} and

S2 = {z ∈ Rq | (fD0(x̄; y) + iD(C,x̄)(y), gi
Di(x̄; y), i ∈ I(x̄)) ≤ z},

where ≤ denotes the coordinate-wise ordering on Rq. Note that S1 and S2 are
convex cones with intS1 ∩ S2 = ∅, so we may separate them with a hyperplane.
Then there exist λi ∈ R, i ∈ {0} ∪ I(x̄), at least one of which is nonzero, such that
for all z = (zi) ∈ S1 and y ∈ X,

(4.5)
∑

i∈{0}∪I(x̄)

λizi ≤ 0 ≤ λ0((f
D0(x̄; y) + iD(C,x̄)(y)) +

∑
i∈I(x̄)

λigi
Di(x̄; y).

The left-hand inequality in (4.5) implies that each λi ≥ 0. The right-hand inequality
gives

(4.6) 0 ∈ ∂(λ0(f
D0(x̄; ·) + iD(C,x̄)(·)) +

∑
i∈I(x̄)

λigi
Di(x̄; ·))(0).

Using Proposition 3.4 and [5, Theorem 2.8] along with (4.2), we note that fD0(x̄; ·)
and each gi

Di(x̄; ·) are continuous on the interiors of their domains with

(4.7) D(C, x̄) ∩ int dom fD0(x̄; ·) ∩ ∩i∈I(x̄) int dom gi
Di(x̄; ·) ̸= ∅.

We may then apply a formula for subdifferentials of sums of convex functions [3, p.
26] to obtain

0 ∈ ∂(λ0f)
D0(x̄; ·)(0) +

∑
i∈I(x̄)

∂(λigi)
Di(x̄; ·)(0) + (D(C, x̄))◦

= λ0∂
D0f(x̄) +

∑
i∈I(x̄)

λi∂
Digi(x̄) + (D(C, x̄))◦

⊂ λ0∂
R0f(x̄) +

∑
i∈I(x̄)

λi∂
Rigi(x̄) + (R(C, x̄))◦,

so that (4.3) holds.
Finally, suppose that (4.4) holds, and let v be an element of the set in (4.4). If

λ0 = 0 in (4.3), then (4.5) implies that

(4.8) 0 ≤
∑

i∈I(x̄)

λigi
Di(x̄; y) ∀y ∈ D(C, x̄).

Since v ∈ A∞(C, x̄) ⊂ D(C, x̄) and at least one λi > 0, (4.8) gives

0 ≤
∑

i∈I(x̄)

λigi
Ri(x̄; v) < 0,
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a contradiction. Therefore λ0 > 0, and we conclude that (4.3) is satisfied with
λ0 = 1. □

One notable feature of Theorem 4.3 is the fact that hypotheses (4.2) and (4.4)
are independent of the choice of R and Ri. It is also important to observe that
(4.2) and (4.4) do not require f or gi, i ∈ I(x̄), to be locally Lipschitzian. Actually,
Theorem 4.3 takes on a simple form in the locally Lipschitzian case.

Corollary 4.4. Let x̄ be a local minimizer for (4.1), where we assume that f and
each gi are Lipschitzian near x̄. Suppose that R0 ⊂ T , R,Ri ⊂ A for i ∈ I(x̄), are
convex tangent cones containing the origin. Then there exist λi ≥ 0, i ∈ I(x̄)∪{0},
not all equal to zero, such that

(4.9) 0 ∈ λ0∂
R0f(x̄) +

∑
i∈I(x̄)

λi∂
Rigi(x̄) + (R(C, x̄))◦.

If in addition

(4.10) A∞(C, x̄) ∩ ∩i∈I(x̄){y | giIA
∞
(x̄; y) < 0} ̸= ∅,

then (4.9) holds with λ0 = 1.

Proof. For a function h : X → R̄ that is finite at x and Lipschitzian near x,
domhR(x; ·) = X for R = T,A, IT, IA, T∞, A∞, IT∞, IA∞. Hence 0 is an element
of the intersection of (4.2), while (4.4) reduces to (4.10). □

Our direct characterization of the convex kernel of the contingent cone in Theorem
4.3 enables us to contribute to a calculus of tangent cones and epiderivatives begun
by Penot [6] in the 1980s. We believe that this calculus is worth revisiting and
investigating further. The theorems are valid for large classes of sets and functions
and do not require metric subregularity or local Lipschitz hypotheses.
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