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Convergence of bundle or trust region bundle methods requires that the objective
f admits a strict model. Models of locally Lipschitz functions were introduced
in [52] and may be understood as non-smooth substitutes for the first-order Taylor
expansion. Every model gives rise to a cutting plane oracle, hence to a trust region
or bundle method, and conversely, every cutting plane oracle generates a model as
its upper envelope, so both notions are closely related. Strictness of a model in the
non-smooth setting is the analogue to strict differentiability in the smooth setting.
Strictness of an oracle decides whether or not the corresponding bundle or trust
region method converges.

While the present work concentrates on theoretical convergence aspects, we have
applied non-convex non-smooth bundle and trust region methods successfully to
applications in mechanical contact problems, control and system theory, and op-
erations research. For instance [27] applies a bundle technique with downshift to
design a flight controller for a civil aircraft. In [23] a model-based bundle method
is used for partial eigenstructure assignment, with applications to a launcher in
atmospheric flight and to decoupling motions of a civil aircraft. In [8, 12, 58] the
model-based trust-region method is applied to H∞-control of infinite-dimensional
systems, including boundary control of PDEs. In [24] we use our model-based tech-
nique in a delamination study in destructive testing in the material sciences. A
non-smooth approach to reliable flight control is [6], where we also give a survey
of recent relevant non-smooth methods in control. In [25] a bundle method with
downshift is used to minimize the memory stored in a system, and an evacuation
scenario of a fairground in case of an emergency is solved. In [9, 10] a non-convex
spectral bundle method is used to solve bilinear matrix inequalities. This corre-
sponds to cases where an infinity of cutting planes arise simultaneously. In [63] a
frequency shaping control technique is developed using model-based bundling. De-
tails on how non-linear constraints are handled are given in [6, 27, 63]. The first
non-convex bundle method with convergence certificate under inexact subgradients
and function values is [50], where downshifted tangents are used. The model-based
trust-region bundle method has been used for parametric and mixed robust control,
one of the most challenging problems in feedback control design [1,2,7,11]. We have
also used the trust region bundle method within a branch-and-bound approach to
global optimization problems like computing the distance to instability of a con-
trolled system, see [56, 57]. All these techniques can be seen as special cases of the
present abstract framework.

The structure of the paper is as follows. In section 2 we discuss when a function
f admits a strict model. Section 3 introduces rules for cutting plane oracles and
relates them to models. We recall how cutting planes are used to build working
models. Section 4 presents the bundle trust region algorithm and its elements.
A major difference with classical trust regions occurs in our management of the
trust region radius. The central section 5 gives the global convergence proof for
the algorithm. In section 6 we show that splitting techniques, the proximal point
method, but also classical gradient oriented and quasi Newton methods are special
cases of our oracle based bundle trust region concept. Extensions to constraint
programs min{f(x) : c(x) ≤ 0, x ∈ C} can be obtained by similar techniques via
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suitable progress functions in the sense of [44–46], or [6, 21, 27, 63], or by multi-
objective methods [4, 5, 63].

2. The model concept

The basic tool in bundle and bundle trust-region methods is the cutting plane.
Its rationale [38, 39, 60] is that if an unsuccessful trial step y (called a null step) in
the neighborhood of the current serious iterate x is made, then a cutting plane to f
at y should be included in the working model in order to orient the search for a new
x+ away from y in the next trial. In the convex case cuts are simply tangents to
f at y, but for non-convex f , different ways to obtain cuts are needed. In order to
understand how cutting planes are generated, we shall need the notion of a model
of f near an iterate x, which can be considered as a non-smooth analogue of the
first-order Taylor expansion of f at x. In this chapter, the theoretical background
of the model concept is recalled.

2.1. Model axioms. Let f : Rn → R be a locally Lipschitz function. Following
[49,52], a function ϕ : Rn×Rn → R is called a model of f if it satisfies the following
properties:

(M1) ϕ(·, x) is convex, ϕ(x, x) = f(x), and ∂1ϕ(x, x) ⊂ ∂f(x).
(M2) If yk → x, then there exist ϵk → 0+ such that f(yk) ≤ ϕ(yk, x)+ ϵk∥yk −x∥.
(M3) If xk → x, yk → y, then lim supk→∞ ϕ(yk, xk) ≤ ϕ(y, x).

Remark 2.1. We may interpret ϕ(·, x) as a substitute for the first-order Taylor
expansion of f at x. This is highlighted by the fact that every locally Lipschitz
function f has the so-called standard model

ϕ♯(·, x) = f(x) + f◦(x, · − x),

where f◦(x, d) is the Clarke directional derivative at x in direction d. However, a
function f may have several models, so the notion of a model, unlike the Taylor
expansion, claims no uniqueness.

Remark 2.2. Composite functions f = ψ ◦ F with convex ψ and F of class C1

admit the so-called natural model ϕ(·, x) = ψ (F (x) + F ′(x)(· − x)), see [9,10,49,52].
Consequently, every lower-C2 function admits a strict model, because by [59] it can
be represented in the form f = ψ ◦ F on every bounded set.

Remark 2.3. When f is convex, its natural model is ϕ(·, x) = f . We say that
a convex function is its own natural model. Note that convex f have still their
standard model ϕ♯, which is different from f unless f is affine.

Proposition 2.4. (See [49, Lemmas 1,2]). The standard model ϕ♯ is the smallest
model of f , i.e., ϕ♯ ≤ ϕ for any other model ϕ of f .

Remark 2.5. The following operation on models is sometimes useful. Suppose f
has two models, ϕ1, ϕ2, then ϕ = max{ϕ1, ϕ2} is again a model. Equally useful is the
following. Suppose ϕ1, . . . , ϕm satisfy (M1) and (M3). Moreover, suppose ϕi satisfies
(M2) at points x ∈ Ωi such that Ω1 ∪ · · · ∪ Ωm = Rn. Then ϕ = max{ϕ1, . . . , ϕm}
is a model of f .
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Remark 2.6. There is another operation, which is more problematic. Suppose
f = f1 + f2 where fi has model ϕi. Then it would be convenient were ϕ = ϕ1 + ϕ2
a model of f . This fails in general due to axiom (M1). Indeed, we have ∂1ϕ(x, x) =
∂1ϕ1(x, x) + ∂1ϕ2(x, x) ⊂ ∂f1(x) + ∂f2(x), but unfortunately, ∂f1(x) + ∂f2(x) ̸⊂
∂f(x) in general. In this situation we can modify the model concept as follows: We
use ∂Tf(x) := ∂f1(x) + ∂f2(x) in axiom (M1) instead of the Clarke subdifferential
∂(f1 + f2)(x). This is tolerable since every Clarke critical point satisfies also 0 ∈
∂Tf(x), i.e., is critical in this extended sense. Toland [67, 68] was the first to use
this type of subdifferential for dc-functions, i.e., f = g − h with g, h convex, which
is why we use the notation ∂T .

2.2. Strict models. For convergence theory we will need a slightly stronger type
of model, which is given by the following:

Definition 2.7. A model ϕ of f is called strict at x ∈ Rn if it satisfies the following
strict version of axiom (M2):

(M̂2) If xk, yk → x, then there exist ϵk → 0+ such that
f(yk) ≤ ϕ(yk, xk) + ϵk∥yk − xk∥.

The model ϕ is called strict if it is strict at every x.

Remark 2.8. The difference between (M2) and the strict version (M̂2) is analo-
gous to the difference between differentiability and strict differentiability, hence the
nomenclature.

One may ask which locally Lipschitz functions f admit strict models. Since every
f has its standard model ϕ♯, it is natural to ask first whether or when ϕ♯ is strict.

Recall that a locally Lipschitz function f is upper C1 at x̄ if for every ϵ > 0
there exists δ > 0 such that for all x, y ∈ B(x̄, δ) and every g ∈ ∂f(x) one has
f(y) ≤ f(x) + gT(y − x) + ϵ∥y − x∥, where the latter could also be written as

f(y) ≤ f(x)− f◦(x, x− y) + ϵ∥y − x∥.
We weaken this by saying that f is weakly upper C1 at x̄ if for every ϵ > 0 there
exists δ > 0 such that for all x, y ∈ B(x̄, δ) and some g ∈ ∂f(x) one has f(y) ≤
f(x) + gT(y − x) + ϵ∥y − x∥, or what is the same

f(y) ≤ f(x) + f◦(x, y − x) + ϵ∥x− y∥.
That is precisely strictness of ϕ♯, so we have (see [51]):

Proposition 2.9. If f is weakly upper C1 at x, then the standard model ϕ♯ of f is
strict at x. In that case, every model ϕ of f is strict at x.

Remark 2.10. A consequence is that if f is differentiable at x, then the standard
model is strict at x if and only if f is strictly differentiable at x.

Example 2.11. Expanding on this, suppose f is differentiable but not strictly
so, can it still have a strict model ϕ other than ϕ♯? For instance, can f(x) =
x2 sinx−1 have a model which is everywhere strict, including the origin? The answer
is surprisingly ’yes’.

We consider for technical reasons a discrete version of x2(sinx−1 + 1). Define
f : [−1, 1] → R+ as follows: start at t1 = 1 with value f(t1) = 0, then choose slope
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−1 on [t2, t1], where t2 =
√
5−1
2 with value f(t2) = t22. Next let f have slope +1 on

[t3, t2] with value f(t3) = 0, etc. This leads to the recursions

t2k+1 = t2k − t22k, t2k =

√
1 + 4t2k−1 − 1

2
, f(t2k) = t22k, f(t2k+1) = 0,

with f piecewise linear with slope ±1 in between the ti. In fact, f zig-zags between
the axis y = 0 and the parabola y = x2. We extend the function symmetrically to
[−1, 0]. Note that f is differentiable at the origin with f ′(0) = 0, but is not strictly
differentiable, because ∂f(0) = [−1, 1].

We show that the standard model ϕ♯ of f is not strict. Suppose it were, then
f(t2k)≤ϕ♯(t2k, t2k+1−δk)+o(t2k− t2k+1+δk), where δk > 0 with t2k+1−δk > t2k+2.
Since on [t2k+2, t2k+1] the slope is −1, this amounts to t22k≤f(t2k+1−δk)+(−1)(t2k−
t2k+1 + δk) + o(t2k − t2k+1 + δk) = δk + t2k+1 − t2k − δk + o(t2k − t2k+1 + δk) =
−t22k +o(t2k − t2k+1+ δk). So we would have 2t22k ≤ o(t2k − t2k+1+ δk), and since δk
can be chosen arbitrarily small, we would need t22k ≤ o(t2k+1 − t2k) = o(t22k), which

is wrong. Hence ϕ♯ is not strict at 0.

We now show that f admits a strict model ϕ. For peaks (t2k, t
2
2k) let ϕ(·, t2k) =

t22k + | · −t2k|. Then ∂1ϕ(t2k, t2k) = [−1, 1] = ∂f(t2k). The same for every bot-
tom points t2k+1, including the origin. Hence again ∂1ϕ(t2k+1, t2k+1) = [−1, 1] =
∂f(t2k+1). For intermediate points we define ϕ as follows. Let t2k+1 < s < t2k
(as in the figure). Then ϕ(·, s) consists of three arcs (shown in blue). Fit a
parabola through the points (t2k+2, t

2
2k+2) and (s, f(s)) such that its slope at s

equals f ′(s) = 1. To the left of t2k+2 extend by a line with slope −1, to the right
of s by a line of slope 1. This is a continuous convex function, which is differen-
tiable everywhere, except at t2k+2. Moreover, ϕ(·, s) ≥ f . For s ∈ (t2k+2, t2k+1)
we proceed symmetrically, where now the non-differentiability occurs at t2k. Note
that ϕ(·, s) depends continuously on s for s ∈ (t2k+2, t2k), where at s = t2k+1 the
three arc function degrades to the vee-shaped function ϕ(·, t2k+1) = | ·−t2k+1|. Only
at the peaks s = t2k is the construction discontinuous, but it remains upper semi-
continuous, so that (M3) is satisfied at the t2k. Finally, we also observe that we

have upper semi-continuity at s = 0. This assures (M3) also at 0. Strictness (M̂2)
follows because f ≤ ϕ(·, s).

The function f is not weakly upper semi-smooth in the sense of [45,46] at 0, nor is
it upper C1, so it is not amenable to linesearch methods. Yet the fact that it admits
a strict model shows that it is amenable to non-smooth optimization techniques in
our framework.
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Remark 2.12. Borwein and Moors [16, 17] construct locally Lipschitz functions
where subdifferential integrability fails. Consider in particular a function f : R → R
where ∂f(x) = [−1, 1] for every x. Then the standard model of f is strict, but f is
not upper C1. See also [18].

Remark 2.13. The natural model ϕ(·, x) = ψ(F (x) +F ′(x)(· − x)) of a composite
function f = ψ ◦ F with ψ convex and F of class C1 is strict, because F (y) =
F (x) + F ′(x)(y − x) + o(∥y − x∥) as y − x → 0, hence f(y)− ϕ(y, x) = ψ(F (y))−
ψ(F (x) + F ′(x)(y − x)) = o(∥y − x∥), as ψ is locally Lipschitz. In particular, every
convex f is its own strict model ϕ(·, x) = f . Another consequence is that every
lower C2-function has a strict model.

However, the following is more general:

Proposition 2.14. Every lower C1-function admits a strict model.

A direct proof can be found in [49]. Here we will obtain a slightly stronger result
from our more general theory of cutting plane oracles in section 3.3.

Remark 2.15. We call f a dc-function if it is the difference of two convex functions,
i.e., f = g − h for convex g, h. Let us call f a DC-function if it admits a dc-
decomposition f = g − h where ∂f(x) = ∂g(x) − ∂h(x). Every DC-function has
the strict model ϕ(·, x) = g(·) + ϕ♯(·, x), where ϕ♯ is the standard model of the
concave function −h. Note that if f is dc but not DC, we can still use ∂T f(x) =
∂g(x)−∂h(x), then ϕ is automatically a strict ∂T -model of f . For more information
on dc-functions see [33].

Remark 2.16. Consider the Euclidian distance f(x) = 1
2d

2
S(x) to an arbitrary set

S ⊂ Rn. It follows with [14] that h(x) = 1
2 |x|

2− 1
2d

2
S(x) is convex, hence −f is lower

C2, and therefore f is upper C2. This means both d2S and −d2S have strict models.
For f we may use the standard oracle, which leads to the steepest descent method.
For −f we use downshifted tangents. Note that f is also a DC-function, because
1
2d

2
S(x) =

1
2 |x|

2 −
(
1
2 |x|

2 − 1
2d

2
S(x)

)
, so the previous remark gives yet another strict

model of f .

3. Cutting plane oracles

By a cutting plane oracle we understand, loosely, any procedure O, which asso-
ciates with every serious iterate x and unsuccessful trial step (null step) z near x one
– or several – affine functions m(·, x) = a+gT(·−x), which replace the tangent to f
at y. These cuts are then accumulated to build a convex working model ϕk(·, x) of
f in the neighborhood of x. In the convex cutting plane or bundle method, O(z, x)
consists of any of the tangents to f at z, i.e. tz,g(·) = f(z) + gT(· − z), where
g ∈ ∂f(z), so is in fact independent of the serious iterate x. In the non-convex case
we may no longer proceed in this way, because tangents to f at z may pass above
f(x), and cannot be used directly as cutting planes.

Let O : Rn ×Rn ⇒ R×Rn be a set-valued operator mapping into the nonempty
bounded subsets of R×Rn, where (a, g) ∈ O(z, x) is understood as to represent the
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affine function a+ gT(· − x). We call O a cutting plane oracle for f if it is bounded
on bounded sets and satisfies the following axioms:

(O1) If (a, g) ∈ O(z, x), then a ≤ f(x). Moreover, O(x, x) contains at least one
element (f(x), g) with g ∈ ∂f(x).

(O2) If (aj , gj) ∈ O(zj , x) with aj → f(x), ∥zj − x∥ ≤ M , and gj → g, then
g ∈ ∂f(x).

(O3) If zj → x there exist (aj , gj) ∈ O(zj , x) and ϵj → 0+ such that f(zj) ≤
aj + gTj (zj − x) + ϵj∥zj − x∥.

(O4) If zj → z, yj → y and xj → x, and if (aj , gj) ∈ O(zj , xj), then there exists

z′ ∈ B(x,M) and (a′, g′) ∈ O(z′, x) such that lim supj→∞ aj +g
T
j (yj −xj) ≤

a′ + g′T(y − x).

For the M > 0 occurring in (O2), (O4) we define the envelope function of O by

(3.1) ϕ(·, x) = sup{a+ gT(· − x) : (a, g) ∈ O(z, x), ∥z − x∥ ≤M}.
Proposition 3.1. Suppose O satisfies axioms (O1) − (O4). Then the envelope
function ϕ of O is a model of f .

Proof. 1) Observe that O(x, x) ̸= ∅ by (O1). Pick (a, g) ∈ O(x, x), then ϕ(y, x) ≥
a + gT(y − x) > −∞. This means ϕ(·, x) is by construction convex and maps into
R ∪ {∞}. But ϕ(y, x) = ∞ is impossible, because that would require a sequence
zj ∈ B(x,M) and (aj , gj) ∈ O(zj , x) such that aj + gTj (y − x) → ∞. Then (aj , gj)
would have to be unbounded, contradicting the fact that O is by definition bounded
on the bounded set B(x,M) × {x}. This means ϕ(·, x) is a convex function which
is everywhere defined.

2) We have to check (M1). Now by (O1) we have a ≤ f(x) for every (a, g) ∈
O(z, x), hence ϕ(x, x) ≤ f(x). But there exists (f(x), g) ∈ O(x, x), hence ϕ(x, x) ≥
f(x), giving equality. It remains to check that every subgradient g of ϕ(·, x) at x
belongs to ∂f(x).

Let g be a subgradient of ϕ(·, x) at x, then t(·) := f(x) + gT(· − x) is a tangent
to ϕ(·, x) at x, and by convexity t(·) ≤ ϕ(·, x). Now fix h and consider the convex
function t 7→ ϕ(x+ th, x) on the real line. Its slope at t = 0 is greater or equal than
gTh. Now for every t > 0 find zt ∈ B(x,M) and a cutting plane (at, gt) ∈ O(zt, x),
represented as mt(·, x) = at + gTt (· − x), such that ϕ(x+ th, x) ≥ mt(x+ th, x) with
equality ϕ(x+ th, x) = mt(x+ th, x). Observe that this implies at → f(x).

Now the slope of ϕ(·, x) at x + th is steeper than its slope at x (monotonicity),
so gTh ≤ gTt h. Choosing a subsequence gt → ĝ, zt → z, we get ĝ ∈ ∂f(x) by axiom
(O2). That shows g⊤h ≤ ĝTh ≤ max{g̃Th : g̃ ∈ ∂f(x)} = f◦(x, h). But since h
was arbitrary, we deduce g ∈ ∂f(x) by Hahn-Banach. This completes the proof of
(M1).

3) Since (M2) is clear from (O3), it remains to check (M3). Fix yk → y, xk → x,
and let zk ∈ B(xk,M) and ϵk → 0+ such that mzk,gk(yk, xk) = ak + gTk (yk − xk) =
ϕ(yk, xk), where (ak, gk) ∈ O(zk, xk). Invoking (O4), we get z′ ∈ B(x,M) and

(a′, g′) ∈ O(z′, x) such that lim supk→∞ ak+g
T
k (yk−xk) ≤ a′+g

′T(y−x) ≤ ϕ(y, x),
and with the above this implies lim supk→∞ ϕ(yk, xk) ≤ ϕ(y, x). □
Definition 3.2. A cutting plane oracle O is called strict at x if the following strict
version of (O3) is satisfied:
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(Ô3) Given xj , zj → x there exist (aj , gj) ∈ O(zj , xj) and ϵj → 0+ such that

f(zj) ≤ aj + gTj (zj − xj) + ϵj∥zj − xj∥.

3.1. Model-based cutting plane oracles. A natural way to generate cutting
planes is when a model ϕ of f is available for computation. Let x be the serious
iterate, z an unsuccessful trial step (a null step) at which we want to generate a
cutting plane. We simply take an affine support function mz,g(·, x) of ϕ(·, x) at z,
i.e. mz,g = ϕ(z, x) + gT(· − z) with g ∈ ∂1ϕ(z, x). We use the notation Oϕ for the

oracle generated by a model ϕ. If ϕ♯ is the standard model of f , then we write
O♯ := Oϕ♯ , calling it the standard oracle.

Proposition 3.3. Every locally Lipschitz function f admits a cutting plane oracle.
It admits a strict cutting plane oracle if and only if it admits a strict model.

Proof. The first part is clear, because every f has at least one model, ϕ♯, and every
model ϕ generates an oracle Oϕ. Note that if ϕ is strict, then so is Oϕ. Conversely,

if O is strict, then its upper envelope (3.1) is a strict model, as (Ô3) is easily seen

to ensure (M̂2). □

3.2. Cutting planes from downshifted tangents. One prominent way to gen-
erate cutting planes is the downshifted tangent oracle O↓, which we now discuss.
Recall that for g ∈ ∂f(z) the affine function tz,g(·) = f(z) + gT(· − z) is a tangent
to f at z, or simply a tangent plane.

Definition 3.4. Let x be the current serious iterate, z a trial step. Let tz,g(·) be
a tangent of f at z. For a fixed constant c > 0 we define the downshifted tangent

m↓
z,g(·, x) at serious iterate x and trial step z associated with the tangent tz,g(·) as

follows:

(3.2) m↓
z,g(·, x) = tz,g(·)−

[
tz,g(x)− f(x) + c∥z − x∥2

]
+
.

The quantity appearing on the right

(3.3) s(z, x, g) =
[
tz,g(x)− f(x) + c∥z − x∥2

]
+

is called the downshift of the tangent. The oracle is denoted O↓.

Remark 3.5. The explanation is that as long as the tangent tz,g(·) passes below
f(x)− c∥z− x∥2 at x, we can use it directly as cutting plane. However, if tz,g(x) >
f(x) − c∥z − x∥2, where c > 0 is the same fixed parameter, then we have to shift

the tangent down to obtain the cutting plane m↓
z,g(·, x), so that now m↓

z,g(x, x) =
f(x)− c∥z − x∥2, as otherwise the oracle would not respect axiom (O1). The term
c∥z−x∥2 is chosen for convenience. Any function c(·) : R → R+ with c(t) = o(t) as
t→ 0 would give a similar oracle with downshift s = [tz,g(x)− f(x)− c(∥z − x∥)]+.

Remark 3.6. If z = x, then every tangent tx,g(·) at x is also a cutting plane

m↓
x,g(·, x) at serious iterate x and trial step z = x, because g ∈ ∂f(x) and because

the downshift (3.3) at z = x is automatically zero.

Definition 3.7. A cutting plane m↓
x,g(·, x) at serious iterate x and trial step z = x

is called an exactness plane. The same terminology is used for any other oracle O.
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3.3. Strictness of the downshift oracle O↓. Recall that a locally Lipschitz func-
tion f is lower C1 at x if for xj , yj → x and every gj ∈ ∂f(yj) there exist ϵj → 0+

such that f(yj) ≤ f(xj) + gTj (yj − xj) + ϵj∥yj − xj∥, [64].

Proposition 3.8. The downshift operator O↓ satisfies axioms (O1), (O2) and (O4).
If f is Clarke regular at x, then O↓ satisfies (O3) at x. Suppose f is in addition

lower C1 at x. Then the downshift operator is strict at x, i.e., satisfied (Ô3) at x.

Proof. 1) Axiom (O1) is clear. We check (O2). Let (aj , gj) ∈ O↓(zj , x) with aj →
f(x), gj → g, and zj bounded. Passing to a subsequence, assume zj → z. Now

m↓
j (·, x) = aj + gTj (· − x) = f(zj) + gTj (· − zj) − sj , where sj = s(x, zj , g) is the

corresponding downshift (3.3). From aj → f(x) we get f(zj) + gTj (x − zj) − sj →
f(x) = f(z) + gT(x− z)− s, where s = lim sj and g ∈ ∂f(z). There are two cases,
either sj → 0, or sj → s > 0. In the first case s = 0 we obtain

(3.4) sj =
[
f(zj) + gTj (x− zj)− f(x) + c∥zj − x∥2

]
+
→ 0.

But since f(zj)+g
T
j (x−zj)−f(x) → 0 due to s = 0, we must also have c∥zj−x∥2 →

0, proving zj → x. Hence z = x, and so g ∈ ∂f(x). Now in the case s > 0 we get

sj > 0 from some counter onward, hence f(zj) + gTj (x− zj)− f(zj)− gTj (x− zj) +

f(x)− c∥zj − x∥2 → f(x) = f(z)+ gT(x− z)− f(z)− gT(x− z)+ f(x)− c∥z− x∥2,
which implies f(x) + c∥zj − x∥2 → f(x), hence again zj → x, leading to the same
conclusion.

2) Let us check (O4). This is obviously the analogue of the model axiom (M3).

Fix zj → z, yj → y and xj → x, and (aj , gj) ∈ O↓(zj , xj). Then m↓
j (·, xj) =

aj + gTj (· − xj) = f(zj) + gTj (· − zj)− sj is the downshifted tangent at zj , i.e.

(3.5) sj =
[
f(zj) + gTj (xj − zj)− f(x) + c∥zj − xj∥2

]
+
.

Choose a subsequence j ∈J such that ℓ :=limj∈J m
↓
j (yj , xj)=lim supj→∞m↓

j (yj , xj).

Then this limit is ℓ = f(z) + gT(y− x)− s, where s = limj∈J sj . We have to find z′

such that ℓ ≤ a′ + g′T(y − x) for (a′, g′) ∈ O(z′, x). We simply choose z′ = z and
g′ = g, because then f(z)+gT(·−z)−s should be the downshifted tangent at z. For
that to be confirmed, we have just to show that s ≤ s(z, x, g), in other words, we
have to show upper semi-continuity limj∈J s(zj , xj , gj) ≤ s(z, x, g) of the downshift.
But that follows immediately here due to convergence of all the elements in (3.5).

3) We have to verify axiom (O3) at x with f regular at x. Consider a sequence

yk → x. Let mk(·, x) := m↓
yk,gk

(·, x) be a cutting plane at serious iterate x and

trial point yk, where gk ∈ ∂f(yk). We have to find ϵk → 0+ such that f(yk) ≤
mk(y

k, x) + ϵk∥yk − x∥. Now let tyk,gk(·) be the tangent to f from which mk is

downshifted, and let sk = s(yk, x, gk) be the downshift. Consider the case sk > 0.
Then mk(·, x) = f(x) + gTk (· − x) − c∥yk − x∥2, and we have to find ϵk → 0+ such
that

f(yk) ≤ f(x) + gTk (y
k − x)− c∥yk − x∥2 + ϵk∥yk − x∥.
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If we put hk = (yk − x)/∥yk − x∥, tk = ∥yk − x∥, then this may be re-written as

(3.6)
f(x+ tkhk)− f(x)

tk
≤ gTk hk + ϵk.

Passing to a subsequence, we may assume hk → h for some ∥h∥ = 1, and then since
f is locally Lipschitz, the left hand term converges to the Dini derivative f ′(x, h).
On the right hand side, on the other hand, we have lim supk→∞ gTk hk ≤ f◦(x, h), and

by regularity, the two coincide. In other words, we find that ϵk = max{0, t−1
k (f(x+

tkhk)− f(x))− gTk hk} → 0+ does the job. That proves (O3).

4) It remains to verify (Ô3) when f is lower C1 at x. Fix zj , xj → x and

let (aj , gj) ∈ O↓(zj , xj). Then by hypothesis there exist ϵj → 0+ such that

f(zj) ≤ f(xj) + gTj (zj − xj) + ϵj∥zj − xj∥. Adding gTj (· − zj) on both sides

gives tzj ,gj (·) ≤ f(xj) + gTj (· − xj) + ϵj∥zj − xj∥. Hence the downshift satisfies

sj =
[
tzj ,gj (xj)− f(xj) + c∥xj − zj∥2

]
+
≤ ϵj∥zj −xj∥+ c∥xj −zj∥2 =: ϵ̃j(∥zj −xj∥)

with ϵ̃j = ϵj + c∥zj − xj∥ → 0+. Then f(zj) = tzj ,gj (zj) = m↓
zj ,gj (zj , xj) + sj ≤

m↓
zj ,gj (zj , xj) + ϵ̃j∥zj − xj∥ shows strictness. □

A different way to say that f is lower C1 at x̄ is that for every ϵ > 0 there exists
δ > 0 such that for all x, z ∈ B(x̄, δ) and every g ∈ ∂f(z) one has f(x) − f(z) ≥
gT(x− z)− ϵ∥x− z∥, which may also be written as

f(x)− f(z) ≥ f◦(z, x− z)− ϵ∥x− z∥.

We weaken this as follows: We say that f is weakly lower C1 at x̄ if for every ϵ > 0
there exists δ > 0 such that for all x, z ∈ B(x̄, δ) and some g ∈ ∂f(z) we have
f(x)− f(z) ≥ gT(x− z)− ϵ∥x− z∥, which may be written as

(3.7) f(x)− f(z) ≥ −f◦(z, z − x)− ϵ∥x− z∥.

There is an oracle associated with this property, which is slightly stronger than O↓,
and which we denote O↓↓. For O↓↓ we do not take an arbitrary tangent to f at z,
but the specific one tz,g′(·) where g′ ∈ ∂f(z) satisfies g′T(x − z) = −f◦(z, z − x).

Then we downshift tz,g′ as before to obtain the O↓↓-cutting plane.

Proposition 3.9. Suppose f is weakly lower C1 at x. Then O↓↓ is strict at x. In
consequence, every weakly lower C1 function has a strict model.

Proof. We have to check (Ô3). Let zj , xj → x, then (aj , g
′
j) = O↓↓(zj , xj) satisfies

g′Tj (xj − zj) = inf{gT(xj − zj) : g ∈ ∂f(zj)}. By (3.7) we have f(xj) − f(zj) ≥
g′Tj (xj−zj)−ϵj∥xj−zj∥ for certain ϵj → 0+. That can be written f(xj) ≥ tzj ,g′j (xj)−
ϵj∥zj − xj∥, hence ϵj∥zj − xj∥+ c∥zj − xj∥2 ≥ tzjg′j (xj)− f(xj) + c∥zj − xj∥2. This
shows that the downshift (3.3) is sj ≤ ϵ̃j∥zj −xj∥, where ϵ̃j = ϵj + c∥zj −xj∥ → 0+.

Hence with the argument of part 4) above, O↓↓ is strict at x. □

Proposition 3.10. Suppose the function f is weakly upper C1 or weakly lower C1

at every x. Then f admits a strict cutting plane oracle, and consequently has a
strict model.
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Proof. We can use the idea of remark 2.5. The standard oracle O♯ is strict at those
x where f is weakly upper C1, and O↓↓ is strict at those x where f is weakly lower
C1, so the oracle O♯↓↓(z, x) which among the two possible planes takes the one
which has the larger value at z will be strict. Naturally, one could also take the
oracle O♯ ∨ O↓↓ which takes both planes. The corresponding envelope models are
then strict. □

Example 3.11. For f in example 2.11 neither O↓ nor O↓↓ is strict at 0. With
the same notation, for sk ∈ (t2k, t2k−1) the slope of the tangent at sk is −1, so the
cutting plane O↓(sk, 0) is the line with slope −1 passing through the point (0,−cs2k),
i.e., m↓(sk, 0) = −cs2k−sk. For (O3) at 0 we would require f(sk) ≤ m↓(sk, 0)+o(sk),
hence t22k − (sk − t2k) ≤ −cs2k − sk + o(sk) = −sk + o(sk). Choose sk such that
sk − t2k = t22k/2, then sk = t2k + t22k/2, so o(sk) = o(t2k), and we have to assure
t22k/2 ≤ −t2k − t22k/2 + o(t2k), and that is impossible, as the right hand side is

asymptotically < 0. Here the downshift operator O↓ is not even an oracle at 0, let
alone a strict one. A similar argument applies to f(x) = x2 sinx−1.

Remark 3.12. Downshift is used in the early versions of the bundle technique to
deal heuristically with non-convex cases. See e.g. the codes N1CV2 and N2BN1 by
Lemaréchal and Sagastizábal [41], or in Zowe’s BT package [62]. Mifflin [46] justifies
the downshift oracle theoretically for a linesearch algorithm. For our justification
of downshift in the bundle method see e.g. [27, 49].

3.4. Oracles with infinitely many cuts. We consider an eigenvalue optimization
problem

min{λ1 (F (x)) : x ∈ C},
where F : Rn → Sm is a C1-mapping into the space Sm of m × m symmetric
or Hermitian matrices, and λ1 : Sm → R is the maximum eigenvalue. Suppose
we use the natural model ϕ(·, x) = λ1 (F (x) + F ′(x)(· − x)) of f = λ1 ◦ F . Let
G = {G ∈ Sm : G ⪰ 0,Tr(G) = 1}, then λ1(X) = max{G • X : G ∈ G}, where
G •X = Tr(GX) is the scalar product in Sm. Let zk be a null step and suppose the
multiplicity of ϕ(zk, x) = λ1

(
F (x) + F ′(x)(zk − x)

)
is r > 1. Let Qk be a m × r-

matrix whose r columns form an orthonormal basis of the maximum eigenspace of
F (x)+F ′(x)(zk −x). Put Gk = {QT

kY Qk : Y ∈ Sr, Y ⪰ 0,Tr(Y ) = 1}, then Gk ⊂ G
and

max
{
G′ •

[
F (x) + F ′(x)(· − x)

]
: G′ ∈ Gk

}
= max

{
Y •

[
Qk(F (x) + F ′(x)(· − x)

]
QT

k : Y ⪰ 0,Tr(Y ) = 1
}

= λ1

(
Qk

[
F (x) + F ′(x)(· − x)

]
QT

k

)
.

This means we choose as oracle the infinite set Ospec(zk, x) = {(a(Y ), g(Y )) : Y ⪰
0,Tr(Y ) = 1}, where a(Y ) = Y • QkF (x)Q

T
k and g(Y ) = F ′(x)∗QT

kY Qk, with

QT
kY Qk ∈ Sm and F ′(x)∗ : Sm → Rn the adjoint of F ′(x) : Rn → Sm. For

practical aspects of this type of oracle, which leads to spectral bundle methods,
see [9,10,13,29–31,40,47,48,65,66]. The key observation is that the tangent program
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(4.1) in this approach will be a convex SDP.

3.5. Working models. In our trust-region method the tangent program is based
on a working model ϕk(·, x) of f at serious iterate x. In the bundle literature
originating from Lemaréchal’s [38,39], this model is traditionally denoted as f̌k and
referred to as a model of f at x. In our approach we distinguish between model ϕ
and working model ϕk from a reason which will become clear shortly.

Let O be a cutting plane oracle for f . Then the working model at serious iterate
x and inner loop counter k has the form ϕk(·, x) = sup{a + gT(· − x) : (a, g) ∈
Wk}, where the sets Wk are generated recursively through O: Suppose zk is an
unsuccessful trial step (a null step) obtained via (4.2) from the solution yk of the
tangent program (4.1) based on the kth working model ϕk(·, x). Then the (k + 1)st

working model ϕk+1(·, x) = sup{a+ gT(· − x) : (a, g) ∈ Wk+1} is obtained from ϕk
by the following rules:

(W1) At least one exactness plane f(x) + gT(· − x) with (f(x), g) ∈ O(x, x) is
included in ϕk+1. That is, (f(x), g) ∈ Wk+1 for some (f(x), g) ∈ O(x, x).

(W2) The aggregate plane a∗k + g∗Tk (· − x) associated with the solution yk of the

kth-tangent program (4.1) is included in ϕk+1, i.e., (a
∗
k, g

∗
k) ∈ Wk+1. (See

section 4.1).
(W3) All cutting planes (a, g) ∈ O(zk, x) are simultaneously included in ϕk+1,

that is, O(zk, x) ⊂ Wk+1.
(W4) Planes contributing to ϕk+1(·, x) via Wk+1 other than those in (W1)− (W3)

must already have been elements of Wk, but not all (a, g) ∈ Wk are kept in
Wk+1.

The initialization of ϕ1(·, x) is as follows. We request that ϕ1(·, x) contains at
least one exactness plane generated by O, i.e., f(x) + gT(· − x) ≤ ϕ1(·, x) for some
(f(x), g) ∈ O(x, x). In other words, (f(x), g) ∈ W1 ⊂ O(x, x).

If in addition a positive semi-definite symmetric matrix Q(x) ⪰ 0 is
available as a substitute for the Hessian of f at x, then we call Φk(·, x) =
ϕk(·, x) + 1

2(· − x)TQ(x)(· − x) a second-order working model of f at serious it-

erate x. We shall occasionally use the semi-norm |y|2Q = yTQy, so that Φk(·, x) =
ϕk(·, x) + 1

2 | · −x|
2
Q.

Remark 3.13. By construction we have ϕk(·, x) ≤ ϕ(·, x) at all inner loop instants
k, where ϕ is the envelope model (3.1) of O. By convexity we automatically have
∂1ϕk(x, x) ⊂ ∂1ϕ(x, x) ⊂ ∂f(x), so that 0 ∈ ∂(ϕk(·, x) + iC)(x) implies that x is
a Clarke critical point of (1.1). This is crucial for practice, as we can stop the
algorithm as soon as the tangent program based on the working model ϕk(·, x) finds
no model reduction step.

Remark 3.14. Note that we do not necessarily have Wk ⊂ Wk+1, as this would
lead to tangent programs of increasing size. Rules (W1) − (W4) only require that:
a) An exactness plane assures ϕk+1(x, x) = f(x); b) the aggregate plane (a∗k, g

∗
k)

assures ϕk+1(y
k, x) ≥ ϕk(y

k, x), and c) the cutting planes (ak, gk) ∈ O(zk, x) are
intended to bring the value ϕk+1(z

k, x) as close as possible to the unduly large
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value f(zk), because that value was much larger than the predicted value Φk(z
k, x),

having caused the failure of zk.

Example 3.15. Consider f(x) = maxi∈I fi(x), where I is infinite and the fi are
class C1. The natural model is ϕ(·, x) = maxi∈I fi(x) + ∇fi(x)T(· − x), but com-
puting it might be costly for large size I, and we might prefer a working model
ϕk(·, x) = maxi∈Ik fi(x) +∇fi(x)T(· − x) with some small subset Ik of I. In H∞-
optimization [3,4,9,10] we have observed that diligent choices of an initial set I1 ⊂ I
may greatly influence the performance of the method, see also [19, 20]. This is en-
couraged by rule (W4).

4. Non-smooth trust-region method

In this section we present the main elements of the algorithm.

4.1. Tangent program, aggregate plane and trial steps. Once a second-order
working model Φk(·, x) = ϕk(·, x) + 1

2(· − x)TQ(x)(· − x) at serious iterate x and
inner loop counter k is fixed, we solve the trust-region tangent program

minimize Φk(y, x)
subject to y ∈ C

∥y − x∥ ≤ Rk,
(4.1)

where Rk > 0 is the current trust-region radius. We obtain a solution yk ∈ C of
(4.1), which is unique in case Q(x) ≻ 0. For a polyhedral norm like ∥ · ∥ = | · |∞
or ∥ · ∥ = | · |1 and a polyhedron C, program (4.1) reduces to a convex quadratic
program, as long as the first-order working models are polyhedral, or even an LP
if Q(x) = 0. In the spectral bundle method [9, 10], where ϕk contains an infinity
of cuts, (see section 3.4), the tangent program is a convex SDP, and C may then
be allowed to be an SDP-constrained set. In this case the choice ∥ · ∥ = | · |2 is
acceptable, as the trust-region can be turned into a conical constraint, so that the
tangent program is a convex SDP.

Note that by the necessary optimality conditions for the tangent program in step
4 of the algorithm, there exists a subgradient g∗k ∈ ∂ (ϕk(·, x) + iC) (y

k) such that

g∗k + Q(yk − x) + vk = 0, where vk is in the normal cone to the trust-region norm

ball B(x,Rk) at y
k, and where iC is the indicator function of the convex set C.

Definition 4.1. We call g∗k the aggregate subgradient. The affine functionm∗
k(·, x) =

ϕk(y
k, x) + g∗Tk (· − yk) is called the aggregate plane.

Now along with the solution yk of the tangent program we consider a larger set
of admissible trial steps zk. Fixing constants Θ ≥ 1 and 0 < θ ≪ 1, we admit as
trial point any zk ∈ C satisfying

(4.2) f(x)− Φk(z
k, x) ≥ θ

(
f(x)− Φk(y

k, x)
)

and ∥zk − x∥ ≤ Θ∥yk − x∥.
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4.2. Acceptance and building the new working model. Once a trial point zk

associated with a solution yk of the tangent program (4.1) has been determined as
in (4.2), acceptance is tested by the standard test

(4.3) ρk =
f(x)− f(zk)

f(x)− Φk(zk, x)

?
≥ γ

for fixed 0 < γ ≪ 1. If ρk < γ the trial point zk is rejected (a null step). Then we
have to keep the inner loop going. Applying rules (W1)− (W4) we generate cutting
planes (a, g) ∈ O(zk, x) at zk, the aggregate plane (a∗, g∗) at yk, and add those
into the new ϕk+1(·, x), tapering out the old ϕk(·, x) by dropping some of the older
cuts contributing to the aggregate plane. We also keep at least one exactness plane
(a0, g0) ∈ O(x, x) in the model ϕk+1(·, x), which may, or may not be, the one used
at counter k.

4.3. Management of the trust-region radius. Understanding step 7 of the al-
gorithm is crucial, because here a main difference with the classical trust-region
method occurs. Namely, in the case of an unsuccessful trial step zk in the inner
loop at x we do not automatically reduce the trust-region radius. We first call the
oracle to provide cutting planes at zk. Then the secondary test in step 7

(4.4) ρ̃k =
f(x)− ϕk+1(z

k, x)

f(x)− Φk(zk, x)

?
≥ γ̃

(with 0 < γ < γ̃ < 1) serves to decide whether or not to reduce Rk at the next
sweep k+1 of the inner loop. The rationale of this test is as follows: If ρ̃k < γ̃, then
the effect of the cutting plane(s) at zk is sensible, i.e., it is reasonable to believe
that we could have performed better, had we already included this cutting plane
in the working model ϕk. In that case we keep enriching the working model by
cuts and maintain Rk unchanged, being reluctant to reduce Rk prematurely, as this
leads to unnecessarily small steps. In the opposite case ρ̃k ≥ γ̃ the new cutting
plane(s) do(es) not seem to contribute anything substantial at zk, and here we
reduce the trust-region radius in order to get closer to the current x, where progress
is ultimately possible (due to 0 ̸∈ ∂f(x) +NC(x)).

Remark 4.2. The secondary test appears for the first time in the first non-convex
version of the bundle method [52], see also [9, 10]. It can also be used with
Φk+1(z

k, x) instead of ϕk+1(z
k, x) in the numerator.

4.4. Algorithm. We are now ready to present the bundle trust-region algorithm.
(See algorithm 1).
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4.5. Recycling of planes. When a new serious iterate x+ is found, then in the next
sweep in step 3 a new initial first-order working model ϕ1(·, x+) has to be generated.
Contrary to the convex case, we cannot keep cuts generated around x to stay in the
model for x+. At least in the case of the downshift oracle O↓ we can recycle them
as follows: If (a, g) ∈ O↓(z, x) is in the model ϕk(·, x) at acceptance, then include
(a+, g) ∈ O↓(z, x+) in ϕ1(·, x+) where a+ = f(z) + gT(x+ − z)− s(z, x+, g).

4.6. Practical aspects. Consider the case where the first-order working model
has the form ϕk(·, xj) = maxi∈Ik ai + gTi (· − xj) for some finite set Ik. Suppose the
trust-region norm is the maximum norm, and C = {x : Ax ≤ b} is a polyhedron.
Then the tangent program is the following CQP

minimize t+ 1
2(y − xj)TQj(y − xj)

subject to ai + gTi (y − xj) ≤ t, i ∈ Ik
Ay ≤ b

−Rk ≤ yi − xji ≤ Rk , i = 1, . . . , n

(4.5)

with decision variable (t, y) ∈ R × Rn, giving rise to the solution yk in step 4. If
Qj = 0, then the tangent program is even a LP.

Remark 4.3. Axioms (W1), (W4) can be further relaxed by allowing so-called
anticipated cutting planes. That means we can call the oracle O(z, x) at points z
other than yk, zk and include those cutting planes into the working models. This
still gives convergence and allows to exploit the specific structure of a problem to
speed up acceptance in the inner loop.

5. Convergence

In this section we prove convergence of the trust-region algorithm toward a critical
point 0 ∈ ∂f(x∗) +NC(x

∗). We prepare with three technical lemmas in section 5.1
and prove termination of the inner loop in section 5.2. During this part of the proof
we write x = xj and Q = Qj , as those elements are fixed during the inner loop at

counter j. We write | · |Q for the seminorm |x|2Q = xTQx.

5.1. Three technical lemmas.

Lemma 5.1. There exists σ > 0, depending only on the trust-region norm ∥ · ∥,
such that the solution yk of the trust-region tangent program in step 4, with the
corresponding aggregate subgradient g∗k ∈ ∂ (ϕk(·, x) + iC) (y

k), satisfies the estimate

(5.1) f(x)− ϕk(y
k, x) ≥ σ∥g∗k +Q(yk − x)∥∥yk − x∥.

Proof. 1) Let ∥ · ∥ be the norm used in the trust-region tangent program, | · | the
standard Euclidian norm. There exists ϵ > 0 such that |u| ≤ ϵ implies ∥u∥ ≤ 1.
Now if ∥u∥ = 1 and if v is in the normal cone to the ∥ · ∥-unit ball at u, we have
vT(u−u′) ≥ 0 for every ∥u′∥ ≤ 1 by the normal cone criterion. Hence vT(u−u′) ≥ 0
for every |u′| ≤ ϵ by the above, and using u′ = ϵv/|v| that implies vTu ≥ ϵ|v|.

2) Since yk is an optimal solution of (4.1), we have 0 = g∗k+Q(yk−x)+vk by the

optimality condition, where g∗k ∈ ∂ (ϕk(·, x) + iC) (y
k) is the aggregate subgradient
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and vk a normal vector to the ∥ · ∥-norm ball B(x,Rk) at yk. By the subgradient
inequality, using x, yk ∈ C, we have

g∗Tk (x− yk) ≤ ϕk(x, x)− ϕk(y
k, x) = f(x)− ϕk(y

k, x).

Now by part 1), on putting uk = (yk − x)/∥yk − x∥, we have vTk uk ≥ ϵ|vk| in-
dependently of k, because vk, being normal to the ∥ · ∥-ball of radius ∥yk − x∥
and center 0 at yk − x, is also normal to the ∥ · ∥-unit ball at uk. But then
g∗Tk (x − yk) = vTk (y

k − x) + (x − yk)TQ(x − yk) ≥ vTk (y
k − x) ≥ ϵ|vk|∥yk − x∥ ≥

ϵ2∥vk∥∥yk − x∥ = ϵ2∥g∗k + Q(yk − x)∥∥yk − x∥, where we have used part 1). This
proves the result with σ = ϵ2. □
Lemma 5.2. There exists constants σ′ > 0, σ′′ ≥ 0, depending only on the trust
region norm ∥ · ∥ and the parameters θ, Θ, q used in the algorithm, such that the
trial points zk in step 4 of the algorithm, associated with the solutions yk of the
tangent program (4.1) and aggregate subgradients g∗k ∈ ∂ (ϕk(·, x) + iC) (y

k), satisfy
the estimate

(5.2) f(x)− Φk(z
k, x) ≥

(
σ′∥g∗k∥ − σ′′∥yk − x∥

)
∥yk − x∥.

Proof. Subtracting 1
2 |y

k − x|2Q from both sides of (5.1) and using |yk − x|2Q ≤
∥Q∥∥yk − x∥2 gives

f(x)− Φk(y
k, x) ≥

(
ϵ2∥g∗k +Q(yk − x)∥ − 1

2∥Q∥∥yk − x∥
)
∥yk − x∥.

Hence by (4.2), the triangle inequality, and ∥Q∥ ≤ q in step 8 of the algorithm, we
have

f(x)− Φk(z
k, x) ≥ θ

(
ϵ2∥g∗k +Q(yk − x)∥ − 1

2∥Q∥∥yk − x∥
)
∥yk − x∥

≥ θϵ2∥g∗k∥∥yk − x∥ − (12 − θϵ2)∥Q∥∥yk − x∥2

≥
(
θϵ2∥g∗k∥ − (12 − θϵ2)q∥yk − x∥

)
∥yk − x∥.(5.3)

This is (5.2) with σ′ = θϵ2 and σ′′ = max{0, (12 − θϵ2)q}. □

Lemma 5.3. Suppose ∆k = ∥yk − x∥/∥g∗k∥ → 0 as k → ∞. Then there exists a
constant σ > 0, depending only on θ,Θ, q and the trust region norm ∥ · ∥, such that
from some counter k0 onward,

(5.4) f(x)− Φk(z
k, x) ≥ σ∥g∗k∥∥zk − x∥.

The counter k0 can be chosen smallest with the property that ∆k <
1
2θϵ

2/(12 − θϵ2)q
for all k ≥ k0.

Proof. The estimate is obvious from the previous Lemma if 1
2 ≤ θϵ2, as then σ′′ = 0

in (5.2). Otherwise, since ∥yk − x∥/∥g∗k∥ → 0, there exists an index k0 such that

(5.5) ∆k =
∥yk − x∥
∥g∗k∥

<
1
2θϵ

2(
1
2 − θϵ2

)
q

for all k ≥ k0. Then from (5.3)

f(x)− Φk(z
k, x) ≥

(
θϵ2∥g∗k∥ − (12 − θϵ2)q∥yk − x∥

)
∥yk − x∥
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≥ 1
2θϵ

2∥g∗k∥∥yk − x∥ (using (5.5))

≥ 1
2θϵ

2Θ−1∥g∗k∥∥zk − x∥ (using (4.2))

for all k ≥ k0. This is the requested estimate with σ = 1
2θϵ

2Θ−1. □

5.2. Finite termination of the inner loop. We now investigate whether the
inner loop at the current serious iterate x can find a new serious iterate x+ satis-
fying the acceptance condition (4.3), or whether it fails and turns infinitely. The
hypothesis for the inner loop is that the cutting plane oracle satisfies (O1) − (O4).

Strictness (Ô3) of O is not needed for termination of the inner loop.

Lemma 5.4. Suppose the inner loop at serious iterate x turns infinitely with
lim infk→∞Rk = 0. Then x is a critical point of (1.1), i.e., satisfies 0 ∈ ∂f(x) +
NC(x).

Proof. According to step 7 of the algorithm we have ρ̃k ≥ γ̃ for infinitely many
k ∈ K. Since Rk is never increased during the inner loop, that implies Rk → 0.
Hence yk, zk → x as k → ∞, where we use the trial step generation rule (4.2) in
step 4 of the algorithm. We argue that this implies ϕk(z

k, x) → f(x).
Indeed, lim supk→∞ ϕk(z

k, x) ≤ lim supk→∞ ϕ(zk, x) = limk→∞ ϕ(zk, x) = f(x) is
always true due to ϕk ≤ ϕ and axiom (M1), and where ϕ is the envelope model of the
cutting plane oracle O. On the other hand, ϕk includes (i.e. dominates) an exactness
plane m0(·, x) = f(x) + g⊤0 (· − x) by rule (W1), hence f(x) = limk→∞m0(z

k, x) ≤
lim infk→∞ ϕk(z

k, x). These two together show ϕk(z
k, x) → f(x), and then immedi-

ately also Φk(z
k, x) → f(x). We also readily obtain ϕk(y

k, x) → f(x) from the link
(4.2) between zk, yk in step 4 of the algorithm.

We now prove that lim infk→∞ ∥g∗k∥ = 0, where g∗k are the aggregate subgradients

(definition 4.1) at the yk. Assume on the contrary that ∥g∗k∥ ≥ η > 0 for all k. Since

yk → x, by (5.4) there exists a constant σ > 0 such that for k large enough,

(5.6) f(x)− Φk(z
k, x) ≥ ση∥zk − x∥.

Next observe that since by rule (W3) all cutting planes at zk are integrated in
the new model ϕk+1(·, x), we have ϕk+1(z

k, x) ≥ mk(z
k, x) = ak+g

T
k (zk−x), where

(ak, gk) ∈ O(zk, x). But by (O3) there exist ϵk → 0+ and some such plane mk(·, x)
such that f(zk) ≤ mk(z

k, x) + ϵk∥zk − x∥. Hence

(5.7) f(zk) ≤ mk(z
k, x) + ϵk∥zk − x∥ ≤ ϕk+1(z

k, x) + ϵk∥zk − x∥.

Now using (5.6) and (5.7) we estimate

ρ̃k = ρk +
f(zk)− ϕk+1(z

k, x)

f(x)− Φk(zk, x)
≤ ρk +

ϵk∥zk − x∥
ση∥zk − x∥

= ρk + ϵk/(ση).

Since ϵk → 0 and ρk < γ, we have lim sup ρ̃k ≤ γ < γ̃, a contradiction with ρ̃k > γ̃
for the infinitely many k ∈ K. That proves g∗k → 0 for a subsequence k ∈ N ⊂ K.

Write g∗k = pk + qk with pk ∈ ∂1ϕk(y
k, x) and qk ∈ NC(y

k). Using boundedness

of the yk, and hence boundedness of the pk, we extract another subsequence k ∈
K′ ⊂ N such that pk → p, qk → q, p + q = 0. Since yk → x, we have q ∈ NC(x).
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We argue that p ∈ ∂f(x). Indeed, for any test vector h the subgradient inequality
gives

pTkh ≤ ϕk(y
k + h, x)− ϕk(y

k, x) ≤ ϕ(yk + h, x)− ϕk(y
k, x).

Since ϕk(y
k, x) → f(x) = ϕ(x, x), passing to the limit using yk → x gives

pTh ≤ ϕ(x+ h, x)− ϕ(x, x),

proving p ∈ ∂1ϕ(x, x) ⊂ ∂f(x) by axiom (M1). This proves 0 = p + q ∈ ∂f(x) +
NC(x), hence x is a critical point of (1.1). □
Remark 5.5. Kiwiel’s aggregation rule [34] for the convex bundle method allows to
limit the bundle to any fixed number ≥ 3 planes. In [52] we have shown that the rule
carries over to our non-convex bundle method, see also [49]. Ruszczyński [60] had
asked whether aggregation could also be used in the convex trust region method.
In [12] we had justified the rule for the non-convex non-smooth trust region method
under the hypothesis that Q ≻ 0. Here we shall show that this hypothesis cannot
be removed.

The following result justifies the use of aggregation in the first place for the special
case zk = yk and Q ≻ 0. Note that the trivial choice zk = yk in step 4 is always
authorized (due to Θ ≥ 1 and θ ≤ 1 in rule (4.2)), but of course we want to use the
additional freedom offered by zk to improve performance of our method, so zk = yk

is rather restrictive, and we will remove it later.

Lemma 5.6. Suppose Q ≻ 0, the inner loop at x turns infinitely, and the trust-
region radius Rk stays bounded away from 0. Suppose the yk are chosen as trial
steps. Then x is a critical point of (1.1).

Proof. Since the trust-region radius is frozen Rk = Rk0 from some counter k0 on-
wards, we write R := Rk0 . According to step 7 of the algorithm that means ρ̃k < γ̃
for k ≥ k0. The only progress in the working model as we update ϕk → ϕk+1 is
now the addition of the cutting plane(s) and the aggregate plane. The working
models ϕk now contain at least three planes, an exactness plane, at least one cut
from the last unsuccessful trial step, and the aggregate plane. They may contain
more planes, but those will not be used in our argument below.

Since Rk stays bounded away from 0, it is not a priori clear whether yk → x, and
we have to work to prove this. Since Q ≻ 0, |x|2Q = xTQx is a Euclidian norm. We
write the objective of the tangent program as

Φk(·, x) = ϕk(·, x) + 1
2 | · −x|

2
Q.

We know that the aggregate plane m∗
k(·, x) satisfies m∗

k(y
k, x) = ϕk(y

k, x), so it

memorizes the value ϕk(y
k, x). The latter gives

(5.8) Φk(y
k, x) = m∗

k(y
k, x) + 1

2 |y
k − x|2Q.

Now we introduce the quadratic function

Φ∗
k(·, x) = m∗

k(·, x) + 1
2 | · −x|

2
Q,

then from what we have just seen in (5.8)

(5.9) Φ∗
k(y

k, x) = Φk(y
k, x).
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Moreover, we have

(5.10) Φ∗
k(·, x) ≤ Φk+1(·, x),

because according to the aggregation rule (W2) we include the aggregate plane
m∗

k(·, x) in the new model ϕk+1, that is, we have m∗
k(·, x) ≤ ϕk+1(·, x), and hence

(5.10). Expanding the quadratic function Φ∗
k(·, x) at yk gives

Φ∗
k(·, x) = Φ∗

k(y
k, x) +∇Φ∗

k(y
k, x)T(· − yk) + 1

2 | · −y
k|2Q,

where ∇Φ∗
k = g∗k+Q(yk−x). From the optimality condition of the tangent program

at yk we get g∗k +Q(yk − x) = −vk with vk in the normal cone to the ball B(x,R)

at yk, hence

(5.11) Φ∗
k(·, x) = Φ∗

k(y
k, x)− vTk (· − yk) + 1

2 | · −y
k|2Q.

Now we argue as follows:

Φk(y
k, x) = Φ∗

k(y
k, x) (by (5.9))

≤ Φ∗
k(y

k, x) + 1
2 |y

k+1 − yk|2Q
= Φ∗

k(y
k+1, x) + vTk (y

k+1 − yk) (by (5.11))

≤ Φ∗
k(y

k+1, x) (since vTk (y
k+1 − yk) ≤ 0)

≤ Φk+1(y
k+1, x) (by (5.10))

≤ Φk+1(x, x) (yk+1 minimizer of Φk+1(·, x))
= ϕ(x, x) = f(x).

(5.12)

Therefore the sequence Φk(y
k, x) is increasing and bounded above, and converges to

a limit Φ∗ ≤ f(x). Going back with this information to the estimation chain (5.12)
shows 1

2 |y
k+1 − yk|2Q → 0 and also vTk (y

k+1 − yk) → 0. Since Q ≻ 0, we deduce

yk+1 − yk → 0. Then also

1
2 |y

k+1 − x|2Q − 1
2 |y

k − x|2Q → 0,

by the triangle inequality. In consequence

ϕk+1(y
k+1, x)− ϕk(y

k, x) = Φk+1(y
k+1, x)− Φk(y

k, x)

− 1
2 |y

k+1 − x|2Q + 1
2 |y

k − x|2Q → 0.
(5.13)

So far we have not made use of the cutting plane oracle, and we need it now.
Observe that one of the cutting planes mk(·, x) furnished by the oracle O at yk must
be an affine support function of ϕk+1(·, x) at yk. Indeed, ϕk+1(·, x) is the envelope of
the exactness plane, the aggregate plane, and the cutting planes, but here one of the
cutting planes must be active at yk, i.e., ϕk+1(y

k, x) = myk,gk
(yk, x) = ak+g

T
k (y

k−x)
for some (ak, gk) ∈ O(yk, x), because if the values of the planes furnished by the
oracle are below the values of the other planes maintained in ϕk+1(·, x), then ρ̃k ≥ 1.
But that cannot happen here since we are in the case where Rk is frozen, and we
know that when ρ̃k ≥ 1, the trust-region radius Rk is reduced due to the secondary
test in step 7. Hence by the subgradient inequality

(5.14) ϕk+1(y
k, x) + gTk (· − yk) ≤ ϕk+1(·, x).
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Now using (5.14) and the fact that ϕk(y
k, x) ≤ ϕk+1(y

k, x), we estimate as follows:

0 ≤ ϕk+1(y
k, x)− ϕk(y

k, x)

= ϕk+1(y
k, x) + gTk (y

k+1 − yk)− ϕk(y
k, x)− gTk (y

k+1 − yk)

≤ ϕk+1(y
k+1, x)− ϕk(y

k, x)− gTk (y
k+1 − yk).

Since the gk are bounded and yk+1−yk → 0, we have gTk (y
k+1−yk) → 0, hence using

(5.13) we deduce ϕk+1(y
k, x)−ϕk(yk, x) → 0, and also Φk+1(y

k, x)−Φk(y
k, x) → 0.

Now we claim that ϕk(y
k, x) → f(x). Since ϕk(y

k, x) ≤ Φk(y
k, x) → Φ∗ ≤ f(x),

it remains to prove lim inf ϕk(y
k, x) ≥ f(x). Suppose that this is not the case, and

let ϕk(y
k, x) → f(x)−η for a subsequence and some η > 0. Then also ϕk+1(y

k, x) →
f(x) − η for that subsequence (using ϕk(y

k, x) − ϕk+1(y
k, x) → 0 proved above).

Passing to yet another subsequence, and using boundedness of the yk, we may
assume 1

2 |y
k − x|2Q → ℓ ≥ 0. Choose δ > 0 such that δ < (1 − γ̃)η. From what we

have just seen there exists k1 such that

ϕk+1(y
k, x)− ϕk(y

k, x) < δ

for all k ≥ k1. Now recall that ρ̃k ≤ γ̃ for every k ≥ k0, hence

γ̃
(
Φk(y

k, x)− f(x)
)
≤ ϕk+1(y

k, x)− f(x) ≤ ϕk(y
k, x)− f(x) + δ.

Passing to the limit gives −γ̃η + γ̃ℓ ≤ −η + δ, hence (1 − γ̃)η + ℓγ̃ ≤ δ, which
contradicts the choice of δ. Hence ϕk(y

k, x) → f(x). We immediately deduce that
Φk(y

k, x) → f(x) and Φk+1(y
k, x) → f(x). This also shows |yk−x|Q → 0, as follows

from the estimates

ϕk(y
k, x) ≤ Φk(y

k, x) = ϕk(y
k, x) + 1

2 |y
k − x|2Q ≤ Φ∗ ≤ f(x),

where due to ϕk(y
k, x) → f(x) all terms go to f(x), implying |yk − x|Q → 0.

Let us now show that x must be a critical point of (1.1). Let Φ(·, x) = ϕ(·, x) +
1
2 | · −x|

2
Q be the second order model associated with the envelope model ϕ of O.

Let y ∈ C ∩B(x,R), then ϕ(y, x) ≥ ϕk(y, x) by construction of the working models,
hence Φ(y, x) ≥ Φk(y, x) ≥ Φk(y

k, x), the latter since yk is the minimizer of Φk(·, x)
over C ∩ B(x,R). Since Φk(y

k, x) → f(x) by what we have seen above, we deduce
Φ(y, x) ≥ f(x) for every y ∈ C ∩ B(x,R). But Φ(x, x) = f(x), which means x is
a minimizer of Φ(·, x) over C ∩B(x,R), hence over C. In consequence there exists
g ∈ ∂1Φ(x, x) and v ∈ NC(x) such that g + v = 0. Since ∂1Φ(x, x) = ∂1ϕ(x, x) ⊂
∂f(x), this proves that x is a critical point of (1.1). □

Remark 5.7. Let us now see our first method to justify aggregation in the case
Q ≻ 0, zk ̸= yk. In the algorithm we first allow zk as a trial point in step 4. If
acceptance in step 5 fails for zk, then we include the cutting plane at zk and continue
with step 7 for zk. However, if step 7 for zk gives no reduction of Rk, then we are
in the difficult case not covered by Lemma 5.4. We then do the following. We fall
back on yk as the trial point, i.e., we forget about zk. When yk is not accepted, we
proceed with step 6, now for yk, and apply aggregation. This is justified, because we
are in the situation covered by Lemma 5.6. Note that the additional work required
in steps 6 and 7 is marginal, so we do not waste time by this evasive maneuver. We
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could even perform this maneuver as default (i.e. checking yk whenever zk fails).
We have proved the following

Lemma 5.8. Suppose the inner loop at x turns infinitely. Let Q ≻ 0 and accept to
fall back on yk if zk fails in step 5 with ρ̃k < γ̃ in step 7. Then 0 ∈ ∂f(x) +NC(x).

Let us now discuss a second way to justify aggregation in the case Q ≻ 0, zk ̸= yk,
which does not require the falling back procedure above. The idea proposed in [32]
is to sharpen condition (4.2) as follows. Fix a sequence νk → 0+ and require that
the trial points zk satisfy

(5.15) zk ∈ B(yk, νk) and (4.2).

Then the technique of Lemma 5.6 allows a direct justification of aggregation with
the aggregate plane taken at yk, and the cutting plane taken at zk.

Lemma 5.9. Suppose trial points zk in step 4 of the algorithm satisfy the stronger
condition (5.15). Suppose in case of a null step zk cutting planes are generated at
zk and the aggregate plane is generated at yk. Let Q ≻ 0. Suppose the inner loop
turns infinitely. Then x is a critical point of (1.1).

Proof. We follow the line of proof in Lemma 5.6. Up to formula (5.13) only proper-
ties of the aggregate plane are used, so we arrive at that same formula. Now we use
that ∥zk − yk∥ ≤ νk → 0, and then since the ϕk(·, x) have a joint Lipschitz constant
L on the bounded set B(x,R), we deduce |ϕk(zk, x)−ϕk(y

k, x)| ≤ L∥zk − yk∥ → 0.
In view of (5.13) this implies

ϕk+1(z
k+1, x)− ϕk(z

k, x) → 0.

Now observe that we must have ϕk+1(z
k, x) ≥ ϕk(z

k, x), because otherwise ρ̃k < γ̃
could not be satisfied. Hence one of the cutting planes mk(·, x) is an affine support
plane of ϕk+1(·, x) at zk, i.e., ϕk+1(z

k, x) = mk(z
k, x) = ak + gTk (z

k − x) for at least

one (ak, gk) ∈ O(zk, x). Then from the subgradient inequality at zk,

ϕk+1(z
k, x) + gTk (· − x) ≤ ϕk+1(·, x).

Consequently, if we apply this at zk+1,

0 ≤ ϕk+1(z
k, x)− ϕk(z

k, x)

= ϕk+1(z
k, x) + gTk (z

k+1 − zk)− ϕk(z
k, x)− gTk (z

k+1 − zk)

≤ ϕk+1(z
k+1, x)− ϕk(z

k, x)− gTk (z
k+1 − zk).

Since yk+1− yk → 0 by (5.12) and zk − yk → 0 by (5.15), we deduce zk+1− zk → 0.
Since the gk are bounded, we have gTk (z

k+1− zk) → 0. On the other hand, we know

that ϕk+1(z
k+1, x)− ϕk(z

k, x) → 0, so altogether we deduce

(5.16) ϕk+1(z
k, x)− ϕk(z

k, x) → 0,

and then also Φk+1(z
k, x)− Φk(z

k, x) → 0.
Now we prove that ϕk(z

k, x) → f(x). Since ϕk(z
k, x) − ϕk(y

k, x) → 0 and by
(5.12) ϕk(y

k, x) → Φ∗ ≤ f(x), we have limk ϕk(z
k, x) = Φ∗ ≤ f(x), and it remains

to show the opposite estimate.
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Suppose that contrary to what is claimed ϕk(z
k, x) → f(x) − η for some η > 0

and a subsequence. Then also ϕk+1(z
k, x) → f(x) − η as a consequence of (5.16).

Passing to yet another subsequence, and using boundedness of the zk, we may
assume 1

2 |z
k − x|2Q → ℓ ≥ 0. Choose δ > 0 such that δ < (1 − γ̃)η. From what we

have just seen there exists k1 such that

ϕk+1(z
k, x)− ϕk(z

k, x) < δ

for all k ≥ k1. Now recall that ρ̃k ≤ γ̃ for every k ≥ k0, hence

γ̃
(
Φk(z

k, x)− f(x)
)
≤ ϕk+1(z

k, x)− f(x) ≤ ϕk(z
k, x)− f(x) + δ.

Passing to the limit gives −γ̃η + γ̃ℓ ≤ −η + δ, hence (1 − γ̃)η + ℓγ̃ ≤ δ, which
contradicts the choice of δ. Hence ϕk(z

k, x) → f(x).
Using zk − yk → 0, we deduce ϕk(y

k, x) → f(x) and then from (5.12) we get
Φk(y

k, x) → f(x). That implies |yk − x|2Q → 0, and from Q ≻ 0 follows yk → x.

Let us now show that x must be a critical point of (1.1). Let Φ(·, x) = ϕ(·, x) +
1
2 | · −x|

2
Q be the second order model associated with the envelope model ϕ of O.

Let y ∈ C ∩B(x,R), then ϕ(y, x) ≥ ϕk(y, x) by construction of the working models,
hence Φ(y, x) ≥ Φk(y, x) ≥ Φk(y

k, x), the latter since yk is the minimizer of Φk(·, x)
over C ∩ B(x,R). Since Φk(y

k, x) → f(x) by what we have seen above, we deduce
Φ(y, x) ≥ f(x) for every y ∈ C ∩ B(x,R). But Φ(x, x) = f(x), which means x is
a minimizer of Φ(·, x) over C ∩B(x,R), hence over C. In consequence there exists
g ∈ ∂1Φ(x, x) and v ∈ NC(x) such that g + v = 0. Since ∂1Φ(x, x) = ∂1ϕ(x, x) ⊂
∂f(x), this proves that x is a critical point of (1.1). □
Example 5.10. We show by way of an example that the hypothesis Q ≻ 0 cannot
be removed neither from Lemmas 5.6,5.8, nor from Lemma 5.9. Consider (1.1) with
f(x) = 1

2x
2
1 − x1 +

1
4x

2
2, C = R2. In the algorithm choose γ = 1

2 , Q = 0, the trust
region norm ∥ · ∥ = | · |∞. Suppose the current iterate is x = (x1, x2) = (0, 0) with
f(0, 0) = 0, g0 = (−1, 0) ∈ ∂f(0, 0). The exactness plane is m0(z, x) = −z1, and we
let ϕ1 = m0. Suppose the current trust region radius is R1 = 1, then a minimizer
of the tangent program is y1 = (1, 1). In fact, the entire segment {1} × [−1, 1] is
minimizing, but we choose y1 at a corner. Take z1 = y1. The predicted progress
at y1 is 1, because m0(y

1, x) = ϕ1(y
1, x) = −1. The aggregate plane m∗

1(·, x) at y1
coincides with m0(·, x), because there is only one plane in the working model which
can be active.

We have f(y1) = −1
4 . Therefore ρ1 =

0−(− 1
4
)

0−(−1) = 1
4 < γ so y1 is a null step.

The function being convex, the cutting plane at y1 is the tangent plane m1(z, x) =
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1
4 +

1
2(z2−1). Since f is convex, the cutting plane always gives an improvement due

to ρ = ρ̃, so we keep R2 = R1, and we have ϕ2(·, x) = max{m0(·, x),m1(·, x)} =
max

{
−z1, 14 + 1

2(z2 − 1)
}
. Now a minimizer of ϕ2(·, x) over the trust region is

y2 = (1,−1). (The figure shows the trace of the graph of ϕ1, ϕ2, f in the plane
y1 = 1). Since m0((1,−1), x) = −1 and m1((1,−1), x) = −5

4 , only m0 is active at

y1, hence the aggregate plane is again m∗
2 = m0. Since ρ2 = ρ̃2 = 1

4 , the situation
is the same as in the first trial, (the figure being the one reflected by y2 = 0), and
we need a cutting plane at y2. This is now m2(z, x) = −1

4 − 1
2(z2 + 1). Now if we

do not keep the plane m1 in the working model, the tangent program is minimizing
ϕ3(·, x) = max{m0(·, x),m2(·, x)} = max{−z1,−1

4 − 1
2(z2 + 1)} over [−1, 1]2, and

a solution is y3 = (1, 1). This means, the inner loop oscillates between y2k+1 = y1

and y2k = y2, and no progress occurs.

Remark 5.11. The phenomenon in this example cannot occur if ∥ · ∥ = | · |2.
However, since the choice of this norm is not as useful as in the classical trust
region method due to the affine constraints in ϕk, we do not present the details of
the result here.

Remark 5.12. In the general case Q ⪰ 0 we can still limit the size of the working
model to n+ 2 using Carath辿 odory’s theorem. See [11] for the details.

Remark 5.13. In summary, justification of the aggregate rule in the case Q ≻ 0
can be based either on the technique of remark 5.7, or on adopting the stronger rule
(5.15) for trial steps.

Remark 5.14. We investigate whether backtracking steps zα = x+ α(yk − x) for
0 < α < 1 could be trial steps in the sense of (4.2) or (5.15), as this would allow to
use linesearch in case of rejection of yk.

Let ∆ := f(x) − Φk(y
k, x) > 0. By convexity the line joining (x, f(x)) and

(yk, f(x) − ∆) is above the curve α 7→ Φk(zα, x). Therefore zθ satisfies f(x) −
Φk(zθ, x) ≥ θ∆. Since zθ ∈ B(x, ∥x − yk∥) is clear, every zα with θ ≤ α ≤ 1 is a
trial point in the sense of (4.2). But not necessarily in the sense of (5.15), because
∥zθ − yk∥ = (1− θ)∥x− yk∥. If we impose ∥zθ − yk∥ ≤ νk, then shorter steps might
be forced. This is an argument for the fall back method.

5.3. Convergence of the outer loop. We are now ready to prove the main con-
vergence result for our optimization method. This is where strictness of the oracle

(Ô3) is needed.

Theorem 5.15. Suppose x1 ∈ C is such that the level set {x ∈ C : f(x) ≤ f(x1)} is
bounded. Let xj ∈ C be the sequence of serious iterates generated by the bundle trust-
region algorithm based on a strict cutting plane oracle. Then every accumulation
point x∗ of the xj is a critical point of (1.1).

Proof. 1) Without loss we consider the case where the algorithm generates an infinite
sequence xj ∈ C of serious iterates. Suppose that at outer loop counter j the inner
loop finds a successful trial step at inner loop counter kj , that is, z

kj = xj+1, where

the corresponding solution of the tangent program is x̃j+1 = ykj . Then ρkj ≥ γ,
which means

(5.17) f(xj)− f(xj+1) ≥ γ
(
f(xj)− Φkj (x

j+1, xj)
)
.
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Moreover, by condition (4.2) we have ∥x̃j+1 − xj∥ ≤ Θ∥xj+1 − xj∥ and

(5.18) f(xj)− Φkj (x
j+1, xj) ≥ θ

(
f(xj)− Φkj (x̃

j+1, xj)
)
,

and combining (5.17) and (5.18) gives

f(xj)− f(xj+1) ≥ γθ
(
f(xj)− Φkj (x̃

j+1, xj)
)
.(5.19)

Since ykj = x̃j+1 is a solution of the kthj tangent program (4.1) of the jth inner loop,

by the optimality condition there exist g∗j ∈ ∂
(
ϕkj (·, xj) + iC

)
(x̃j+1) and a unit

normal vector vj to the ball B(xj , Rkj ) at x̃
j+1 such that

(5.20) g∗j +Qj(x̃
j+1 − xj) + λjvj = 0,

where λj=∥g∗j+Qj(x̃
j+1−xj)∥. Decomposing further, there exist pj∈∂1ϕkj (x̃j+1, xj)

and qj ∈ NC(x̃
j+1) such that

(5.21) 0 = g∗j +Qj(x̃
j+1 − xj) + λjvj = pj + qj +Qj(x̃

j+1 − xj) + λjvj .

By the subgradient inequality, applied to pj ∈ ∂ϕkj (·, xj)(x̃j+1), we have

−(qj + λjvj)
T(xj − x̃j+1) + |x̃j+1 − xj |2Qj

= pTj (x
j − x̃j+1) (using (5.21))

≤ ϕkj (x
j , xj)− ϕkj (x̃

j+1, xj) (subgradient inequality)

= f(xj)− ϕkj (x̃
j+1, xj)

= f(xj)− Φkj (x̃
j+1, xj) + 1

2 |x̃
j+1 − xj |2Qj

≤ γ−1θ−1
(
f(xj)− f(xj+1)

)
+ 1

2 |x̃
j+1 − xj |2Qj

(by (5.19)).

Re-arranging, we obtain

(5.22) (qj + λjvj)
T(x̃j+1 − xj) + 1

2 |x̃
j+1 − xj |2Qj

≤ γ−1θ−1
(
f(xj)− f(xj+1)

)
.

By the normal cone condition for C∩B(xj , Rkj ) at x̃
j+1 we have (qj+λjvj)

T(x̃j+1−
xj) ≥ 0, hence both terms on the left of (5.22) are non-negative. But the term on
the right of (5.22) is telescoping, hence summable due to convergence of f(xj), so
we deduce summability of

∑
j∈N(qj + λjvj)

T (x̃j+1 − xj) <∞ and of
∑

j∈N |x̃j+1 −
xj |2Qj

< ∞. From (5.21) we then get summability of
∑

j∈N p
T
j (x

j − x̃j+1). Hence

pTj (x
j − x̃j+1) → 0, (qj + λjvj)

T(xj − x̃j+1) → 0, |xj − x̃j+1|Qj → 0. Moreover, we
know by local boundedness of the subdifferential that the sequence pj is bounded,
hence the sequence qj + λjvj is also bounded.

2) Now let x∗ be an accumulation point of the sequence xj . We have to show
that x∗ is a critical point of (1.1). Fix a subsequence j ∈ J such that xj → x∗,
and pj → p, qj + λjvj → q, x̃j+1 → x̃ for suitable p, q, x̃. We shall now analyze
two types of infinite subsequences j ∈ J , those where the trust-region constraint is
active at x̃j+1 and the Lagrange multiplier of the trust-region constraint is nonzero,
i.e. λj > 0 in (5.20), and those where the Lagrange multiplier of the trust-region
constraint vanishes, i.e., λj = 0 in (5.20).
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3) Let us start with the simpler case of an infinite subsequence xj , j ∈ J , where
the Lagrange multiplier of the trust-region constraint vanishes, i.e., λj = 0 in (5.20).
That occurs either when ∥xj − x̃j+1∥ < Rkj , i.e., where the trust-region constraint
is inactive at acceptance, or when it is active but with vanishing multiplier. In this
case equation (5.21) simplifies to

0 = g∗j +Qj(x̃
j+1 − xj) = pj + qj +Qj(x̃

j+1 − xj).

This means pj → p, qj → q and p + q = 0, bearing in mind that we have |x̃j+1 −
xj |Qj → 0.

Now let h be any test vector, then from the subgradient inequality, the acceptance
condition, and using ϕk ≤ ϕ, we have

pTj h ≤ ϕkj (x̃
j+1 + h, xj)− ϕkj (x̃

j+1, xj)

≤ ϕ(x̃j+1 + h, xj)− f(xj) + f(xj)− ϕkj (x̃
j+1, xj)

= ϕ(x̃j+1 + h, xj)− f(xj) + f(xj)− Φkj (x̃
j+1, xj) + 1

2 |x
j − x̃j+1|2Qj

≤ ϕ(x̃j+1 + h, xj)− f(xj) + γ−1θ−1
(
f(xj)− f(xj+1)

)
+ 1

2 |x
j − x̃j+1|2Qj

.

Let h′ be another test vector and put h = xj − x̃j+1 + h′. On substituting this
expression above we obtain

pTj (x
j − x̃j+1) + pTj h

′ ≤ ϕ(xj + h′, xj)− f(xj)

+ γ−1θ−1
(
f(xj)− f(xj+1)

)
+ 1

2 |x
j − x̃j+1|2Qj

.

Passing to the limit j ∈ J , we have pTj (x
j − x̃j+1) → 0 and |xj − x̃j+1|Qj → 0

by 1) above, and f(xj) − f(xj+1) → 0 by the construction of the descent method.
Moreover, lim supj∈J ϕ(x

j + h′, xj) ≤ ϕ(x∗ + h′, x∗) by xj → x∗ and axiom (M3).
Since pj → p, we get

pTh′ ≤ ϕ(x∗ + h′, x∗)− f(x∗) = ϕ(x∗ + h′, x∗)− ϕ(x∗, x∗).

Since h′ was arbitrary and ϕ(·, x∗) is convex, we deduce p ∈ ∂1ϕ(x
∗, x∗), hence

p ∈ ∂f(x∗) by axiom (M1).
Now we have to show that q ∈ NC(x

∗). Since qTj (x
j−x̃j+1) → 0 due to λj = 0 and

by part 1) above, and since qj → q, we have qT(x∗ − x̃) = 0. Since qj ∈ NC(x̃
j+1)

and x̃j+1 → x̃, we know that q ∈ NC(x̃). Hence for any element x ∈ C we have
qT(x̃−x) ≥ 0 by the normal cone criterion. Hence qT(x∗−x) = qT(x̃−x)+qT(x∗−
x̃) = qT(x̃ − x) ≥ 0, so the normal cone criterion holds also at x∗, proving q ∈
NC(x

∗). We have shown that 0 = p+ q ∈ ∂ (ϕ(·, x∗) + iC) (x
∗) ⊂ ∂f(x∗) +NC(x

∗),
hence x∗ is a critical point of (1.1).

4) Let us now consider the more complicated case of an infinite subsequence,
where ∥xj − x̃j+1∥ = Rkj with λj > 0, corresponding to the case of a non-vanishing

multiplier in (5.20). Recall that xj → x∗, j ∈ J , and that we have to show that x∗

is critical.
We shall now have to distinguish two subcases. Either Rkj ≥ R0 > 0 for some

R0 > 0 and all j ∈ J , or there exists a subsequence J ′ ⊂ J such that Rkj → 0 as
j ∈ J ′. The first case is discussed in 5), the second case will be handled in 6) - 7).
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5) Let us consider the sub-case of an infinite subsequence j ∈ J where ∥xj −
x̃j+1∥ = Rkj ≥ R0 > 0 for every j ∈ J . Recall from the general considerations in

part 1) that |x̃j+1 − xj |Qj → 0. Since on the other hand we are in the case where

∥x̃j+1 − xj∥ = Rkj ≥ R0 > 0 for j ∈ J , Lemma 5.1 provides a constant σ > 0
independent of j such that

f(xj)− Φkj (x̃
j+1, xj) ≥ σ∥g∗j ∥∥x̃j+1 − xj∥ ≥ σR0∥g∗j ∥,

for all j ∈ J . By acceptance ρkj ≥ γ and (4.2) that gives

f(xj)− f(xj+1) ≥ γθ
(
f(xj)− Φkj (x̃

j+1, xj)
)
≥ γθσR0∥g∗j ∥

and implies g∗j → 0. Splitting g∗j = pj + qj → 0 with pj ∈ ∂1ϕkj (x̃
j+1, xj) and

qj ∈ NC(x̃
j+1), recall that pj → p and qj + λjvj → q, and 0 = g∗j +Qj(x̃

j+1 − xj) +
λjvj → p+ q, hence p+ q = 0 and λjvj → 0, i.e., λj → 0, and we find qj → q. Since
x̃j+1 → x̃, we infer q ∈ NC(x̃). From here on we can argue as in part 2), which
means x∗ is critical, where in the last argument we infer qTj (x

j − x̃j+1) → 0 from
λj → 0.

6) It remains to discuss the most complicated sub-case of an infinite subsequence
j ∈ J , where the trust-region constraint is active with non-vanishing multiplier
λj > 0 and Rkj → 0. This needs two sub-sub-cases. The first of these is a sequence

j ∈ J where in each jth outer loop the trust-region radius was reduced at least
once. The second sub-sub-case are infinite subsequences where the trust-region

radius stayed frozen (R♯
j = Rkj ) throughout the j

th inner loop for every j ∈ J . This

is discussed in 6) below.
Let us first consider the case of an infinite sequence j ∈ J where Rkj is active at

x̃j+1 with λj > 0, and Rkj → 0, j ∈ J , and where during the jth inner loop the
trust-region radius was reduced at least once. Suppose this happened the last time
before acceptance at inner loop counter kj − νj for some νj ≥ 1. Then for j ∈ J ,

Rkj = Rkj−1 = · · · = Rkj−νj+1 =
1
2Rkj−νj .

By step 7 of the algorithm, that implies

ρ̃kj−νj ≥ γ̃, ρkj−νj < γ.

Now ∥x̃j+1 − xj∥ = Rkj , ∥xj+1 − xj∥ ≤ ΘRkj and ∥zkj−νj − xj∥ ≤ ΘRkj−νj−1 =

2ΘRkj , hence x
j+1 − zkj−νj → 0, xj − zkj−νj → 0, j ∈ J .

By strictness (Ô3), and due to convergence zkj−νj → x∗ as well as xj → x∗,
there exists at least one cutting plane mj(·, xj) = aj + gTj (· − xj) with (aj , gj) ∈
O(zkj−νj , xj) in tandem with ϵj → 0+ such that f(zkj−νj ) ≤ mj(z

kj−νj , xj) +

ϵj∥zkj−νj − xj∥. Since by rule (W3) this cutting plane is included in the next
working model ϕkj−νj+1(·, xj), we have mj(·, xj) ≤ ϕkj−νj+1(·, xj), hence we obtain

f(zkj−νj ) ≤ ϕkj−νj+1(z
kj−νj , xj) + ϵj∥zkj−νj − xj∥.

Let g̃j ∈ ∂
(
ϕkj−νj (·, xj) + iC

)
(ykj−νj ) denote the aggregate subgradient at ykj−νj .

By Lemma 5.3 we have f(xj)−Φkj−νj (z
kj−νj , xj) ≥ σ∥g̃j∥∥xj−zkj−νj∥ for a constant
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σ independent of j. Now recall that xj → x∗ and that we have to show that x∗ is
critical. It suffices to show that there is a subsequence j ∈ J ′ with g̃j → 0.

Assume on the contrary that ∥g̃j∥ ≥ η > 0 for every j ∈ J . Then

f(xj)− Φkj−νj (z
kj−νj , xj) ≥ ησ∥zkj−νj − xj∥.

Now expanding the test quotient at zkj−νj gives

ρ̃kj−νj = ρkj−νj +
f(zkj−νj )− ϕkj−νj+1(z

kj−νj , xj)

f(xj)− Φkj−νj (z
kj−νj , xj)

≤ ρkj−νj +
ϵj∥zkj−νj − xj∥
ησ∥zkj−νj − xj∥

< γ̃

for j ∈ J sufficiently large, contradicting ρ̃kj−νj ≥ γ̃. This shows that there must
exist a subsequence J ′ of J such that g̃j → 0, j ∈ J ′. Passing to the limit j ∈ J ′,
we use the argument of part 2) to show that 0 ∈ ∂ (ϕ(·, x∗) + iC) (x

∗), hence x∗ is
critical for (1.1).

7) Now consider an infinite subsequence j ∈ J where xj → x∗, the trust-region
radius Rkj was active at x̃j+1 with non-zero multiplier λj > 0 when xj+1 was

accepted, where Rkj → 0, but where during the jth inner loop the trust-region
radius was never reduced. Since Rkj → 0, the work to bring the radius to 0 must be
put about somewhere else outside J . For every j ∈ J define j′ ∈ N to be the largest
index j′ < j such that in the j′th inner loop, the trust-region radius was reduced at
least once. This means that in none of the loops j′ + 1, . . . , j was the trust-region
radius reduced. As a consequence,

Rkj′ ≤ Rkj′+1
≤ · · · ≤ Rkj → 0,

so all the trust region radii at acceptance in any of the loops between j′ and j tend
to 0. Indeed, all that can happen is that due to good acceptance the trust-region
radii are increased at acceptance (see step 8), so the largest among them is Rkj .

Let J ′ = {j′ : j ∈ J}, where we understand j 7→ j′ as a function. Passing to a

subsequence of J, J ′, we may assume that xj
′ → x′ and g∗j′ → 0, the latter because

the sequence J ′ corresponds to one of the cases discussed in parts 2) - 5). Passing
to yet another subsequence, we may arrange that the sequences J, J ′ are interlaced.
That is, j′ < j < j′+ < j+ < j′++ < j++ < · · · → ∞. This since j′ tends to ∞ as a
function of j.

Now assume that there exists η > 0 such that ∥g∗j ∥ ≥ η for all j ∈ J . Then since

xj → x∗, we also have xj+1 → x∗ due to Rkj → 0 and the second part of rule (4.2).
Fix ϵ > 0 with ϵ < η. For j ∈ J large enough we have ∥g∗j′∥ < ϵ, because g∗j′ → 0,

j′ ∈ J ′, and as j gets larger, so does j′. That means in the interval [j′, j) there
exists an index j′′ ∈ N such that

∥g∗j′′∥ < ϵ, ∥g∗i ∥ ≥ ϵ for all i = j′′ + 1, . . . , j.

The index j′′ may coincide with j′, it might also be larger, but it precedes j. In any
case, j 7→ j′′ is again a function on J and defines another infinite index set J ′′ still
interlaced with J .



NONSMOOTH TRUST-REGIONS 699

Now since |xi−xi+1|Qi → 0, and at the same time ∥g∗i ∥ ≥ ϵ for i = j′′+1, . . . , j, we
can use Lemma 5.3 to get estimates of the form σ∥g∗i ∥∥xi−xi+1∥ ≤ f(xi)−f(xi+1)
with σ independent of i ∈ [j′′ + 1, . . . , j] and j large enough. Summation gives

σ

j∑
i=j′′+1

∥g∗i ∥∥xi − xi+1∥ ≤ f(xj
′′+1)− f(xj+1) → 0 (j ∈ J, j → ∞, j 7→ j′′).

Since ∥g∗i ∥ ≥ ϵ for all i ∈ [j′′ + 1, . . . , j], the sequence
∑j

i=j′′+1 ∥x
i − xi+1∥ → 0

converges as j ∈ J, j → ∞. By the triangle inequality, xj
′′+1−xj+1 → 0. Therefore

xj
′′+1 → x∗, and also x̃j

′′+1 → x∗ because ∥xj′′+1− x̃j′′+1∥ ≤ ∥xj′′+1−xj′′∥+∥xj′′ −
x̃j

′′+1∥ ≤ ΘRkj′′ +Rkj′′ → 0.

Since as an aggregate subgradient g∗j′′ ∈ ∂
(
ϕ(·, xj′′) + iC

)
(x̃j

′′+1), passing to yet

another subsequence and using local boundedness of ∂f , we get g∗j′′ → g∗. But with

xj
′′ → x∗ and model property (M3) we get g

∗ ∈ ∂(ϕ(·, x∗)+ iC)(x
∗). It follows that

∂(ϕ(·, x∗)+ iC)(x∗) contains an element g∗ of norm less than or equal to ϵ. As ϵ < η
was arbitrary, we conclude that 0 ∈ ∂(ϕ(·, x∗) + iC)(x

∗) ⊂ ∂f(x∗) +NC(x
∗). That

settles the remaining case. □

Remark 5.16. As the proof reveals, strictness of the cutting plane oracle is not
needed if the trust region radius stays bounded away from 0, or if the trust region
constraint is not strongly active.

6. Applications

A natural question is why the secondary test (4.4) in step 7 of the algorithm is
required. A partial answer is that convergence fails if the test is removed without
substitute, as shown in our examples in [11, 51]. In exchange, sometimes the sec-
ondary test (4.4) becomes redundant. There are at least three situations where this
happens.

The first case is of course the convex tangent plane oracle Otan, where cutting
planes are tangents to f and Q = 0. Here ρk = ρ̃k, so for a null step the trust region
radius is fixed. This is corroborated by [60], where convergence is proved with a
trust region radius fixed all along. The resulting method then resembles the cutting
plane method.

6.1. The all-tangents-oracle. A second case is when a model ϕ is available to
construct an oracle and we choose the working model as ϕk = ϕ at all k. This is
allowed and corresponds to choosing as oracle Oall(z, x) the set of all tangents to
ϕ(·, x) at all points z′ ∈ B(x,M). Then always ρ̃k ≥ 1, hence the trust region radius
is always reduced at a null step. The price to pay for this simplification is that the
tangent program is no longer of a simple structure.

Example 6.1. (Proximal point method). Let us show that splitting techniques
fit nicely into the framework of the all-tangents-oracle Oall. Consider f = g+h with
g convex and h of class C1. We know that ϕ(y, x) = g(y) + h(x) + ∇h(x)(y − x)
is a strict model of f , because here the Clarke subdifferential is additive due to
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strict differentiability of h. Now we use Oall, that is, we choose as working model
ϕk(·, x) = ϕ(·, x). As second order working model we choose

Φ(y, x) = ϕ(y, x) + 1
2rx

∥y − x∥2,
where rx > 0 may depend on the serious iterate x. That corresponds to Q(x) =
(1/rx)I. Note that if we add the constant term (rx/2)∥∇h(x)∥2 − h(x), then the
tangent program (4.1) becomes
(6.1)
x+ = argmin

y
Φ(y, x)− h(x) + rx

2 ∥∇h(x)∥
2 = argminy g(y) +

1
2rx

∥y− x+ rx∇h(x)∥2

which is the convex proximal point method with splitting. This means convergence
theory of the convex proximal point method with splitting is a very special case
of our convergence theory. Convexity of h is not required in our approach. If h is
in addition convex, convergence to a single minimum follows with Kiwiel’s anchor
technique [37], see also [35,36].

Example 6.2. (Forward-backward splitting). In contrast with the typical
splitting literature we do not require convexity of g. If g is lower C2, so that
g + (1/2ℓx)∥ · −x∥2 is convex on B(x,R) for a suitable ℓx > 0, then we choose as
first-order model ϕ(y, x) = g(y) + (1/2ℓx)∥y − x∥2 + h(x) +∇h(x)(y − x). Now for
rx < ℓx we use the second order working model

Φ(y, x) = ϕ(y, x) + (1/2rx − 1/2ℓx)∥y − x∥2,
then on adding the same constant term −h(x) + (rx/2)∥∇h(x)∥2, and using Oall,
we end up with the same tangent program (6.1), where now rx < ℓx is required to
convexify g in the neighborhood B(x,R) of the current x in which trial steps are
taken, assuring a convex tangent program.

But we can do still better, because if g is only lower C1, we can still use the
oracle O↓ for g and the standard model for h, so that a cutting plane is of the form
m↓(·, x) + h(x) +∇h(x)(· − x). This oracle is strict.

Remark 6.3. In [15, 26] the proximal point method is combined with uncertainty
in the computation of f,∇h, respectively, of ∂g, where Monte-Carlo, respectively,
stochastic subgradient techniques cause the uncertainty. This now turns out a
special case of our approach [50] to inexact subgradients and values in the non-
convex bundle method. In that work we also allow the more challenging situation
when the level of uncertainty in the data remains unknown to the user.

6.2. The standard model. Let us consider the standard oracle O♯ = Oϕ♯ , where

the cutting plane (a, g) ∈ O♯(z, x) requires finding the g ∈ ∂f(x) with f◦(x, z−x) =
gT(z − x). While this may still be hard to compute in some cases, we get a simpli-
fication if x is a point of strict differentiability of f , as then ∂f(x) = {∇f(x)}. In
that case ϕk(z

k, x) = ϕ♯(zk, x), and the secondary test is again redundant. See Bor-
wein and Moors [16] for criteria when a function f is densely or almost everywhere
strictly differentiable.

In that case, we automatically have ϕk = ϕ♯, so the secondary test is again
redundant. We have then arranged that the trust-region tangent program is

min{f(xj) +∇f(xj)(y − x) + 1
2(y − xj)TQj(y − xj) : ∥y − xj∥ ≤ R, y ∈ C},
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which is the classical trust-region method. Convergence of this method, which the
user cannot distinguish from classical trust regions, hinges therefore on whether O♯

is strict at the accumulation points of the sequence xj . As we know, this is almost
never the case in non-smooth optimization, which gives us the explanation why
classical methods as a rule do not work on non-smooth problems.
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mization, Math. Prog. Stud. 17 (1982), 77–90.

[47] D. Noll and P. Apkarian, Spectral bundle method for nonconvex maximum eigenvalue functions:
first-order methods, Math. Programming, Series B 104 (2005), 701–727.

[48] D. Noll and P. Apkarian, Spectral bundle method for nonconvex maximum eigenvalue functions:
second-order methods, Math. Programming, Series B, 104 (2005), 729–747.

[49] D. Noll, Cutting plane oracles to minimize non-smooth non-convex functions, Set-Valued Var.
Anal. 18 (2010), 531–568.

[50] D. Noll, Bundle method for non-convex minimization with inexact subgradients and function
values, Computational and Analytical Mathematics, Springer Proceedings in Mathematics &
Statistics 50 (2013), 555–592.

[51] D. Noll, Convergence of non-smooth descent methods using the Kurdyka- Lojasiewicz inequality,
J. Optim.Theory Appl. 160 (2014), 553–572.

[52] D. Noll, O. Prot and A. Rondepierre, A proximity control algorithm to minimize non-smooth
and non-convex functions, Pacific J. Optim. 4 (2008), 571–604.

[53] E. Polak and S. Salcudean, On the design of linear multivariable feedback systems via con-
strained nondifferentiable optimization in H∞ space, IEEE Trans. Autom. Control AC-34
(1989), 268–276.

[54] E. Polak and Y. Wardi, A nondifferential optimization algorithm for the design of control
systems subject to singular value inequalities over the frequency range, Automatica 18 (1982),
267–283.

[55] L. Ravanbod, D. Noll and P. Apkarian, An extension of the linear quadratic Gaussian loop
transfer recovery procedure, IET Control Theory and Applications 6 (2012), 2269–2278.

[56] L. Ravanbod, D. Noll and P. Apkarian, Branch and bound algorithm for the robustness analysis
of uncertain systems, Proc. 16th IFAC Workshop on Control Applications of Optimization,
IFAC-PapersOnLine 48 (2015), 85–90.

[57] L. Ravanbod, D. Noll and P. Apkarian, Computing the structured distance to instability, Pro-
ceedings of the SIAM Conference on Control and Applications, Paris, 2015, pp. 423–430.

[58] L. Ravanbod, D. Noll, J.-P. Raymond and J.-M. Buchot, Robustified H2-control of a system
with large state dimension, European Journal of Control 31 (2016), 59–71.

[59] R. T. Rockafellar and R.J.-B. Wets, Variational Analysis, Springer Verlag, 2004.
[60] A. Ruszczyński, Nonlinear Optimization, Princeton University Press, 2007.
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