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2. Overtaking optimal programs

Let R1 (R1
+) be the set of real (non-negative) numbers and let Rn be the n-

dimensional Euclidean space with non-negative orthant

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n}.

For every pair of vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, define their inner
product by

xy =
n∑

i=1

xiyi

and let x >> y, x > y, x ≥ y have their usual meaning. Namely, for a given pair of
vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we say that x ≥ y, if xi ≥ yi for all
i = 1, . . . , n, x > y if x ≥ y and x ̸= y, and x >> y if xi > yi for all i = 1, . . . , n.

Let e(i), i = 1, . . . , n, be the ith unit vector in Rn, and e be an element of Rn
+

all of whose coordinates are unity. For every x ∈ Rn, denote by ∥x∥ its Euclidean
norm in Rn.

Let a = (a1, . . . , an) >> 0, b = (b1, . . . , bn) >> 0, d ∈ (0, 1),

(2.1) ci = bi/(1 + dai), i = 1, . . . , n.

We assume the following:

There exists σ ∈ {1, . . . , n} such that for all

(2.2) i ∈ {1, . . . , n} \ {σ}, cσ > ci.

A sequence {x(t), y(t)}∞t=0 is called a program if for each integer t ≥ 0

(x(t), y(t)) ∈ Rn
+ ×Rn

+, x(t+ 1) ≥ (1− d)x(t),

(2.3) 0 ≤ y(t) ≤ x(t), a(x(t+ 1)− (1− d)x(t)) + ey(t) ≤ 1.

Let T1, T2 be integers such that 0 ≤ T1 < T2. A pair of sequences

({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is called a program if x(T2) ∈ Rn
+ and for each integer t satisfying T1 ≤ t < T2

relations (2.3) is valid.
Assume that w : [0,∞) → R1 is a continuous strictly increasing concave and

differentiable function which represents the preferences of the planner.
Define

Ω = {(x, x′) ∈ Rn
+ ×Rn

+ : x′ − (1− d)x ≥ 0

(2.4) and a(x′ − (1− d)x) ≤ 1}
and a correspondence Λ : Ω → Rn

+ given by

(2.5) Λ(x, x′) = {y ∈ Rn
+ : 0 ≤ y ≤ x and ey ≤ 1− a(x′ − (1− d)x)}.

For every (x, x′) ∈ Ω set

(2.6) u(x, x′) = max{w(by) : y ∈ Λ(x, x′)}.
A golden-rule stock is x̂ ∈ Rn

+ such that (x̂, x̂) is a solution to the problem:
maximize u(x, x′) subject to
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(i) x′ ≥ x; (ii) (x, x′) ∈ Ω.
It was shown in [20] that there exists a unique golden-rule stock

(2.7) x̂ = (1/(1 + daσ))e(σ).

It is not difficult to see that x̂ is a solution to the problem

w(by) → max, y ∈ Λ(x̂, x̂).

Set

(2.8) ŷ = x̂.

For i = 1, . . . , n set

(2.9) q̂i = aibi/(1 + dai), p̂i = w′(bx̂)q̂i.

It was shown in [20] that

(2.10) w(bx̂) ≥ w(by) + p̂x′ − p̂x

for every (x, x′) ∈ Ω and for every y ∈ Λ(x, x′).
A program {x(t), y(t)}∞t=0 is good if there is a real number M such that

T∑
t=0

(w(by(t))− w(bŷ)) ≥ M for every nonnegative integer T.

A program {x(t), y(t)}∞t=0 bad if

lim
T→∞

T∑
t=0

(w(by(t))− w(bŷ)) = −∞.

The following result was proved in [20].

Proposition 2.1. Every program which is not good is bad.

The following two results were obtained in [42]. They show that an asymptotic
turnpike property holds for our infinite horizon problem.

Theorem 2.2. Assume that the function w is strictly concave. Then for every good
program {x(t), y(t)}∞t=0,

lim
t→∞

(x(t), y(t)) = (x̂, x̂).

Set

(2.11) ξσ = 1− d− (1/aσ).

Theorem 2.3. Assume that ξσ ̸= −1. Then

lim
t→∞

(x(t), y(t)) = (x̂, x̂)

for every good program {x(t), y(t)}∞t=0.

We use a notion of an overtaking optimal program introduced by Gale [15] and
von Weizsacker [41]. This optimality criterion is used in optimal control [10,44,45].

A program {x∗(t), y∗(t)}∞t=0 is overtaking optimal if

lim sup
T→∞

T∑
t=0

[w(by(t))− w(by∗(t))] ≤ 0
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for every program {x(t), y(t)}∞t=0 which satisfies x(0) = x∗(0).
The following existence result was also obtained in [42].

Theorem 2.4. Assume that for every good program {x(t), y(t)}∞t=0,

lim
t→∞

(x(t), y(t)) = (x̂, x̂).

Then for every point x0 ∈ Rn
+ there is an overtaking optimal program {x(t), y(t)}∞t=0

such that x(0) = x0.

The final result of this section was obtained in [21].

Theorem 2.5. Assume that at least one of the following conditions holds:

(a) w is strictly concave.
(b) ξσ ̸= −1.

Let ϵ > 0. Then there exists δ > 0 such that for each overtaking optimal program
{x(t), y(t)}∞t=0 satisfying ∥x(0)− x̂∥ ≤ δ the following inequality holds:

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ

for all integers t ≥ 0.

3. A turnpike result

In this section we present two auxiliary results which play an important role in
our study. The first of them was obtained in [21].

Proposition 3.1. Let ϵ > 0. Then there exists δ > 0 such that for each x, x′ ∈ Rn
+

satisfying

∥x− x̂∥, ∥x′ − x̂∥ ≤ δ

there exist x̄ ≥ x′, y ∈ Rn
+ such that

(x, x̄) ∈ Ω, y ∈ Λ(x, x̄),

∥y − x̂∥ ≤ ϵ, ∥x̄− x̂∥ ≤ ϵ.

It is easy to see that the following auxiliary result holds.

Proposition 3.2. Assume that T1, T2 are nonnegative integers, T1 < T2,

({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is a program and u ∈ Rn
+. Then ({x(t) + (1 − d)t−T1u}T2

t=T1
, {y(t)}T2−1

t=T1
) is also a

program.

Let z ∈ Rn
+ and T ≥ 1 be a natural number. Set

U(z, T ) = sup{
T−1∑
t=0

w(by(t)) : ({x(t)}Tt=0, {y(t)}T−1
t=0 )

is a program such that x(0) = z}.
Note that U(z, T ) is a finite number [23].
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Let x0, x1 ∈ Rn
+, T1, T2 be integers, 0 ≤ T1 < T2. Define

U(x0, x1, T1, T2) = sup{
T2−1∑
t=T1

w(by(t)) : ({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is a program such that x(T1) = x0, x(T2) ≥ x1}.
(Here we suppose that a supremum over empty set is −∞.) Note that

U(x0, x1, T1, T2) < ∞
[23].
The next turnpike result was obtained in [23].

Theorem 3.3. Assume that each good program {u(t), v(t)}∞t=0 converges to the
golden-rule stock (x̂, x̂) :

lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Let M, ϵ be positive numbers and Γ ∈ (0, 1). Then there exist a natural number
L and a positive number γ such that for each integer T > 2L, each z0, z1 ∈ Rn

+

satisfying z0 ≤ Me and az1 ≤ Γd−1 and each program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) which

satisfies

x(0) = z0, x(T ) ≥ z1,

T−1∑
t=0

w(by(t)) ≥ U(z0, z1, 0, T )− γ

there are integers τ1, τ2 such that

τ1 ∈ [0, L], τ2 ∈ [T − L, T ],

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = τ1, . . . , τ2 − 1.

Moreover if ∥x(0)− x̂∥ ≤ γ then τ1 = 0 and if ∥x(T )− x̂∥ ≤ γ then τ2 = T .

4. The main result

Assume that each good program {u(t), v(t)}∞t=0 converges to the golden-rule stock
(x̂, x̂) :

(4.1) lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Theorem 4.1. Assume that {x(t), y(t)}∞t=0 is an overtaking optimal program, T0 is
a natural number and that

(4.2) x(0) = x(T0).

Then for all integers t ≥ 0,
x(t) = y(t) = x̂.

Proof. In view of (4.2), there exists a program {x̃(t), ỹ(t)}∞t=0 such that

(4.3) x̃(t) = x(t), ỹ(t) = y(t), t = 0, . . . , T0 − 1

and that for all integers t ≥ 0,

(4.4) x̃(t+ T0) = x̃(t), ỹ(t+ T0) = ỹ(t).

Proposition 2.1 implies that there are two cases:
(1) the program {x̃(t), ỹ(t)}∞t=0 is good;
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(2) the program {x̃(t), ỹ(t)}∞t=0 is bad.
Assume that case (2) holds. By (4.3) and (4.4),

−∞ = lim
T→∞

T∑
t=0

(w(bỹ(t))− w(bx̂))

= lim
k→∞

T0k−1∑
t=0

(w(bỹ(t))− w(bx̂))

= lim
k→∞

k

T0−1∑
t=0

(w(bỹ(t))− w(bx̂))

= lim
k→∞

k

T0−1∑
t=0

(w(by(t))− w(bx̂)),

where k is a natural number. Therefore

(4.5)

T0−1∑
t=0

w(by(t)) < T0w(bx̂).

In view of (4.5), there exists a positive number γ such that

(4.6) γ < T0w(bx̂)−
T0−1∑
t=0

w(by(t)).

There exists γ0 ∈ (0, γ) such that

(4.7) 2γ0e(σ) ≤ x̂

and

(4.8) w(b(x̂− γ0e(σ))) ≥ w(x̂)− γ/8.

Proposition 3.1 implies that there exists δ ∈ (0, γ0) such that the following prop-
erty holds:

(P) for each x, x′ ∈ Rn
+ satisfying

∥x− x̂∥, ∥x′ − x̂∥ ≤ δ

there exist x̄ ≥ x′, y ∈ Rn
+ such that

(x, x̄) ∈ Ω, y ∈ Λ(x, x̄),

∥y − x̂∥ ≤ γ0, ∥x̄− x̂∥ ≤ γ0

and

w(b(x̂+ δe)) ≤ w(x̂) + γ/8.

Note [42] that every overtaking optimal program is good. Therefore in view of (4.1),

lim
t→∞

x(t) = x̂, lim
t→∞

y(t) = x̂

and there exists a natural number T1 such that for all integers t ≥ T1,

(4.9) ∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ δ.
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Set

(4.10) x(1)(t) = x(t+ T0), t = 0, . . . , T0 + T1,

(4.11) y(1)(t) = y(t+ T0), t = 0, . . . , T0 + T1 − 1.

Property (P), (4.9) and (4.10) imply that there exist

y(1)(T0 + T1), x
(1)(T0 + T1 + 1) ∈ Rn

+

such that

(4.12) (x(1)(T0 + T1), x
(1)(T0 + T1 + 1)) ∈ Ω,

(4.13) y(1)(T0 + T1) ∈ Λ(x(1)(T0 + T1), x
(1)(T0 + T1 + 1)),

(4.14) ∥y(1)(T0 + T1)− x̂∥ ≤ γ0, ∥x(1)(T0 + T1 + 1)− x̂∥ ≤ γ0,

(4.15) x(1)(T0 + T1 + 1) ≥ x̂.

In view of (4.12) and (4.13), ({x(1)(t)}T0+T1+1
t=0 , {y(1)(t)}T0+T1

t=0 ) is a program. For all
integers t ∈ {T0 + T1 + 1, . . . , 2T0 + T1}, set

(4.16) y(1)(t) = ŷ,

(4.17) x(1)(t+ 1) = x̂+ (1− d)t−T0−T1(x(1)(T0 + T1 + 1)− x̂).

By Proposition 3.2 and (4.15)-(4.17), ({x(1)(t)}2T0+T1+1
t=0 , {y(1)(t)}2T0+T1

t=0 ) is a pro-
gram. It follows from (4.15) and (4.17) that

(4.18) x(1)(2T0 + T1 + 1) ≥ x̂.

Property (P) and (4.9) imply that there exist

(4.19) x̄ ≥ x(2T0 + T1 + 2), y ∈ Rn
+

such that

(4.20) (x̂, x̄) ∈ Ω, y ∈ Λ(x̂, x̄),

(4.21) ∥x̄− x̂∥ ≤ γ0, ∥y − x̂∥ ≤ γ0.

Set

(4.22) y(1)(2T0 + T1 + 1) = y,

(4.23) x(1)(2T0 + T1 + 2) = x̄+ (1− d)(x(1)(2T0 + T1 + 1)− x̂).

It follows from (4.18), (4.20), (4.22) and (4.23) that

(x(1)(2T0 + T1 + 1), x(1)(2T0 + T1 + 2)) ∈ Ω,

y(1)(2T0 + T1 + 1) ∈ Λ(x(1)(2T0 + T1 + 1), x(1)(2T0 + T1 + 2)).

Thus ({x(1)(t)}2T0+T1+2
t=0 , {y(1)(t)}2T0+T1+1

t=0 ) is a program. In view of (4.2), (4.10),
(4.18), (4.19) and (4.23),

(4.24) x(1)(0) = x(T0) = x(0),

(4.25) x(1)(2T0 + T1 + 2) ≥ x̄ ≥ x(2T0 + T1 + 2).
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Since the program {x(t), y(t)}∞t=0 is overtaking optimal Proposition 3.2, (4.6), (4.11),
(4.24) and (4.25) imply that

0 ≤
2T0+T1+1∑

t=0

w(by(t))−
2T0+T1+1∑

t=0

w(by(1)(t))

=

T0−1∑
t=0

w(by(t)) +

2T0+T1+1∑
t=T0

w(by(t))

−
T0+T1−1∑

t=0

w(by(1)(t))− w(by(1)(T0 + T1))

− T0w(bŷ)− w(by(1)(2T0 + T1 + 1))

≤ −γ + w(by(2T0 + T1)) + w(by(2T0 + T1 + 1))

− w(by(1)(T0 + T1))− w(by(1)(2T0 + T1 + 1)).(4.26)

Property (P), (4.8), (4.9) and (4.26) imply that

0 ≤ −γ + 2w(b(x̂+ δe))− 2w(b(x̂− γ0e(σ)))

≤ −γ + 2w(b(x̂)) + γ/4− (2w(b(x̂))− γ/4) ≤ −γ/2,

a contradiction. The contradiction we have reached proves that case (2) does not
hold. Thus the program {x̃(t), ỹ(t)}∞t=0 is good. In view of (4.1),

x(t) = x̂, t = 0, . . . , T0.

Together with Theorem 3.3, (4.1) and the inequality ax̂ < d−1 this implies that

x(t) = y(t) = x̂, t = 0, 1, . . . .

Theorem 4.1 is proved.
□
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