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A NONINTERSECTION PROPERTY FOR SOLUTIONS OF
DISCRETE TIME OPTIMAL CONTROL PROBLEMS

ALEXANDER J. ZASLAVSKI

ABSTRACT. In this work we study the structure of overtaking optimal solutions
of discrete time optimal control problems arising in models of economic dynamics
and show that they have a nonintersection property.

1. INTRODUCTION AND THE MAIN RESULT

The study of the existence and the structure of solutions of optimal control prob-
lems defined on infinite intervals and on sufficiently large intervals has recently been
a rapidly growing area of research. See, for example, [2,4-14, 18,19, 25,28, 30, 33—
35,38,46,48] and the references mentioned therein. These problems arise in engi-
neering [1,26,44], in models of economic growth [10,15,20-24,29,32,39,41-45, 50],
in the game theory [16,37,47], in optimal control with PDE [17,36,40,49] in infi-
nite discrete models of solid-state physics related to dislocations in one-dimensional
crystals [3] and in the theory of thermodynamical equilibrium for materials [27,31].
In this paper we study the infinite horizon problem related to a discrete-time opti-
mal control system describing the Robinson-Solow-Srinivasan model and establish
a nonintersection property for their optimal solutions.

It should be mentioned that discrete-time optimal control problems arising in
economic dynamics usually are studied under assumptions that all their good pro-
grams converge to a turnpike which is an interior point of the set of admissible
pairs [45,47]. In this paper we study a large class of control systems for which the
turnpike is not necessarily an interior point of the set of admissible pairs. This
makes the situation more difficult and less understood.

One of the main topics in the infinite horizon optimal control theory is to study
the existence and properties of solutions of problems over an infinite horizon us-
ing different optimality criteria. In the present paper, studying infinite horizon
problems, we deal with the notion of good programs introduced by D. Gale in [15]
which is of great usage in optimal control and economic dynamics (see, for ex-
ample, [10,44,45] and the references mentioned therein) and with the notion of
overtaking optimal program [10,15,41,44,45,49,50].
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Key words and phrases. Good program, infinite horizon problem, overtaking optimal program,
turnpike.



808 ALEXANDER J. ZASLAVSKI

2. OVERTAKING OPTIMAL PROGRAMS

Let R' (R!) be the set of real (non-negative) numbers and let R™ be the n-
dimensional Fuclidean space with non-negative orthant

Rﬁ:{ﬁb’:(l’l,,xn)eRn :L‘IZO, Z:l,’n}

For every pair of vectors z = (1,...,2y), ¥y = (y1,-..,Yn) € R", define their inner

product by
n
Y = Z LiYi
=1

and let z >> y, x > y, x > y have their usual meaning. Namely, for a given pair of
vectors © = (21,...,%yn), Yy = (Y1,-.-,Yn) € R, we say that x >y, if z; > y; for all
i=1,....nz>yife>yandax#y,andx >>yifa; >y, foralli=1,... n.

Let e(i), i = 1,...,n, be the ith unit vector in R", and e be an element of R
all of whose coordinates are unity. For every x € R", denote by ||z| its Euclidean
norm in R™.

Let a = (a1,...,a,) >>0,b= (by,...,b,) >>0,d € (0,1),
(21) szbl/(1+daz), t=1,...,n.

We assume the following;:

There exists o € {1,...,n} such that for all

(2.2) ie{l,...,n}\ {0}, ¢t > q.
A sequence {z(t), y(t)}2, is called a program if for each integer t > 0
(@(t),y(t)) € R} x R, a(t+1) = (1—d)x(t),

(2.3) 0<y(t) <z(t), a(z(t +1) = (1 —d)z(t)) +ey(t) < 1.

Let T71,T5 be integers such that 0 < T} < T5. A pair of sequences

{2, vOh2T)

is called a program if x(T3) € R’ and for each integer ¢ satisfying 77 < t < T
relations (2.3) is valid.

Assume that w : [0,00) — R! is a continuous strictly increasing concave and
differentiable function which represents the preferences of the planner.

Define

Q={(z,2")e Ry xR} : 2/ —(1—d)z >0

(2.4) and a(x’ — (1 —d)z) <1}
and a correspondence A : ) — R} given by
(2.5) Az, 2"y ={yeR}: 0<y<zandey<1l-—a(z' —(1-dx)}.
For every (z,2') € Q set
(2.6) u(z,2') = max{w(by) : y € A(z,2')}.

A golden-rule stock is # € R such that (Z,7) is a solution to the problem:
maximize u(z,z’) subject to
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(i) 2’ > z; (i) (z,2) € Q.

It was shown in [20] that there exists a unique golden-rule stock
(2.7) z=(1/(1+day))e(o).

It is not difficult to see that Z is a solution to the problem

w(by) = max, y € A(Z, 7).

Set

(2.8) y="1.

Fori=1,...,n set

(2.9) g = a;b;/(1 + da;), pi = w'(b2)g;.
It was shown in [20] that

(2.10) w(bZ) > w(by) + px’ — px

for every (z,2') € Q and for every y € A(z,2).
A program {z(t),y(t)}72, is good if there is a real number M such that

T
Z(w(by(t)) —w(by)) > M for every nonnegative integer 7.
t=0
A program {z(t),y(t)}2, bad if
T
m 32 (w(by(1) — w(t5) = oo

The following result was proved in [20].
Proposition 2.1. Every program which is not good is bad.

The following two results were obtained in [42]. They show that an asymptotic
turnpike property holds for our infinite horizon problem.

Theorem 2.2. Assume that the function w is strictly concave. Then for every good
program {x(t), y(t) }7o,
lim (2(2), y(¢)) = (3, 7).

t—o00

Set
(2.11) & =1—d—(1/as).
Theorem 2.3. Assume that &, # —1. Then

Jim (2(1),y(1)) = (7, 7)

for every good program {x(t),y(t)}52-

We use a notion of an overtaking optimal program introduced by Gale [15] and
von Weizsacker [41]. This optimality criterion is used in optimal control [10,44,45].

A program {z*(t), y*(t)};2, is overtaking optimal if

T
limsup  _[w(by(t)) — w(by* ()] < 0

T—o0 =0



810 ALEXANDER J. ZASLAVSKI
for every program {x(t), y(t)};2, which satisfies z(0) = 2*(0).
The following existence result was also obtained in [42].
Theorem 2.4. Assume that for every good program {x(t),y(t)}72,,
lim (2(t). (1)) = (3.7).

Then for every point xo € R} there is an overtaking optimal program {x(t),y(t)}2,
such that x(0) = xg.

The final result of this section was obtained in [21].

Theorem 2.5. Assume that at least one of the following conditions holds:

(a) w is strictly concave.
(b) fa 7é -1
Let € > 0. Then there exists § > 0 such that for each overtaking optimal program
{z(t),y(t)}2 satisfying ||x(0) — Z|| < 6 the following inequality holds:

la(t) =z, ly(t) =zl <€
for all integers t > 0.

3. A TURNPIKE RESULT

In this section we present two auxiliary results which play an important role in
our study. The first of them was obtained in [21].

Proposition 3.1. Let € > 0. Then there exists § > 0 such that for each x,z' € R}
satisfying
lz =2, l2" 2] <0
there exist T > o', y € R such that
(,7) € Q, y € Az, 2),
ly =7l <e [z -2Z] <e
It is easy to see that the following auxiliary result holds.
Proposition 3.2. Assume that 11,15 are nonnegative integers, T1 < T,
T Tp—1
({x(t)}tiTl, {y(t)}tiTl)

is a program and u € RY. Then ({x(t) + (1 — d)t_Tlu}?iTl, {y(t) ;*2;11) is also a
program.

Let z € R} and T' > 1 be a natural number. Set

T-1
Uz,T) = sup{Y_w(by(t)) : {z()}o, {y(0)}i0)
t=0

is a program such that z(0) = z}.
Note that U(z,T) is a finite number [23].
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Let wo,z1 € R}, T1,T> be integers, 0 < T < T5. Define
To—1

Ulzo, 21, Ty, To) = sup{ > w(by(t)) : {x(t)} 20, {v()}27)
=T

is a program such that z(T1) = zg, x(T3) > z1}.
(Here we suppose that a supremum over empty set is —oco.) Note that
U(:L'o,(l)l,Tl,Tg) < 00
[23).
The next turnpike result was obtained in [23].

Theorem 3.3. Assume that each good program {u(t),v(t)}?2, converges to the
golden-rule stock (T,%) :

Tim (u(t). v(®)) = (3.2).
Let M, e be positive numbers and I' € (0,1). Then there exist a natural number
L and a positive number v such that for each integer T' > 2L, each 29,21 € R’}
satisfying zo < Me and az; < Td~' and each program ({z(t)}}—q, {y(t)}2g') which

satisfies
T—1

2(0) = z0, (T) = z1, Y w(by(t)) > U(2,21,0,T) -7
t=0
there are integers 11, T2 such that

1 € [O,L], Ty € [T—L,T],
lx(t) —Z||, ||ly(t) —z|| <€ forallt =71,...,72 — 1.
Moreover if ||x(0) — z|| < v then 71 =0 and if ||[z(T) —Z|| < v then o, = T.
4. THE MAIN RESULT

Assume that each good program {u(t),v(t)};2, converges to the golden-rule stock
() :

(4.1) lim (u(t),v(t)) = (7, 7).

t—o00

Theorem 4.1. Assume that {x(t),y(t)};2, is an overtaking optimal program, Ty is
a natural number and that

(4.2) z(0) = x(Tp).
Then for all integers t > 0,
z(t) =y(t) = 2.
Proof. In view of (4.2), there exists a program {Z(t), y(t)};2, such that

(4.3) #(t) = o(t), §(t) = y(t), t=0,..., Ty — 1
and that for all integers ¢ > 0,
(4.4) T(t + To) = 2(t), y(t +To) = y().

Proposition 2.1 implies that there are two cases:
(1) the program {Z(t), y(t)};2, is good;
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(2) the program {Z(t), y(t)};2, is bad.
Assume that case (2) holds. By (4.3) and (4.4),
T

—o0 = lim > (w(bi(t) — w(bE))
t=0

Tok—1
= Jim 3 (w(vi(®) - (b))
k—o0
t=0
To—1
= lim k (w(by(t)) — w(b))
k—o0
t=0
To—1
— lim k> (w(by(t) — w(bd),
k—oo =0
where k is a natural number. Therefore
To—1
(4.5) > w(by(t) < Thw(ba).

t=0

In view of (4.5), there exists a positive number 7 such that

To—1

(4.6) v < Tow(bz) — > w(by(t)).
t=0

There exists v € (0,) such that

(4.7) 2v0e(0) <7

and

(4.8) w(b(z —0e(0))) = w(T) — /8.

Proposition 3.1 implies that there exists § € (0,p) such that the following prop-
erty holds:
(P) for each z,2’ € R} satisfying

|z = 2|, [l - 2| <6
there exist z > ', y € R} such that
(z,7) € Q, y € A, ),
ly —Z|| <0, 17 -2 <0
and
w(b(x + de)) < w(x) +v/8.
Note [42] that every overtaking optimal program is good. Therefore in view of (4.1),
tlg})loa:(t) - tlggloy(t) -
and there exists a natural number 77 such that for all integers ¢t > 17,

(4.9) le(t) = 2. lly(t) — ] < 6.
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Set
(4.10) sV () =t +Ty), t=0,...,To+ 11,
(4.11) y D)=yt +Tp), t=0,...,To+ T, — 1.

Property (P), (4.9) and (4.10) imply that there exist
y (T +Th), 2D(Th + Ty + 1) € BY

such that

(4.12) (W(To+ 1), 2 (Ty + T1 + 1)) € Q,

(4.13) y Ty +T1) € ATy + 1), W (Ty + Ty + 1)),
(4.14) ly™(To +Th) = 2| <70, [|2(To+T1 + 1) = 2| < 0,
(4.15) cN(To+T14+1) > 7.

In view of (4.12) and (4.13), ({:v(l)(t)}tTiarTIH, {y(l)(t)}tTiarTl) is a program. For all
integers t € {To + 11+ 1,...,2To + 11}, set

(4.16) y () =7,

(4.17) dNt+1) =2+ 01— )TN (Ty+ Ty +1) — 7).
By Proposition 3.2 and (4.15)-(4.17), ({x ( )}2T0+Tl+1 {y (1)(t)}?2%+T1) is a pro-

gram. It follows from (4.15) and (4.17) that

(4.18) MR+ T +1) >3

Property (P) and (4.9) imply that there exist

(4.19) x> x(QTo + 17 + 2), RS Rﬁ

such that

(4.20) (z,72) € Q, ye A7, 2),

(4.21) 1z =2 <70, lly — Il < .

Set

(4.22) y DT+ T+ 1) =,

(4.23) NI +T14+2) =72+ (1 —d) (=W QT + T, + 1) — 7).

It follows from (4.18), (4.20), (4.22) and (4.23) that
(M @1y +T) 4+ 1), 22Ty + Ty + 2)) € Q,

y DTy + T +1) € AW Ty + T + 1), 2 (2T + T1 + 2)).

Thus ({z™M (#)}ZHH2 1M V2ot H) ig o program. In view of (4.2), (4.10),
(4.18), (4.19) and (4.23),

(4.24) 21 (0) = z(Tp) = z(0),

(4.25) QT+ T +2) >z > (2T + T1 + 2).
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Since the program {x(t), y(t)}72, is overtaking optimal Proposition 3.2, (4.6), (4.11),
(4.24) and (4.25) imply that

2T +Ti +1 2To+Ti+1
0< Z w(by(t)) — Z w(by(l)(t))
TO,tIO 2T0+T1Jf;0
= > why®)+ > wby(t))
t=0 t=To
To+T1—1
— Y wby®O ) - wibyV (T +T1))
=0

— Tow(by) — w(by™M (2T + T1 + 1))
< =y +w(by(2Tp + T1)) + w(by(2To + 11 + 1))
(4.26) — w(byW(Ty +T1)) — wby™D 2Ty + T1 + 1)).
Property (P), (4.8), (4.9) and (4.26) imply that
0 < —v 4 2w(b(Z + de)) — 2w(b(ZT — yoe(0)))

< =7+ 20(b(7)) + /4 = (2w(b(Z)) —7/4) < /2,
a contradiction. The contradiction we have reached proves that case (2) does not
hold. Thus the program {Z(t),7(t)}2, is good. In view of (4.1),

z(t)=2,t=0,...,Tp.
Together with Theorem 3.3, (4.1) and the inequality aZ < d~! this implies that
z(t)=y(t)==2,t=0,1,....

Theorem 4.1 is proved.
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