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±∞.More precisely, the quotient f(z,x)

|x|p−2x
stays above λ̂1 (p) > 0 (the principal eigen-

value of
(
−△p,W

1,p
0 (Ω)

)
) as x→ +∞ and only partial interaction is allowed with

λ̂1 (p) (nonuniform nonresonance). In the negative direction (that is, as x→ −∞),

the quotient f(z,x)

|x|p−2x
stays below λ̂1 (p) and complete interaction (resonance) with

λ̂1 (p) is allowed. The resonance occurs from the left of λ̂1 (p) in the sense that

(1.1) λ̂1 (p) |x|p − p [λG (z, x) + F (z, x)]
x→−∞−→ +∞ uniformly,

for a.a.z ∈ Ω,

with

G (z, x) =

∫ x

0
g (z, s) ds and F (z, x) =

∫ x

0
f (z, s) ds.

This makes the negative truncation of the corresponding energy functional coercive
and so the direct method of the calculus of variations is available in the search for
negative solutions of (Pλ) .

Using variational methods, together with truncations and comparison techniques
and Morse theory (critical groups), we show that for λ > 0 small, problem (Pλ)
has at least five nontrivial solutions with sign information (namely, we have two
positive solutions, one negative solution and two nodal (sign changing) solutions).

We mention that (p, 2)−equations arise in problems of mathematical physics (see
Cherfils-Ilyasov [8]), and recently there have been some existence and multiplicity
results for such equations. We mention the works of Aizicovici-Papageorgiou-Staicu
[2]-[4], Cingolani-Degiovanni [9], He-Guo-Huang-Lei [15], Papageorgiou-Radulescu
[21], [22], Papageorgiou-Vetro-Vetro [23], Sun [25], Sun-Zhang-Su [26]. Closer to our
work here is the paper of Papageorgiou-Radulescu [22]. In [22] the authors deal with
a nonparametric (p, 2)−equation and the reaction exhibits an asymmetric behavior
as x → ±∞. Under more restrictive conditions on the data of the problem, they
prove a multiplicity theorem producing three nontrivial solutions, but they do not
provide sign information for all of them.

2. Mathematical Background-Hypotheses

Let (X, ∥·∥) be a Banach space and X∗ be its topological dual. By ⟨., .⟩ we denote
the duality brackets for the pair (X∗, X) . Also

w−→ will designate weak convergence
in X.

A map A : X → X∗ is said to be of type (S)+ if for every sequence {xn}n≥1 ⊆ X

such that xn
w−→ x and

lim sup
n→∞

⟨A (xn) , xn − x⟩ ≤ 0,

one has

xn → x in X as n→ ∞.

A map g : X → X∗ is said to be completely continuous if for every sequence

{xn}n≥1 ⊆ X such that xn
w−→ x one has

g (xn) → g (x) in X∗ as n→ ∞.
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Let φ ∈ C1 (X,R) . The Cerami condition (C-condition, for short) plays a central
role in critical point theory. It is a compactness-type condition on φ, namely:

”every sequence {un}n≥1 ⊆ X such that {φ (un)}n∈N is bounded and

(1 + ∥un∥)φ′ (un) → 0 in X∗as n→ ∞

admits a strongly convergent subsequence”.
This condition leads to a deformation theorem from which the minimax theory

of the critical values of φ follows. We recall one such minimax theorem, known in
the literature as the ”mountain pass theorem”. It will be used in the analysis of
problem (Pλ) .

Theorem 2.1. If φ ∈ C1 (X,R) satisfies the C−condition, u0, u1 ∈ X and ρ > 0
are such that ∥u1 − u0∥ > ρ,

max {φ (u0) , φ (u1)} < inf {φ (u) : ∥u− u0∥ = ρ} =: mρ,

and

c = inf
γ∈Γ

max
t∈[0,1]

φ (γ (t)) ,

where

Γ = {γ ∈ C ([0, 1] , X) : γ (0) = u0, γ (1) = u1} ,
then c ≥ mρ and c is a critical value of φ (i.e., there exists û ∈ X such that
φ′ (û) = 0 and φ (û) = c).

We mention that, if φ ∈ C1 (X,R) is coercive and

φ′ = A+ g

with A, g : X → X∗, where A is of type (S)+ and g is completely continuous, then
φ satisfies the C−condition (see Marano-Papageorgiou [19]). This is the situation
in our setting here.

In the analysis of problem (Pλ) we will mainly use the following two spaces: the

Sobolev space W 1,p
0 (Ω) and the Banach space

C1
0 (Ω) =

{
u ∈ C1

(
Ω
)
: u (z) = 0 for all z ∈ ∂Ω

}
.

By ∥.∥ we will denote the norm of W 1,p
0 (Ω). On account of the Poincare inequality

(see, e. g., Brezis [6], p. 290), we have

∥u∥ = ∥Du∥p for all u ∈W 1,p
0 (Ω).

where ∥.∥p stands for the Lp-norm. The space C1
0

(
Ω
)
is an ordered Banach space

with a positive (order) cone given by

C+ =
{
u ∈ C1

0

(
Ω
)
: u (z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u (z) > 0 for all z ∈ Ω,

∂u

∂n
= (Du, n)RN < 0 on ∂Ω

}
,

where n (.) is the outward unit normal on ∂Ω.
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For q ∈ (1,∞) , by Aq :W
1,q
0 (Ω) →W−1,q′(Ω) =W 1,q

0 (Ω)∗ (1q +
1
q′ = 1) we denote

the nonlinear map defined by

(2.1) ⟨Aq (u) , h⟩ =
∫
Ω
|Du|q−2 (Du,Dh)RN dz for all u, h ∈W 1,q

0 (Ω) .

The properties of Aq are summarized below. See, e. g., Motreanu-Motreanu-
Papageorgiou ([20], p.40).

Proposition 2.2. The map Aq :W
1,q
0 (Ω) →W−1,q′(Ω) defined by (2.1) is bounded

(that is, maps bounded sets to bounded sets), continuous, monotone (hence maximal
monotone, too), and of type (S)+.

If q = 2, then A2 = A ∈ L
(
H1

0 (Ω),H
−1
0 (Ω)

)
.

Consider a Carathéodory function f0 : Ω× R → R which satisfies

|f0 (z, x)| ≤ a0 (z)
(
1 + |x|r−1

)
for a.a.z ∈ Ω, all x ∈ R,

with a0 ∈ L∞ (Ω)+ , and 1 < r ≤ p∗, where p∗ is the critical Sobolev exponent
corresponding to p, i.e.,

p∗ =

{ Np
N−p if p < N,

+∞ if p ≥ N.

We set F0 (z, x) =
∫ x
0 f0 (z, s) ds and introduce the C1−functional φ0 :W

1,p
0 (Ω) →

R defined by

φ0 (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
F0 (z, u) dz for all u ∈W 1,p

0 (Ω) .

From Motreanu-Motreanu-Papageorgiou ([20], p.409) we have:

Proposition 2.3. If u0 ∈ W 1,p
0 (Ω) is a local C1

(
Ω
)
− minimizer of φ0, that is,

there exists ρ0 > 0 such that

φ0 (u0) ≤ φ0 (u0 + h) for all h ∈ C1
0

(
Ω
)
with ∥h∥C1

0(Ω)
≤ ρ0,

then u0 ∈ C1,α
0

(
Ω
)
for some α ∈ (0, 1) and it is also a local W 1,p

0 (Ω)− minimizer
of φ0, that is, there exists ρ1 > 0 such that

φ0 (u0) ≤ φ0 (u0 + h) for all h ∈W 1,p
0 (Ω) with ∥h∥ ≤ ρ1.

Remark. The relation between Hölder and Sobolev local minimizers was first
proved for semilinear Dirichlet problems by Brezis-Nirenberg [7].

In the analysis of (Pλ) we will use the spectra of the Dirichlet p−Laplacian and of
the Dirichlet Laplacian. So, we consider the following nonlinear eigenvalue problem:

(2.2)

{
−△pu (z) = λ̂ |u (z)|p−2 u (z) in Ω,
u = 0 on ∂Ω.

We say that λ̂ ∈ R is an eigenvalue for problem (2.2) , if there exists a nontrivial

solution û ∈W 1,p
0 (Ω), known as an eigenfunction corresponding to λ̂.

Problem (2.2) admits a smallest eigenvalue λ̂1 (p) > 0 which has the following
properties:
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• λ̂1 (p) is isolated (that is, there exists ε > 0 such that
(
λ̂1(p), λ̂1(p) + ε

)
contains no eigenvalues;

• λ̂1 (p) is simple (that is, if û, v̂ are two eigenfunctions corresponding to

λ̂1 (p) , then û = θv̂ with θ ∈ R\ {0});
• One has

(2.3) λ̂1 (p) = inf

{
∥Du∥pp
∥u∥pp

: u ∈W 1,p
0 (Ω) , u ̸= 0

}
.

In (2.3) the infimum is achieved on the corresponding one dimensional eigenspace.
From the above properties it follows that the elements of this eigenspace do not

change sign. Moreover, the nonlinear regularity theory and the nonlinear maximum
principle (see, for example, Gasinski-Papageorgiou [13], pp.737-738) imply that the
nontrivial elements of this eigenspace belong to int C+ or −int C+.

In what follows, by û1 (p) we denote the positive Lp− normalized (that is,

∥û1 (p)∥p = 1) positive eigenfunction corresponding to λ̂1 (p) .We know that û1 (p) ∈
int C+\ {0} .

All these properties lead to the following lemma (see Motreanu-Motreanu-
Papageorgiou ([20], p.305).

Lemma 2.4. If θ ∈ L∞ (Ω) , θ (z) ≤ λ̂1 (p) for a.a.z ∈ Ω, and the inequality is
strict on a set of positive measure, then

∥Du∥pp −
∫
Ω
θ (z) |u (z)|p dz ≥ C1 ∥u∥p for all u ∈W 1,p

0 (Ω) and some C1 > 0.

The Ljusternik-Shnirelmann minimax scheme generates, in addition to λ̂1 (p) , a

whole strictly increasing sequence
{
λ̂k (p)

}
k≥1

of eigenvalues such that λ̂k (p) →
+∞ as k → ∞. It is not known if this sequence exhausts the spectrum of (2.2) . We

know that if û is an eigenfunction corresponding to an eigenvalue λ̂ ̸= λ̂1 (p) , then
û ∈ C1

0

(
Ω
)
(nonlinear regularity theory) and û is nodal.

We will also encounter a weighted version of (2.2) . So, let m ∈ L∞ (Ω) , m (z) ≥ 0
for a.a.z ∈ Ω, m ̸= 0, and consider the following weighted version of (2.2) :

(2.4)

{
−△pu (z) = λ̃m (z) |u (z)|p−2 u (z) in Ω,
u = 0 on ∂Ω.

Problem (2.4) has a smallest eigenvalue λ̃1 (p,m) > 0 which has the same prop-

erties as λ̂1 (p) = λ̃1 (p, 1) > 0. In this case, the variational characterization of

λ̃1 (p,m) has the following form

λ̃1 (p,m) = inf

{
∥Du∥pp∫

Ωm (z) |u (z)|p dz
: u ∈W 1,p

0 (Ω) , u ̸= 0

}
.

All the properties listed for the eigenvalues and eigenfunctions of (2.2) remain valid
for the corresponding items of (2.4) . So, we are led to the following monotonicity

property of the map m→ λ̃1 (p,m) (see [20], p.250).
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Lemma 2.5. If m1, m2 ∈ L∞ (Ω) , 0 ≤ m1 (z) ≤ m2 (z) for a.a.z ∈ Ω and the two
inequalities are strict on sets (in general distinct) of positive measure, then

λ̃1 (p,m2) < λ̃1 (p,m1) .

For the linear eigenvalue problem (that is, p = 2), we have complete knowledge

of the spectrum, which is a sequence
{
λ̃k (2)

}
k≥1

of distinct eigenvalues such that

λ̃k (2) → ∞ as k → ∞.

For every k ∈ N, by E
(
λ̂k (2)

)
we denote the eigenspace corresponding to the

eigenvalue λ̂k (2) .

Standard regularity theory implies that E
(
λ̂k (2)

)
⊆ C1

0

(
Ω
)
. Also each such

eigenspace has the so-called ”unique continuation property” (UCP for short). This

means that, if u ∈ E
(
λ̂k (2)

)
for k ∈ N and u vanishes on a set of positive measure,

then u ≡ 0.
We have

H1
0 (Ω) =

⊕
k≥1

E
(
λ̂k (2)

)
.

For every m ∈ N, we define

Hm =
m⊕
k=1

E
(
λ̂k (2)

)
and Ĥm =

∞⊕
k=m+1

E
(
λ̂k (2)

)
.

Hence we have the following orthogonal direct sum decomposition

H1
0 (Ω) = Hm

⊕
Ĥm.

All the eigenvalues admit variational characterizations:

(2.5) λ̂1 (2) = inf

{
∥Du∥22
∥u∥22

: u ∈ H1
0 (Ω) , u ̸= 0

}
,

(2.6)
λ̂k (2) = inf

{
∥Du∥22
∥u∥22

: u ∈ Ĥk−1, u ̸= 0
}

= sup
{

∥Du∥22
∥u∥22

: u ∈ Hk, u ̸= 0
}
.

In (2.5) and (2.6) the infimum and supremum are achieved on E
(
λ̂k (2)

)
.

Using these variational characterizations and the UCP, we infer the following
inequalities (see Gasinski-Papageorgiou [14], p.870).

Lemma 2.6. (a) If θ ∈ L∞ (Ω) , θ (z) ≥ λ̂k (2) for a.a.z ∈ Ω and the inequality is
strict on a set of positive measure, then

∥Du∥22 −
∫
Ω
θ (z)u2 (z) dz ≤ −C2 ∥u∥2 for all u ∈ Hk, some C2 > 0.

(b) If θ ∈ L∞ (Ω) , θ (z) ≤ λ̂k (2) for a.a.z ∈ Ω and the inequality is strict on a set
of positive measure, then

∥Du∥22 −
∫
Ω
θ (z)u2 (z) dz ≥ C3 ∥u∥2 for all u ∈ Ĥk−1, some C3 > 0.
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Next let us recall some basic facts about critical groups. For details we refer to
Motreanu-Motreanu-Papageorgiou [20].

Let X be a Banach space, φ ∈ C1 (X,R) and c ∈ R. We introduce the following
sets:

φc = {u ∈ X : φ (u) ≤ c} ,
Kφ =

{
u ∈ X : φ′ (u) = 0

}
(the critical set of φ),

and
Kc
φ = {u ∈ Kφ : φ (x) = c} .

Consider a topological pair (Y1, Y2) with Y2 ⊂ Y1 ⊂ X and k ∈ N0. By Hk (Y1, Y2)
we denote the kth- relative singular homology group for the topological pair (Y1, Y2)
with integer coefficients. Then the critical groups of φ at an isolated u ∈ Kc

φ are
defined by

Ck (φ, u) = Hk (φ
c ∩ U, (φc ∩ U) \ {u}) for all k ∈ N0.

Here U is a neighborhood of u such thatKφ∩φc∩U = {u} . The excision property
of singular homology theory implies that the above definition of critical groups is
independent of the choice of the isolating neighborhood U .

Suppose that φ ∈ C1 (X,R) satisfies the C−condition and that inf φ (Kφ) > −∞.
Let c < inf φ (Kφ) . Then the critical groups of φ at infinity are defined by

Ck (φ,∞) = Hk (X,φ
c) for all k ∈ N0.

By the second deformation theorem, this definition is independent of the choice
of the level c < inf φ (Kφ) .

Indeed, if c′ < c < inf φ (Kφ) , then by the second deformation theorem φc
′
is a

strong deformation retract of φc and so,

Hk (X,φ
c) = Hk

(
X,φc

′
)

for all k ∈ N0,

(see Motreanu-Motreanu-Papageorgiou [20], p. 145).
Now suppose that φ ∈ C1 (X) satisfies the C-condition and Kφ is finite. We

define
M (t, u) =

∑
k∈N0

rank Ck (φ, u) t
k for all t ∈ R, all u ∈ Kφ,

and
P (t,∞) =

∑
k∈N0

rank Ck (φ,∞) tk for all t ∈ R.

The Morse relation says that

(2.7)
∑
u∈Kφ

M (t, u) = P (t,∞) + (1 + t)Q (t) for all t ∈ R,

where Q (t) =
∑

k≥0 βkt
k is a formal series in t ∈ R with nonnegative integer

coefficients βk, k ∈ N0.
Next, let us finalize our notation. Given x ∈ R, we set

x± = max {±x, 0} .

Then for u ∈W 1,p
0 (Ω) , we define u± (.) = u (.)± . We have
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u± ∈W 1,p
0 (Ω) , u = u+ − u− and |u| = u+ + u−,

Also, if u, v ∈W 1,p
0 (Ω) and v (z) ≤ u (z) for a.a.z ∈ Ω, then

[v, u] :=
{
y ∈W 1,p

0 (Ω) : v (z) ≤ y (z) ≤ u (z) for a.a.z ∈ Ω
}
.

Moreover, by int C1
0(Ω)

[v, u] we denote the interior in C1
0

(
Ω
)
of the set [v, u] ∩

C1
0

(
Ω
)
.

For k, m ∈ N0, by δk,m we denote the Kronecker symbol, that is

δk,m =

{
1 if k = m,
0 if k ̸= m.

Finally, for h, ĥ ∈ L∞ (Ω) , we write h ⪯ ĥ if for every K ⊆ Ω compact we can
find cK > 0 such that

0 < cK ≤ ĥ (z)− h (z) for a.a.z ∈ Ω.

Now we are ready to introduce the conditions on the functions g (z, x) and
f (z, x) , namely:

(Hg) : g : Ω × R →R is a Carathéodory function such that for a.a.z ∈ Ω g (z, ·) is
nondecreasing and
(i) for every ρ > 0 there exists aρ ∈ L∞ (Ω)+ such that

|g (z, x)| ≤ aρ (z) for a.a.z ∈ Ω, all x ∈ R with |x| ≤ ρ;

(ii)

lim
x→±∞

g (z, x)

|x|p−2 x
= 0 uniformly for a.a.z ∈ Ω;

(iii)

lim
x→0

g (z, x)

x
= 0 uniformly for a.a.z ∈ Ω.

(Hf ) : f : Ω× R →R is a Carathéodory function such that:
(i) for every ρ > 0 there exists âρ ∈ L∞ (Ω)+ such that

|f (z, x)| ≤ âρ (z) for a.a.z ∈ Ω, all x ∈ R with |x| ≤ ρ;

(ii) there exist η+ ∈ L∞ (Ω) and C4 > 0 such that

η+ (z) ≥ λ̂1 (p) for a.a.z ∈ Ω, η+ ̸= λ̂1 (p) ,

η+ (z) ≤ lim inf
x→∞

f (z, x)

xp−1
≤ lim sup

x→∞

f (z, x)

xp−1
≤ C4

uniformly for a.a.z ∈ Ω;

(iii) there exists C5 > 0 such that

−C5 ≤ lim inf
x→−∞

f (z, x)

|x|p−2 x
≤ lim sup

x→−∞

f (z, x)

|x|p−2 x
≤ λ̂1 (p)

for a.a.z ∈ Ω, all x ∈ R;
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(iv) for a.a.z ∈ Ω, f (z, .) is differentiable at x = 0 and there exists m ∈ N,
m ≥ 2 such that

λ̂m (2) ≤ f ′x (z, 0) = lim
x→0

f (z, x)

x
≤ λ̂m+1 (2)

uniformly for a.a.z ∈ Ω,

f ′x (., 0) ̸= λ̂m (2) , f ′x (., 0) ̸= λ̂m+1 (2) ;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a.z ∈ Ω the function

x→ f (z, x) + ξ̂ρ |x|p−2 x

is nondecreasing on [−ρ, ρ] .
(H0) : For every λ > 0 :

λg (z, x)x+ f (z, x)x− p [λG (z, x) + F (z, x)] → ∞ as x→ −∞,

uniformly for a.a.z ∈ Ω.

Remarks: Hypothesis (Hg) (ii) dictates a strictly (p− 1)−sublinear growth for
g (z, ·) near ±∞. Near zero, g (z, ·) is strictly sublinear. On the other hand, hy-
potheses (Hf ) (ii) , (iii) impose a (p− 1)−linear growth for f (z, ·) near ±∞ and
a linear growth near 0. So, in the reaction of (Pλ) we have the competing effect of
two terms with different asymptotic behavior as x→ ±∞ and as x→ 0. Note that
hypotheses (Hf ) (ii) , (iii) describe an asymmetric behavior for f (z, .) as x→ ±∞.
It is clear from (Hf ) (iii) that asymptotically at −∞ we can have resonance with

respect to λ̂1 (p) > 0- Hypothesis (H0) guaranties that this resonance occurs from

the left of λ̂1 (p) > 0 (see (1.1)). This way, the negative truncation of the energy
functional is coercive and so the direct method of the calculus of variations can be
used to generate negative solutions. Hypothesis (Hf ) (v) is satisfied if, for example,

for a.a.z ∈ Ω, f (z, .) is differentiable and for every ρ > 0, there exists ξ̂ρ > 0 such
that

f ′x (z, x)x
2 ≥ −ξ̂ρ |x|p for a.a.z ∈ Ω, all |x| ≤ ρ.

Examples: The following functions satisfy (Hg) , (Hf ) and (H0) . For the sake of
simplicity we drop the z dependence.

g (x) =

{
2 |x|r−2 x if |x| ≤ 1,

|x|q−2 x+ |x|τ−2 x if |x| > 1,

and

f (x) =


λ̂1 (p) |x|p−2 x− ξ |x|µ−2 x if x < −1,

θx+ C |x|r−2 x if |x| ≤ 1,

ηxp−1 − Ĉ if 1 < x,

where 1 < q < τ < µ < p < r, p > 2, η = λ̂1 (p) + Ĉ − ξ, θ = λ̂1 (p) − C − ξ,

Ĉ > ξ > 0, C < 0, θ ∈
(
λ̂m (2) , λ̂m+1 (2)

)
, m ≥ 2.
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3. Solutions of Constant Sign

For λ > 0, we consider the C1−functionals φ±
λ :W 1,p

0 (Ω) → R defined by

φ±
λ (u) =

1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
λG
(
z,±u±

)
+ F

(
z,±u±

)
dz

for all u ∈W 1,p
0 (Ω) .

Proposition 3.1. If hypotheses (Hg) , (Hf ) hold and λ > 0, then the functional φ+
λ

satisfies the C−condition.

Proof. Let {un}n≥1 ⊆ W 1,p
0 (Ω) be a sequence such that

{
φ+
λ (un)

}
n≥1

⊆ R is

bounded and

(3.1) (1 + ∥un∥)
(
φ+
λ

)′
(un) → 0 in W−1,p′ (Ω) as n→ ∞.

From (3.1) we have

(3.2)

∣∣⟨Ap (un) , h⟩+ ⟨A (un) , h⟩ −
∫
Ω [λg (z, u+n ) + f (z, u+)]hdz

∣∣
≤ εn∥h∥

1+∥un∥ for all h ∈W 1,p
0 (Ω) , with ε′n → 0+.

In (3.2) we choose h = −u−n ∈W 1,p
0 (Ω) . Then∥∥Du−n ∥∥pp + ∥∥Du−n ∥∥22 ≤ εn for all n ∈ N,

hence

(3.3) u−n → 0 in W 1,p
0 (Ω) .

Using (3.3) in (3.2) we obtain

(3.4)

∣∣⟨Ap (u+n ) , h⟩+ ⟨A (u+n ) , h⟩ −
∫
Ω [λg (z, u+n ) + f (z, u+)]hdz

∣∣
≤ ε′n ∥h∥ for all h ∈W 1,p

0 (Ω) , all n ∈ N,with ε′n → 0+.

Suppose that {u+n }n≥1 ⊆ W 1,p
0 (Ω) is not bounded. By passing to a subsequence if

necessary, we may assume that∥∥u+n ∥∥→ ∞, as n→ ∞.

We set yn = u+n
∥u+n∥ , n ∈ N. Then

∥yn∥ = 1, yn ≥ 0, for all n ∈ N.

So, we may assume that

(3.5) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp (Ω) as n → ∞, y ≥ 0.

From (3.4) we have

(3.6)

∣∣∣∣⟨Ap (yn) , h⟩+ 1

∥u+n∥p−2 ⟨A (yn) , h⟩ −
∫
Ω

λg(z,u+n )+f(z,u+n )
∥u+n∥p−1 hdz

∣∣∣∣
≤ ε′n

∥h∥
∥u+n∥p−1 for all n ∈ N.



MULTIPLE SOLUTIONS WITH SIGN INFORMATION FOR (p, 2)−EQUATIONS 827

It is clear from hypotheses (Hg) , (Hf ) that we have

|λg (z, x)x+ f (z, x)| ≤ C6

[
1 + |x|p−1

]
for a.a.z ∈ Ω,

all x ∈ R, some C6 > 0,

hence

(3.7)

{
λg (·, u+n (·)) + f (·, u+n (·))∥∥u+n ∥∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

From (3.7) and hypotheses (Hg) (ii) , (Hf ) (ii) , at least for a subsequence, we have

(3.8)
λg (·, u+n (·)) + f (·, u+n (·))∥∥u+n ∥∥p−1

w−→ η yp−1 in Lp
′
(Ω) ,

with
η+ (z) ≤ η (z) ≤ C4 for a.a.z ∈ Ω,

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).

In (3.6) we choose h = yn − y ∈ W 1,p
0 (Ω) , pass to the limit as n → ∞ and use

(3.8) (also recall that ∥u+n ∥ → ∞ and 2 < p). We obtain

lim
n→∞

⟨Ap (yn) , yn − y⟩ = 0,

hence

(3.9) yn → y in W 1,p
0 (Ω) and ∥y∥ = 1, y ≥ 0

(see Proposition 2.2). We return to (3.6) , pass to the limit as n→ ∞ and use (3.8) .
Then

⟨Ap (y) , h⟩ =
∫
Ω
η (z) yp−1hdz for all h ∈W 1,p

0 (Ω) ,

therefore

(3.10) −△py (z) = η (z) y (z)p−1 for a.a.z ∈ Ω, y |∂Ω= 0.

From (3.6) and Lemma 2.5, we have

(3.11) λ̃1 (p, η) ≤ λ̃1 (p, η+) < λ̃1

(
p, λ̂1 (p)

)
= 1.

Combining (3.10) and (3.11) , we infer that y is nodal or zero, a contradiction (see
(3.9)). Therefore {

u+n
}
n≥1

⊆W 1,p
0 (Ω) is bounded,

and consequently

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded (see (3.3) ).

We may assume that

(3.12) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp (Ω) as n → ∞.

In (3.2) we choose h = un − u ∈ W 1,p
0 (Ω) , pass to the limit as n → ∞ and use

(3.12) . Then
lim
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (un) , un − u⟩] = 0,
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hence
lim sup
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (u) , un − u⟩] ≤ 0,

(from the monotonicity of A (·)), therefore
lim sup
n→∞

⟨Ap (un) , un − u⟩ ≤ 0 (see (3.12) ),

and by Proposition 2.2 and (3.12) we obtain that

un → u in W 1,p
0 (Ω) ,

and conclude that φ+
λ satisfies the C−condition. □

Proposition 3.2. If hypotheses (Hg) , (Hf ) , (H0) hold and λ > 0, then the func-

tional φ−
λ is coercive.

Proof. On account of hypothesis (H0), given any µ > 0, we can findM1 =M1 (µ) >
0 such that

(3.13)
λg (z, x)x+ f (z, x)x− p [λG (z, x) + F (z, x)] ≥ µ

for a.a.z ∈ Ω, all x ≤ −M1.

In the sequel, for notational economy, we set

eλ (z, x) = λg (z, x) + f (z, x) and Eλ (z, x) =
∫ x
0 eλ (s, z) ds.

We have

d

dx

[
Eλ (z, x)

|x|p
]
=
eλ (z, x) |x|p − pEλ (z, x) |x|p−2 x

|x|2p

=
eλ (z, x)x− pEλ (z, x)

|x|p x

≤ µ

|x|p x
for a.a.z ∈ Ω, all x ≤ −M1,

(see (3.13)), hence

Eλ (z, v)

|v|p
− Eλ (z, y)

|y|p
≥ µ

p

[
1

|y|p
− 1

|v|p
]

(3.14)

for a.a.z ∈ Ω, all v ≤ y ≤ −M1.

Hypotheses (Hg) (ii) and (Hf ) (iii) imply that we can find C7 > 0 such that

−C7 ≤ lim inf
x→−∞

Eλ (z, x)

|x|p
≤ lim sup

x→−∞

Eλ (z, x)

|x|p
≤ λ̂1 (p)

p
(3.15)

uniformly for a.a.z ∈ Ω.

So, if in (3.14) we let v → −∞ and use (3.15) , then we obtain

λ̂1 (p) |y|p − pEλ (z, y) ≥ µ for a.a.z ∈ Ω, all y ≤ −M1,

hence

(3.16) λ̂1 (p) |y|p − pEλ (z, y) → +∞ uniformly for a.a.z ∈ Ω,

as y → −∞.
Using (3.16) , we will show that φ−

λ is coercive.
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Arguing by contradiction, suppose that φ−
λ is not coercive. Then we can find a

sequence {un}n≥1 ⊆W 1,p
0 (Ω) and M2 > 0 such that

(3.17) ∥un∥ → +∞ and φ−
λ (un) ≤M2 for all n ∈ N.

Let yn = un
∥un∥ , n ∈ N. Then

∥yn∥ = 1 for all n ∈ N.
So, we may assume that

(3.18) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp (Ω) as n → ∞.

We have

(3.19)

1
p ∥Dyn∥

p
p +

1
2∥un∥p−2 ∥Dyn∥22 −

∫
Ω

Eλ(z,−u−n )
∥un∥p dz

≤ M2
∥un∥p for all n ∈ N,

(see (3.17)). Recall that

|Eλ (z, x)| ≤ C8 [1 + |x|p] for a.a. z ∈ Ω, all x ∈ R, some C8 > 0,

hence {
Eλ (·,−u−n (·))

∥un∥p
}
n≥1

⊆ L1 (Ω) is uniformly integrable.

Hence, by the Dunford-Pettis theorem and hypotheses (Hg) (ii), (Hf ) (iii) , at least
for a subsequence, we have

(3.20)
Eλ (·,−u−n (·))

∥un∥p
w−→ 1

p
θ
(
y−
)p

in L1 (Ω) as n → ∞,

with
−C5 ≤ θ (z) ≤ λ̂1 (p) for a.a. z ∈ Ω.

See [1]. Therefore, if in (3.19) we pass to the limit as n → ∞ and use (3.18) and
(3.20) , then

(3.21) ∥Dy∥pp ≤
∫
Ω
θ (z)

(
y−
)p
dz,

(recall that ∥un∥ → ∞ and 2 < p ).

First assume that the inequality θ (z) ≤ λ̂1 (p) for a.a. z ∈ Ω (see (3.20)) is strict
on a set of positive measure. Then from (3.19) and Lemma 2.4, we have

C9

∥∥y−∥∥p ≤ ∥∥Dy−∥∥p
p
−
∫
Ω
θ (z)

(
y−
)p
dz ≤ 0 for some C9 > 0,

hence

(3.22) y ≥ 0,

and in view of (3.21) we conclude that

y = 0.

Therefore from (3.19) and (3.20) , we have

yn −→ y in W 1,p
0 (Ω) ,
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a contradiction since ∥yn∥ = 1 for all n ∈ N.
Now assume that θ (z) = λ̂1 (p) for a.a.z ∈ Ω . Then from (3.21) and (2.3) we

have ∥∥Dy−∥∥p
p
= λ̂1 (p)

∥∥y−∥∥p
p
,

hence
y− = τ û1 (p) ∈ int C+ with τ ≥ 0.

If τ = 0, then y ≥ 0 and so, as above (see the argument after (3.22)), we reach a
contradiction.

If τ > 0, then y− (z) > 0 for all z ∈ Ω and so, y (z) < 0 for all z ∈ Ω.
It follows that

un (z) → −∞ for a.a.z ∈ Ω,

hence
λ̂1 (p)

[
u−n (z)

]p − pEλ
(
z,−u−n (z)

)
→ +∞ for a.a.z ∈ Ω,

(see (3.16)), hence∫
Ω

[
λ̂1 (p)

[
u−n (z)

]p − pEλ
(
z,−u−n (z)

)]
dz → +∞

(by Fatou lemma, see (3.16)), therefore

pφ−
λ (un) → +∞

which contradicts (3.17) . We conclude that φ−
λ is coercive. □

Consequently (see the remarks following Theorem 2.1) we arrive at:

Corollary 3.3. If hypotheses (Hg) , (Hf ) , (H0) hold and λ > 0, then the functional

φ−
λ satisfies the C−condition.

Next we will show that the functional φ+
λ satisfies the mountain pass geometry

(see Theorem 2.1) when λ > 0 is small.

Proposition 3.4. If hypotheses (Hg) , (Hf ) hold, then there exists λ∗ > 0 such
that for every λ ∈ (0, λ∗) we can find ρλ > 0 for which

inf
{
φ+
λ (u) : ∥u∥ = ρλ

}
= m+

λ > 0.

Proof. Hypotheses (Hg) imply that given ε > 0, there is a C10 > 0 such that

(3.23) G (z, x) ≤ εxp + C10x
2 for a.a.z ∈ Ω, all x ≥ 0.

Also, given r > p, from hypotheses (Hf ) (ii) , (iv) it follows that we can find C11 > 0
such that

(3.24) F (z, x) ≤ C11

(
xr + x2

)
for a.a.z ∈ Ω, all x ≥ 0.

Using (3.23) and (3.24) we obtain

φ+
λ (u) ≥

(
1

p
− ε

λ̂1 (p)

)
∥Du∥pp − λC12 ∥u∥2 − C13 ∥u∥r

for all u ∈ W 1,p
0 (Ω) , some C12, C13 > 0

≥
[
C14 − λC12 ∥u∥2−p − C13 ∥u∥r−p

]
∥u∥p
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for some C14 > 0.

Consider the function

ξλ (t) = λC12t
2−p + C13t

r−p for all t > 0.

Evidently ξλ ∈ C1 (0,∞) and since 2 < p < r, we have

ξλ (t) → +∞ as t→ 0+ and as t→ +∞.

Therefore we can find t0 > 0 such that

0 < ξλ (t0) = min {ξλ (t) : t > 0} .

Then

ξ′λ (t0) = 0

hence

λ (p− 2)C12t
2−p−1
0 = (r − p)C13t

r−p−1
0 ,

therefore

t0 = t0 (λ) =

[
λ (p− 2)C12

(r − p)C13

] 1
r−2

.

Then we have

ξλ (t0) = λ
r−p
r−2C12

[
(r − p)C13

(p− 2)C12

] p−2
r−2

+ C13

[
λ (p− 2)C12

(r − p)C13

] r−p
r−2

,

hence

ξλ (t0) → 0+ as λ→ 0+.

So, we can find λ∗ > 0 such that

ξλ (t0) < C14 for all λ ∈ (0, λ∗) ,

therefore

inf
{
φ+
λ (u) : ∥u∥ = ρλ := t0 (λ)

}
= m+

λ > 0 for all λ ∈ (0, λ∗) .

□

Proposition 3.5. If hypotheses (Hg) , (Hf ) hold and λ > 0 then

φ+
λ (tû1 (p)) → −∞ as t→ +∞.

Proof. Hypotheses (Hg) (i) , (ii) imply that given ε > 0, there exists C15 > 0 such
that

(3.25) G (z, x) ≥ −ε
p
xp − C15 for a.a.z ∈ Ω, all x ≥ 0.

Similarly hypotheses (Hf ) (i) , (ii) imply that given ε > 0, we can find C16 > 0 such
that

(3.26) F (z, x) ≥ −1

p
[η+ (z)− ε]xp − C16 for a.a.z ∈ Ω, all x ≥ 0.
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Then for all t > 0 we have

(3.27)

φ+
λ (tû1 (p)) ≤ tp

p ∥Dû1 (p)∥pp +
t2

2 ∥Dû1 (p)∥22
− tp

p

∫
Ω [η+ (z)− 2ε] û1 (p)

p dz + C17

= tp

p

[∫
Ω

[
λ̂1 (p)− η+ (z)

]
û1 (p)

p dz − 2ε
]

+ t2

2 ∥Dû1 (p)∥22 + C17

for some C17 > 0 (recall that ∥Dû1 (p)∥p = 1).

Since û1 (p) ∈ int C+ we see that

ξ∗ =

∫
Ω

[
η+ (z)− λ̂1 (p)

]
û1 (p)

p dz > 0.

Choosing ε ∈
(
0, ξ

∗

2

)
, from (3.27) we have

φ+
λ (tû1 (p)) ≤ −C18t

p + C19t
2 + C17 for some C18, C19 > 0,

hence
φ+
λ (tû1 (p)) → −∞ as t→ ∞

(recall that p > 2). □
Now using variational arguments, we will produce two positive solutions for (Pλ)

when λ ∈ (0, λ∗) . Here and in what follows λ∗ > 0 is the critical parameter generated
in Proposition 3.4.

Proposition 3.6. If hypotheses (Hg) , (Hf ) hold and λ ∈ (0, λ∗) , then problem
(Pλ) admits at least two positive solutions u0, û ∈ int C+.

Proof. Propositions 3.1, 3.4 and 3.5 permit the use of Theorem 2.1 (the mountain

pass theorem). So, we can find u0 ∈W 1,p
0 (Ω) such that

(3.28) u0 ∈ Kφ+
λ
and φ+

λ (0) = 0 < m+
λ ≤ φ+

λ (u0)

(see Proposition 3.4). From (3.28) we see that u0 ̸= 0, and we have(
φ+
λ

)′
(u0) = 0,

hence

⟨Ap (u0) , h⟩+ ⟨A (u0) , h⟩ =
∫
Ω

[
λg
(
z, u+0

)
+ f

(
z, u+0

)]
hdz(3.29)

for all h ∈W 1,p
0 (Ω) .

In (3.29) we choose h = −u−0 ∈W 1,p
0 (Ω) . Then∥∥Du−0 ∥∥pp + ∥∥Du−0 ∥∥22 = 0,

hence
u0 ≥ 0, u0 ̸= 0.

Then, from (3.29) we obtain

(3.30)

{
−△pu0 (z)−△u0 (z) = λg (z, u0 (z)) + f (z, u0 (z)) in Ω,
u0 (z) = 0 on ∂Ω.
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Theorem 8.4, p.204 of Motreanu-Motreanu-Papageorgiou [20] implies that

u0 ∈ L∞ (Ω) .

So, we can apply Theorem 1 of Lieberman [17] and conclude that

u0 ∈ C+\ {0} .

Since g (z, x) ≥ 0 for (z, x) ∈ Ω× R+, from (3.30) it follows

(3.31) △pu0 (z) +△u0 (z) + f (z, u0 (z)) ≤ 0 for a.a.z ∈ Ω.

Hypotheses (Hf ) imply that

f (z, x) ≥ −C20

[
x+ xp−1

]
for a.a.z ∈ Ω, all x ≥ 0.

So, using Theorem 5.4.1, p.111 of Pucci-Serrin [24], from (3.31) we infer that

u0 (z) > 0 for all z ∈ Ω.

Then the boundary point lemma of Pucci-Serrin ([24], p.120) yields

u0 ∈ int C+.

Hypothesis (Hf ) (iv) implies that given ε > 0, one can find δ > 0 such that

(3.32)
1

2

[
f ′x (z, 0)− ε

]
x2 ≤ F (z, x) for a.a.z ∈ Ω, all |x| ≤ δ.

Recall that û1 (2) ∈ int C+. So, there is a t ∈ (0, 1) small, such that tû1 (2) (z) ∈
(0, δ] for all z ∈ Ω.

We have

(3.33)

φ+
λ (tû1 (2))

≤ tp

p ∥Dû1 (2)∥pp +
t2

2 λ̂1 (2) ∥û1 (2)∥
2
2 −

t2

2

∫
Ω [f ′x (z, 0)− ε] û1 (2)

2 dz

(see (3.29) and recall G ≥ 0)

≤ C21t
p + t2

2

[∫
Ω

(
λ̂1 (2)− f ′x (z, 0)

)
û1 (2)

2 dz + ε
]

(recall that ∥û1 (2)∥2 = 1).

Hypothesis (Hf ) (iv) implies that

ξ0 :=

∫
Ω

[
f ′x (z, 0)− λ̂1 (2)

]
û1 (2)

2 dz > 0.

So, choosing ε ∈ (0, ξ0) in (3.33) , we arrive at

φ+
λ (tû1 (2)) ≤ C21t

p − C22t
2 for some C22 > 0.

Since p > 2, choosing t ∈ (0, 1) even smaller if necessary, we have

(3.34) φ+
λ (tû1 (2)) < 0, ∥tû1 (2)∥ ≤ ρλ

(see Proposition 3.4). Let

Bλ =
{
u ∈W 1,p

0 (Ω) : ∥u∥ ≤ ρλ

}
.

We have

(3.35) inf
{
φ+
λ (u) : u ∈ Bλ

}
= µ+λ < 0,
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(see (3.34)). Since φ+
λ is sequentially weakly lower semicontinuous and Bλ is se-

quentially weakly compact (by the James and Eberlein-Smulian theorem), we can

find û ∈W 1,p
0 (Ω) such that

(3.36) φ+
λ (û) = inf

{
φ+
λ (u) : u ∈ Bλ

}
= µ+λ < 0 = φ+

λ (0) ,

hence
û ̸= 0.

Moreover, from (3.28) and (3.35) we infer that

(3.37) φ+
λ (û) < 0 < m+

λ ≤ φ+
λ (u0) ,

hence
û ̸= u0.

From (3.37) and Proposition 3.4 it follows that

0 < ∥û∥ < ρλ,

hence
û ∈ Kφ+

λ
(see (3.36) ),

therefore
û ≥ 0, û /∈ {0, u0} .

We conclude that û ∈ C1
0

(
Ω
)
, û /∈ {0, u0} is the second positive solution of (Pλ) ,

for λ ∈ (0, λ∗) . □
Using Proposition 3.2 and the direct method of calculus of variations we can

produce a negative solution of (Pλ) , for all λ > 0.

Proposition 3.7. If hypotheses (Hg) , (Hf ) , (H0) hold and λ > 0, then problem
(Pλ) admits a negative solution v0 ∈ −int C+.

Proof. By Proposition 3.2, φ−
λ is coercive. Also, using the Sobolev embedding

theorem we see that φ−
λ is sequentially weakly lower semicontinuous. So, by the

Weierstrass-Tonelli theorem, we can find v0 ∈W 1,p
0 (Ω) such that

(3.38) φ−
λ (v0) = inf

{
φ−
λ (v) : v ∈W 1,p

0 (Ω)
}
.

Reasoning as in the proof of Proposition 3.6, we show that for t ∈ (0, 1) small, we
have

φ−
λ (t (−û1 (2))) < 0,

hence
φ−
λ (v0) < 0 = φ−

λ (0) ,

(see (3.38)), therefore
v0 ̸= 0.

Also, from (3.38) we have (
φ−
λ

)′
(v0) = 0,

hence

⟨Ap (v0) , h⟩+ ⟨A (v0) , h⟩ =
∫
Ω

[
λg
(
z,−v−0

)
+ f

(
z,−v−0

)]
hdz(3.39)

for all h ∈W 1,p
0 (Ω) .
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In (3.39) we choose h = v+0 ∈W 1,p
0 (Ω) . Then∥∥Dv+0 ∥∥pp + ∥∥Dv+0 ∥∥22 = 0,

hence

v0 ≤ 0, v0 ̸= 0.

From (3.39) it follows that{
−△pv0 (z)−△v0 (z) = λg (z, v0 (z)) + f (z, v0 (z)) for a.a.z ∈ Ω,
v0 (z) = 0 on ∂Ω.

hence

△p (−v0 (z)) +△ (−v0 (z))− f (z, v0 (z)) ≤ 0 for a.a.z ∈ Ω.

As in the proof of Proposition 3.6, using the results of Pucci-Serrin ([24], pp. 111,
120), we conclude that

v0 ∈ −int C+.

□

4. Extremal constant sign solutions

In this section we produce extremal constant sign solutions for problem (Pλ) .
That is, we show that for all λ ∈ (0, λ∗) , problem (Pλ) has a smallest positive
solution uλ ∈ int C+ (i. e., if u is a positive solution of (Pλ) , then uλ ≤ u ) and for
all λ > 0, problem (Pλ) has a biggest negative solution vλ ∈ −int C+ (i. e., if v is
a negative solution of (Pλ) , then v ≤ vλ). Using uλ and vλ, in the next section, we
will produce nodal (that is, sign changing) solutions.

Hypotheses (Hg) , (Hf ) imply that given ε > 0, we can find C23 = C23 (ε) > 0
such that

(4.1)
λg (z, x)x+ f (z, x)x ≥ [f ′x (z, 0)− ε]x2 − C23 |x|p

for a.a.z ∈ Ω, all x ∈ R.

Motivated by this unilateral growth estimate for the reaction of (Pλ) (λ > 0), we
consider the following auxiliary Dirichlet (p, 2)−equation

(4.2)


−△pu (z)−△u (z) = [f ′x (z, 0)− ε]u (z)

−C23 |u (z)|p−2 u (z) in Ω,
u (z) = 0 on ∂Ω.

Proposition 4.1. For all ε > 0 small, problem (4.2) has a unique positive solution
u∗ ∈ int C+, and (since problem (4.2) is odd), v∗ = −u∗ ∈ −int C+ is the unique
negative solution of (4.2) .

Proof. First we show that problem (4.2) has a positive solution. To this end, let

σ+ :W 1,p
0 (Ω) → R be the C1−functional defined by

σ+ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

1

2

∫
Ω

[
f ′x (z, 0)− ε

] (
u+ (z)

)2
dz

+
C23

p

∥∥u+∥∥p
p
for all u ∈W 1,p

0 (Ω) .
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We have

σ+ (u) ≥ 1

p
∥u∥pp − C24 ∥u∥2 for some C24 > 0, all u ∈W 1,p

0 (Ω) ,

hence

σ+ (·) is coercive

(recall that p > 2). Also σ+ (·) is sequentially weakly lower semicontinuous. So, we

can find u∗ ∈W 1,p
0 (Ω) such that

(4.3) σ+ (u∗) = inf
{
σ+ (u) : u ∈W 1,p

0 (Ω)
}
.

Let u = tû1 (2) ∈ int C+ with 0 < t < 1. Then

σ+ (tû1 (2)) =
tp

p
∥Dû1 (2)∥pp +

t2

2

[∫
Ω

(
λ̂1 (2)− f ′x (z, 0)

)
(û1 (2))

2 dz + ε

]
+
C23t

p

p
∥û1 (2)∥pp ,

(recall that ∥û1 (2)∥2 = 1). Since m ≥ 2 (see hypothesis (Hf ) (iv)), we have

β0 =

∫
Ω

[
f ′x (z, 0)− λ̂1 (2)

]
(û1 (2))

2 dz > 0.

So, if we choose ε ∈ (0, β0) , then

σ+ (tû1 (2)) ≤ C25t
p − C26t

2 for some C25, C26 > 0, all 0 < t < 1.

But p > 2. So, choosing t ∈ (0, 1) small, we have

σ+ (tû1 (2)) < 0,

hence

σ+ (u∗) < 0 = σ+ (0)

(see (4.3)), therefore

u∗ ̸= 0.

From (4.3) it follows

σ′+ (u∗) = 0,

hence

⟨Ap (u∗) , h⟩+ ⟨A (u∗) , h⟩ =
∫
Ω

[
f ′x (z, 0)− ε

]
u+∗ hdz(4.4)

− C23

∫
Ω

(
u+∗
)p−1

hdz for all h ∈W 1,p
0 (Ω) .

In (4.4) we choose h = −u−∗ ∈W 1,p
0 (Ω) . Then∥∥Du−∗ ∥∥pp ≤ 0,

hence

u∗ ≥ 0, u∗ ̸= 0.

So, from (4.4) we infer that u∗ is a positive solution of (4.2).
As before, the nonlinear regularity theory implies that u∗ ∈ C+\ {0} .
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Let a : RN → RN be defined by

a (y) = |y|p−2 y + y for all y ∈ RN .
Since p > 2, we deduce that a ∈ C1

(
RN ,RN

)
and

∇a (y) = |y|p−2

[
I + (p− 2)

y ⊗ y

|y|2

]
+ I for all y ̸= 0.

Note that
div a (Du) = △pu+△u for all u ∈W 1,p

0 (Ω) .

Moreover, we see that

(∇a (y) ξ, ξ)RN ≥ |ξ|2 > 0 for all y, ξ ∈ RN , ξ ̸= 0.

Therefore, the tangency principle of Pucci-Serrin ([24], p. 35) implies that

u∗ (z) > 0 for all z ∈ Ω.

Then, the boundary point lemma of Pucci-Serrin ([24], p. 120) yields

u∗ ∈ int C+.

Next we show that this positive solution is unique. For this purpose, we introduce
the integral functional j : L1 (Ω) → R = R∪{+∞} defined by

j (u) =

 1
p

∥∥∥Du 1
2

∥∥∥p
p
+ 1

2

∥∥∥Du 1
2

∥∥∥2
2

if u ≥ 0, u
1
2 ∈W 1,p

0 (Ω) ,

+∞ otherwise.

Invoking Lemma 1 of Diaz-Saa [10] (see also Lemma 5 of Benguria-Brezis-Lieb [5])
we see that j (·) is convex.

Let û∗ ∈W 1,p
0 (Ω) be another positive solution of problem (4.2) . Again we have

û∗ ∈ int C+.

Then u2∗, û
2
∗ ∈ dom j :=

{
u ∈ L1 (Ω) : j (u) < +∞

}
(the effective domain of j (·)).

Given any h ∈ C1
0

(
Ω
)
, for |t| < 1 small, we have

u2∗ + th ∈ dom j, û2∗ + th ∈ dom j.

It is easily seen that j (·) is Gateaux differentiable at u2∗ and at û2∗ in the direction h ∈
C1
0

(
Ω
)
. Using the chain rule and the nonlinear Green’s identity (see, for example,

Gasinski-Papageorgiou ([13], p. 210), we have

j′
(
u2∗
)
(h) =

1

2

∫
Ω

−△pu∗ −△u∗
u∗

hdz,

j′
(
û2∗
)
(h) =

1

2

∫
Ω

−△pû∗ −△û∗
û∗

hdz.

The convexity of j (·) implies the monotonicity of j′ (·) . Hence

0 ≤
∫
Ω

(
−△pu∗ −△u∗

u∗
− −△pû∗ −△û∗

û∗

)(
u2∗ − û2∗

)
dz

= C23

∫
Ω

(
ûp−2
∗ − up−2

∗
) (
u2∗ − û2∗

)
dz,



838 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

therefore
u∗ = û∗,

(since p > 2). This proves the uniqueness of the positive solution u∗ ∈ int C+ for
problem (4.2) when ε ∈ (0, β0) .

Since problem (4.2) is odd, we see that v∗ = −u∗ ∈ −int C+ is the unique
negative solution of (4.2) . □

We introduce the following two sets:

S+ (λ) = {u : u is a positive solution of (Pλ)} when λ ∈ (0, λ∗) ;

S− (λ) = {u : u is a negative solution of (Pλ)} for all λ > 0.

Propositions 3.5, 3.6 and their proofs imply that

∅ ̸= S+ (λ) ⊆ int C+ and ∅ ̸= S− (λ) ⊆ −int C+.

Moreover, from Filippakis-Papageorgiou [12], we know that:

• S+ (λ) is downward directed (that is, if u1, u2 ∈ S+ (λ) , then we can find
u ∈ S+ (λ) such that u ≤ u1, u ≤ u2).

• S− (λ) is upward directed (that is, if v1, v2 ∈ S− (λ) , then we can find
v ∈ S− (λ) such that v1 ≤ v, v2 ≤ v).

In what follows u∗ ∈ int C+ and v∗ ∈ −int C+ are the unique constant sign
solutions of (4.2) produced in Proposition 4.1 for ε ∈ (0, β0) .

Proposition 4.2. If hypotheses (Hg) , (Hf ) , (H0) hold, then:
(a) for all λ ∈ (0, λ∗) and all u ∈ S+ (λ) , we have u∗ ≤ u;
(b) for all λ > 0 and all u ∈ S− (λ) , we have v ≤ v∗.

Proof. (a) Let λ ∈ (0, λ∗) and let u ∈ S+ (λ) . We consider the Catatheodory func-
tion k+ (z, x) defined by

(4.5) k+ (z, x) =


0 if x < 0,
[f ′x (z, 0)− ε]x− C23x

p−1 if 0 ≤ x ≤ u (z) ,

[f ′x (z, 0)− ε]u (z)− C23u (z)
p−1 if u (z) < x.

We setK+ (z, x) =
∫ x
0 k+ (z, s) ds and introduce the C1−functional γ+ :W 1,p

0 (Ω) →
R defined by

γ+ (û) =
1

p
∥Dû∥pp +

1

2
∥Dû∥22 −

∫
Ω
K+ (z, û) dz for all û ∈W 1,p

0 (Ω) .

From (4.5) it is clear that γ+ is coercive. Also, it is sequentially weakly lower

semicontinuous. So we can find û∗ ∈W 1,p
0 (Ω) such that

(4.6) γ+ (û∗) = inf
{
γ+ (u) : u ∈W 1,p

0 (Ω)
}
.

As before (see the proof of Proposition 4.1), we have

γ+ (û∗) < 0 = γ+ (0) ,

hence
û∗ ̸= 0.

From (4.6) we have
γ′+ (û∗) = 0,
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hence

(4.7) ⟨Ap (û∗) , h⟩+ ⟨A (û∗) , h⟩ =
∫
Ω
k+ (z, û∗)hdz for all h ∈W 1,p

0 (Ω) .

In (4.7) first we choose h = −û−∗ ∈W 1,p
0 (Ω) . Then∥∥Dû−∗ ∥∥pp + ∥∥Dû−∗ ∥∥22 = 0,

(see (4.5)), hence

û∗ ≥ 0, û∗ ̸= 0.

Next in (4.7) we choose h = (û∗ − u)+ ∈W 1,p
0 (Ω) . Then⟨

Ap (û∗) , (û∗ − u)+
⟩
+
⟨
A (û∗) , (û∗ − u)+

⟩
=

∫
Ω

([
f ′x (z, 0)− ε

]
u− C23u

p−1
)
(û∗ − u)+ dz (see (4.5) )

≤
∫
Ω
[λg (z, u) + f (z, u)] (û∗ − u)+ dz (see (4.8) )

=
⟨
Ap (u) , (û∗ − u)+

⟩
+
⟨
A (u) , (û∗ − u)+

⟩
(since u ∈ S+ (λ) ),

therefore

û∗ ≤ u.

So, we have proved that

(4.8) û∗ ∈ [0, u] , û∗ ̸= 0.

From (4.5), (4.7) and (4.8), it follows that û∗ is a positive solution of (4.2) , hence

û∗ = u∗ ∈ int C+ (see Proposition 4.1)

therefore

û∗ ≤ u for all u ∈ S+ (λ) ,

(see (4.8)).
(b) The argument is similar. Let λ > 0 and v ∈ S− (λ) . We consider the

Catatheodory function k− (z, x) defined by

(4.9) k− (z, x) =

 [f ′x (z, 0)− ε] v (z)− C23 |v (z)|p−2 v (z) if x < v (z) ,

[f ′x (z, 0)− ε]x− C23 |x|p−2 x if v (z) ≤ x ≤ 0,
0 if 0 < x.

We setK− (z, x)=
∫ x
0 k− (z, s) ds and introduce the C1-functional γ− :W 1,p

0 (Ω) →
R defined by

γ− (v̂) =
1

p
∥Dv̂∥pp +

1

2
∥Dv̂∥22 −

∫
Ω
K− (z, v̂) dz for all v̂ ∈W 1,p

0 (Ω) .

As in part (a) , via the direct method of calculus of variations, we show that

v ≤ v̂∗ for all v ∈ S− (λ) , all λ ≥ 0.

□

Now we are ready to produce extremal constant sign solutions for problem (Pλ) .



840 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

Proposition 4.3. If hypotheses (Hg) , (Hf ) , (H0) hold, then:
(a) for every λ ∈ (0, λ∗) we can find u+ ∈ S+ (λ) ⊆ int C+ such that u+ ≤ u for

all u ∈ S+ (λ) ;
(b) for every λ > 0 there exists v− ∈ S− (λ) ⊆ −int C+ such that v ≤ v− for all

v ∈ S− (λ) .

Proof. (a) Invoking Lemma 3.10 of Hu-Papageorgiou ([16], p.178) we can find
{un}n≥1 ⊆ S+ (λ) ⊆ int C+ decreasing (recall that S+ (λ) is downward directed)
such that

inf S+ (λ) = inf
n≥1

un.

For every n ∈ N we have

⟨Ap (un) , h⟩+ ⟨A (un) , h⟩ =
∫
Ω
[λg (z, un) + f (z, un)]hdz(4.10)

for all h ∈W 1,p
0 (Ω) ,

and

(4.11) 0 ≤ un ≤ u1.

If in (4.9) we choose h = un ∈W 1,p
0 (Ω) and use (4.11) , then

∥Dun∥pp + ∥Dun∥22 ≤ (λ+ 1)C27, for some C27 > 0, all n ∈ N,

hence

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded.

Hence, we may assume that

(4.12) un
w−→ u+ in W 1,p

0 (Ω) and un → u+ in Lp (Ω) as n → ∞.

In (4.9) we choose h = un − u+ ∈ W 1,p
0 (Ω) , pass to the limit as n→ ∞ and use

(4.12) . Then

lim
n→∞

[⟨Ap (un) , un − u+⟩+ ⟨A (un) , un − u+⟩] = 0,

hence

lim sup
n→∞

[⟨Ap (un) , un − u+⟩+ ⟨A (u+) , un − u+⟩] ≤ 0,

(since A (·) is monotone), therefore

lim sup
n→∞

⟨Ap (un) , un − u+⟩ ≤ 0 (see (4.12) ),

and it follows that

(4.13) un −→ u+ in W 1,p
0 (Ω) ,

(see Proposition 2.2). From Proposition 4.2 we have

u∗ ≤ un for all n ∈ N,

therefore

(4.14) u∗ ≤ u+.
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Passing to the limit as n → ∞ in (4.9) and using (4.13) and (4.14) , we conclude
that

u+ ∈ S+ (λ) and u+ = inf S+ (λ) .

(b) Similarly, using this time an increasing sequence

{vn}n≥1 ⊆ S− (λ) ⊆ −int C+,

(recall hat S− (λ) is upward directed) such that

supS− (λ) = sup
n≥1

vn.

Then, as in part (a) , and since

vn ≤ v∗ ∈ −int C+,

we generate v− ∈ S− (λ) ⊆ −int C+, such that v ≤ v− for all v ∈ S− (λ) . □

5. Nodal solutions

In this section, using the two extremal constant sign solutions u+ ∈ int C+ and
v− ∈ −int C+ produced in Proposition 4.3, we can generate nodal solutions for
problem (Pλ) (λ ∈ (0, λ∗)).

Proposition 5.1. If hypotheses (Hg) , (Hf ) , (H0) hold and λ ∈ (0, λ∗) , then prob-
lem (Pλ) has a nodal solution

y0 ∈ intC1
0(Ω)

[v−, u+] .

Proof. Let u+ ∈ int C+ and v− ∈ −int C+ be the two extremal constant sign

solutions produced in Proposition 4.3. Let β̂λ (z, x) be the Caratheodory function
defined by

(5.1) β̂λ (z, x) =

 λg (z, v− (z)) + f (z, v− (z)) if x < v− (z) ,
λg (z, x) + f (z, x) if v− (z) ≤ x ≤ u+ (z) ,
λg (z, u+ (z)) + f (z, u+ (z)) if u+ (z) < x.

Also, we consider the positive and the negative truncations of β̂λ (z, ·) , namely the

Carathéodory functions β̂±λ (z, x) defined by

(5.2) β̂±λ (z, x) = β̂λ
(
z, x±

)
for all (z, x) ∈ Ω× R.

We set B̂λ (z, x) =
∫ x
0 β̂λ (z, x) ds and B̂±

λ (z, x) =
∫ x
0 β̂

±
λ (z, x) ds and introduce the

C1−functionals ψ̂λ, ψ̂
±
λ :W 1,p

0 (Ω) → R defined by

ψ̂λ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
B̂λ (z, u (z)) dz, for all u ∈W 1,p

0 (Ω) .

ψ̂±
λ (u) =

1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
B̂±
λ (z, u (z)) dz, for all u ∈W 1,p

0 (Ω) .

Claim 1: K
ψ̂λ

⊆ [v−, u+] ∩ C1
0

(
Ω
)
, K

ψ̂+
λ
= {0, u+} , Kψ̂−

λ
= {v−, 0} .
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Let u ∈ K
ψ̂λ
. Then

(5.3) ⟨Ap (u) , h⟩+ ⟨A (u) , h⟩ =
∫
Ω
β̂λ (z, x)hdz for all h ∈W 1,p

0 (Ω) .

In (5.3) first we choose h = (u− u+)
+ ∈W 1,p

0 (Ω) . Then⟨
Ap (u) , (u− u+)

+⟩+ ⟨A (u) , (u− u+)
+⟩

=

∫
Ω
[λg (z, u+ (z)) + f (z, u+ (z))] (u− u+)

+ (see (5.1) )

=
⟨
Ap (u+) , (u− u+)

+⟩+ ⟨A (u+) , (u− u+)
+⟩ (since u+ ∈ S+ (λ) ),

hence
u ≤ u+.

Similarly, if in (5.3) we choose h = (v− − u)+ ∈W 1,p
0 (Ω) , then we obtain

v− ≤ u.

So, we have proved that u ∈ [v−, u+] . Moreover, the nonlinear regularity theory
(see Lieberman [17], Theorem 1), implies that

u ∈ [v−, u+] ∩ C1
0

(
Ω
)
.

So, we have
K
ψ̂λ

⊆ [v−, u+] ∩ C1
0

(
Ω
)
.

In a similar fashion, we also show that

K
ψ̂+
λ
⊆ [0, u+] ∩ C+, Kψ̂−

λ
= [v−, 0] ∩ (−C+) .

Then, the extremality of the solutions u+ and v− implies that

K
ψ̂+
λ
= {0, u+} , Kψ̂−

λ
= {v−, 0} .

This proves Claim 1.

Claim 2: u+ ∈ int C+ and v− ∈ −int C+ are local minimizers of ψ̂λ.

From (5.1) and (5.2) it is clear that ψ̂+
λ is coercive. Also it is sequentially weakly

lower semicontinuous. So there exists û+ ∈W 1,p
0 (Ω) such that

(5.4) ψ̂+
λ (û+) = inf

{
ψ̂+
λ (u) : u ∈W 1,p

0 (Ω)
}
.

Recall that û+ ∈ int C+. So, we can find t ∈ (0, 1) small such that tû1 (2) ≤
u+ (see Marano-Papageorgiou [19], Proposition 2.1). On account of hypotheses
(Hg) (iii) , (Hf ) (iv) , given ε > 0, there is a δ > 0 such that

(5.5) G (z, x) ≥ −ε
2
x2 for a.a.z ∈ Ω, all |x| ≤ δ,

(5.6) F (z, x) ≥ −1

2

[
f ′x (z, 0)− ε

]
x2 for a.a.z ∈ Ω, all |x| ≤ δ.

Then for t ∈ (0, 1) small, we have

ψ̂+
λ (tû1 (2)) =

tp

p
∥Dû1 (2)∥pp +

t2

2

[∫
Ω

(
λ̂1 (2)− f ′x (z, 0)

)
û1 (2)

2 dz + 2ε

]
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(see (5.5) and (5.6) and recall that ∥û1 (2)∥2 = 1), hence

ψ̂+
λ (tû1 (2)) < 0 = ψ̂+

λ (0) for t ∈ (0, 1) small

(choose ε > 0 small, see (Hf ) (iv) , Lemma 2.6 and recall that 2 < p). Hence

ψ̂+
λ (û+) < 0 = ψ̂+

λ (0) (see (5.4) )

therefore

(5.7) û+ ̸= 0.

From (5.4) we have

û+ ∈ K
ψ̂+
λ
,

hence

û+ = u+

(see Claim 1 and (5.7)).
Since

ψ̂λ |C+= ψ̂+
λ |C+ ,

(see (5.2)), it follows that u+ ∈ int C+ is a C1
0

(
Ω
)
−local minimizer of ψ̂λ, hence

u+ ∈ int C+ is a W 1,p
0 (Ω)−local minimizer of ψ̂λ (see Proposition 2.3).

Similarly for v− ∈ −int C+, working this time with the functional ψ̂−
λ . This

proves Claim 2.
Without any loss of generality, we may assume that

(5.8) ψ̂λ (v−) ≤ ψ̂λ (u+) .

The reasoning is similar if the opposite inequality holds.
We assume that K

ψ̂λ
is finite. Otherwise, on account of Claim 1 and the ex-

tremality of u+ and v−, we already have an infinity of nodal solutions, and so we
are done. Then, using Claim 2 we see that we can find ρ ∈ (0, 1) small such that

ψ̂λ (v−) ≤ ψ̂λ (u+) < inf
{
ψ̂λ (u) : ∥u− u+∥ = ρ

}
= m̂+

ρ ,(5.9)

∥v− − u+∥ > ρ,

(see (5.8) and Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).

From (5.1) it follows that ψ̂λ is coercive. Therefore

(5.10) ψ̂λ satisfies the C − condition,

(see Section 2). Then (5.9) , (5.10) permit the use of Theorem 2.1 (the mountain

pass theorem). So, we can find y0 ∈W 1,p
0 (Ω) such that

(5.11) y0 ∈ K
ψ̂λ

⊆ [v−, u+] ∩ C1
0

(
Ω
)
(see Claim 1), m̂+

ρ ≤ ψ̂λ (y0) .

From (5.9) and (5.11) it follows that

(5.12) y0 /∈ {v−, u+} .
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So, if we can show that y0 ̸= 0, then y0 will be nodal (see (5.11) , (5.12) and recall

the extremality of u+ and v−). Since y0 is a critical point of ψ̂λ of mountain pass
type, we have

(5.13) C1

(
ψ̂λ, y0

)
̸= 0

(see Motreanu-Motreanu-Papageorgiou [20], p.176).

Consider the the C1−functional ψ̂0 :W
1,p
0 (Ω) → R defined by

ψ̂0 (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

1

2

∫
Ω
f ′x (z, 0)u

2dz for all u ∈W 1,p
0 (Ω) .

We introduce the homotopy

h (t, u) = tψ̂λ (u) + (1− t) ψ̂0 (u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω) .

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (Ω) such that

(5.14) tn → t in [0, 1] , un → 0 in W 1,p
0 (Ω) , h′u (tn, un) = 0 for all n ∈ N.

From the equality in (5.14) we have

(5.15)
⟨Ap (un) , h⟩+ ⟨A (un) , h⟩ = tn

∫
Ω β̂λ (z, un)hdz

+(1− tn)
∫
Ω f

′
x (z, 0)unhdz for all h ∈W 1,p

0 (Ω) , all n ∈ N.

hence
(5.16){

−△pun (z)−△un (z) = tnβ̂λ (z, un (z)) + (1− tn) f
′
x (z, 0)un (z) for a.a.z ∈ Ω,

un (z) = 0 on ∂Ω.

By (5.14) , (5.16) and Corollary 8.6, p.208 of Motreanu-Motreanu-Papageorgiou [20],
there exists M3 > 0 such that

∥un∥∞ ≤M3 for all n ∈ N.

Applying Theorem 1 of Lieberman [17], we can find α ∈ (0, 1) and M4 > 0 such
that

(5.17) un ∈ C1,α
0

(
Ω
)
and ∥un∥C1,α

0 (Ω) ≤M4 for all n ∈ N.

From (5.17) , (5.14) and the compact embedding of C1,α
0

(
Ω
)
into C1

0

(
Ω
)
, we have

(5.18) un → 0 in C1
0

(
Ω
)
and so un ∈ [v−, u+] for all n ≥ n0.

Let yn = un
∥un∥ , n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so by passing to a

subsequence if necessary we may assume

(5.19) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp (Ω) as n → ∞.

From (5.15) , we have

(5.20)
∥un∥p−2 ⟨Ap (yn) , h⟩+ ⟨A (yn) , h⟩ = tn

∫
Ω
β̂λ(z,un(z))

∥un∥ hdz

+(1− tn)
∫
Ω f

′
x (z, 0) ynhdz for all h ∈W 1,p

0 (Ω) , all n ∈ N,
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hence, for all n ∈ N,
−∥un∥p−2△pyn (z)−△yn (z) = tn

β̂λ(z,un(z))
∥un∥

+(1− tn) f
′
x (z, 0) yn (z) for a.a.z ∈ Ω,

yn (z) = 0 on ∂Ω.

We know that yn ∈ C1
0

(
Ω
)
for all n ∈ N. Also, from (5.19) and Corollary 8.6, p.

108, of Motreanu-Motreanu-Papageorgiou [20], we have

∥yn∥∞ ≤M4 for some M5 > 0, all n ∈ N.

Invoking the nonlinear regularity theory of Lieberman ([18], p.320), we can find
α ∈ (0, 1) and M6 > 0 such that

yn ∈ C1,α
0

(
Ω
)
and ∥yn∥C1,α

0 (Ω) ≤M6 for all n ∈ N.

As before, using the compact embedding of C1,α
0

(
Ω
)
into C1

0

(
Ω
)
and (5.19) , we

have

(5.21) yn → y in C1
0

(
Ω
)
.

Hypotheses (Hg) (iii) , (Hf ) (iii) and (5.1) imply that∣∣∣β̂λ (z, x)∣∣∣ ≤ C28 |x| for a.a.z ∈ Ω, all x ∈ R, some C28 > 0,

hence {
β̂λ (·, un (·))

∥un∥

}
n≥1

⊆ Lp
′
(Ω) is bounded,

(see (5.19) and recall that 2 < p). So, by passing to a subsequence if necessary and
using (5.18) and hypotheses (Hg) (iii) , (Hf ) (iii) , we obtain

(5.22)
β̂λ (·, un (·))

∥un∥
w−→ f ′x (·, 0) y in Lp

′
(Ω) as n → ∞,

(see Aizicovici-Papageorgiou-Staicu ([1], proof of Proposition 14).

In (5.19) we choose h = yn − y ∈ W 1,p
0 (Ω) , pass to the limit as n → ∞ and use

(5.18) , (5.21) , (5.22) . Then we obtain

⟨A (y) , h⟩ =
∫
Ω
f ′x (z, 0) ydz for all h ∈W 1,p

0 (Ω) ,

hence

(5.23) −△y (z) = f ′x (z, 0) y (z) for a.a.z ∈ Ω, y |∂Ω= 0.

From hypothesis (Hf ) (iii) and Lemma 2.5, we have

(5.24)
λ̃m (2, f ′x (·, 0)) < λ̃m

(
2, λ̂m (2)

)
= 1 and

1 = λ̃m+1

(
2, λ̂m+1 (2)

)
< λ̃m+1 (2, f

′
x (., 0)) .

From (5.23) and (5.24) it follows that

y = 0.
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But from (5.21) we see that ∥y∥ = 1, a contradiction. We conclude that (5.14)
cannot occur. Therefore, using the homotopy invariance property of critical groups
(see, for example Gasinski-Papageorgiou [14], Theorem 5.125, p. 836), we obtain

(5.25) Ck

(
ψ̂λ, 0

)
= Ck

(
ψ̂0, 0

)
for all k ∈ N0.

Let ψ0 : H
1
0 (Ω) → R be the C2−functional defined by

ψ0 (u) =
1

2
∥Du∥22 −

1

2

∫
Ω
f ′x (z, 0)u

2dz for all u ∈ H1
0 (Ω) .

Hypothesis (Hf ) (iii) , through Lemma 2.6 implies that u = 0 is a nondegenerate

critical point of ψ0 with Morse index

dm = dim

m⊕
k=1

E
(
λ̂k (2)

)
≥ 2.

Hence we have

(5.26) Ck
(
ψ0, 0

)
= δk,dmZ for all k ∈ N0,

(see Motreanu-Motreanu-Papageorgiou [20], Theorem 6.51, p. 135).

Let ψ̃0 = ψ0 |
W 1,p

0 (Ω)
(recall that 2 < p). Since W 1,p

0 (Ω) is dense in H1
0 (Ω) , we

have

Ck

(
ψ̃0, 0

)
= Ck

(
ψ0, 0

)
for all k ∈ N0,

hence

(5.27) Ck

(
ψ̃0, 0

)
= δk,dmZ for all k ∈ N0 (see (5.26) ).

Note that

(5.28)
∣∣∣ψ̂0 (u)− ψ̃0 (u)

∣∣∣ = 1

p
∥Du∥pp ,

hence ∣∣∣⟨ψ̂′
0 (u)− ψ̃′

0 (u) , h
⟩∣∣∣ = |⟨Ap (u) , h⟩| ≤ ∥Du∥p−1

p ∥h∥

for all h ∈W 1,p
0 (Ω) ,

therefore

(5.29)
∥∥∥ψ̂′

0 (u)− ψ̃′
0 (u)

∥∥∥
W−1,p′

≤ ∥u∥p−1 .

From (5.28) , (5.29) and the C1-continuity of critical groups (see, for example,
Gasinski-Papageorgiou [14], Theorem 5.126, p. 836), we have

Ck

(
ψ̂0, 0

)
= Ck

(
ψ̃0, 0

)
for all k ∈ N0,

hence

Ck

(
ψ̂0, 0

)
= δk,dmZ for all k ∈ N0 (see (5.27) ),

therefore

(5.30) Ck

(
ψ̂λ, 0

)
= δk,dmZ for all k ∈ N0 (see (5.25) ).
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Comparing (5.30) and (5.13) we infer that

y0 ̸= 0.

So, y0 ∈ C1
0

(
Ω
)
is a nodal solution of (Pλ) for λ ∈ (0, λ∗) (see (5.12)).

Recall that

y0 ∈ [v−, u+] ∩ C1
0

(
Ω
)
.

As before (see the proof of Proposition 4.1), via the tangency principle of Pucci-
Serrin ([24], p.35), we have

(5.31) v− (z) < y0 (z) < u+ (z) for all z ∈ Ω.

Let ρ = max {∥v−∥∞ , ∥u+∥∞} and let ξ̂ρ > 0 be as postulated by hypothesis

(Hf ) (v) . For ξ̃ρ > ξ̂ρ, we have

(5.32)



−△py0 (z)−△y0 (z) + ξ̃ρ |y0 (z)|p−2 y0 (z)

= λg (z, y0 (z)) + f (z, y0 (z)) + ξ̂ρ |y0 (z)|p−2 y0 (z)

+
(
ξ̃ρ − ξ̂ρ

)
|y0 (z)|p−2 y0 (z)

≤ λg (z, u+ (z)) + f (z, u+ (z)) + ξ̂ρu+ (z)p−1

+
(
ξ̃ρ − ξ̂ρ

)
u+ (z)p−1(since y0 ≤ u+)

=−△pu+ (z)−△u+ (z) + ξ̃ρu+ (z)p−1 for a.a.z ∈ Ω.

On account of (5.31) , we can say that(
ξ̃ρ − ξ̂ρ

)
|y0|p−2 y0 ⪯

(
ξ̃ρ − ξ̂ρ

)
up−1
+ .

Then from (5.32) and Proposition 2.4 of Filippakis-O’Regan-Papageorgiou [11], we
have

u+ − y0 ∈ int C+.

In a similar fashion we show that

y0 − v− ∈ int C+.

Therefore we conclude that

y0 ∈ intC1
0(Ω)

[v−, u+] .

□

So, we can state our first multiplicity result for problem (Pλ) .

Theorem 5.2. If hypotheses (Hg) , (Hf ) , (H0) hold, then there exists λ∗ > 0 such
that for all λ ∈ (0, λ∗) , problem (Pλ) has at least four nontrivial solutions

u0, û ∈ int C+, v0 ∈ −int C+ and y0 ∈ C1
0

(
Ω
)
, nodal.

If we strenghten the conditions on the functions g (z, ·) and f (z, ·) we can produce
a second nodal solution, for a total of five nontrivial solutions to problem (Pλ) for
λ ∈ (0, λ∗) .

So, we introduce the following extra condition:
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(H1) : for a.a.z ∈ Ω, g (z, ·), f (z, ·) ∈ C1 (R) and hypotheses (Hg) (i) , (Hf ) (i)
are replaced by∣∣∣g′

x (z, x)
∣∣∣ , ∣∣∣f ′

x (z, x)
∣∣∣ ≤ a (z)

[
1 + |x|r−2

]
for a.a.z ∈ Ω, all x ∈ R,

with a ∈ L∞ (Ω) , p ≤ r < p∗.

Proposition 5.3. If hypotheses (Hg) (ii) , (iii) , (Hf ) (ii)− (iv) , (H0) , (H1) hold
and λ ∈ (0, λ∗) , then problem (Pλ) has a second nodal solution ŷ ∈ intC1

0(Ω)
[v−, u+] .

Proof. Let u+ ∈ int C+ and v− ∈ −int C+ be the two extremal constant sign
solutions (see Proposition 4.3). From Proposition 5.1 it follows that there exists a
nodal solution

(5.33) y0 ∈ intC1
0(Ω)

[v−, u+] .

We know that y0 ∈ K
ψ̂λ

and is of mountain pass type. Then by hypothesis (H1) ,

(5.33) , and Aizicovici-Papageorgiou-Staicu ([3], proof of Theorem 3) we infer that

(5.34) Ck

(
ψ̂λ, y0

)
= δk,1Z for all k ∈ N0.

Recall that u+ ∈ int C+ and v− ∈ −int C+ are local minimizers of ψ̂λ (see the
proof of Proposition 5.1, Claim 2). Therefore

(5.35) Ck

(
ψ̂λ, u+

)
= Ck

(
ψ̂λ, v−

)
= δk,0Z for all k ∈ N0.

From (5.30) we have

(5.36) Ck

(
ψ̂λ, 0

)
= δk,dmZ for all k ∈ N0.

Finaly recall that ψ̂λ is coercive. Therefore

(5.37) Ck

(
ψ̂λ,∞

)
= δk,0Z for all k ∈ N0,

(see Motreanu-Motreanu-Papageorgiou [20], p.161).
Suppose that K

ψ̂λ
= {y0, u+, v−, 0} . Then from (5.34) , (5.35) , (5.36), (5.37) and

the Morse relation (see (2.7)) with t = −1, we have

(−1)1 + 2 (−1)0 + (−1)dm = (−1)0 ,

hence (−1)dm = 0, a contradiction. Therefore there exists ŷ ∈W 1,p
0 (Ω) such that

ŷ /∈ {y0, u+, v−, 0} , ŷ ∈ K
ψ̂λ

⊆ [v−, u+] ∩ C1
0

(
,Ω
)

hence ŷ is the second nodal solution of (Pλ) .Moreover, as in the proof of Proposition
5.1, using the strong comparison principle from [24], we have

ŷ ∈ intC1
0(Ω)

[v−, u+] .

□

So, we can state our second multiplicity theorem for problem (Pλ) , where λ ∈
(0, λ∗) :
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Theorem 5.4. If hypotheses (Hg) (ii) , (iii) , (Hf ) (ii) − (iv) , (H0) , (H1) hold,
then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗) , problem (Pλ) has at least five
nontrivial solutions

u0, û ∈ int C+, v0 ∈ −int C+, y0, ŷ, nodal.
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