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MULTIPLE SOLUTIONS WITH SIGN INFORMATION FOR
(p,2)-EQUATIONS WITH ASYMMETRIC RESONANT
REACTION

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU

ABSTRACT. We consider a nonlinear nonhomogeneous Dirichlet problem driven
by the sum of a p—Laplacian and a Laplacian (a (p,2)— equation). The reaction
is the sum of two competing terms, a parametric (p — 1)—sublinear term and
an asymmetric (p — 1)—linear perturbation which is resonant at —oo. Using
variational methods together with truncations and comparison techniques and
Morse theory (critical groups), we prove two multiplicity theorems which provide
sign information for all the solutions.

1. INTRODUCTION

Let Q € RY be a bounded domain with a C2— boundary 0. In this paper we
study the following nonlinear, nonhomogeneous Dirichlet problem

B (2) = Du(z) = Mg (2, (=) + £ (5,u(2) in 2,
(P3) ulgn=0, 2<p<oo, A>0.

Here for any g € (0, 00) by A, we denote the g—Laplace differential operator defined
by

Bqu =div (|Dul"* Du), for all u e W (9),

where |-| denotes the norm in R,

When ¢ = 2, we have the usual Laplacian denoted by A. So, in problem (P),
the differential operator (left hand side of (Py)) is the sum of a p—Laplacian (with
p > 2) and of a Laplacian (a (p,2) —equation). Such a differential operator is not
homogeneous and this is a source of difficulties in the analysis of problem (P)).

In the reaction (right hand side of (Py)), we have two terms, namely the func-
tions Ag (z,z) and f(z,2) with A > 0 being a parameter. Both functions are
Carathéodory (that is, both are measurable in z € Q and continuous in z €
R). The function g¢(z,.) is strictly (p — 1) —sublinear near +oo, while f(z,.) is
(p — 1) —linear near +oo. However, f(z,.) exhibits asymmetric behavior as x —
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f(z,2)

|z|P 2

value of (— A\, VVO1 P (€2))) as  — 400 and only partial interaction is allowed with

stays above A; (p) > 0 (the principal eigen-

+00. More precisely, the quotient

i (p) (nonuniform nonresonance). In the negative direction (that is, as  — —00),
f(z2)

Ela

1 (p) is allowed. The resonance occurs from the left of i (p) in the sense that

the quotient stays below A (p) and complete interaction (resonance) with

(1.1) AL(p) [z = p[AG (2, 2) + F (2,2)] "= +00 uniformly,
for a.a.z € Q,

with . N
G(z,x)= / g(z,8)ds and F (z,x) = / f(z,s)ds.
0 0

This makes the negative truncation of the corresponding energy functional coercive
and so the direct method of the calculus of variations is available in the search for
negative solutions of (Py).

Using variational methods, together with truncations and comparison techniques
and Morse theory (critical groups), we show that for A > 0 small, problem (P)
has at least five nontrivial solutions with sign information (namely, we have two
positive solutions, one negative solution and two nodal (sign changing) solutions).

We mention that (p,2) —equations arise in problems of mathematical physics (see
Cherfils-Ilyasov [8]), and recently there have been some existence and multiplicity
results for such equations. We mention the works of Aizicovici-Papageorgiou-Staicu
[2]-[4], Cingolani-Degiovanni [9], He-Guo-Huang-Lei [15], Papageorgiou-Radulescu
[21], [22], Papageorgiou-Vetro-Vetro [23], Sun [25], Sun-Zhang-Su [26]. Closer to our
work here is the paper of Papageorgiou-Radulescu [22]. In [22] the authors deal with
a nonparametric (p,2) —equation and the reaction exhibits an asymmetric behavior
as £ — Foo. Under more restrictive conditions on the data of the problem, they
prove a multiplicity theorem producing three nontrivial solutions, but they do not
provide sign information for all of them.

2. MATHEMATICAL BACKGROUND-HYPOTHESES

Let (X, ||]|) be a Banach space and X* be its topological dual. By (.,.) we denote
the duality brackets for the pair (X*, X). Also — will designate weak convergence
in X.

A map A: X — X" is said to be of type (S), if for every sequence {z,},5; C X
such that z,, — z and

lim sup <A (xn) y Ip — I) < 07

n—oo
one has
T, — xin X as n — oo.
A map g : X — X* is said to be completely continuous if for every sequence
{#n},>; € X such that z, 5 2 one has

g(xn) = g(x) in X* as n — oo.
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Let o € C' (X,R). The Cerami condition (C-condition, for short) plays a central
role in critical point theory. It is a compactness-type condition on ¢, namely:
" every sequence {un},s; € X such that {¢ (un)}, ey is bounded and

(1 + |un])) ¢ (un) — 0 in X*as n — oo

admits a strongly convergent subsequence”.

This condition leads to a deformation theorem from which the minimax theory
of the critical values of ¢ follows. We recall one such minimax theorem, known in
the literature as the "mountain pass theorem”. It will be used in the analysis of
problem (Py).

Theorem 2.1. If p € C! (X, R) satisfies the C—condition, ug, u1 € X and p > 0
are such that ||u; — upl| > p,

max {¢ (uo) , ¢ (u1)} < inf{p (u) : |lu —uoll = p} =: my,
and

— inf t
¢ éﬁrféﬁ’fﬁo(” )

where
I'={yeC(0,1],X):7(0) =up, (1) = w},
then ¢ > m, and c is a critical value of ¢ (i.e., there exists u € X such that
¢ (u) =0 and ¢ (u) = ¢).
We mention that, if p € C1 (X, R) is coercive and
'=A+yg

with A, g : X — X*, where A is of type (S), and g is completely continuous, then
¢ satisfies the C'—condition (see Marano-Papageorgiou [19]). This is the situation
in our setting here.

In the analysis of problem (Py) we will mainly use the following two spaces: the
Sobolev space I/VO1 P(Q) and the Banach space

Cl) = {ue ct (Q) :u(z) =0 for all z € 90} .

By ||.|| we will denote the norm of W, ”(€2). On account of the Poincare inequality
(see, e. g., Brezis [6], p. 290), we have

[ull = |[Dul|, for all u € Wy™(9).

where ||.||,, stands for the LP-norm. The space C{ () is an ordered Banach space
with a positive (order) cone given by

Cy={ueCi(Q):u(z)>0forallzeQ}.
This cone has a nonempty interior given by

0
int C’+:{u€C+:u(z)>0forallz€Q, FZ:(DU,R)RN <00n8(2},

where n (.) is the outward unit normal on 0.
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For g € (1,00), by A, : Wy l(Q) — W14 (Q) = W, 9(Q)* (%—F% = 1) we denote

the nonlinear map defined by
(2.1) (Ag (u),h) = /Q |Du|9"% (Du, Dh)gy dz for all u, h € Wy ().

The properties of A, are summarized below. See, e. g., Motreanu-Motreanu-
Papageorgiou ([20], p.40).

Proposition 2.2. The map A : WOI’Q(Q) — WL4(Q) defined by (2.1) is bounded
(that is, maps bounded sets to bounded sets), continuous, monotone (hence mazximal
monotone, too), and of type (S), .

If ¢ =2, then Ay = A € £ (H(Q), Hy ' (Q)).
Consider a Carathéodory function fp: Q2 x R — R which satisfies

|fo(z,2)| < ao(2) (1 + ]w\’"_1> for a.a.z € Q, all z € R,

with ag € L>(Q),, and 1 < 7 < p*, where p* is the critical Sobolev exponent
corresponding to p, i.e.,
. NN—Q) if p <N,
P 400 if p>N.
We set Fyy (z,2) = [i fo (2, s) ds and introduce the C' —functional ¢ : WP (Q) —
R defined by
1 1
wo (u) = 5 | Dully + 3 | Dul|3 — / Fy (z,u)dz for all u € Wol’p (Q).
Q
From Motreanu-Motreanu-Papageorgiou ([20], p.409) we have:
Proposition 2.3. If ug € Wol’p () is a local C* (ﬁ) — minimizer of @g, that is,
there exists po > 0 such that

w0 (ug) < o (ug +h) for all h € C§ (Q) with 1y @y < pos

then ug € Cé’a (Q) for some a € (0,1) and it is also a local Wol’p () — minimizer
of o, that is, there exists p1 > 0 such that

wo (up) < o (ug + h) for all h € WOM2 (Q) with ||k < p1.

Remark. The relation between Holder and Sobolev local minimizers was first
proved for semilinear Dirichlet problems by Brezis-Nirenberg [7].

In the analysis of (Py) we will use the spectra of the Dirichlet p—Laplacian and of
the Dirichlet Laplacian. So, we consider the following nonlinear eigenvalue problem:

{ —Dpu(z) = AMu(2)P"2u(2) in Q,

(2.2) u =0 on ON.

We say that X eRis an eigenvalue for problem (2.2), if there exists a nontrivial
solution u € VVO1 P(Q), known as an eigenfunction corresponding to A

Problem (2.2) admits a smallest eigenvalue A1 (p) > 0 which has the following
properties:
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e A (p) is isolated (that is, there exists ¢ > 0 such that (Xl (), \(p) + £)
contains no eigenvalues;

° /)\\1 (p) is simple (that is, if u, ¥ are two eigenfunctions corresponding to
A1 (p), then @ = 67 with 6 € R\ {0});

e One has

Dul?
| ||p:u€W01’p(Q),u7éO}.

lull;

(2.3) x@:m{

In (2.3) the infimum is achieved on the corresponding one dimensional eigenspace.

From the above properties it follows that the elements of this eigenspace do not
change sign. Moreover, the nonlinear regularity theory and the nonlinear maximum
principle (see, for example, Gasinski-Papageorgiou [13], pp.737-738) imply that the
nontrivial elements of this eigenspace belong to int Cy or —int Cy.

In what follows, by u; (p) we denote the positive LP— normalized (that is,
|u1 (p)[, = 1) positive eigenfunction corresponding to i (p) . We know that u; (p) €

All these properties lead to the following lemma (see Motreanu-Motreanu-
Papageorgiou ([20], p.305).

Lemma 2.4. If§ € L>® (), 0(z) < N (p) for a.a.z € Q, and the inequality is
strict on a set of positive measure, then

| Dull; — / 0(2) |u(2)P dz> Cy|jullP for all u € WP (Q) and some Cy > 0.
Q

The Ljusternik-Shnirelmann minimax scheme generates, in addition to /):1 (p), a
whole strictly increasing sequence {X;c (p) } > of eigenvalues such that N (p) —
+00 as k — oo. It is not known if this sequence exhausts the spectrum of (2.2). We
know that if u is an eigenfunction corresponding to an eigenvalue h) # i (p), then
1€ C} (ﬁ) (nonlinear regularity theory) and u is nodal.

We will also encounter a weighted version of (2.2) . So, let m € L (Q), m(z) >0
for a.a.z € Q, m # 0, and consider the following weighted version of (2.2) :

Y -2 .
I B

Problem (2.4) has a smallest eigenvalue A, (p,m) > 0 which has the same prop-
erties as A1 (p) = A1 (p,1) > 0. In this case, the variational characterization of
A1 (p,m) has the following form

Jom (2) |u ()P dz

All the properties listed for the eigenvalues and eigenfunctions of (2.2) remain valid
for the corresponding items of (2.4). So, we are led to the following monotonicity

. | |Dulp
A1 (p,m) = inf cue Wyt (Q), u#0;.

property of the map m — Ay (p, m) (see [20], p.250).
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Lemma 2.5. If my, mg € L (Q), 0 < my (2) < ma(2) for a.a.z € Q and the two
inequalities are strict on sets (in general distinct) of positive measure, then

A1 (p,ma) < A1 (p,ma).

For the linear eigenvalue problem (that is, p = 2), we have complete knowledge
of the spectrum, which is a sequence {/\k (2) }k>1 of distinct eigenvalues such that

Mk (2) = 00 as k — oo.

For every k € N, by E(Xk (2)) we denote the eigenspace corresponding to the
eigenvalue Ay (2).

Standard regularity theory implies that F (Xk (2)) c ¢ (ﬁ) Also each such
eigenspace has the so-called ”unique continuation property” (UCP for short). This

means that, if u € E(Xk (2) ) for £ € N and u vanishes on a set of positive measure,
then v = 0.
We have

HY(2) = DE ()\k, (2)).
E>1
For every m € N, we define

H,y, = éE (Xk (2)) and f,, = é E (Xk (2)).
k=1

k=m+1

Hence we have the following orthogonal direct sum decomposition
H () = Hp@®H,p.

All the eigenvalues admit variational characterizations:

2
(2.5) X (2) :inf{HDuH2 cu e HE (), u;éO},

52 :
[[ullz

o~ 2 ~
N (2) = inf { 1wl € Hyoy, u o}

2
llullz

:sup{”Du”g cu € Hy, u;éO}.

2
l[ully

(2.6)

In (2.5) and (2.6) the infimum and supremum are achieved on E(//\\k (2)).
Using these variational characterizations and the UCP, we infer the following
inequalities (see Gasinski-Papageorgiou [14], p.870).

Lemma 2.6. (a) If0 € L™ (), 0(z) > N (2) for a.a.z € Q and the inequality is
strict on a set of positive measure, then

| Dul3 - /9(2:) u? (2)dz < —Cy |u||® for allu € Hy, some Cy > 0.
Q

b) If 6 € L™ (Q), 0(2) < N (2) for a.a.z € Q and the inequality is strict on a set
of positive measure, then

| Dull5 — /6(2) u? (2)dz > Cs ||ul|?* for allu e Hy_1, some C3 > 0.
Q
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Next let us recall some basic facts about critical groups. For details we refer to
Motreanu-Motreanu-Papageorgiou [20].

Let X be a Banach space, ¢ € C' (X,R) and ¢ € R. We introduce the following
sets:

o ={ueX g <,
K,={ue X :¢ (u) =0} (the critical set of ¢),
and
Ki,={ue Ky,:9p(z)=c}.
Consider a topological pair (Y7, Ys) with Yo C Y7 € X and k € Ny. By Hy (Y7,Y3)
we denote the k*- relative singular homology group for the topological pair (Y7, Y5)

with integer coefficients. Then the critical groups of ¢ at an isolated u € K¢ are
defined by

Cr(p,u) = Hp (¢°NU, (¢°NU) \ {u}) for all k € Np.

Here U is a neighborhood of u such that K,Ng°NU = {u}. The excision property
of singular homology theory implies that the above definition of critical groups is
independent of the choice of the isolating neighborhood U.

Suppose that ¢ € C! (X, R) satisfies the C—condition and that inf ¢ (K,) > —oc.
Let ¢ < inf ¢ (K,). Then the critical groups of ¢ at infinity are defined by

Ck (p,00) = Hy (X, ¢°) for all k € Ny.
By the second deformation theorem, this definition is independent of the choice
of the level ¢ < inf ¢ (K) .

Indeed, if ¢ < ¢ < inf ¢ (K,), then by the second deformation theorem ¢ is a
strong deformation retract of ¢° and so,

H, (X, %) = Hy, (X, @c/) for all k € N,

(see Motreanu-Motreanu-Papageorgiou [20], p. 145).
Now suppose that ¢ € C!(X) satisfies the C-condition and K, is finite. We
define
M (t,u) = Z rank Cy (@, u)t* for all t € R, all u € K,

keNy
and
P(t,o0) = Z rank Cy (@, 00)t" for all t € R.
keNy
The Morse relation says that
(2.7) > M(t,u)=P(t,00)+ (1+1)Q(t) forallt € R,
ueK,
where Q () = > x50 Bit* is a formal series in ¢ € R with nonnegative integer

coefficients By, k € Ny.
Next, let us finalize our notation. Given xz € R, we set

zF = max {£z,0}.

Then for u € W, ? (Q), we define u® (.) = u (.)* . We have
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wFeWyP(Q), u=u"—u" and |u| =uT +u",

Also, if u, v € Wol’p (Q) and v (z) < u(z) for a.a.z € Q, then
[v,u] := {y € Wol’p (Q):v(z) <y(z) <u(z) for a.a.z € Q}

Moreover, by int c1(9) [v,u] we denote the interior in C§ (€2) of the set [v,u] N
Co (9) -
For k, m € Ny, by dy,, we denote the Kronecker symbol, that is

S — 1 if k=m,
km = 0 if k#m.

Finally, for h, heL>® (Q), we write h < h if for every K C Q) compact we can
find cx > 0 such that

0<cx < ﬁ(z) — h(z) for a.a.z € Q.

Now we are ready to introduce the conditions on the functions g¢(z,z) and
f (z,x), namely:
(Hg): g: Q2 xR =R is a Carathéodory function such that for a.a.z € Q g(z,-) is
nondecreasing and
(i) for every p > 0 there exists a, € L>° () such that

lg (z,2)] < a,(z) for a.a.z € Q, all z € R with |z] < p;

g9(z,2)
11m

= 0 uniformly for a.a.z € €;

o 9(e)

= 0 uniformly for a.a.z € Q.
z—0 X

(Hf): f:Q xR —=Ris a Carathéodory function such that:
(i) for every p > 0 there exists a, € L>° () such that

If (z,2)] <@, (z) for a.a.z € Q, all z € R with |z] < p;
(79) there exist ny € L () and Cy > 0 such that

Ny (z) > /)\\1 (p) for a.a.z € Q, ny # Xl (p),
f(z,) [ (z2)

< limi <l <
Nt (z) < hzn—l>l£f o1 S 11$m_>5£p s Cy
uniformly for a.a.z € Q;
(7i7) there exists C5 > 0 such that
—C5 < liminf / (Z_’f) < lim sup f (Z_’f) <\ (p)
a=—o0 |z|P7 T zo-oo |z|PT @

for a.a.z € Q, all x € R;
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(iv) for a.a.z € Q, f (z,.) is differentiable at = 0 and there exists m € N,
m > 2 such that

Am (2) < f1(2,0) = lim fe) Amt1 (2)

x—0 x
uniformly for a.a.z € Q,

f2(50) # A (2)5 £2(50) # s (2);
(v) for every p > 0, there exists Ep > 0 such that for a.a.z € 2 the function
= f(zx)+ 6|z %

is nondecreasing on [—p, p] .
(Hp): For every A > 0:

A (z,z)x+ f(z,2)x —p[AG (z,2) + F (2,2)] = 00 as & — —o0,

uniformly for a.a.z € €.

Remarks: Hypothesis (Hy) (i4) dictates a strictly (p — 1) —sublinear growth for
g (z,-) near +oo. Near zero, g(z,-) is strictly sublinear. On the other hand, hy-
potheses (Hy) (i) , (i74) impose a (p — 1) —linear growth for f(z,-) near oo and
a linear growth near 0. So, in the reaction of (Py) we have the competing effect of
two terms with different asymptotic behavior as x — 400 and as  — 0. Note that
hypotheses (Hy) (i7) , (#4i) describe an asymmetric behavior for f (z,.) as x — Fo0.
It is clear from (Hy) (ii7) that asymptotically at —oo we can have resonance with
respect to Ap (p) > 0- Hypothesis (Hp) guaranties that this resonance occurs from

the left of Ay (p) > 0 (see (1.1)). This way, the negative truncation of the energy
functional is coercive and so the direct method of the calculus of variations can be
used to generate negative solutions. Hypothesis (Hy) (v) is satisfied if, for example,

for a.a.z € €, f(z,.) is differentiable and for every p > 0, there exists 2,, > 0 such
that

fi(z,z)a > —Ep |z|? for a.a.z € Q, all |z] < p.
Examples: The following functions satisfy (Hy), (Hf) and (Hg) . For the sake of
simplicity we drop the z dependence.
(2) = 2z itz <1,
TEZ U 22 + |2 22 i |z > 1,

and
M) |zl lr—€laf e i x< -1,

fx)=% 0z +Clz| %z if |z <1,
naP~1 - C if  1<ua,

where 1 <g<7<p<p<rp>2n=Mp +C—&0=DN({p—C—¢
6>§>0,C<0,ee(Xm(2),Xm+1(2)),mz2.
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3. SOLUTIONS OF CONSTANT SIGN
For A > 0, we consider the C!—functionals gpf : WO1 P(Q) — R defined by
0y (u) = 11) [ Dully + % | Dul|3 — /Q)\G (, :I:ui) +F (z,:l:ui) dz
for all u € Wol’p Q).

Proposition 3.1. If hypotheses (Hy) , (Hy) hold and A > 0, then the functional ¢y
satisfies the C—condition.

Proof. Let {un},~; C Wol’p (Q) be a sequence such that {¢] un)}
bounded and

C R is

(3.1) (1 + [|unl) (gpir)/ (up) — 0 in W=HP' (Q) as n — oco.
From (3.1) we have

(A (n) 3+ (A (), 1) — oy INg (26 + f (2] 2]
(3.2) < ffd'h”Hfor all h € W 1P (Q) , with e/, — 0.

In (3.2) we choose h = —u,, € Wol’p (©). Then

HDu;Hg + HDugH; <egp foralln e N,
hence
(3.3) u, —0in Wy ().
Using (3.3) in (3.2) we obtain
R R R T R e L

< e, ||h|| for all h € Wo’p (), all n € N, with ¢/, — 0+.

Suppose that {u}} o, C I/VO1 P (Q) is not bounded. By passing to a subsequence if
necessary, we may assume that

Hu;{H —» 00, as m — oC.

S+

n € N. Then

We set y, = H“

)
wa |

S+

lynll = 1, yn >0, for all n € N.
So, we may assume that
(3.5) Yn — y in Wol’p(Q) and y, — y in L (Q) as n — oo, y > 0.

From (3.4) we have

(Ap (un) 1)+ e (A (n) h) = Qoo ) S ) g,

[t |7
(3.6)

<eh H EHH for all n € N.
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It is clear from hypotheses (Hy), (Hy) that we have

IAg (z,z)x+ f(2,2)] < Cs [1 + \:c\p_l] for a.a.z € Q,
all z € R, some Cg > 0,

hence
. {Ag(.,u;{ () + (o (.>>} C 17 () s bounded.
st " no1
From (3.7) and hypotheses (Hy) (i) , (Hy) (i7) , at least for a subsequence, we have
Un,
with

Nt (2) <n(z) < Cy for a.a.z € Q,
(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).
In (3.6) we choose h =y, —y € Wol’p (Q), pass to the limit as n — oo and use
(3.8) (also recall that [|u,}|| — oo and 2 < p). We obtain

lim (Ap (Yn),yn —y) =0,

n—00

hence
(3.9) Yn — y in Wol’p (Q) and |yl =1,y >0

(see Proposition 2.2). We return to (3.6), pass to the limit as n — oo and use (3.8) .
Then

(A, (y),h) = /977 (2) y? " hdz for all h € W, (Q),

therefore

(3.10) Dy (2) =n(2)y (z)p_l for a.a.z € Q, y |ga= 0.
From (3.6) and Lemma 2.5, we have

(3.11) X (2,1) < M (py75) < M <p, ¥ (p)> =1

Combining (3.10) and (3.11), we infer that y is nodal or zero, a contradiction (see
(3.9)). Therefore

{ur} o, C Wy () is bounded,
and consequently
{Un}n21 C Wol’p (©) is bounded (see (3.3)).
We may assume that
(3.12) Up — w in Wol’p (Q) and u, — u in LP (Q) as n — co.

In (3.2) we choose h = u, —u € Wol’p (©), pass to the limit as n — oo and use
(3.12) . Then

lim [(Ap (un),un —u) + (A (up) ,un, —u)] =0,

n—oo
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hence
lim sup [(Ap (up) , up — u) + (A (u) ,up —u)] <0,

n—o0

(from the monotonicity of A (-)), therefore

limsup (A, (uy) , up —u) <0 (see(3.12)),

n—o0

and by Proposition 2.2 and (3.12) we obtain that
U — u in Wy P (Q),
and conclude that 4,0:\F satisfies the C'—condition. O

Proposition 3.2. If hypotheses (Hy), (Hy), (Ho) hold and X\ > 0, then the func-
tional @) is coercive.

Proof. On account of hypothesis (Hy), given any p > 0, we can find M, = M (u) >
0 such that

(3.13) Mg (z,z)z+ f(z,2) e —p[AG(z,2) + F (z,2)] > p
) for a.a.z € Q, all x < —M;.

In the sequel, for notational economy, we set

ex(z,2) =g (z,2) + [ (z,2) and Ej (z,2) = [ e (s, 2)ds.

We have

d [Bx(z2)] _ex(z2) |2’ —pE)(2,2) o' =
dx |z [P B ||

e (z,2) @ = pBy (2,2)

EdiE:
< B for a.a.z € Q, all z < —Mj,
|z|" 2
(see (3.13)), hence
Ex(zv) Ex(zy) _pf 1 1
3.14 - > =5 T
v Y p Ly v
B.14) WP P P TP

for a.a.z € Q, all v <y < —M;.
Hypotheses (Hy) (i7) and (Hy) (44¢) imply that we can find C7 > 0 such that

(3.15) —C7 < liminf Er(z2) < lim sup By (2,2) < A1 (p)

z=-c0 |z’ es—oo |2 T

uniformly for a.a.z € €.
So, if in (3.14) we let v — —oo and use (3.15), then we obtain
AL (p) [yI” — pEx (2,y) > p for a.a.z € Q, all y < —My,
hence
(3.16) A (D) [y[P = pEy (2,y) = +oo uniformly for a.a.z € Q,

as y — —oo.
Using (3.16) , we will show that ¢} is coercive.



MULTIPLE SOLUTIONS WITH SIGN INFORMATION FOR (p,2)—EQUATIONS 829
Arguing by contradiction, suppose that ¢ is not coercive. Then we can find a
sequence {up},~; C Wol’p (©) and My > 0 such that

(3.17) |wn || = 400 and ¢y (u,) < Mo for all n € N.
Let y n € N. Then

n IIUnH’
llyn|| = 1 for all n € N.

So, we may assume that

(3.18) Yn — y in Wol’p (Q) and y,, — y in LP () as n — oo.
We have
E
L Dyallp + W 1Dun} - o 2oz
(3.19)
< Hu ”p for all n € N,

(see (3.17)). Recall that
|Ex (z,2)] < Cg[1+ |z|F] for a.a. z € Q, all z € R, some Cg > 0,

{EA (s —un ()

[

hence

} C L' () is uniformly integrable.
n>1

Hence, by the Dunford-Pettis theorem and hypotheses (Hy) (it), (Hy) (ii1) , at least
for a subsequence, we have

o —u (- 1
(3.20) EW % =0 (y7)" in L' (Q) asn — oo,
Un p
with R
—C5 <0(z) <A (p) for aa. ze€ Q.

See [1]. Therefore, if in (3.19) we pass to the limit as n — oo and use (3.18) and
(3.20), then

(3.21) IDull < [ 6) ()" a:

(recall that ||u,|| — oo and 2 < p).

First assume that the inequality 6 (2) < A (
on a set of positive measure. Then from (3.19
2) (y

Co P < w1~ [ o

p) for a.a. z €  (see (3.20)) is strict
) and Lemma 2.4, we have

) dz < 0 for some Cy > 0,

hence
(3.22) y>0,
and in view of (3.21) we conclude that
y=0.
Therefore from (3.19) and (3.20) , we have
Yo — y in Wy P (Q),
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a contradiction since ||y,| =1 for all n € N.

Now assume that 6 (z) = A\ (p) for a.a.z € Q. Then from (3.21) and (2.3) we

have N
1Dy~ |12 =2 ) [y~ 7
hence
y~ =T1u; (p) € int Cy with 7> 0.

If 7 =0, then y > 0 and so, as above (see the argument after (3.22)), we reach a
contradiction.

If 7> 0, then y~ (2) > 0 for all z € Q and so, y(z) < 0 for all z € Q.

It follows that

Uy (2) = —oo for a.a.z € Q,

hence R
A1 (p) [Uﬁ (Z)]p —pE) (Z, —u,, (z)) — +oo for a.a.z € Q,
(see (3.16)), hence

A (p) [uy (2)]" — pEx (2, —uy, (2))] dz — +00
Q

(by Fatou lemma, see (3.16)), therefore
Py (un) = +o0
which contradicts (3.17) . We conclude that ¢, is coercive. O
Consequently (see the remarks following Theorem 2.1) we arrive at:

Corollary 3.3. If hypotheses (Hy) , (Hy), (Ho) hold and X\ > 0, then the functional
@) satisfies the C'—condition.

Next we will show that the functional go;f satisfies the mountain pass geometry
(see Theorem 2.1) when A > 0 is small.

Proposition 3.4. If hypotheses (Hy), (Hy) hold, then there exists \* > 0 such
that for every A € (0, \*) we can find py > 0 for which

inf {oF (u) @ lul| = pr} =m > 0.
Proof. Hypotheses (H,) imply that given € > 0, there is a C9 > 0 such that
(3.23) G (z,z) < exP + Cyoz? for a.a.z € Q, all z > 0.

Also, given r > p, from hypotheses (Hy) (i7) , (iv) it follows that we can find C11 > 0
such that

(3.24) F(z,7) <O (2" +2?) for a.a.z € Q, all z > 0.
Using (3.23) and (3.24) we obtain

PN ()
for all u € Wol’p (Q), some Ci2,C13 >0

> |Cua = Az [ul]*? = Cus " ]

1 g r
ey (u) > ( - ) [ Dull? = ACh2 [|ull* — Chs [|ul
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for some C14 > 0.
Consider the function
(1) = ANC1ot> P 4 Cy3t" P for all t > 0.
Evidently &), € C! (0, 00) and since 2 < p < r, we have
Ex(t) = +ooast— 0" and as t — +oo0.
Therefore we can find ¢g > 0 such that
0<&(to) =min{&y(t): t>0}.

Then
& (to) =0
hence
Mp—2) Ciaty P71 = (r—p) Chaty "7,
therefore 1
Ap—2)Cia| 72
to=1to(A) = [(r — ) Crs | .

Then we have

(r—p)Ci3] =2

p—2 _)\ ( ) C r—p

| (r—p)Ci3

& (to) = A2 Chg [

hence
Ex(to) = 0T as A — 0.
So, we can find A* > 0 such that
& (to) < Chq for all A € (0,A7),
therefore

inf {oF (u) : |lul| = pr:=to (A\)} =m] >0 for all A € (0,\*).

Proposition 3.5. If hypotheses (Hg), (Hy) hold and A > 0 then
@Y (tur (p)) — —o0 as t — +oo0.

Proof. Hypotheses (Hy) (7), (i7) imply that given £ > 0, there exists Ci5 > 0 such
that

(3.25) G(z,x) > . - Cy5 for a.a.z € Q, all x > 0.
p

Similarly hypotheses (Hy) () , (4¢) imply that given € > 0, we can find Cj6 > 0 such
that

1
(3.26) F(z,x)> > [+ (2) —¢]aP — Ci6 for a.a.z € Q, all z > 0.
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Then for all t > 0 we have
—~ ~ 2 ~ 2
o3 (i1 (p)) < 2 (|Dy (p)|2 + 5 |1Dax ()3
=& Jo Iny (2) = 2¢] @ (p)P dz + Ciy

=2 o [Mr @) = ()] i (p)P - 22
+5 1D@ (p) 13 + C1r

(3.27)

for some C17 > 0 (vecall that |[Duy (p)l, = 1).
Since u; (p) € int Cy we see that

&= [ [n =% @)@ @ra>o.
Choosing ¢ € (0, %) , from (3.27) we have

Lp:\F (tuy (p)) < —Chst? + Ciot? + Ci7 for some Cig, Chg > 0,
hence
@j (tuy (p)) — —oc0 as t — o0
(recall that p > 2). O

Now using variational arguments, we will produce two positive solutions for (Py)
when A € (0, \*) . Here and in what follows A* > 0 is the critical parameter generated
in Proposition 3.4.

Proposition 3.6. If hypotheses (Hy), (Hy) hold and A € (0,\*), then problem
(Py) admits at least two positive solutions ug, u € int C.

Proof. Propositions 3.1, 3.4 and 3.5 permit the use of Theorem 2.1 (the mountain
pass theorem). So, we can find ug € I/VO1 P(Q) such that

(3.28) ug € K@; and ¢} (0) =0 <my <o (uo)
(see Proposition 3.4). From (3.28) we see that uy # 0, and we have
(¥3)" (uo) =0,
hence
329) (A Go0) 1)+ (A0 R = [ D (o) + £ ()] e
for all b € W, 7 ().
In (3.29) we choose h = —u, € Wol’p (©). Then
_ —2
1Dug [l + [[Dug |, = 0,
hence

uop > 0, UuQ 75 0.
Then, from (3.29) we obtain

(3.30) { ;ﬁiﬁ(?;% (2) = Ag (z,u0 (2)) + f (2,u0 (2)) in Q,
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Theorem 8.4, p.204 of Motreanu-Motreanu-Papageorgiou [20] implies that
ug € L= (Q).

So, we can apply Theorem 1 of Lieberman [17] and conclude that
ug € C1\{0}.

Since g (z,2) > 0 for (z,z) € Q x R4, from (3.30) it follows

(3.31) Apug (2) + Aug (2) + f(z,u0 (2)) <0 for a.a.z € Q.

Hypotheses (Hy) imply that

f(z,2) > —Cq [x + xp_l} for a.a.z € Q, all x > 0.
So, using Theorem 5.4.1, p.111 of Pucci-Serrin [24], from (3.31) we infer that
uo (2) > 0 for all z € Q.

Then the boundary point lemma of Pucci-Serrin ([24], p.120) yields

ug € int Cy.

Hypothesis (Hy) (iv) implies that given € > 0, one can find § > 0 such that

(3.32) [f2(2,0) — €] 2® < F(2,2) for a.a.z € Q, all [z] <.

N | =

Recall that u; (2) € int Cy. So, there is a ¢t € (0,1) small, such that tu; (2) (2) €
(0, 9] for all z € Q.

We have
R 90)\ (tu (2))
< Dy ()2 + 53 @) @ @)UE - 5 fo [£2 (2.0) — e @ (2)*d=
(3.33) (see (3.29) and recall G >0)
<Cntr+ 45 o (31 (2) = f1.(2,0)) i (2)2dz +e]
(recall that ||u1 (2)]], = 1).

Hypothesis (Hy) (iv) implies that

€= / [/2(2,0) = % 2)] @ (2)*dz > 0.
Q

So, choosing € € (0,&p) in (3.33), we arrive at

(p;\i_ (tal (2)) < Coqt? — 022t2 for some Cay > 0.
Since p > 2, choosing ¢ € (0, 1) even smaller if necessary, we have
(3.34) ot (01 (2)) <0, [l (2)] < pa
(see Proposition 3.4). Let

By ={uewg? (@) lull < pa}-

We have
(3.35) inf {¢} (u) :u € By} =pul <0,
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(see (3.34)). Since ¢} is sequentially weakly lower semicontinuous and B) is se-
quentially weakly compact (by the James and Eberlein-Smulian theorem), we can
find u € Wol’p (©) such that

(3.36) oy (@) =inf {¢} (u) :ue By} = puy <0=¢}(0),
hence

u#0.
Moreover, from (3.28) and (3.35) we infer that
(3.37) px (@) <0 <my <y (u),
hence

u # ug.
From (3.37) and Proposition 3.4 it follows that

0 < lull < pa,

hence

ue K@i- (see (3.36)),

therefore

>0, u¢{0,up}.
We conclude that @ € C§ (), U ¢ {0,uo} is the second positive solution of (Py),
for A € (0,\*). O

Using Proposition 3.2 and the direct method of calculus of variations we can
produce a negative solution of (Py), for all A > 0.

Proposition 3.7. If hypotheses (Hy), (Hyf), (Ho) hold and X\ > 0, then problem
(Py\) admits a negative solution vy € —int C.

Proof. By Proposition 3.2, ¢y is coercive. Also, using the Sobolev embedding
theorem we see that ¢, is sequentially weakly lower semicontinuous. So, by the
Weierstrass-Tonelli theorem, we can find vy € VVO1 P (Q) such that

(3.38) ¢, (vo) = inf {90; (v):ve Wol’p (Q)} :

Reasoning as in the proof of Proposition 3.6, we show that for ¢ € (0,1) small, we
have

hence

(see (3.38)), therefore
Vo 7é 0.
Also, from (3.38) we have

(¢) (o) =0,
hence

(3.39) (4p (v0) , h) + (A (vo) , ) :/Q[)\g (z:=vg) + f (2, —vg) ]| hz

for all h € Wy? ().
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In (3.39) we choose h = v € Wy (Q). Then
1Dog [y + [P |I; = 0.

hence
v < 0, vg # 0.
From (3.39) it follows that

{ —Apug (2) — Avg (2) = Ag (2,00 (2)) + f (2,00 (2)) for a.a.z € Q,
vo (2) = 0 on 0.

hence
Ay (—vo (2)) + A (—vo (2)) — f (2,00 (2)) <0 for a.a.z € Q.

As in the proof of Proposition 3.6, using the results of Pucci-Serrin ([24], pp. 111,
120), we conclude that

Vo € —int C+.

4. EXTREMAL CONSTANT SIGN SOLUTIONS

In this section we produce extremal constant sign solutions for problem (P ).
That is, we show that for all A\ € (0,\*), problem (Py) has a smallest positive
solution wy € int Cy (i. e., if u is a positive solution of (Py), then uwy < u ) and for
all A > 0, problem (P)) has a biggest negative solution vy € —int Cy (i. e., if v is
a negative solution of (Py), then v < ©y). Using wy and Ty, in the next section, we
will produce nodal (that is, sign changing) solutions.

Hypotheses (Hy), (Hy) imply that given € > 0, we can find Co3 = Ca3 (g) > 0
such that
Mg (z,@)x + f(2,2) @ > [f; (2,0) — €] a? — Cog|a|”

(4.1) for a.a.z € Q, all z € R.

Motivated by this unilateral growth estimate for the reaction of (Py) (A > 0), we
consider the following auxiliary Dirichlet (p, 2) —equation

—Apu(z) = Au(z) = [£; (2,0) —elu(z)
(4.2) —Cas [u(2)["* u(2) in Q,
u(z) =0 on 0N.

Proposition 4.1. For all £ > 0 small, problem (4.2) has a unique positive solution

uy € int C, and (since problem (4.2) is odd), v. = —u, € —int C4 is the unique
negative solution of (4.2).

Proof. First we show that problem (4.2) has a positive solution. To this end, let
oy Wol’p (2) — R be the C'!'—functional defined by
1 1 s 1 2
7 () = S IDul+ 5100 =5 [ (7200 —¢] (u* ()" a:

+ 6;3 Huﬂ‘g for all u € Wol’p Q).
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We have

1
oy (u) > ’ Jully — Ca24 [u||? for some Cyy > 0, all u € Wol’p (Q),

hence

o4 (+) is coercive
(recall that p > 2). Also o (-) is sequentially weakly lower semicontinuous. So, we
can find u, € Wy” (Q) such that

(4.3) o4 (1) = inf{a+ (w) 1 u € WP (Q)}.
Let u = tu; (2) € int C1 with 0 <t < 1. Then
ov i @) = S iom @+ 5 [ [ (@) - 12 60) @ @) ds ]
P P2 o *
+ G o,

(recall that ||z (2)]], = 1). Since m > 2 (see hypothesis (Hy) (iv)), we have

Bo = /Q 72(2,0) = %1 (2)] (@1 (2))*dz > 0.
So, if we choose € € (0, 5y), then
oy (tuy (2)) < Cast? — Cost? for some Cas, Cog > 0, all 0 < ¢ < 1.
But p > 2. So, choosing ¢ € (0, 1) small, we have
oy (tuy (2)) <0,
hence
o4 (ux) <0 =04 (0)
(see (4.3)), therefore

Uy #£ 0.
From (4.3) it follows
O{i- (u*) = Oa
hence
(4.4) (A (02) 1) + (A ) B} = [ [£2(220) = €] i

- 023/ (uj)p_l hdz for all h € Wol’p (Q).
Q

In (4.4) we choose h = —u; € Wy ” (Q). Then
Dz P <o

hence
Us > 0, uy # 0.

So, from (4.4) we infer that u, is a positive solution of (4.2).
As before, the nonlinear regularity theory implies that u, € C\ {0}.
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Let a : RY — RY be defined by
a(y) = lyP 2y +y for all y e RV,
Since p > 2, we deduce that a € C! (RN,RN) and

Va(y) = ‘y’p—Q I+ (-2 y‘ (X|)2y + I for all y # 0.
Y

Note that
diva (Du) = Apu+ Au for all u € Wol’p (Q).
Moreover, we see that
(Va(y) &gy > [¢° > 0 for all y, £ €RY, £ £0.
Therefore, the tangency principle of Pucci-Serrin ([24], p. 35) implies that
uy (2) > 0 for all z € Q.
Then, the boundary point lemma of Pucci-Serrin ([24], p. 120) yields
ux € int Cy.
Next we show that this positive solution is unique. For this purpose, we introduce
the integral functional j : L' (Q) — R = RU{+oco} defined by
1 HDU% " ifu>0, ub e W (Q),
p 2

400 otherwise.

p 1
—I—%HDU§
p

j(u) =

Invoking Lemma 1 of Diaz-Saa [10] (see also Lemma 5 of Benguria-Brezis-Lieb [5])
we see that j (-) is convex.
Let u, € WO1 " (Q) be another positive solution of problem (4.2). Again we have

Then u?, a2 € dom j := {u € L' (Q) : j (u) < +o0} (the effective domain of j (-)).
Given any h € C} (ﬁ) , for |t| < 1 small, we have
u? +th € dom j, U2+ th € dom j.

It is easily seen that j (-) is Gateaux differentiable at u? and at @2 in the direction h €
C’é (Q) . Using the chain rule and the nonlinear Green’s identity (see, for example,
Gasinski-Papageorgiou ([13], p. 210), we have

1 —Npty — Dy
J' (w2) (h) = / Topt T Oy
2 o) U

1 — N\l — Ny
J @)= [ TR
2 0 U

The convexity of j (-) implies the monotonicity of j' (). Hence

0< / <—Apu* — Ay B — D\l — Aa*) (uz B az) s
Q

Us U

— Oy / (@2 - ur?) (u2 — ) dz,
Q
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therefore
Usx = aw
(since p > 2). This proves the uniqueness of the positive solution u, € int C for
problem (4.2) when ¢ € (0, 8p) .
Since problem (4.2) is odd, we see that v, = —u, € —int Cy is the unique
negative solution of (4.2). O

We introduce the following two sets:
S+ (A) ={u: u is a positive solution of (Py)} when A € (0, \*);
S_ (A) = {u : u is a negative solution of (Py)} for all A > 0.
Propositions 3.5, 3.6 and their proofs imply that
@#8SL (N Cint Cp and @ # S_ () C —int Cy.
Moreover, from Filippakis-Papageorgiou [12], we know that:

e S; () is downward directed (that is, if uy, us € Sy (A), then we can find
u € 8¢ (N) such that u < ug, u < ug).
e S_(A) is upward directed (that is, if v1, v € S_ (), then we can find
v € S_ (A) such that v; < v, vy <w).
In what follows u, € int Cy and v, € —int C; are the unique constant sign
solutions of (4.2) produced in Proposition 4.1 for € € (0, 5p) .

Proposition 4.2. If hypotheses (Hy), (Hy), (Hog) hold, then:
(a) for all X € (0, \*) and all u € Sy (N\), we have uy < u;
(b) for all X > 0 and all w € S_ (N\), we have v < v,.

Proof. (a) Let XA € (0,X*) and let u € S; (A\). We consider the Catatheodory func-
tion k4 (z,x) defined by

0 if <0,
(4.5)  ky(z,2) =19 [f2(2,0) —¢ela — Coga?! if 0<z<u(z),
[f2 (2,0) — e]u(z) — Cogu (2)P~" if u(z) <a.

We set Ky (z,2) = [y k4 (2, s) ds and introduce the C!—functional . : Wol’p Q) —
R defined by
1 1
vy (@) = ; 1Dl + 5 | D3 —/ K. (2,@)dz for all T € WP (Q).
Q

From (4.5) it is clear that 4 is coercive. Also, it is sequentially weakly lower
semicontinuous. So we can find u, € VVO1 P (Q) such that

(4.6) v+ (Uy) = inf {fy+ (u) : u e Wy (Q)} )
As before (see the proof of Proposition 4.1), we have
V4 (Ux) <0 =14 (0),
hence
Uy # 0.
From (4.6) we have
o (@) =0,
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hence

(4.7) (Ap (Uy), h) + (A (uy) , h) = /Qk+ (2,T) hdz for all h € Wy ().

n (4.7) first we choose h = —u; € Wol’p (©). Then

paz 2+ |z | = o,
H p 2

(see (4.5)), hence
Usx >0, Uy #0.
Next in (4.7) we choose h = (U, —u)" € Wol’p (Q). Then

<Ap (), (uy — u)+> + <A (wy) , (uy — u)+>
= /Q ([fz(2,0) —e]u— CozuP™ 1) (U —u) ™ dz (see (4.5))

< [ Dgle) + 7 ()] @ — )" ds (see (49))
Q
= (4p (u), (U — u)+> + (A (u), (U — u)+> (since u € S; (A) ),

therefore
Uy < .

So, we have proved that

(4.8) Uy € [0,u], Uy #0.

From (4.5), (4.7) and (4.8), it follows that . is a positive solution of (4.2), hence
Uy = uy € int C1 (see Proposition 4.1)

therefore
Uy <wuforallu e 4 (N),
(see (4.8)).
(b) The argument is similar. Let A > 0 and v € S_(\). We consider the
Catatheodory function k_ (z,x) defined by

(2,0) —elv () — 023\v()!p_20(Z) if <wv(z),

/2
(4.9) ko (z,2) =< [f.(2,0) —e] @ — Cs |x|P 2 ifv(z) <z <0,
0 it 0 < z.
Weset K_ (z,2) = [ k— (2, s) ds and introduce the C"'-functional v_ : I/V0 P(Q) —

R defined by
= 1 - 1, . ~ ~
v— (V) = ; | D[P + 3 ||Dv||§ - /QK (2,0)dz for all v € Wol’p Q).

As in part (a), via the direct method of calculus of variations, we show that
v < forallveS_(A\), all A > 0.
O

Now we are ready to produce extremal constant sign solutions for problem (Py) .
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Proposition 4.3. If hypotheses (Hy), (Hy), (Hg) hold, then:

(a) for every A € (0, \*) we can find uy € Sy (A) C int C4 such that uy < u for
alluw e S4 (N);

(b) for every A > 0 there exists v— € S_ (\) C —int Cy such that v < v_ for all
vedS_(

A).
Proof. (a) Invoking Lemma 3.10 of Hu-Papageorgiou ([16], p.178) we can find
{tun},>1 € Sy (N) Cint Cy decreasing (recall that Sy (\) is downward directed)
such that

inf Sy (\) = égfl U,

For every n € N we have

(4.10) (Ap (un) , h) + (A(un) , h) = /Q [Ag (2, un) + f (2, un)] hdz
for all h € W,” (Q),

and

(4.11) 0 < up <u.

If in (4.9) we choose h = u,, € W, ? (Q) and use (4.11), then
D[P + || Dun|3 < (A+ 1) Caz, for some Cy7 >0, all n € N,
hence
{un}t,>1 € WP () is bounded.
Hence, we may assume that
(4.12) Up —5 uy in WyP (Q) and u, — uy in LP () as n — oo.

In (4.9) we choose h = u, —uy € Wol’p (©), pass to the limit as n— oo and use
(4.12) . Then

lim [(A, (un),un —ug) + (A (up) ,up —uq)] =0,

n—oo

hence
lim sup [<Ap (n) s tn —uy) + (A (ug) , un —uy)] <0,

n—oo
(since A (+) is monotone), therefore

limsup (A, (up) , up —uy) <0 (see (4.12)),

n—oo

and it follows that

(4.13) Up — Uy in Wol’p (Q),

(see Proposition 2.2). From Proposition 4.2 we have
Uy < uy, for all n € N,

therefore

(4.14) Uy < UL
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Passing to the limit as n — oo in (4.9) and using (4.13) and (4.14), we conclude
that

uy € S¢ (A) and ugp = inf Sy (V).
(b) Similarly, using this time an increasing sequence
{on}y>1 €S- (A) € —int C,
(recall hat S_ (\) is upward directed) such that

supS_ (A) = sgpl) Upy.

Then, as in part (a), and since
vy < v, € —int Cy,

we generate v_ € S_ (\) C —int C4, such that v <wv_ for all v € S_ (A). O

5. NODAL SOLUTIONS

In this section, using the two extremal constant sign solutions uy € int Cy and
v_ € —int C4 produced in Proposition 4.3, we can generate nodal solutions for
problem (Py) (A € (0,A%)).

Proposition 5.1. If hypotheses (Hy) , (Hy), (Ho) hold and X € (0,\*), then prob-
lem (Py) has a nodal solution

Yo € ity (@) [v_,uy].

Proof. Let uy € int Cy and v— € —int CL be the two extremal constant sign

solutions produced in Proposition 4.3. Let BA (z,x) be the Caratheodory function
defined by

_ Ag (20— (2)) + f (z,0-(2)) i 2 <o (2),
(G1)  BAalzz) = Ag( z) + f (2,2) if v (2) <x <wuy(2),
Ag (z,uy (2)) + [ (zuq (2) 3wy (2) <o

Also, we consider the positive and the negative truncations of B,\ (z,+), namely the
Carathéodory functions ﬁf (z,x) defined by

(5.2) B\f (z,3) = By (z,:z:i) for all (z,z) € Q@ x R.
We set B (z,z) = Iy Bx (z,x)ds and B (z,x) = Iy B (2,2) ds and introduce the

C'—functionals ¢y, ¥ : WP (Q2) — R defined by
~ 1 1 .
Oal) = Dl + 5 1Dul = [ By (eu(2) s, for all we Wo (),

~ 1 1 ~
O (u) = ; 1Dully + 5 | Dul|3 - /QBf (2,u(2)) dz, for all u e Wy (Q).

Claim 1: K; C [v_,us] NG5 (), Kge = {0,uy}, K5 = {v_,0}.
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Let w € K~ . Then
LN

(5.3) (A, (u),h)+ (A (u), ) = /Q By (2,2 hdz for all h € WP ().

In (5.3) first we choose h = (u —uy)" € Wol’p (©). Then
(Ap (u), (w—up)") + (A(u), (u—us)")
= [ oo )+ £ o D] (=) (e (5.1))

= (A () (=) ™) + (A ) (u—ug) ™) (since us € 84 (N)),
hence
U< Ug.
Similarly, if in (5.3) we choose h = (v_ —u)" € Wol’p (Q), then we obtain
v < u.

So, we have proved that u € [v_,uy]. Moreover, the nonlinear regularity theory
(see Lieberman [17], Theorem 1), implies that

u € vo,ug] NCY(Q).
So, we have B
Ky S oo ug]n C; ().
In a similar fashion, we also show that

K,[Z;\— C[0,uy] NCy, KTZ)\; = [v—,0] N (=C4).

Then, the extremality of the solutions uy and v_ implies that

Kl/b\;r = {O,U+}, KJ}T = {’U_,O}.

This proves Claim 1.
Claim 2: uy € int C4 and v— € —int C are local minimizers of 12/\.

From (5.1) and (5.2) it is clear that 12;5 is coercive. Also it is sequentially weakly
lower semicontinuous. So there exists u4 € VVO1 P (Q) such that

(5.4) oF (@) = inf {@j (u) :u € WP (Q)} .

Recall that uy € int Cy. So, we can find ¢ € (0,1) small such that tu; (2) <
u4 (see Marano-Papageorgiou [19], Proposition 2.1). On account of hypotheses
(Hy) (i) , (Hy) (iv), given € > 0, there is a § > 0 such that

(5.5) G(z,x)> —%x2 for a.a.z € Q, all |z| <,

1
(5.6) F(z,z)> —5 [f2 (2,0) — €] 22 for a.a.z € Q, all |z| < 6.

Then for ¢ € (0,1) small, we have

~ P 2 ~
B 2) =S 1D @+ 5 | [ (h@) - £6.0) @ @ ds 2]
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(see (5.5) and (5.6) and recall that [|u; (2)||, = 1), hence
¢F (t01 (2)) < 0= ¢} (0) for t € (0,1) small
(choose € > 0 small, see (Hy) (iv), Lemma 2.6 and recall that 2 < p). Hence

¢ (W) <0 =1} (0) (see (5.4))

therefore
(5.7) uy £ 0.
From (5.4) we have
ﬁ+ S K{l;;”
hence
ﬂ+ = U4

(see Claim 1 and (5.7)).

Since
D len= 97 |y,
(see (5.2)), it follows that uy € int Cy is a Cj () —local minimizer of ¥, hence
ugy € int Cy is a Wol’p (©2) —local minimizer of 7 (see Proposition 2.3). R
Similarly for v— € —int C,, working this time with the functional ¢\ . This

proves Claim 2.
Without any loss of generality, we may assume that

(5.8) da (vo) < (uy).

The reasoning is similar if the opposite inequality holds.

We assume that K- is finite. Otherwise, on account of Claim 1 and the ex-
tremality of wy and v_, we already have an infinity of nodal solutions, and so we
are done. Then, using Claim 2 we see that we can find p € (0,1) small such that

(5.9) O (v-) < Ox (us) < inf { (u) s = us) = p} = g
Jo- =il > p,

(see (5.8) and Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).
From (5.1) it follows that vy is coercive. Therefore

(5.10) @E,\ satisfies the C' — condition,

(see Section 2). Then (5.9), (5.10) permit the use of Theorem 2.1 (the mountain
pass theorem). So, we can find yy € I/VO1 P (Q) such that

(5.11) yo € K C [v_,ut] N Cj () (see Claim 1), ffL;“ < ¥y (yo).-
From (5.9) and (5.11) it follows that

(5.12) yo & {v—,uy}.
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So, if we can show that yo # 0, then yo will be nodal (see (5.11), (5.12) and recall

~

the extremality of u; and v_). Since yq is a critical point of ¢ of mountain pass
type, we have

(5.13) Cy (@A,yo) £0
(see Motreanu-Motreanu-Papageorgiou [20], p.176).
Consider the the C'—functional ¢ : Wy () — R defined by

oo () = - IDully + 5 Dl - ;/Qf; (2,0) uldz for all u € WP (Q).

We introduce the homotopy
h(t,u) =ty (u) + (1 —t) o (u) for all (t,u) € [0,1] x WP (Q).

Suppose we could find {t,},>; C [0,1] and {un},>; C Wol’p (Q) such that
(5.14) tn, — tin [0,1], up — 0in Wol’p (Q), hl, (tn,u,) =0 for all n € N.
From the equality in (5.14) we have

(Ap (un) , BY + (A (u)  h) =ty [y B (2, 1) hdz

(5.15) + (1= tn) [ £ (2,0) unhdz for all b € WoP (), all n € N.

hence
(5.16)

{ —Npup (2) — Auy (2) = tnB (z,un (2)) + (1 — tp) f. (2,0) up (2) for a.a.z € €,
up, (2) = 0 on ON.

By (5.14), (5.16) and Corollary 8.6, p.208 of Motreanu-Motreanu-Papageorgiou [20],
there exists M3 > 0 such that

|unllo < Mz for all n € N.

Applying Theorem 1 of Lieberman [17], we can find a € (0,1) and My > 0 such
that

(5.17) Uy € Cy® (Q) and ltnll e gy < Ma for all n € N.

From (5.17), (5.14) and the compact embedding of Cé’o‘ (Q) into C§ (€2) , we have
(5.18) Uy, — 0 in C} () and so up € [v_,uy] for all n > no.

Let y, = ”Z—Z”, n € N. Then |y,|| = 1 for all n € N and so by passing to a

subsequence if necessary we may assume
(5.19) Yn — y in Wol’p () and y,, » y in LP () as n — oo.
From (5.15), we have

a2 (Ap (5) o 1) + (A () B} = b Jry 222D g

5.20
(5:20) + (1 —tn) fo f1(2,0) yahdz for all h € Wy (Q), all n € N,
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hence, for all n € N,
Ba(zun(2))

- Huan_2 Dpyn (2) = Dyn (2) =ty Tnl]
+ (1 —ty) f1 (2,0) yp (2) for a.a.z € Q,
Yn (2) = 0 on 00.

We know that y, € C§ (Q) for all n € N. Also, from (5.19) and Corollary 8.6, p.
108, of Motreanu-Motreanu-Papageorgiou [20], we have

|Unllo < My for some M5 > 0, all n € N.

Invoking the nonlinear regularity theory of Lieberman ([18], p.320), we can find
a € (0,1) and Mg > 0 such that

Yn € Cé’a (Q) and ||yn”céa(§) < Mg for all n € N.

As before, using the compact embedding of C’é’a (ﬁ) into C§ (ﬁ) and (5.19), we
have

(5.21) yn =y in Cj (Q) .
Hypotheses (Hy) (iii) , (Hy) (i73) and (5.1) imply that
‘BA (z,x)‘ < Cog|z| for a.a.z € Q, all z € R, some Cag > 0,

hence

{W”n())} C L (Q) is bounded,
n>1

[
(see (5.19) and recall that 2 < p). So, by passing to a subsequence if necessary and
using (5.18) and hypotheses (Hy) (ii) , (Hy) (4i7) , we obtain
(5.22) W s £ (-,0)y in LP () as n — oo,
Un,

(see Aizicovici-Papageorgiou-Staicu ([1], proof of Proposition 14).
In (5.19) we choose h =y, —y € W&’p (Q), pass to the limit as n — oo and use
(5.18), (5.21), (5.22) . Then we obtain

(A(y),h) = / £1(2,0) ydz for all h € WP (Q),
Q
hence
(5.23) —Ay (2) = f1.(2,0)y(2) for a.a.z € Q, y |an= 0.
From hypothesis (Hy) (i7i) and Lemma 2.5, we have

52 X (2, 11.,0)) < A (2,3 (2)) = 1 and
‘ 1= Xm+1 (2a/>‘\m+1 (2)> < Xm-ﬁ-l (27 f;,t (‘7 0)) :
From (5.23) and (5.24) it follows that

y=0.
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But from (5.21) we see that ||y|| = 1, a contradiction. We conclude that (5.14)
cannot occur. Therefore, using the homotopy invariance property of critical groups
(see, for example Gasinski-Papageorgiou [14], Theorem 5.125, p. 836), we obtain

(5.25) Cy (@A, 0) o (JO, 0) for all k € N.
Let 1, : H} (©2) — R be the C?—functional defined by

— 1 1
Yo (u) = 3 | Dul|3 — 5 /Q f2(z,0) u?dz for all u € HL ().

Hypothesis (Hy) (7ii) , through Lemma 2.6 implies that u = 0 is a nondegenerate
critical point of 1, with Morse index

d = dim PE (Xk (2)) > 92,
k=1
Hence we have
(5.26) Ci (¢9,0) = 6k,a,,Z for all k € Ny,
(see Motreanu-Motreanu-Papageorgiou [20], Theorem 6.51, p. 135).
Let v = 9, ]W&,pm) (recall that 2 < p). Since Wol’p () is dense in H{ (), we
have N
Ch (wo, 0) = C% (9, 0) for all k € Ny,

hence
(5.27) Ck (Jo, 0) = Ok.d,,Z for all k € Ny (see (5.26) ).
Note that
-~ ~ 1
(5.28) o () — o ()] = 1Duly,
hence
(B (w) = G (), )| = (4, (), ] < 1Dullp" 1A
for all h € W,? (Q),
therefore
(5:29) | =g, <P

From (5.28), (5.29) and the Cl-continuity of critical groups (see, for example,
Gasinski-Papageorgiou [14], Theorem 5.126, p. 836), we have

Ci (&0,0) —C, (Jo,o) for all k € No,

hence
O (wo, o) = pa,, Z for all k € Ny (see (5.27)),

therefore

(5.30) Ck (@ZA, O) = 0k,d,,Z for all k € Ny (see (5.25) ).
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Comparing (5.30) and (5.13) we infer that

yo # 0.

So, yo € Cj (92) is a nodal solution of (Py) for A € (0, A*) (see (5.12)).
Recall that

Yo € [v—,us] N C ().

As before (see the proof of Proposition 4.1), via the tangency principle of Pucci-
Serrin ([24], p.35), we have

(5.31) v (2) <yo(2) <wug(z) forall z € Q.

Let p = max{|lv_||,lu+]l} and let Ep > 0 be as postulated by hypothesis
(Hy) (v). For £, > &,, we have

—Dp0 (2) = Do (2) + &, w0 ()P o (2
= Ag (2,0 (2)) + f (2,90 (2)) + & [yo (2)|" 90 (2)
(&= 8&) v ()P w0 (2)
< Ag (g (2) + f (s (2)) + G ()
+ (ﬁp - Ep) uy (2)P(since yo < uy)
=—Apuy (2) — Auy (2) + Epuy (2)P7! for aa.z € Q.

2

(5.32)

On account of (5.31), we can say that
(gp - gp) lyol” 4o = (Ep - Ep) T

Then from (5.32) and Proposition 2.4 of Filippakis-O’Regan-Papageorgiou [11], we
have

Uy — Yo € int Cy.
In a similar fashion we show that
Yo —v— € int Cy.

Therefore we conclude that

Yo € int ey @) [v_,uy].

So, we can state our first multiplicity result for problem (Pj).

Theorem 5.2. If hypotheses (Hy), (Hy), (Hg) hold, then there exists \* > 0 such
that for all X € (0,\*), problem (P\) has at least four nontrivial solutions

ug, u €int Cy, vy € —int Cy and yg € C& (ﬁ) , nodal.

If we strenghten the conditions on the functions ¢ (z, -) and f (z, ) we can produce
a second nodal solution, for a total of five nontrivial solutions to problem (Py) for
A€ (0,4%).

So, we introduce the following extra condition:
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(Hy): for a.a.z € Q, g(z,°), f(z,-) € C'(R) and hypotheses (H,) (i), (Hy) (7)
are replaced by

g (z, )|, |fs (z,x)‘ <al(z) [1 + |x]r72} for a.a.z € Q, all x € R,

witha € L* (Q), p <r < p*.
Proposition 5.3. If hypotheses (Hy) (1), (#3i) , (Hy) (4i) — (iv), (Ho), (H1) hold
and A € (0,\*), then problem (Py) has a second nodal solutiony € int @) [v_,uq].

Proof. Let uy € int Cy and v— € —int Cy be the two extremal constant sign
solutions (see Proposition 4.3). From Proposition 5.1 it follows that there exists a
nodal solution

(5.33) Yo € intcé(ﬁ) [v_,uy].

We know that yg € K o and is of mountain pass type. Then by hypothesis (Hy),
(5.33) , and Aizicovici-Papageorgiou-Staicu ([3], proof of Theorem 3) we infer that

(5.34) Ci (%,yo) = 5p1Z for all k € Ny,

Recall that uy € int Cy and v— € —int Cy are local minimizers of @Z,\ (see the
proof of Proposition 5.1, Claim 2). Therefore

(5.35) Ci (@ZA,M) —C, @A, v_) = 6p.0Z for all k € Np.
From (5.30) we have
(5.36) Ch (%,o) = 6p.a, 7 for all k € Ny.

Finaly recall that {p\A is coercive. Therefore
(5.37) Ci (QZA, oo) = 6107 for all k € N,

(see Motreanu-Motreanu-Papageorgiou [20], p.161).
Suppose that K; = {yo0,u4,v_,0} . Then from (5.34), (5.35), (5.36), (5.37) and
the Morse relation (see (2.7)) with ¢ = —1, we have

(D' +2(=1)%+ (1) = (-1)°,
hence (—1)*™ = 0, a contradiction. Therefore there exists 7 € WO1 P (Q) such that
f/y\ ¢ {yoa Ut,V—, O} ) Z//\ € K&,\)\ - [’U,,’U,+] N C(% (,ﬁ)

hence 7 is the second nodal solution of (Py) . Moreover, as in the proof of Proposition
5.1, using the strong comparison principle from [24], we have

ye int ey @) [v_,uy].
O

So, we can state our second multiplicity theorem for problem (P)), where A €

(0, A%) :
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Theorem 5.4. If hypotheses (Hy) (it), (iii) , (Hy) (4i) — (iv), (Ho), (Hi) hold,
then there exists \* > 0 such that for all A € (0,\*), problem (Py) has at least five
nontrivial solutions

ug, u € int Cy, vy € —int Cy, yo, Y, nodal.
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