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does not guarantee compactness of the sequence (vε)ε>0, in any Sobolev norm.

Indeed, the maps vε(x) := exp(iφ(x)| log ε|1/2), where φ ∈ C∞(Ω, R) is a fixed,
non-constant function, satisfy |vε| = 1 and

EGL
ε (vε) =

|log ε|
2

ˆ
Ω
|∇φ|2 ≤ C |log ε| ,

but |∇vε| = O(| log ε|1/2) so the gradient diverges as ε → 0. Actually, even for
energy minimisers, no compactness can be expected even in L1

loc (unless additional
assumptions on the boundary datum are made). Indeed, Brezis and Mironescu [15]
constructed a sequence of minimisers uεn , on the unit ball Bd ⊆ Rd with d ≥
2, that satisfies EGL

εn (uεn) = o(| log εn|) as εn → 0 and yet has no subsequence
that converges a.e. on a set of positive measure, as there holds supx∈Bd |uεn(x) −
exp(inx1)| → 0.

In the previous examples, the lack of compactness is due to oscillations of the
phase and not to topological obstructions. In fact, it is possible to isolate the
topological contribution to the energy and prove compactness results on that part
alone. This is usually achieved by the use of distributional Jacobians.

1.2. The distributional Jacobian. Let d ≥ k ≥ 2 be integers. Given a map u =
(u1, . . . , uk) : Rd → Rk of class C2, we compute that

(1.1) du1 ∧ . . . ∧ duk =
1

k
d

(
k∑

i=1

(−1)i+1uid̂ui

)
,

where d̂ui := du1 ∧ . . . ∧ dui−1 ∧ dui+1 ∧ . . . ∧ duk. In case d = k, we can rewrite
the identity (1.1) using vector calculus instead of differential forms. More precisely,
when d = k = 2 we have

det(∇u) = 1

2
∂1
(
u1∂2u

2 − u2∂2u
1
)
+

1

2
∂2
(
u2∂1u

1 − u1∂1u
2
)

and if d = k = 3 then

det(∇u) = 1

3
div(u · ∂2u× ∂3u, u · ∂3u× ∂1u, u · ∂1u× ∂2u).

Similar — but more involved — reformulations are possible if d = k > 3.

The right-hand side of (1.1) is well-defined for any u ∈ W 1,k
loc (R

d, Rk), while
the left-hand side is well-defined (in the sense of distributions) even if u ∈ (L∞ ∩
W 1,k−1

loc )(Rd, Rk). Therefore, we might use the left-hand side of (1.1) to define the
distributional Jacobian of u:

(1.2) Ju :=
1

k
d

(
k∑

i=1

(−1)i+1uid̂ui

)
for u ∈ (L∞ ∩W 1,k−1)(Rd, Rk).

The rôle of the distributional Jacobian in connection with relaxation problems in the
calculus of variations has been pointed out, for instance, by Ball [3] (distributional
determinant in non-linear elasticity) and by Brezis, Coron and Lieb [14] (harmonic
maps and minimal connections; see also Bethuel, Brezis and Coron [7]).
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As a consequence of its definition (1.2), the Jacobian enjoys weak compactness
properties. For instance, if (uj)j∈N is a sequence of maps such that

sup
j∈N

∥uj∥L∞(Rd,Rk) < +∞ and

uj → u strongly in W 1,k−1(Rd,Rk),
(1.3)

then Juj ⇀ Ju in the distributional sense of D ′(Rd). The same conclusion holds if

sup
j∈N

∥uj∥L∞(Rd,Rk) < +∞ and

uj → u weakly in W 1,p(Rd,Rk) for p > k − 1.
(1.4)

A quantitative continuity estimate for the Jacobian was proved by Brezis and
Nguyen.

Theorem 1.1 ([16, Theorem 1]). Let d = k ≥ 2, k− 1 ≤ p ≤ +∞, and let 1 ≤ q ≤
+∞ be such that (k − 1)/p + 1/q = 1. Then, for any u, v ∈ (Lq ∩W 1,p

loc )(R
k, Rk)

and any C1 function φ : Rk → R supported in a ball B ⊆ Rk, there holds

|⟨Ju− Jv, φ⟩| ≤ C ∥u− v∥Lq(B)

(
∥∇u∥k−1

Lp(B) + ∥∇v∥k−1
Lp(B)

)
∥∇φ∥L∞(B)

where C > 0 is a constant that only depends on k.

Another important feature of the Jacobian is its ability to capture topological
information. To understand why this is the case, we introduce the (k − 1)-form

ωSk−1(y) :=
1

k

k∑
i=1

(−1)i+1yid̂yi for y ∈ Rk,

which is (the 1-homogeneous extension of) a volume form on Sk−1. The cohomology

class of ωSk−1 , restricted to Sk−1, generates the de Rham cohomology Hk−1
dR (Sk−1) ≃

Z. Then, we may rewrite (1.2) as

(1.5) Ju = du∗(ωSk−1).

Consider now a sphere-valued map u : Rk → Sk−1, possibly with point singularities
(e.g. u(x) := x/|x|), and let B ⊆ Rk be a ball whose boundary ∂B does not intersect
any singularity of u. By formally integrating the identity (1.5) on B and applying
Stokes’ theorem, we obtainˆ

B
Ju =

ˆ
B
du∗(ωSk−1) =

ˆ
∂B
u∗(ωSk−1) = αk deg(u, ∂B, Sk−1),

where αk = Vol(Sk−1)/k is the volume of the unit ball of Rk and deg(u, ∂B, Sk−1)
denotes the topological degree of u|∂B : ∂B → Sk−1. More precisely, we have the

following property which was proven in [14]: suppose that u ∈W 1,k−1
loc (Rk, Sk−1) is

smooth except for a finite number of points x1, . . . , xp. Then, there holds

(1.6) Ju = αk

p∑
i=1

diδxi in D ′(Rk),

where di ∈ Z denotes the topological degree of u restricted to a small sphere around
the point xi. To prove this formula, one can approximate u with a sequence of
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smooth maps uε : Rk → Rk such that u = uε out of small balls Bε(xi) around
the singularites. By constructing suitable approximations, one can compute Juε
using Stokes’ theorem as above, and make sure that uε → u strongly in W 1,k−1,
so to pass to the limit using the continuity of J, (1.3). We refer the reader to [12]
and references therein for a comprehensive treatment of the relation between the
jacobian and the topological degree.

In a similar spirit, if d ≥ k ≥ 2 and u ∈ W 1,k−1
loc (Rd, Sk−1) is smooth out of a

smoothly embedded, closed, oriented (d − k)-manifold M ⊆ Rd, then the distribu-
tional Jacobian Ju may be identified with a vector-valued measure supported onM .
Indeed, we have (see [37])

(1.7) ⋆Ju = αk∆τMH d−k M,

where ∆ is an integer number and denotes the topological degree of u restricted
to the boundary of a k-disk that intersects transversally M , while τM is a unit,
tangent (d− k)-vector field that orients M . Moreover,

⋆ : ΛkRd → Λd−kRd

is (a variant of) the Hodge star duality operator: for a k-covector ω, ⋆ω is defined
as the unique (d− k)-vector such that

⟨τ, ⋆ω⟩ = ⟨ω ∧ τ, e1 ∧ . . . ∧ ed⟩ for any (d− k)-covector τ,

where (e1, . . . , ed) is a positively oriented, orthonormal basis for Rd. If u is smooth,
⋆Ju(x) is a simple (d − k)-vector that spans the kernel of the multilinear form
Ju(x) = du1(x) ∧ . . . ∧ duk(x), i.e. the tangent space to the level surface of u at x.

We will come back to the link between Jacobian and level sets, which is made
precise by the coarea formula, in Section 1.4 below. For the time being, we consider
an example. Let u : Rk → Sk−1 be defined by u(x) := x/|x| for x ∈ Rk \ {0}. This
map has an isolated singularity at the origin, which coincides with the support of
the distributional Jacobian by (1.6), but is also the boundary of any level set u−1(y),
for y ∈ Sk−1. This is no coincidence, and in fact the distributional Jacobian of u ∈
W 1,k−1

loc (Rd, Sk−1), for d ≥ k, may be characterised as the boundary of a generic

level set u−1(y), for y ∈ Sk−1 [1, Theorem 3.8]. This fact, combined with the
boundary rectifiability theorem by Federer and Fleming [23], implies the following

rectifiability result: if d ≥ k ≥ 2, u ∈ W 1,k−1
loc (Rd, Sk−1), and if Ju is a bounded

measure, then Ju may be written in the form (1.7), where M is a (d− k)-rectifiable
set with orientation τM , and ∆ is an integer-valued multiplicity function (see [37,
Theorem 1.1] and [1, Theorem 5.6]).

1.3. Jacobians and density of smooth maps in sphere-valued Sobolev
spaces. Let Bk denote the open unit ball in Rk. The distributional Jacobian
of u ∈ W 1,k−1(Bk, Sk−1) is an obstruction to the strong approximability of u by
smooth maps. Indeed, the Jacobian determinant of a smooth map φ : Bk → Sk−1

vanishes, because all the derivatives of φ are tangent to the sphere; therefore, by
the continuity of the Jacobian (1.3), if u belongs to the strong W 1,k−1-closure of
(C∞ ∩W 1,k−1)(Bk, Sk−1) then Ju = 0.

The condition Ju = 0 turns out to be sufficient for strong approximability
by smooth maps, and moreover, smooth maps are sequentially weakly dense in
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W 1,k−1(Bk, Sk−1): see [4] and, for the case W 1,p(Bk, Sk−1) with k − 1 < p < k,
[10]. (These results do not generalise to higher-dimensional domains: for instance,
smooth maps are not sequentially weakly dense in W 1,3(B4, S2) [6].) The proof
of these facts is based on “removal of the singularities” via the so-called “dipole
construction”, as in [7]. We illustrate here the main ideas through an example.

Let us consider the map u(x) := x/|x|, and let N := (1, 0, . . . , 0). For ε > 0, we
can construct a family of smooth maps φε : ∂B

k → Sk−1 such that φε(x) = u(x)
if x1 ≤ 1 − ε, deg(φε, ∂B

k, Sk−1) = 0 and |∇φε| ≤ Cε−1, where C is an ε-
independent constant. These maps may be obtained by inserting a patch of de-
gree −1 in a small geodesic disk, of radius proportional to ε, around the pole N
of ∂Bk. The sequence (φε)ε>0 is uniformly bounded in W 1,k−1(∂Bk), and be-
cause the topological degree of each φε is zero, we can find a smooth extension

ψε : B
k → Sk−1 of φε such that

∥∇ψε∥Lk−1(Bk) ≤ C.

Then, we define

uε(x) :=


φε

(
x

|x|

)
if ε < |x| < 1

ψε

(x
ε

)
if |x| ≤ ε.

The map uε is Lipschitz, and up to subsequences, we have the convergence

|∇uε|k−1 dx ⇀∗ |∇u|k−1 dx+ αH 1 L weakly∗ as measures as ε→ 0,

where L is the line segment between the origin and N , and α is a positive number
that depends on the sequence (φε)ε>0. In this example, we have “removed the
singularity” at the origin by introducing an opposite singularity N at the boundary,
then connecting the two along a straight line.

The defect measure (i.e. the weak limit of |∇uε|k−1 dx − |∇u|k−1 dx) can be
characterised in terms of the Jacobian of u. We consider the case k = 3. By
inspecting the definition (1.2), we see that ⟨Ju, φ⟩ is well-defined for any Lipschitz
test function φ, so we can consider the dual norm:

∥Ju∥flat := sup
{
⟨Ju, φ⟩ : φ ∈W 1,∞

0 (B3, R), ∥∇φ∥L∞(B3) ≤ 1
}
.

If u is smooth outside a finite number of points x1, . . . , xp ∈ B3 and the topological
degree of u|∂B3 is zero then, using (1.6), we can write

Ju =
4π

3

ℓ∑
i=1

δpi −
4π

3

ℓ∑
i=1

δni

where (pi, ni)
ℓ
i=1 are points in B3 (possibly with repetitions). Brezis, Coron and

Lieb [14, Section IV] showed that

∥Ju∥flat =
4π

3
sup

φ : ∥∇φ∥L∞(B3)≤1

(
ℓ∑

i=1

φ(pi)−
ℓ∑

i=1

φ(ni)

)

=
4π

3
inf
σ

ℓ∑
i=1

∣∣pi − nσ(i)
∣∣,
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where the infimum is taken over all permutations σ of {1, . . . , ℓ}. Because of this
interpretation, ∥Ju∥flat was called the minimal connection for Ju in [14].

Theorem 1.2 ([7]). Let u ∈W 1,2(B3, S2) be such that u|∂B3 ∈ (C0∩W 1,2)(∂B3, S2)
and deg(u, ∂B3, S2) = 0. Then, there holds

inf
(uj)j∈N

lim inf
j→+∞

1

2

ˆ
B3

|∇uj |2 =
1

2

ˆ
B3

|∇u|2 + 3 ∥Ju∥flat,

where the infimum is taken over all sequences of maps uj ∈ C0(B
3
, S2) such that

uj = u on ∂B3 and uj ⇀ u weakly in W 1,2.

More general relaxation results (higher dimensional domains, other target mani-
folds) have been obtained by Giaquinta, Modica and Souček [26] using the language
and the framework of Cartesian currents.

1.4. The oriented coarea formula. In Section 1.2, we have described some prop-

erties of the distributional Jacobian of a sphere-valued map u ∈W 1,k−1
loc (Rd, Sk−1).

It turns out that the study of Ju when u ∈ (L∞ ∩W 1,k−1
loc )(Rd, Rk) can be reduced

to the previuous case. Indeed, for y ∈ Rk, we define the map uy : Rd → Sk−1 by

uy(x) :=
u(x)− y

|u(x)− y|
for x ∈ Rd \ u−1(y).

If u is smooth and y is a regular value of u, then by the discussion of Section 1.2
we might expect Juy to be a unit multiplicity rectifiable current supported on the
smooth (d − k)-manifold u−1(y). The following property, sometimes referred to as
the oriented coarea formula, relates Juy and Ju.

Theorem 1.3 ([37, Theorem 1.2], [1]). Let d ≥ k ≥ 2, and let u ∈ (L∞ ∩
W 1,k−1

loc )(Rd, Rk). Then, for a.e. y ∈ Rk we have uy ∈ W 1,k−1
loc (Rd, Sk−1), Juy

is supported on a (d− k)-rectifiable set, and there holds

Ju =
1

αk

ˆ
Rk

Juy dy

in the sense of distributions. Here αk denotes the volume of the unit ball in Rk.

To pave the way for the discussion in Section 2, it will be useful to recall here

why we have uy ∈W 1,k−1
loc (Rd, Sk−1) for a.e. y ∈ Rk. This proof is based on a trick

that was used by Hardt, Kinderlehrer and Lin [30, Lemma 2.3]. The chain rule
implies that |∇uy| ≤ 2|u − y|−1|∇u|. W.l.o.g., we might restrict our attention to

the case |y| ≤ M := ∥u∥L∞(Rd) + 1. By integrating over y in the ball Bk
M ⊆ Rk of
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radius M , and letting Bd ⊆ Rd be a ball, we obtain
ˆ
Bk

M

∥∇uy∥k−1
Lk−1(Bd) dy ≤ 2

ˆ
Bk

M

(ˆ
Bd

|∇u(x)|k−1

|u(x)− y|k−1
dx

)
dy

= 2

ˆ
Bd

|∇u(x)|k−1

(ˆ
Bk

M

dy

|u(x)− y|k−1

)
dx

≤ 2

ˆ
Bd

|∇u(x)|k−1

(ˆ
Bk

2M

dz

|z|k−1

)
dx

=: Ck,M ∥∇u∥k−1
Lk−1(Bd)

We have made the change of variable z = u(x) − y in the inner integral, and used
the fact that z 7→ |z|−p is locally integrable on Rk for p < k. The constant Ck,M

depends also on M , hence on ∥u∥L∞(Rd).

1.5. Applications to variational problems. The theory of distributional Jaco-
bians can be applied to the asymptotic analysis, as ε → 0, of variational problems
of the form (GLε). Let Ω ⊆ Rd be a bounded, Lipschitz domain. For 1 ≤ p < +∞,

we define W−1,p(Ω, Λd−2Rd) as the dual of W 1,p′

0 (Ω, Λd−2Rd), where p′ := p/(p−1)
is the Hölder conjugate of p. We have

Theorem 1.4 ([36, 2]). Let Ω ⊆ Rd be a bounded, Lipschitz domain with d ≥ 2,
and let K > 0 be a fixed constant. Then, the following properties hold.

(i) Compactness and lower bound. For any sequence uε ∈W 1,2(Ω, C) such that
EGL

ε (uε) ≤ K| log ε|, there exists a (non relabelled) subsequence and a (d−2)-
current J such that ⋆Juε → πJ inW−1,p(Ω, Λd−2Rd) for every p < d/(d−1).
The current J has the structure of a (d − 2)-rectifiable boundary in Ω with
finite mass |J |(Ω) < +∞ and integer multiplicity. Moreover,

lim inf
ε→0

EGL
ε (uε)

|log ε|
≥ π|J |(Ω).

(ii) Upper bound. For any (d− 2)-rectifiable boundary J in Ω with finite mass
and integer multiplicity, there exists a sequence uε ∈ W 1,2(Ω, C) such that
⋆Juε → πJ in W−1,p(Ω, Λd−2Rd) for every p < d/(d− 1) and

lim
ε→0

EGL
ε (uε)

|log ε|
= π|J |(Ω).

If the uε’s are critical points of E
GL
ε with EGL

ε (uε) ≤ K| log ε|, and under suitable
assumptions on the boundary data, the bounds on Juε make it possible to obtain
compactness for the uε’s themselves, by PDE arguments [9]. In this case, we have
uε → u0 in W 1,p for p < d/(d− 1), and πJ = limε ⋆Juε = ⋆Ju0.

Ginzburg-Landau type functionals of k-growth in the gradient (i.e., the term
|∇u|2 in (GLε) is replaced by |∇u|k, with k ≥ 2 an integer) and Dirichlet boundary
conditions have also been studied [2]. In this case, the Juε’s concentrate on a recti-
fiable set of codimension k, whose cobordism class is determined by the domain and
the boundary condition. Other energy regimes arise naturally for Ginzburg-Landau
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type functionals and are interesting for applications. In particular the energy regime
Eε(uε) ≈ | log ε|2 corresponds to the onset of the mixed phase in type-II supercon-
ductors, and to the appearance of vortices in Bose-Einstein condensates. These
situations have been extensively studied in the two-dimensional case, especially by
Sandier and Serfaty in the case of superconductivity (see [45] and references therein).

2. Manifold-valued Sobolev maps and topological singularities

2.1. Motivation: variational problems for material science. There are other
functionals, arising as variational models for material science, which share a common
structure with the Ginzburg-Landau functional (GLε), i.e. they can be written in
the form

(2.1) u ∈W 1,k(Ω, Rm) 7→ Eε(u) :=

ˆ
Ω

{
1

k
|∇u|k + 1

ε2
f(u)

}
.

Here f : Rm → R is a non-negative, smooth potential that satisfies suitable coerciv-
ity and non-degeneracy conditions, and N := f−1(0) is assumed to be a non-empty,
smoothly embedded, compact, connected submanifold of Rm without boundary.
The elements of N correspond to the ground states for the material, i.e. the local
configurations that are most energetically convenient. An important example is the
Landau-de Gennes model for nematic liquid crystals (in the so-called one-constant
approximation of the uniaxial phase, see e.g. [22]). In this case, k = 2 and the distin-
guished manifold is a real projective plane N = RP2, whose elements describe the
locally preferred direction of alignment of the constituent molecules (which might
be schematically described as un-oriented rods).

As in the Ginzburg-Landau case, topological obstructions may imply the lack of
an extension operator W 1−1/k,k(∂Ω, N ) → W 1,k(Ω, N ). As a consequence, min-

imisers uε subject to a Dirichlet boundary condition uε = ubd ∈W 1−1/k,k(∂Ω, N )
may not satisfy uniform energy bounds with respect to ε. Compactness results in
the spirit of the Ginzburg-Landau theory have been shown for minimisers of the
Landau-de Gennes functional [39, 28, 17, 18]. However, some points that are under-
stood in the Ginzburg-Landau theory — for instance, a variational characterisation
of the singular set of the limit — are still missing, even for the Landau-de Gennes
functional.

Unfortunately, the theory of Jacobians does not carry over directly to this setting.
Consider the following simple example: let S be a (d − k)-plane that intersects Ω,
and let u : Ω \ S → N be a map that is smooth everywhere, except at S. Then,
each point of S can be encircled by a (k − 1)-dimensional sphere Σ ⊆ Ω \ S, and
the (based) homotopy class of u|Σ : Σ → N defines an element of πk−1(N ) which,
roughly speaking, characterises the behaviour of the material configuration around
the defect. (This is the basic idea of the topological classification of defects in
ordered materials; see e.g. [40] for more details.) If πk−1(N ) contains elements
of finite order, these cannot be realised by integration of a differential form, so no
notion of Jacobian that can be expressed as a differential form (such as (1.2)) is
able to capture such homotopy classes of defects.

In the following sections, our aim is to construct an object that (i) brings topolog-
ical information and (ii) enjoys compactness properties even when the distributional
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Jacobian is not defined, in particular when πk−1(N ) contains elements of finite or-
der. A notion of “set of topological singularities” for a manifold-valued Sobolev map
was already introduced by Pakzad and Rivière [42], using the language of flat chains.
In [19], we carried out a different construction which we will sketch below; however,
since the latter is also based on the formalism of flat chains, we first recall some
basic definitions and facts about flat chains, following the approach in [48, 24, 47].

2.2. Flat chains with coefficients in an abelian group. Let (G, | · |) be a
normed abelian group, that is, an abelian group together with a non-negative func-
tion | · | : G → [0, +∞) that satisfies

(i) |g| = 0 if and only if g = 0
(ii) | − g| = |g| for any g ∈ G
(iii) |g + h| ≤ |g|+ |h| for any g, h ∈ G.

In addition, we assume that

(2.2) |g| ≥ 1 for any G \ {0}.
For n ∈ Z, 1 ≤ n ≤ d, a polyhedral n-chain with coefficients in G is a linear
combination, with coefficients in G, of compact, convex, oriented n-dimensional
polyhedra in Rd, modulo a suitable equivalence relation ∼. We define ∼ by requiring
−σ ∼ σ′ if the polyhedra σ′ and σ only differ for the orientation, and σ ∼ σ1+σ2 if σ
is obtained by gluing σ1, σ2 along a common face (with the correct orientation). The
set of polyhedral n-chain with coefficients in G is a group, with a naturally defined
addition operation, and is denoted Pn(Rd; G). Every element S ∈ Pn(Rd; G) can
be represented as a finite sum

(2.3) S =

p∑
i=1

giJσiK,
where gi ∈ G, the σi’s are compact, convex, non-overlapping n-dimensional poly-
hedra, and J·K denotes the equivalence class modulo the relation ∼ defined above.
Thus, S may be identified with a finite collection of polyhedra as above, endowed
with multiplicities in G.

Polyhedral chains enjoy a notion of boundary: the boundary is a linear operator
∂ : Pn(Rd; G) → Pn−1(Rd; G), identified by its actions on single polyhedra, which
satisfies ∂(∂S) = 0 for any chain S. The mass of a polyhedral chain S ∈ Pn(Rd; G),
presented in the form (2.3), is defined by M(S) :=

∑
i |gi|H n(σi). The flat norm

of a polyhedral n-dimensional chain S is defined by

F(S) := inf

{
M(P ) +M(Q) : P ∈ Pn+1(Rd; G),

Q ∈ Pn(Rd; G), S = ∂P +Q

}
.

Thus, two chains S1, S2 are close with respect to the flat norm if S2 − S1 is, up
to small errors, the boundary of a chain of small mass. It can be showed (see
e.g. [24, Section 2]) that F indeed defines a norm on Pn(Rd; G), in such a way
that the group operation on Pn(Rd; G) is F-Lipschitz continuous. The completion
of (Pn(Rd; G), F), as a metric space, will be denoted Fn(Rd; G). It can be given
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the structure of a G-module, and it is called the group of flat n-chain with coeffi-
cients in G. Moreover, the mass M extends to a F-lower semi-continuous functional
Fn(Rd; G) → [0, +∞], still denoted M, and it remains true that

F(S) = inf

{
M(P ) +M(Q) : P ∈ Fn+1(Rd; G),

Q ∈ Fn(Rd; G), S = ∂P +Q

}(2.4)

for any S ∈ Fn(Rd; G) [24, Theorem 3.1].
A flat chain S is said to be supported in a closed set K ⊆ Rd if, for any open

set U ⊇ K, S is the F-limit of a sequence of polyhedral chains supported in U .
If M is a smooth n-dimensional manifold, respectively a n-rectifiable set, then
we can define a chain JMK supported on M with constant multiplicity 1 ∈ G
by approximating M with polyhedral sets, considering the associated polyhedral
chains (with unit multiplicity), and passing to the limit in the flat norm. The
chain JMK is an example of a smooth, respectively, rectifiable chain. More generally,
Equation (2.4) shows that the boundary of a n-rectifiable chain of finite mass is
a (n − 1)-flat chain; for instance, the “Koch’s snowflake”, which is a planar set of
Hausdorff dimension greater than 1 that bounds a finite area, can be seen as the
support of a 1-dimensional flat chain. In fact, under the assumption (2.2), any
(n − 1)-flat chain has the form (boundary of a rectifiable n-chain) + (rectifiable
(n− 1)-chain) [24, 47].

In case G = Z, rectifiable chains may be identified with rectifiable currents
with integer multiplicity, by integration. The class of n-chains of finite mass with
coefficients in Z may be interpreted as bounded measures with values in the space
of n-vectors, and in general flat n-chains with coefficients in Z may be regarded as
elements of W 1,∞

0 (Rd, ΛnRd)′.
Finally, we define the group of flat n-chains relative to an open set Ω ⊆ Rd as

the quotient group

Fn(Ω; G) := Fn(Rd; G)/{S ∈ Fn(Rd; G) : S is supported in Rd \ Ω}.
The quotient norm may equivalently be rewritten as

FΩ(S) := inf
{
M(P Ω) +M(Q Ω): P ∈ Fn+1(Rd; G),

Q ∈ Fn(Rd; G), S − ∂P −Q is supported in Rd \ Ω
}(2.5)

where P Ω denotes the restriction of P to Ω (see [19, Section 2] for more details).

2.3. Sketch of the construction. Let N ⊆ Rm be a smoothly embedded mani-
fold without boundary; let k ≥ 2 be an integer. We make the following assumption
on N and k:

(H) N is compact and (k − 2)-connected, that is π0(N ) = π1(N ) = . . . =
πk−2(N ) = 0. In case k = 2, we also assume that π1(N ) is abelian.

The integer k is thus related to the topology of N . The condition (H) guarantees
that k ≤ dimN +1 and in case N is a sphere, we can indeed choose k = dimN +1;
however, the inequality may be strict in general. For instance, if N is a real pro-
jective plane, N ≃ RP2, then (H) is satisfied if and only if k = 2. Under the
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assumption (H), there is no topological obstruction associated with defects of codi-
mension < k; N -valued maps may have singularities of codimension < k, but these
can be removed by local surgery. On the other hand, singularities of codimension k
(or higher) may be associated with topological obstructions, and are classified by
elements of πk−1(N ). As a consequence of (H), the group πk−1(N ) is abelian and
may be endowed with a norm that satisfies (2.2) (see e.g. [19, Section 2.2]). It will
be the coefficient group for our flat chains.

Let d ≥ k ≥ 2, and let Ω ⊆ Rd be a bounded, smooth domain. The “set
of topological singularities” of a map u ∈ W 1,k−1(Ω, N ) has been constructed by
Pakzad and Rivière [42], as a flat chain, by approximating u with maps ũ : Rd → N
having “nice singularities”, i.e. ũ is smooth out of a polyhedral set. In [19], this
construction was carried over using a different approach, namely, approximating u
with smooth maps v : Rd → Rm and then reprojecting v onto N . This approach is
close in spirit to that presented in Section 1.4.

While it is impossible to construct a smooth projection of Rm onto a closed man-
ifold N , under the assumption (H) it is possible to construct a smooth projection
ϱ : Rm \ X → N , where X is a finite union of manifolds of dimension ≤ m − k.
Moreover, we can make sure that

(2.6) |∇ϱ(y)| ≤ C

dist(y, X )
for any y ∈ Rm \ X .

(In Section 1.4, we used the radial projection ϱ : Rk \ {0} → Sk−1, ϱ(y) := y/|y|.)
The existence of such ϱ was obtained by Hardt and Lin as a consequence of more
general results of topology [31, Lemma 6.1]; self-contained approaches are presented
in [13, 32].

Take u ∈ C∞(Rd, Rm). One could be tempted to identify the set of topological
singularities of u with u−1(X ), which is exactly the set where the reprojection ϱ(u)
fails to be well-defined, but u−1(X ) may be very irregular even if u is smooth.
However, Thom transversality theorem implies that, for a.e. y ∈ Rm, the set (u −
y)−1(X ) is indeed a finite union of (possibly disconnected) manifolds of dimension
≤ d − k. For each (m − k)-manifold K ⊆ X , we consider the inverse image
(u−y)−1(K)∩Ω and equip it with a multiplicity, i.e. the homotopy class of ϱ(u−y)
around (u − y)−1(K), which is an element of πk−1(N ). By doing so, we define a
smooth chain Sy(u) ∈ Fd−k(Ω; πk−1(N )). We have disregarded the contributions
coming from manifolds K ⊆ X of dimension < m − k: this is because no S ∈
Fd−k(Ω; πk−1(N )) can be supported on a set of dimension < d − k, unless S = 0
[46, Theorem 3.1].

The chain Sy(u) satisfies the following topological property. Take a smoothly
embedded, oriented k-disk D ⊆ Ω, such that ∂D does not intersect (u − y)−1(X )
(hence, ϱ(u−y) is well defined on ∂D). Generically,D intersects the support of Sy(u)
at a finite number of points. By summing up the multiplicities of Sy(u) at the inter-
section points, with a sign accounting for the relative orientations of D and Sy(u),
we define the so-called intersection index, denoted I(Sy(u), JDK) ∈ πk−1(N ) (see
e.g. [19, Section 2.1] for more details). Then, a simple topological argument shows
that

(2.7) I(Sy(u), JDK) = homotopy class of ϱ(u− y) on ∂D.
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In this sense, the chain Sy(u) carries topological information on u.
Thanks to the estimate (2.6) on ∇ϱ, we can now integrate over y ∈ Rm and

apply a strategy similar to that devised by Hardt, Kinderlehrer and Lin (sketched
in Section 1.4). In particular, by applying the coarea formula, we obtain a continuity
estimate on Sy(u) depending on the Sobolev norms of u. Then, by density, one can
define Sy(u) in case u is a Sobolev map.

We let X := (L∞ ∩ W 1,k−1)(Ω, Rm) and endow this set with a topology, in
such a way that a sequence (uj)j∈N converges to u in X if and only if uj → u

strongly in W 1,k−1 and supj∈N ∥uj∥L∞ < +∞. We also consider the set Y :=

L1(Rm, Fd−k(Ω; πk−1(N ))), whose elements are measurable maps y ∈ Rm 7→ Sy ∈
Fd−k(Ω; πk−1(N )) such that

∥S∥Y :=

ˆ
Rm

FΩ(Sy) dy < +∞.

The set Y is a complete normed πk−1(N )-modulus, with respect to the norm ∥·∥Y .

Theorem 2.1 ([19]). Suppose that (H) is satisfied. Then, there exists a unique
continuous map S : X → Y such that, for any u ∈ X ∩ C∞(Ω, Rm), a.e. y ∈ Rm,
and any smoothly embedded, oriented k-disk D ⊆ Ω such that ∂D∩(u−y)−1(X ) = ∅,
the property (2.7) holds. In addition, for any u0, u1 ∈ X and a.e. y ∈ Rm, we can
write Sy(u1)− Sy(u0) = ∂Ry in Ω, where Ry is a (d− k + 1)-chain that satisfiesˆ

Rm

M(Ry) dy ≤ C(max{∥u0∥L∞(Ω), ∥u1∥L∞(Ω)})

·
ˆ
Ω
|u1 − u0|

(
|∇u1|k−1 + |∇u0|k−1

)(2.8)

and C : R+ → R+ is a locally bounded function that only depends on N , k, ϱ,
X , and Ω. Finally, if u ∈ W 1,k−1(Ω, N ) then for a.e. y, y′ ∈ Rm such that
max{|y|, |y′|} < dist(N , X ) there holds

(2.9) Sy(u) = Sy′(u).

Actually, Property (2.7) holds for any u ∈ X, provided that both sides of the
identity are suitably defined (we refer to [19, Section 2 and Theorem 3.1]). The
inequality (2.8), together with (2.5), implies the continuity estimate

∥S(u1)− S(u0)∥Y ≤ C(max{∥u0∥L∞(Ω), ∥u1∥L∞(Ω)})

·
ˆ
Ω
|u1 − u0|

(
|∇u1|k−1 + |∇u0|k−1

)
,

which is analougous to Theorem 1.1. In particular, we have stability of S with
respect to strong and weak convergence, as in (1.3)–(1.4). Therefore, some of the
compensation compactness properties that are typical of the Jacobian are retained
by S. By choosing u0 equal to a constant (so that Sy(u0) = 0 for a.e. y), we also see
that Sy(u1) may be written as a relative boundary: Sy(u1) = ∂Ry inside Ω, where
Ry is a (d− k + 1)-flat chain that satisfies

(2.10)

ˆ
Rk

M(Ry) dy ≤ C(∥u1∥L∞(Ω)) ∥∇u1∥k−1
Lk−1(Ω) .
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In case u is N -valued, (2.9) states that the map y 7→ Sy(u) is locally constant
around the origin; we denote its constant value by SPR(u). The chain SPR(u)
coincides with the topological singular set as introduced by Pakzad and Rivière
in [42].

In the special case N = Sk−1 ⊆ Rk, we have πk−1(Sk−1) ≃ Z and so Sy(u) has an

alternative description in terms of currents. If we make the choice X = {0} ⊆ Rk

and ϱ(y) = y/|y|, then Theorem 1.3 implies

Ju =
1

αk

ˆ
Rm

Sy(u) dy for any u ∈ (L∞ ∩W 1,k−1)(Ω, Rk),

where αk is the volume of the unit k-disk and the integral in the right-hand side is
intended in the sense of distributions. However, if πk−1(N ) is a finite group (or,
more generally, if it only contains elements of finite order), then there is no mean-
ingful way to define the integral of Sy(u) with respect to the Lebesgue measure dy,
as πk−1(N )⊗ R = 0.

It is worth noticing that the proof of our main result, Theorem 2.1, does not
strictly rely upon the manifold structure of N . What is needed, is the existence
and regularity of the exceptional set X and the retraction ϱ, in order to be able
to apply Thom transversality theorem. This suggests a possible extension to more
general targets N ⊆ Rm such as, for instance, finite simplicial complexes.

2.4. Applications: density of smooth maps in manifold-valued function
spaces. We can apply the operator S to tackle some questions in the theory of
manifold-valued function spaces. Here, we focus in particular on issues related to
(strong or weak) density of smooth functions in manifold-valued Sobolev or BV
spaces.

Just as the distributional Jacobian, the operator S is as an obstruction to strong
approximability by smooth maps. Bethuel [5] showed that smooth maps are dense
in W 1,p(Bd, N ), where Bd is the open unit ball in Rd, if and only if π⌊p⌋(N ) = 0

or p ≥ d. In Section 1.3, we have seen that the strongW 1,p-closure of C∞(B
k
, Sk−1)

can be characterised using the distributional Jacobian. Pakzad and Rivière [42,
Theorem II] generalised this result to other target manifolds. As a corollary of our
construction, we recover Pakzad and Rivière’s result.

Theorem 2.2. Let d ≥ 2 be an integer, let 1 ≤ p < d, and let N be a compact,
smooth, (⌊p⌋ − 1)-connected manifold without boundary. In case 1 ≤ p < 2, we also
suppose that π1(N ) is abelian. Then, there exists a continuous map

SPR : W 1,p(Bd, N ) → Fd−⌊p⌋−1(B
d; π⌊p⌋(N ))

such that SPR(u) = 0 if and only if u is a strong W 1,p-limit of smooth maps B
d →

N .

In contrast with the result by Pakzad and Rivière, we do not need to impose the
technical restriction ⌊p⌋ ∈ {1, d − 1}. The arguments in [42] rely on fine results
in Geometric Measure Theory [25] (which require ⌊p⌋ ∈ {1, d − 1}); instead, the
proof of Theorem 2.2 follows directly from our main Theorem 2.1 and in particular
on the integral estimate (2.10) for the mass of the connection. This control is then
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combined with the “removal of the singularities” results in [42]. It is worth mention-
ing that the theorem may fail if the domain is not a disk (see the counterexamples
in [29] and the discussion in [42]).

We next drive our attention to manifold-valued BV-maps. Recall that the
space BV(Ω, Rm), by definition, consists of those functions u ∈ L1(Ω, Rm) whose
distributional derivative Du is a finite Radon measure. We say that a sequence uj
of BV-functions converges weakly to u if and only if uj → u strongly in L1

and Duj ⇀
∗ Du weakly∗ as elements of the dual C0(Ω, Rm)′. We define BV(Ω, N )

as the set of maps u ∈ BV(Ω, Rm) such that u(x) ∈ N for a.e. x ∈ Ω. The space
BV(Ω, S1) has been extensively studied by Davila and Ignat [21, 33] (see also [34]
for the case N = RPn).

Theorem 2.3. Let N be a smooth, compact, connected manifold without boundary,

with abelian π1(N ). Then, C∞(B
d
, N ) is sequentially weakly dense in BV(Bd, N ).

A similar result has been obtained by Giaquinta and Mucci [27, Theorem 2.13],
who worked in the framework of Cartesian currents. Giaquinta and Mucci need the
additional assumption that H1(N ) contains no element of finite order, in order to
apply the formalism of currents. By working in the setting of flat chains, instead
of currents, this assumption is not required any more, although we still need that
π1(N ) be abelian. In contrast with the scalar case, it may not be possible to

construct approximating maps uj ∈ C∞(B
d
, N ) in such a way that |Duj |(Bd) →

|Du|(Bd) (see [27]): this gap phenomenon is analougous to the one illustrated in
Section 1.3 above.

The proof of Theorem 2.3, as that of Theorem 2.2, is based on the “removal of
the singularity” by Bethuel, Brezis and Coron [7]: first we control the flat norm
of the topological singular set by means of (2.10), then we remove the singularities
using the results of [42]. The flat norm of the topological singular set coincides with
the “minimal connection” of Bethuel, Brezis and Coron (see Section 1.3).

As remarked above, the techniques presented in this paper apply to quite general
target manifolds, but not all. In particular, closed manifolds N with non-abelian
π1(N ) are excluded, because the theory of flat chains with coefficients in a group G
requires G to be abelian. However, in the topological obstruction theory, this
kind of restriction can be removed by using suitable technical tools (homology with
local coefficients systems). This leaves a hope to extend, at least partially, some
of the results to the case of non-abelian π1(N ). Density (in the sense of biting
convergence) of smooth maps in W 1,1(Ω, N ) with non-abelian π1(N ) has been
proven by Pakzad [41].

We have not discussed applications of the operator S to variational problems,
such as (2.1). We expect that the results presented in this section could be used
as tools to obtain energy lower bounds for (2.1) in the spirit of [44, 35], or even
Γ-convergence results along the lines of [2]. These questions will be addressed in a
forthcoming work [20].
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