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paper [13], defined a wide class of mappings that contains nonexpansive mappings
as special cases, and presented methods to approximate its fixed points. A mapping
T : C → H is called generalized hybrid [13] if there exist α, β ∈ R such that

α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C, where R is the set of real numbers. The class of generalized hybrid
mappings simultaneously includes nonexpansive mappings, nonspreading mappings
[15], hybrid mappings [29], and λ-hybrid mappings [1] as special cases. Note that
nonspreading mappings and hybrid mappings are not necessarily continuous; see
[10]. The type of nonspreading mappings is deduced from optimization problems.

The class of generalized hybrid mappings has been further extended. A
mapping T : C → C is called normally 2-generalized hybrid [16] if there exist

α0, β0, α1, β1, α2, β2 ∈ R such that
∑2

n=0 (αn + βn) ≥ 0, α2 + α1 + α0 > 0, and

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + α0 ∥x− Ty∥2

+ β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C. This class of mappings contains generalized hybrid mappings and
other classes of nonlinear mappings, e.g., normally generalized hybrid mappings [33]
and 2-generalized hybrid mappings [22]. Hojo et al. [9] gave examples that were
2-generalized hybrid but not generalized hybrid. Unlike the case of 2-generalized
hybrid mappings, it can be shown that a normally 2-generalized hybrid mapping
has at most one fixed point if

∑2
n=0 (αn + βn) > 0; see Theorem 4.3 in [18].

For a normally 2-generalized hybrid mapping T , Kondo and Takahashi [16] de-
fined a sequence {xn} as follows:

(1.3) xn+1 = anxn + bnTxn + cnT
2xn ∈ C,

where x1 ∈ C is given, and {an, bn, cn} is a set of coefficients for a convex com-
bination. They showed a weak convergence of {xn} to an attractive point [31] of
T . An attractive point is defined in the next section. Let S and T be normally
2-generalized hybrid mappings from C into itself that are not necessarily commuta-
tive. Kondo and Takahashi [19] proved a weak convergence to common attractive
and fixed points of S and T by using the following iteration:

(1.4) xn+1 = anxn + bnSxn + cnS
2xn + dnTxn + enT

2xn for all n ∈ N,

where x1 ∈ C is given, and {an, bn, cn, dn, en} is a set of coefficients for a con-
vex combination. For a common attractive point problem of two noncommutative
nonlinear mappings, see also [30] and [32].

In this paper, combining the ideas of iterations (1.2) and (1.4), we consider two
types of iterations formulated by

xn+1 = anxn + bn
1

n

n∑
k=1

Skxn + cn
1

n

n∑
k=1

T kxn and(1.5)

xn+1 = anxn + bnSxn + cnS
2xn + dn

1

n

n∑
k=1

T kxn,(1.6)
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where S and T are normally 2-generalized hybrid mappings, which are not necessar-
ily commutative. Using these iterations, we show that the sequence {xn} converges
weakly to common attractive and fixed points of S and T . Moreover, we apply
the method to a common null point problem for two maximal monotone multi-
valued mappings. Our results are obtained under settings with finitely many error
terms. Each error term will vanish rapidly as Kamimura and Takahashi [12] and
Takahashi [28].

2. Preliminaries

This section briefly presents preliminary information and results. Throughout
this paper, we denote a real Hilbert space by H. Let {xn} be a sequence in H, and
let x be an element of H. We write the strong and weak convergence of {xn} to
x by xn → x and xn ⇀ x, respectively. It is well-known that a closed and convex
subset of H is weakly closed. A sequence {xn} converges weakly to x if and only
if for every subsequence {xni} of {xn}, there exists a subsequence

{
xnj

}
of {xni}

that converges weakly to x.
Let T : C → H be a mapping from C into H, where C is a nonempty subset of

H. We denote sets of fixed and attractive points by

F (T ) = {u ∈ C : Tu = u} and

A (T ) = {u ∈ H : ∥Ty − u∥ ≤ ∥y − u∥ for all y ∈ C} ,
respectively. Takahashi and Takeuchi, in their 2011’s paper [31], introduced the
concept of attractive points, and showed that the set of attractive points A (T ) is
closed and convex in a Hilbert space. A mapping T : C → H with F (T ) ̸= ∅
is called quasi-nonexpansive if ∥Tx− u∥ ≤ ∥x− u∥ for all x ∈ C and u ∈ F (T ).
If a mapping T with F (T ) ̸= ∅ is quasi-nonexpansive, then F (T ) ⊂ A (T ). We
know from [16] that a normally 2-generalized hybrid mapping with F (T ) ̸= ∅ is
quasi-nonexpansive. We also know that the set of fixed points F (T ) of a quasi-
nonexpansive mapping is closed and convex; see [11]. A mapping T : C → H is

called firmly nonexpansive if ∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩ for all x, y ∈ C. It is
well-known that a firmly nonexpansive mapping is nonexpansive. For this type of
mappings, see, e.g., Browder [4] and Goebel and Kirk [5].

Let A be a nonempty, closed, and convex subset of H, and let PA be the metric
projection from H onto A, that is, ∥x− PAx∥ ≤ ∥x− z∥ for all x ∈ H and z ∈
A. It is known that the metric projection is firmly nonexpansive, and thus, it is
nonexpansive. Furthermore, it holds that ⟨x− PAx, PAx− z⟩ ≥ 0 for all x ∈ H
and z ∈ A.

Let B : H → 2H be a multi-valued mapping defined on H. We write it as B ⊂
H×H. Its effective domain is denoted byD (B), that is, D (B) = {x ∈ H : Bx ̸= ∅}.
A multi-valued mapping B ⊂ H ×H is called monotone if ⟨x− y, u− v⟩ ≥ 0 for
all x, y ∈ D (B), u ∈ Bx, and v ∈ By. For a monotone multi-valued mapping B on

H and r > 0, define Jr ≡ (I + rB)−1, where I is the identity mapping on D (B).
It is called the resolvent of B for r > 0. It is well-known that Jr is single-valued
and firmly nonexpansive. Also, it is known that F (Jr) = B−10 for all r > 0, where
B−10 = {x ∈ H : 0 ∈ Bx}. For a monotone multi-valued mapping B on H and
r > 0, Yoshida approximation is defined as Ar ≡ 1

r (I − Jr), which is also a single
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valued-mapping from D (B) into H. It is known that (Jrx,Arx) ∈ A for all x ∈ H
and r > 0.

A monotone mapping is said to be maximal if its graph is not properly contained
by any other monotone mappings on H. For a maximal monotone multi-valued
mapping B ⊂ H × H, its null point set B−10 is a closed and convex subset of
its effective domain D (B). It is also known that if a multi-valued mapping B

is maximal monotone, its resolvent Jr ≡ (I + rB)−1 and Yoshida approximation
Ar ≡ 1

r (I − Jr) are defined on the whole area of H. In other words, Jr is a mapping
from H into D (B), and Ar is a mapping from H into itself. Let B ⊂ H × H be
a maximal monotone multi-valued mapping, and v, w ∈ H. Then, the following
holds: if ⟨a− v, b− w⟩ ≥ 0 for all (a, b) ∈ B, then (v, w) ∈ B. For more details,
see Takahashi [27] and [28].

Hojo [6] proved the following theorem, which clarifies a set of assumptions that
guarantees that there exist common attractive and fixed points of two normally
2-generalized hybrid mappings.

Theorem 2.1 ([6]). Let C be a nonempty subset of H, and let S and T be com-
mutative normally 2-generalized hybrid mappings from C into itself. Suppose that
there exists an element z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded.
Then, A (S) ∩ A (T ) is nonempty. Additionally, if C is closed and convex, then
F (S) ∩ F (T ) is nonempty.

In the next lemma, the part (a) was proved by Takahashi [28], while (b) was
established by Maruyama et al. [22] to deal with 2-generalized hybrid mappings.
For a proof of (c), see [19].

Lemma 2.2 ([22, 28]). Let x, y, z, w ∈ H and a, b, c, d ∈ R. Then, the following
hold:

(a) If a+ b = 1, then ∥ax+ by∥2 = a ∥x∥2 + b ∥y∥2 − ab ∥x− y∥2.
(b) If a+ b+ c = 1, then

∥ax+ by + cz∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2

− ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .
(c) If a+ b+ c+ d = 1, then

∥ax+ by + cz + dw∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2

− ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2

− bc ∥y − z∥2 − bd ∥y − w∥2 − cd ∥z − w∥2 .
The following lemma was proved by Takahashi [28] as Problem 8.2.1. For com-

pleteness, we prove it here.

Lemma 2.3 ([28]). Let {xn} be a sequence of real numbers that is bounded from
below, and let {ηn} be a sequence of nonnegative real numbers such that

∑∞
n=1 ηn <

∞. Supposed that xn+1 ≤ xn + ηn for all n ∈ N. Then, {xn} is convergent.

Proof. We prove that lim supm→∞ xm ≤ lim infn→∞ xn and lim supm→∞ xm < ∞.
Let m,n ∈ N with m ≥ n. It holds from an assumption that

xn+1 ≤ xn + ηn,
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xn+2 ≤ xn+1 + ηn+1,

...

xm+1 ≤ xm + ηm.

Summing these inequalities, we obtain

xm+1 ≤ xn +

m∑
k=n

ηk ≤ xn +

∞∑
k=n

ηk

for all m ∈ N with m ≥ n. This means that lim supm→∞ xm < ∞. Taking
lim supm→∞, we have that

lim sup
m→∞

xm ≤ xn +

∞∑
k=n

ηk

for all n ∈ N. Since
∑∞

n=1 ηk < ∞, it holds that
∑∞

k=n ηk → 0 as n → ∞. Therefore,
taking lim infn→∞, we obtain

lim sup
m→∞

xm ≤ lim inf
n→∞

xn.

This completes the proof. □

Note that if ηn = 0 for all n ∈ N in Lemma 2.3, the lemma simply asserts that
a sequence of real numbers that is monotone decreasing and bounded from below
is convergent. The next lemma, together with Lemma 2.3, will be utilized in the
proofs of our main theorems. Basing on the proofs of Lemma 2 in Kamimura and
Takahashi [12] and Lemma 8.2.1 in Takahashi [28], we extend their results to a case
with finitely many error terms.

Lemma 2.4. Let C be a nonempty and convex subset of H, let A be a nonempty,
closed and convex subset of H, and let PA be the metric projection from H onto A.
Let {an}, {bn}, {cn}, and {dn} be sequences of real numbers in the interval [0, 1]
such that an + bn + cn + dn = 1 for all n ∈ N. Let {αn}, {βn}, {γn}, and {δn}
be sequences of nonnegative real numbers such that

∑∞
n=1 αn < ∞,

∑∞
n=1 βn < ∞,∑∞

n=1 γn < ∞, and
∑∞

n=1 δn < ∞. Let {yn}, {zn}, and {wn} be sequences in C.
Given x1 ∈ C, define a sequence {xn} in C as follows:

xn+1 = anXn + bnYn + cnZn + dnWn (∈ C) ,

where

Xn ∈ C such that ∥Xn − xn∥ ≤ αn,(2.1)

Yn ∈ C such that ∥Yn − yn∥ ≤ βn,(2.2)

Zn ∈ C such that ∥Zn − zn∥ ≤ γn,(2.3)

Wn ∈ C such that ∥Wn − wn∥ ≤ δn.(2.4)

Suppose that

∥yn − u∥ ≤ ∥xn − u∥ , ∥zn − u∥ ≤ ∥xn − u∥ ,(2.5)

∥wn − u∥ ≤ ∥xn − u∥(2.6)
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for all u ∈ A and n ∈ N. Then, {PAxn} converges in A, in other words, there exists
an element x ∈ A and PAxn → x.

Proof. Define ηn ≡ αn + βn + γn + δn ∈ R. Then, it holds that ηn ≥ 0 for all n ∈ N
and

∑∞
n=1 ηn < ∞. First, we verify that

(2.7) ∥xn+1 − u∥ ≤ ∥xn − u∥+ ηn

for all u ∈ A and n ∈ N. Indeed, it holds from (2.1)–(2.4) that

∥xn+1 − u∥ = ∥an (Xn − u) + bn (Yn − u) + cn (Zn − u) + dn (Wn − u)∥
≤ an ∥Xn − u∥+ bn ∥Yn − u∥+ cn ∥Zn − u∥+ dn ∥Wn − u∥
≤ an (∥Xn − xn∥+ ∥xn − u∥) + bn (∥Yn − yn∥+ ∥yn − u∥)

+cn (∥Zn − zn∥+ ∥zn − u∥) + dn (∥Wn − wn∥+ ∥wn − u∥)
≤ an (αn + ∥xn − u∥) + bn (βn + ∥yn − u∥)

+cn (γn + ∥zn − u∥) + dn (δn + ∥wn − u∥) .
Using (2.5) and (2.6), we have that

∥xn+1 − u∥ ≤ an (αn + ∥xn − u∥) + bn (βn + ∥xn − u∥)
+cn (γn + ∥xn − u∥) + dn (δn + ∥xn − u∥)

≤ ∥xn − u∥+ αn + βn + γn + δn

= ∥xn − u∥+ ηn.

From Lemma 2.3, {∥xn − u∥} converges for all u ∈ A, and thus, {xn} is bounded.
From (2.5)–(2.6), {yn} , {zn} , and {wn} are bounded. Since the metric projection
is nonexpansive, {PAxn} is also bounded.

Define g : A → R by

g (u) = lim
n→∞

∥xn − u∥ for each u ∈ A.

Then, g is nonexpansive and convex. Additionally, it satisfies that if ∥um∥ → ∞,
then g (um) → ∞, where {um} is a sequence in A. Therefore, there exists a unique
element x ∈ A such that

g (x) = inf
u∈A

g (u) .

(For these points, see Problem 5.3 in Takahashi [28].)
Define l ≡ g (x) (∈ R), that is,

(2.8) l ≡ g (x) ≡ lim
n→∞

∥xn − x∥ = inf
u∈A

lim
n→∞

∥xn − u∥ .

Since PAxm, x ∈ A, we have that 1
2 (PAxm + x) ∈ A for all m ∈ N. Therefore,

(2.9) l ≤ g

(
1

2
(PAxm + x)

)
= lim

n→∞

∥∥∥∥xn − 1

2
(PAxm + x)

∥∥∥∥
for all m ∈ N. Define

(2.10) M ≡ 2 sup
n∈N

∥∥∥∥xn − 1

2
(PAxn + x)

∥∥∥∥+ ∞∑
n=1

ηn (∈ R) .

Since {xn} and {PAxn} are bounded, M is a real number.



WEAK CONVERGENCE TO COMMON ATTRACTIVE POINTS 2555

Next, we show that

(2.11) lim sup
n→∞

∥xn − PAxn∥ ≤ l.

Since x ∈ A, it holds that ∥xn − PAxn∥ ≤ ∥xn − x∥ for all n ∈ N. Taking the lim sup
as n → ∞, we obtain

lim sup
n→∞

∥xn − PAxn∥ ≤ lim
n→∞

∥xn − x∥ = l.

Thus, (2.11) holds.
Our aim is to show that PAxn → x. Suppose by way of contradiction that

PAxn ↛ x. Then,

∃ε > 0 that satisfies the following:

∀n ∈ N, ∃n0 ≥ n such that ∥PAxn0 − x∥ ≥ ε.(2.12)

For l ≥ 0 and ε > 0, choose b > 0 such that

(2.13) 0 < b <

√
l2 +

ε2

8
− l, i.e., (l + b)2 < l2 +

ε2

8
.

For l ≥ 0 and b > 0, we have from (2.8), (2.11), and
∑∞

n=1 ηn < ∞ that

∃n1 ∈ N such that ∀n ≥ n1,

∥xn − x∥ ≤ l + b, ∥xn − PAxn∥ ≤ l + b, M
∞∑
i=n

ηi ≤
ε2

8
,

where M is defined in (2.10). From (2.12), we can re-choose n0 (≥ n1) that satisfies
the following:

∥PAxn0 − x∥ ≥ ε,(2.14)

∥xn0 − x∥ ≤ l + b,(2.15)

∥xn0 − PAxn0∥ ≤ l + b,(2.16)

M
∞∑

i=n0

ηi ≤
ε2

8
.(2.17)

Since 1
2 (PAxn0 + x) ∈ A, we have from (2.7) that∥∥∥∥xn+n0+1 −

1

2
(PAxn0 + x)

∥∥∥∥ ≤
∥∥∥∥xn+n0 −

1

2
(PAxn0 + x)

∥∥∥∥+ ηn+n0

≤ · · ·

≤
∥∥∥∥xn0 −

1

2
(PAxn0 + x)

∥∥∥∥+ n+n0∑
i=n0

ηi

≤
∥∥∥∥xn0 −

1

2
(PAxn0 + x)

∥∥∥∥+ ∞∑
i=n0

ηi
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for all n ∈ N. Thus, we obtain∥∥∥∥xn+n0+1 −
1

2
(PAxn0 + x)

∥∥∥∥2 ≤
(∥∥∥∥xn0 −

1

2
(PAxn0 + x)

∥∥∥∥+ ∞∑
i=n0

ηi

)2

≤
∥∥∥∥xn0 −

1

2
(PAxn0 + x)

∥∥∥∥2 +M
∞∑

i=n0

ηi

=

∥∥∥∥12 (xn0 − PAxn0) +
1

2
(xn0 − x)

∥∥∥∥2 +M
∞∑

i=n0

ηi.

By using Lemma 2.2-(a), we have that∥∥∥∥xn+n0+1 −
1

2
(PAxn0 + x)

∥∥∥∥2 ≤ 1

2
∥xn0 − PAxn0∥

2 +
1

2
∥xn0 − x∥2

−1

4
∥PAxn0 − x∥2 +M

∞∑
i=n0

ηi.

From (2.14)–(2.17), we obtain∥∥∥∥xn+n0+1 −
1

2
(PAxn0 + x)

∥∥∥∥2 ≤ (l + b)2 − ε2

4
+

ε2

8
(2.18)

= (l + b)2 − ε2

8

for all n ∈ N. Since 1
2 (PAxn0 + x) ∈ A, we have from (2.7) and Lemma 2.3 that

the sequence {∥∥∥∥xn+n0+1 −
1

2
(PAxn0 + x)

∥∥∥∥2
}

n∈N

is convergent. It follows from (2.9) and (2.18) that

l2 ≤ lim
n→∞

∥∥∥∥xn+n0+1 −
1

2
(PAxn0 + x)

∥∥∥∥2
≤ (l + b)2 − ε2

8
.

Thus, l2 + ε2

8 ≤ (l + b)2, which contradicts (2.13). Thus, we obtain PAxn → x as
claimed. □

Letting αn = βn = γn = δn = 0 in Lemma 2.4, we obtain the following corollary.

Corollary 2.5. Let C be a nonempty and convex subset of H, let A be a nonempty,
closed and convex subset of H, and let PA be the metric projection from H onto A.
Let {an}, {bn}, {cn}, and {dn} be sequences of real numbers in the interval [0, 1]
such that an+bn+cn+dn = 1 for all n ∈ N. Let {yn}, {zn}, and {wn} be sequences
in C. Given x1 ∈ C, define a sequence {xn} in C as follows:

xn+1 = anxn + bnyn + cnzn + dnwn (∈ C) .
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Suppose that ∥yn − u∥ ≤ ∥xn − u∥, ∥zn − u∥ ≤ ∥xn − u∥, and ∥wn − u∥ ≤ ∥xn − u∥
for all u ∈ A and n ∈ N. Then, {PAxn} converges in A, in other words, there exists
an element x ∈ A and PAxn → x.

The following two lemmas conclude that a weak limit of a sequence is an attractive
point. The proof of Lemma 2.6 was developed in [26] and [20].

Lemma 2.6 ([17]). Let C be a nonempty subset of H, and let T be a normally 2-
generalized hybrid mapping from C into itself with A (T ) ̸= ∅. Let {xn} be a bounded
sequence in H. Define zn ≡ 1

n

∑n
k=1 T

kxn (∈ H) , and suppose that zni ⇀ v (∈ H),
where {zni} is a subsequence of {zn}. Then, v ∈ A (T ).

For development of proofs of Lemma 2.7, see [13] and [22].

Lemma 2.7 ( [16]). Let C be a nonempty subset of H, let S be a normally 2-
generalized hybrid mapping from C into itself, and let {xn} be a sequence in C. If
{xn} satisfies Sxn − xn → 0, S2xn − xn → 0 and xn ⇀ v, then v ∈ A (S).

The next lemma was substantially included in Kamimura and Takahashi [12].

Lemma 2.8. Let C be a nonempty subset of H, and let A ⊂ H ×H be a maximal
monotone multi-valued mapping on H such that its domain is included in C. Define
Jr = (I + rA)−1 for r > 0, where I is the identity mapping. Let {rn} be a sequence
of positive real numbers such that rn → ∞, and let {xn} be a bounded sequence in
H. Suppose that Jrni

xni ⇀ v ∈ C, where {rni} and {xni} are subsequences of {rn}
and {xn}, respectively. Then, v ∈ A−10.

Proof. Define Ar = 1
r (I − Jr), which is the Yoshida approximation of A for r > 0.

Since A ⊂ H × H is maximal monotone, the domains of Jr and Ar are H. Thus,
for the sequence {xn} in H, {Jrnxn} and {Arnxn} (⊂ H) are well-defined.

First, we show that Arni
xni → 0. Since {xn} is bounded and Jrn is nonexpansive

for all n ∈ N, {Jrnxn} is also bounded. Therefore, we have from rn → ∞ that∥∥Arni
xni

∥∥ =
1

rni

∥∥xni − Jrni
xni

∥∥→ 0

as i → ∞.
Our goal is to prove that (v, 0) ∈ A. Since A is maximal monotone, it suffices

to demonstrate that ⟨a− v, b− 0⟩ ≥ 0 for all (a, b) ∈ A. Let (a, b) ∈ A. We know
that (Jrnxn, Arnxn) ∈ A for all n ∈ N. Since A is monotone, it holds that

⟨a− Jrnxn, b−Arnxn⟩ ≥ 0.

Since Jrni
xni ⇀ v and Arni

xni → 0, replacing n by ni and taking the limit as

i → ∞, we obtain ⟨a− v, b− 0⟩ ≥ 0. This completes the proof. □

The following lemma was demonstrated by Takahashi and Takeuchi [31], which
is useful to prove fixed point approximations.

Lemma 2.9 ([31]). Let C be a nonempty subset of H, and let T be a mapping from
C into H. Then, A (T ) ∩ C ⊂ F (T ).
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3. Weak Convergence for Nonlinear Mappings

This section presents two types of iterations (1.5) and (1.6) to approximate com-
mon attractive points of normally 2-generalized hybrid mappings. The results are
obtained under settings with finitely many error terms. The proofs do not rely on
the assumption that the domains of the mappings are closed. By additionally sup-
posing that the domains are closed, we obtain approximation methods for finding
fixed points. The fundamentals of the proofs were developed by many authors. For
example, see [7, 12,13,19,22,28,33].

Theorem 3.1. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A (S) ∩
A (T ) is nonempty. Let PA be the metric projection from H onto A (S) ∩ A (T ).
Let a, b ∈ (0, 1) such that a ≤ b, and let {an}, {bn}, and {cn} be sequences of
real numbers such that an + bn + cn = 1 and 0 < a ≤ an, bn, cn ≤ b < 1 for all
n ∈ N. Let {αn}, {βn}, and {γn} be sequences of nonnegative real numbers such
that

∑∞
n=1 αn < ∞,

∑∞
n=1 βn < ∞, and

∑∞
n=1 γn < ∞. Define a sequence {xn} in

C as follows:

x1 ∈ C : given,

Xn ∈ C such that ∥Xn − xn∥ ≤ αn,(3.1)

Yn ∈ C such that

∥∥∥∥∥Yn − 1

n

n∑
k=1

Skxn

∥∥∥∥∥ ≤ βn,(3.2)

Zn ∈ C such that

∥∥∥∥∥Zn − 1

n

n∑
k=1

T kxn

∥∥∥∥∥ ≤ γn,(3.3)

xn+1 = anXn + bnYn + cnZn ∈ C for all n ∈ N.

Then, the sequence {xn} converges weakly to a common attractive point x ∈ A (S)∩
A (T ), where x ≡ limn→∞ PAxn. Additionally, if C is closed, then {xn} converges
weakly to a common fixed point x̂ ≡ limn→∞ PFxn ∈ F (S)∩F (T ), where PF is the
metric projection form H onto F (S) ∩ F (T ).

Proof. Note that from Takahashi and Takeuchi [31], A (S) ∩ A (T ) is a closed and
convex subset of H. Since A (S) ∩ A (T ) ̸= ∅ is assumed, there exists the metric
projection PA from H onto A (S) ∩A (T ).

Define yn ≡ 1
n

∑n
k=1 S

kxn (∈ C) and zn ≡ 1
n

∑n
k=1 T

kxn (∈ C). It is easy to verify
that

(3.4) ∥yn − u∥ ≤ ∥xn − u∥ and ∥zn − u∥ ≤ ∥xn − u∥

for all u ∈ A (S) ∩A (T ) and n ∈ N. Indeed, since u ∈ A (S), we have that

∥yn − u∥ =

∥∥∥∥∥ 1n
n∑

k=1

Skxn − u

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n∑

k=1

Skxn − nu

∥∥∥∥∥
=

1

n

∥∥∥∥∥
n∑

k=1

(
Skxn − u

)∥∥∥∥∥ ≤ 1

n

n∑
k=1

∥∥∥(Skxn − u
)∥∥∥
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≤ 1

n

n∑
k=1

∥xn − u∥ = ∥xn − u∥ .

Similarly, ∥zn − u∥ ≤ ∥xn − u∥ can be proved since u ∈ A (T ).
We show that the sequence {PAxn} is convergent in A (S)∩A (T ). Consider the

case of dn = 0 for all n ∈ N in Lemma 2.4. Assumptions (3.1)–(3.3) imply (2.1)–
(2.3), respectively. Also, from (3.4), the conditions in (2.5) are satisfied. Thus, from
Lemma 2.4, there exists x ∈ A (S)∩A (T ) such that PAxn → x. Our first aim is to
show that xn ⇀ x.

Note that the following hold:

(3.5)

∥Xn − u∥ ≤ ∥xn − u∥+ αn,

∥Yn − u∥ ≤ ∥xn − u∥+ βn,

∥Zn − u∥ ≤ ∥xn − u∥+ γn

for all u ∈ A (S) ∩A (T ) and n ∈ N. Indeed, it holds from (3.1) that

∥Xn − u∥ ≤ ∥Xn − xn∥+ ∥xn − u∥
≤ αn + ∥xn − u∥ .

It follows from (3.2) and (3.4) that

∥Yn − u∥ ≤ ∥Yn − yn∥+ ∥yn − u∥
≤ βn + ∥xn − u∥

since u ∈ A (S). Similarly, since u ∈ A (T ), we can obtain ∥Zn − u∥ ≤ ∥xn − u∥+γn
by using (3.3) and (3.4).

Next, we show that the sequence {∥xn − u∥} is convergent in R for all u ∈
A (S) ∩ A (T ). Define ηn ≡ αn + βn + γn (≥ 0). Since

∑∞
n=1 ηn < ∞, from Lemma

2.3, it suffices to demonstrate that

(3.6) ∥xn+1 − u∥ ≤ ∥xn − u∥+ ηn

for all u ∈ A (S) ∩ A (T ) and n ∈ N. The inequality (3.6) can be verified by using
(3.5) as follows:

∥xn+1 − u∥ = ∥an (Xn − u) + bn (Yn − u) + cn (Zn − u)∥
≤ an ∥Xn − u∥+ bn ∥Yn − u∥+ cn ∥Zn − u∥
≤ an (∥xn − u∥+ αn) + bn (∥xn − u∥+ βn) + cn (∥xn − u∥+ γn)

≤ ∥xn − u∥+ ηn.

Thus, {∥xn − u∥} is convergent. Consequently, {xn} is bounded. Since PA is non-
expansive, {PAxn} is also bounded.

Let us show that

(3.7) anbn ∥Xn − Yn∥2 + bncn ∥Yn − Zn∥2 + cnan ∥Zn −Xn∥2

≤ ∥xn − u∥2 − ∥xn+1 − u∥2 +Mηn

for all u ∈ A (S) ∩A (T ) and n ∈ N, where
M ≡ sup

n∈N
(2 ∥xn − u∥+ ηn) .
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Since {xn} and {ηn} are bounded, M is a real number. The inequality (3.7) can be
demonstrated as follows. By using Lemma 2.2-(b), we obtain

∥xn+1 − u∥2 = ∥an (Xn − u) + bn (Yn − u) + cn (Zn − u)∥2

= an ∥Xn − u∥2 + bn ∥Yn − u∥2 + cn ∥Zn − u∥2

− anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2 .

From (3.5), we have that

∥xn+1 − u∥2

≤ an (∥xn − u∥+ αn)
2 + bn (∥xn − u∥+ βn)

2 + cn (∥xn − u∥+ γn)
2

−anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2

= an ∥xn − u∥2 + bn ∥xn − u∥2 + cn ∥xn − u∥2

+an
(
2 ∥xn − u∥αn + α2

n

)
+ bn

(
2 ∥xn − u∥βn + β2

n

)
+cn

(
2 ∥xn − u∥ γn + γ2n

)
−anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2

≤ ∥xn − u∥2 +
(
2 ∥xn − u∥αn + α2

n

)
+
(
2 ∥xn − u∥βn + β2

n

)
+
(
2 ∥xn − u∥ γn + γ2n

)
−anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2

≤ ∥xn − u∥2 + αn (2 ∥xn − u∥+ αn) + βn (2 ∥xn − u∥+ βn)

+γn (2 ∥xn − u∥+ γn)

−anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2

≤ ∥xn − u∥2 + αn (2 ∥xn − u∥+ ηn) + βn (2 ∥xn − u∥+ ηn)

+γn (2 ∥xn − u∥+ ηn)

−anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2

≤ ∥xn − u∥2 +Mηn

−anbn ∥Xn − Yn∥2 − bncn ∥Yn − Zn∥2 − cnan ∥Zn −Xn∥2 .
This means that (3.7) holds.

Since {∥xn − u∥} is convergent for u ∈ A (S) ∩ A (T ) and ηn → 0, we have from
(3.7) that

(3.8) Xn − Yn → 0 and Xn − Zn → 0.

Furthermore, it holds that

(3.9) xn − yn → 0 and xn − zn → 0.

Indeed, it follow from (3.1), (3.8) and (3.2) that

∥xn − yn∥ ≤ ∥xn −Xn∥+ ∥Xn − Yn∥+ ∥Yn − yn∥
≤ αn + ∥Xn − Yn∥+ βn → 0.

Similarly, we can prove that xn − zn → 0.
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We show that xn ⇀ x. Let {xni} be a subsequence of {xn}. Since {xni} is
bounded, there exists a subsequence

{
xnj

}
of {xni} and v ∈ H such that xnj ⇀ v.

From (3.9), it holds that
ynj ⇀ v and znj ⇀ v.

We have from Lemma 2.6 that v ∈ A (S) ∩A (T ). Therefore, it follows that

⟨xn − PAxn, PAxn − v⟩ ≥ 0

for all n ∈ N. Since {xn} and {PAxn} are bounded, we have

⟨xn − PAxn, v − x⟩ ≤ ⟨xn − PAxn, PAxn − x⟩
≤ ∥xn − PAxn∥ ∥PAxn − x∥
≤ L ∥PAxn − x∥

for all n ∈ N, where L ≡ supn∈N ∥xn − PAxn∥ ∈ R. Replacing n by nj , and taking
the limit as j → ∞, we obtain

⟨v − x, v − x⟩ ≤ 0.

Thus, v = x. This means that xn ⇀ x.
Assume, in addition to the other assumptions, that C is closed inH. Our goal is to

prove that xn ⇀ x̂ ≡ limk→∞ PFxk. Since C is weakly closed and xn ⇀ x, it follows
that x ∈ C, where x ≡ limn→∞ PAxn. This implies that x ∈ C ∩ A (S) ∩ A (T ).
From Lemma 2.9, we have that x ∈ F (S)∩F (T ). Thus, F (S)∩F (T ) is nonempty.
Since S and T are quasi-nonexpansive, F (S) ∩ F (T ) is closed and convex. Hence,
there exists the metric projection PF from H onto F (S)∩F (T ). In much the same
way as the proof of (3.4), we obtain

∥yn − u∥ ≤ ∥xn − u∥ and ∥zn − u∥ ≤ ∥xn − u∥
for all u ∈ F (S)∩F (T ) and n ∈ N since S and T are quasi-nonexpansive. Thus, we
have from Lemma 2.4 that {PFxn} converges strongly to an element x̂ of F (S) ∩
F (T ), that is, x̂ ≡ limn→∞ PFxn. We show that

x
(
≡ lim

n→∞
PAxn

)
= x̂

(
≡ lim

n→∞
PFxn

)
.

Since x ∈ F (S) ∩ F (T ), we have that

⟨xn − PFxn, PFxn − x⟩ ≥ 0

for all n ∈ N. Since xn ⇀ x and PFxn → x̂, we have that ⟨x − x̂, x̂ − x⟩ ≥ 0,
which means that x̂ = x. Hence, {xn} converges weakly to x̂ = limn→∞ PFxn ∈
F (S) ∩ F (T ). This completes the proof. □

Letting αn = βn = γn = 0 in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A (S) ∩
A (T ) is nonempty. Let PA be the metric projection from H onto A (S) ∩ A (T ).
Let a, b ∈ (0, 1) such that a ≤ b, and let {an}, {bn}, and {cn} be sequences of real
numbers such that an + bn + cn = 1 and 0 < a ≤ an, bn, cn ≤ b < 1 for all n ∈ N.
Define a sequence {xn} in C as follows:

x1 ∈ C : given
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xn+1 = anxn + bn
1

n

n∑
k=1

Skxn + cn
1

n

n∑
k=1

T kxn ∈ C for all n ∈ N.

Then, the sequence {xn} converges weakly to a common attractive point x ∈ A (S)∩
A (T ), where x ≡ limn→∞ PAxn. Additionally, if C is closed, then {xn} converges
weakly to a common fixed point x̂ ≡ limn→∞ PFxn ∈ F (S)∩F (T ), where PF is the
metric projection form H onto F (S) ∩ F (T ).

The next theorem provides an alternative method to approximate common at-
tractive and fixed points of normally 2-generalized hybrid mappings.

Theorem 3.3. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A (S) ∩
A (T ) is nonempty. Let PA be the metric projection from H onto A (S)∩A (T ). Let
a, b ∈ (0, 1) such that a ≤ b, and let {an}, {bn}, {cn}, and {dn} be sequences of real
numbers such that an + bn + cn + dn = 1 and 0 < a ≤ an, bn, cn, dn ≤ b < 1 for all
n ∈ N. Let {αn}, {βn}, {γn}, and {δn} be sequences of nonnegative real numbers
such that

∑∞
n=1 αn < ∞,

∑∞
n=1 βn < ∞,

∑∞
n=1 γn < ∞, and

∑∞
n=1 δn < ∞. Define

a sequence {xn} in C as follows:

x1 ∈ C : given

Xn ∈ C such that ∥Xn − xn∥ ≤ αn,(3.10)

Yn ∈ C such that ∥Yn − Sxn∥ ≤ βn,(3.11)

Zn ∈ C such that
∥∥Zn − S2xn

∥∥ ≤ γn,(3.12)

Wn ∈ C such that

∥∥∥∥∥Wn − 1

n

n∑
k=1

T kxn

∥∥∥∥∥ ≤ δn,(3.13)

xn+1 = anXn + bnYn + cnZn + dnWn ∈ C for all n ∈ N.

Then, the sequence {xn} converges weakly to a common attractive point x ∈ A (S)∩
A (T ), where x ≡ limn→∞ PAxn. Additionally, if C is closed, then {xn} converges
weakly to a common fixed point x̂ ≡ limn→∞ PFxn ∈ F (S)∩F (T ), where PF is the
metric projection form H onto F (S) ∩ F (T ).

The proof is analogous to that of Theorem 3.1.

Proof. Note that there exists the metric projection PA from H onto A (S) ∩A (T ).
The following relationships can be easily verified:

∥Sxn − u∥ ≤ ∥xn − u∥ ,
∥∥S2xn − u

∥∥ ≤ ∥xn − u∥ ,(3.14) ∥∥∥∥∥ 1n
n∑

k=1

T kxn − u

∥∥∥∥∥ ≤ ∥xn − u∥

for all u ∈ A (S) ∩A (T ) and n ∈ N.
From (3.14), we have that the sequence {PAxn} is convergent in A (S) ∩ A (T ).

This fact can be ascertained as follows: Remind Lemma 2.4. Define yn ≡ Sxn (∈ C) ,
zn ≡ S2xn (∈ C) , and wn ≡ 1

n

∑n
k=1 T

kxn (∈ C). Assumptions (3.10)–(3.13) imply
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(2.1)–(2.4), respectively. Also, from (3.14), the conditions (2.5) and (2.6) are satis-
fied. Thus, from Lemma 2.4, there exists x ∈ A (S) ∩ A (T ) such that PAxn → x.
Our first aim is to show that xn ⇀ x.

By using (3.14), we can show that

∥Xn − u∥ ≤ ∥xn − u∥+ αn, ∥Yn − u∥ ≤ ∥xn − u∥+ βn,(3.15)

∥Zn − u∥ ≤ ∥xn − u∥+ γn, ∥Wn − u∥ ≤ ∥xn − u∥+ δn

for all u ∈ A (S) ∩A (T ) and n ∈ N. Indeed, it holds from (3.11) and (3.14) that

∥Yn − u∥ ≤ ∥Yn − Sxn∥+ ∥Sxn − u∥
≤ βn + ∥xn − u∥

since u ∈ A (S). Similarly, we can obtain the other parts of (3.15).
Next, we prove that the sequence {∥xn − u∥} is convergent in R for all u ∈

A (S)∩A (T ). Define ηn ≡ αn + βn + γn + δn (∈ R). Since
∑∞

n=1 ηn < ∞, it suffices
to demonstrate that

(3.16) ∥xn+1 − u∥ ≤ ∥xn − u∥+ ηn

for all u ∈ A (S) ∩A (T ). It holds from (3.15) that

∥xn+1 − u∥ = ∥an (Xn − u) + bn (Yn − u) + cn (Zn − u) + dn (Wn − u)∥
≤ an ∥Xn − u∥+ bn ∥Yn − u∥+ cn ∥Zn − u∥+ dn ∥Wn − u∥
≤ an (∥xn − u∥+ αn) + bn (∥xn − u∥+ βn)

+cn (∥xn − u∥+ γn) + dn (∥xn − u∥+ δn)

≤ ∥xn − u∥+ ηn.

We have from Lemma 2.3 and (3.16) that {∥xn − u∥} is convergent for all u ∈
A (S) ∩ A (T ). Thus, the sequence {xn} is bounded. Since PA is nonexpansive,
{PAxn} is also bounded.

Let us show that

anbn ∥Xn − Yn∥2 + ancn ∥Xn − Zn∥2 + andn ∥Xn −Wn∥2(3.17)

+ bncn ∥Yn − Zn∥2 + bndn ∥Yn −Wn∥2 + cndn ∥Zn −Wn∥2

≤ ∥xn − u∥2 − ∥xn+1 − u∥2 +Mηn

for all u ∈ A (S) ∩A (T ) and n ∈ N, where

M ≡ sup
n∈N

(2 ∥xn − u∥+ ηn) ∈ R.

Indeed, by using Lemma 2.2-(c), we obtain

∥xn+1 − u∥2 = ∥an (Xn − u) + bn (Yn − u) + cn (Zn − u) + dn (Wn − u)∥2

= an ∥Xn − u∥2 + bn ∥Yn − u∥2 + cn ∥Zn − u∥2 + dn ∥Wn − u∥2

−anbn ∥Xn − Yn∥2 − ancn ∥Xn − Zn∥2 − andn ∥Xn −Wn∥2

−bncn ∥Yn − Zn∥2 − bndn ∥Yn −Wn∥2 − cndn ∥Zn −Wn∥2 .
We have from (3.15) that

∥xn+1 − u∥2 ≤ an (∥xn − u∥+ αn)
2 + bn (∥xn − u∥+ βn)

2
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+cn (∥xn − u∥+ γn)
2 + dn (∥xn − u∥+ δn)

2

−anbn ∥Xn − Yn∥2 − ancn ∥Xn − Zn∥2 − andn ∥Xn −Wn∥2

−bncn ∥Yn − Zn∥2 − bndn ∥Yn −Wn∥2 − cndn ∥Zn −Wn∥2

= an ∥xn − u∥2 + bn ∥xn − u∥2 + cn ∥xn − u∥2 + dn ∥xn − u∥2

+an
(
2 ∥xn − u∥αn + α2

n

)
+ bn

(
2 ∥xn − u∥βn + β2

n

)
+cn

(
2 ∥xn − u∥ γn + γ2n

)
+ dn

(
2 ∥xn − u∥ δn + δ2n

)
−anbn ∥Xn − Yn∥2 − ancn ∥Xn − Zn∥2 − andn ∥Xn −Wn∥2

−bncn ∥Yn − Zn∥2 − bndn ∥Yn −Wn∥2 − cndn ∥Zn −Wn∥2

≤ ∥xn − u∥2 + αn (2 ∥xn − u∥+ αn) + βn (2 ∥xn − u∥+ βn)

+γn (2 ∥xn − u∥+ γn) + δn (2 ∥xn − u∥+ δn)

−anbn ∥Xn − Yn∥2 − ancn ∥Xn − Zn∥2 − andn ∥Xn −Wn∥2

−bncn ∥Yn − Zn∥2 − bndn ∥Yn −Wn∥2 − cndn ∥Zn −Wn∥2

≤ ∥xn − u∥2 + αn (2 ∥xn − u∥+ ηn) + βn (2 ∥xn − u∥+ ηn)

+γn (2 ∥xn − u∥+ ηn) + δn (2 ∥xn − u∥+ ηn)

−anbn ∥Xn − Yn∥2 − ancn ∥Xn − Zn∥2 − andn ∥Xn −Wn∥2

−bncn ∥Yn − Zn∥2 − bndn ∥Yn −Wn∥2 − cndn ∥Zn −Wn∥2

≤ ∥xn − u∥2 +M (αn + βn + γn + δn)

−anbn ∥Xn − Yn∥2 − ancn ∥Xn − Zn∥2 − andn ∥Xn −Wn∥2

−bncn ∥Yn − Zn∥2 − bndn ∥Yn −Wn∥2 − cndn ∥Zn −Wn∥2 .
This means that (3.17) holds.

Since {∥xn − u∥} is convergent and ηn → 0, we have from (3.17) that

(3.18) Xn − Yn → 0, Xn − Zn → 0, Xn −Wn → 0.

Furthermore, it holds that

xn − Sxn → 0, xn − S2xn → 0,(3.19)

xn − 1

n

n∑
k=1

T kxn → 0.(3.20)

Indeed, it follow from (3.10), (3.11) and (3.18) that

∥xn − Sxn∥ ≤ ∥xn −Xn∥+ ∥Xn − Yn∥+ ∥Yn − Sxn∥
≤ αn + ∥Xn − Yn∥+ βn → 0.

Similarly, we can prove xn − S2xn → 0 and xn − 1
n

∑n
k=1 T

kxn → 0.
We show that xn ⇀ x. Let {xni} be a subsequence of {xn}. Since {xni} is

bounded, there exists a subsequence
{
xnj

}
of {xni} and v ∈ H such that xnj ⇀ v.

We have from (3.19) and Lemma 2.7 that v ∈ A (S). Furthermore, it follows from
(3.20) that

(3.21)
1

nj

nj∑
k=1

T kxnj ⇀ v.



WEAK CONVERGENCE TO COMMON ATTRACTIVE POINTS 2565

From (3.21) and Lemma 2.6, we have that v ∈ A (T ). Therefore, v ∈ A (S)∩A (T ).
As a result, it follows that

⟨xn − PAxn, PAxn − v⟩ ≥ 0

for all n ∈ N. Since {xn} and {PAxn} are bounded, we have

⟨xn − PAxn, v − x⟩ ≤ ⟨xn − PAxn, PAxn − x⟩
≤ ∥xn − PAxn∥ ∥PAxn − x∥
≤ L ∥PAxn − x∥

for all n ∈ N, where L ≡ supn∈N ∥xn − PAxn∥ ∈ R. Replacing n by nj , and taking
the limit as j → ∞, we obtain

⟨v − x, v − x⟩ ≤ 0.

Thus, v = x. This means that xn ⇀ x.
Next, we additionally assume that C is closed in H. We prove that xn ⇀ x̂ ≡

limk→∞ PFxk. Since C is weakly closed, it follows that x ∈ C ∩ A (S) ∩ A (T ),
where x ≡ limn→∞ PAxn. From Lemma 2.9, we have that x ∈ F (S)∩F (T ). Thus,
F (S) ∩ F (T ) is nonempty. Since S and T are quasi-nonexpansive, F (S) ∩ F (T )
is closed and convex. Hence, there exists the metric projection PF from H onto
F (S) ∩ F (T ). We can easily prove that

∥Sxn − u∥ ≤ ∥xn − u∥ ,
∥∥S2xn − u

∥∥ ≤ ∥xn − u∥ ,∥∥∥∥∥ 1n
n∑

k=1

T kxn − u

∥∥∥∥∥ ≤ ∥xn − u∥

for all u ∈ F (S)∩F (T ) and n ∈ N since S and T are quasi-nonexpansive. Thus, we
have from Lemma 2.4 that {PFxn} converges strongly to an element x̂ of F (S) ∩
F (T ), that is, x̂ ≡ limn→∞ PFxn. We show that

x
(
≡ lim

n→∞
PAxn

)
= x̂

(
≡ lim

n→∞
PFxn

)
.

Since x ∈ F (S) ∩ F (T ), we have from a property of the metric projection that

⟨xn − PFxn, PFxn − x⟩ ≥ 0

for all n ∈ N. Since xn ⇀ x and PFxn → x̂, we have that ⟨x− x̂, x̂− x⟩ ≥ 0, which
means that x̂ = x. This implies that {xn} converges weakly to x̂ = limn→∞ PFxn ∈
F (S) ∩ F (T ). This completes the proof. □

Letting αn = βn = γn = δn = 0 in Theorem 3.3, we obtain the following corollary,
which is a hybrid of the mean convergence method (1.2) and Kondo and Takahashi’s
type (1.4).

Corollary 3.4. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A (S) ∩
A (T ) is nonempty. Let PA be the metric projection from H onto A (S)∩A (T ). Let
a, b ∈ (0, 1) such that a ≤ b, and let {an}, {bn}, {cn}, and {dn} be sequences of real
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numbers such that an + bn + cn + dn = 1 and 0 < a ≤ an, bn, cn, dn ≤ b < 1 for all
n ∈ N. Define a sequence {xn} in C as follows:

x1 ∈ C : given

xn+1 = anxn + bnSxn + cnS
2xn + dn

1

n

n∑
k=1

T kxn ∈ C for all n ∈ N.

Then, {xn} converges weakly to a common attractive point x ∈ A (S)∩A (T ), where
x ≡ limn→∞ PAxn. Additionally, if C is closed, then {xn} converges weakly to a
common fixed point x̂ ≡ limn→∞ PFxn ∈ F (S) ∩ F (T ), where PF is the metric
projection form H onto F (S) ∩ F (T ).

4. Weak Convergence for Resolvent

In this section, we present a weak convergence theorem to a common null point
of two maximal monotone multi-valued mappings by using resolvents.

Theorem 4.1. Let C be a nonempty, closed and convex subset of H. Let A,B ⊂
H ×H be maximal monotone multi-valued mappings on H such that their domains
are included in C. Let JA

r = (I + rA)−1 be the resolvent of A for r > 0, and

let JB
s = (I + sB)−1 be the resolvent of B for s > 0. Suppose that A−10 ∩ B−10

is nonempty. Let P : H → A−10 ∩ B−10 be the metric projection from H onto
A−10 ∩ B−10. Let {rn} and {sn} be sequences of positive real numbers such that
rn → ∞ and sn → ∞. Let a, b ∈ (0, 1) such that a ≤ b, and let {an}, {bn}, and {cn}
be sequences of real numbers such that an+bn+cn = 1 and 0 < a ≤ an, bn, cn ≤ b < 1
for all n ∈ N. Let {αn}, {βn}, and {γn} be sequences of nonnegative real numbers
such that

∑∞
n=1 αn < ∞,

∑∞
n=1 βn < ∞ and

∑∞
n=1 γn < ∞. Define a sequence

{xn} in C as follows:

x1 ∈ C : given

Xn ∈ C such that ∥Xn − xn∥ ≤ αn,(4.1)

Yn ∈ C such that
∥∥Yn − JA

rnxn
∥∥ ≤ βn,(4.2)

Zn ∈ C such that
∥∥Zn − JB

snxn
∥∥ ≤ γn,(4.3)

xn+1 = anXn + bnYn + cnZn ∈ C for all n ∈ N.

Then, {xn} converges weakly to a common null point x ∈ A−10 ∩ B−10, where
x ≡ limn→∞ Pxn.

The proof is analogous to that of Theorem 3.1.

Proof. Since A and B are maximal monotone, A−10∩B−10 is closed and convex in
C. Since A−10∩B−10 ̸= ∅ is assumed, there exists the metric projection P from H
onto A−10∩B−10. Furthermore, note that JA

rn and JB
sn are single-valued mappings

from H into C. Define yn ≡ JA
rnxn (∈ C) and zn ≡ JB

snxn (∈ C). It holds that

(4.4) ∥yn − u∥ ≤ ∥xn − u∥ and ∥zn − u∥ ≤ ∥xn − u∥
for all u ∈ A−10 ∩ B−10 and n ∈ N since A−10 = F

(
JA
rn

)
, B−10 = F

(
JB
sn

)
, and

the resolvents are nonexpansive. From Lemma 2.4, we can prove that the sequence
{Pxn} is convergent in A−10 ∩ B−10. Indeed, consider the case of dn = 0 in that



WEAK CONVERGENCE TO COMMON ATTRACTIVE POINTS 2567

lemma. Assumptions (4.1)–(4.3) imply (2.1)–(2.3), respectively. Also, from (4.4),
the conditions in (2.5) are satisfied. Thus, from Lemma 2.4, there exists an element
x ∈ A−10 ∩B−10 and Pxn → x. Our aim is to show that xn ⇀ x.

By using (4.4), we can show that

(4.5)

∥Xn − u∥ ≤ ∥xn − u∥+ αn,

∥Yn − u∥ ≤ ∥xn − u∥+ βn,

∥Zn − u∥ ≤ ∥xn − u∥+ γn

for all u ∈ A−10 ∩B−10 and n ∈ N. Indeed, it follows from (4.1) that

∥Xn − u∥ ≤ ∥Xn − xn∥+ ∥xn − u∥
≤ αn + ∥xn − u∥ .

Furthermore, it holds from (4.2) and (4.4) that

∥Yn − u∥ ≤ ∥Yn − yn∥+ ∥yn − u∥
≡

∥∥Yn − JA
rnxn

∥∥+ ∥∥JA
rnxn − u

∥∥
≤ βn + ∥xn − u∥

since JA
rn is nonexpansive and u ∈ A−10 = F

(
JA
rn

)
. Similarly, by using (4.3), (4.4)

and u ∈ B−10 = F
(
JB
sn

)
, we obtain ∥Zn − u∥ ≤ ∥xn − u∥+ γn.

Next, we verify that the sequence {∥xn − u∥} is convergent in R for all u ∈
A−10 ∩B−10. Define ηn ≡ αn + βn + γn (∈ R). In much the same way as the proof
of (3.6), we can demonstrate that

(4.6) ∥xn+1 − u∥ ≤ ∥xn − u∥+ ηn

for all u ∈ A−10 ∩B−10 by using (4.5). Since
∑∞

n=1 ηn < ∞, it holds from Lemma
2.3 that {∥xn − u∥} converges for all u ∈ A−10 ∩ B−10. Consequently, {xn} is a
bounded sequence. Since P is nonexpansive, {Pxn} is also bounded.

As the proof of (3.7), we can demonstrate that

anbn ∥Xn − Yn∥2 + bncn ∥Yn − Zn∥2 + cnan ∥Zn −Xn∥2(4.7)

≤ ∥xn − u∥2 − ∥xn+1 − u∥2 +Mηn

for all u ∈ A−10 ∩B−10 and n ∈ N, where
M ≡ sup

n∈N
(2 ∥xn − u∥+ ηn) ∈ R,

by using Lemma 2.2 and (4.5). Since {∥xn − u∥} is convergent and ηn → 0, we have
from (4.7) that

(4.8) Xn − Yn → 0 and Xn − Zn → 0.

Furthermore, it follows from (4.8) that

(4.9) xn − yn → 0 and xn − zn → 0.

Indeed, note that

∥xn − yn∥ ≤ ∥xn −Xn∥+ ∥Xn − Yn∥+ ∥Yn − yn∥
≤ αn + ∥Xn − Yn∥+ βn.
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Since αn → 0 and βn → 0, we have from (4.8) that xn − yn → 0. Similarly, we can
prove that xn − zn → 0.

We show that xn ⇀ x. For any subsequence {xni} of {xn}, there exists a subse-
quence

{
xnj

}
of {xni} and v ∈ H such that xnj ⇀ v. From (4.9),

ynj ≡ JA
rnj

xnj ⇀ v and znj ≡ JB
snj

xnj ⇀ v.

Since rnj → ∞ and snj → ∞, we have from Lemma 2.8 that v ∈ A−10 ∩ B−10.
Therefore, it follows that

⟨xn − Pxn, Pxn − v⟩ ≥ 0

for all n ∈ N. Since {xn} and {Pxn} are bounded, we have

⟨xn − Pxn, v − x⟩ ≤ ⟨xn − Pxn, Pxn − x⟩
≤ ∥xn − Pxn∥ ∥Pxn − x∥
≤ L ∥Pxn − x∥

for all n ∈ N, where L ≡ supn∈N ∥xn − Pxn∥ ∈ R. Replacing n by nj , and taking
the limit as j → ∞, we obtain

⟨v − x, v − x⟩ ≤ 0.

Thus, v = x. This means that xn ⇀ x. The completes the proof. □
Letting αn = βn = γn = 0, we obtain the following corollary:

Corollary 4.2. Let C be a nonempty, closed and convex subset of H. Let A,B ⊂
H ×H be maximal monotone multi-valued mapping on H such that their domains
are included in C. Let JA

r = (I + rA)−1 be the resolvent of A for r > 0, and

let JB
s = (I + sB)−1 be the resolvent of B for s > 0. Suppose that A−10 ∩ B−10

is nonempty. Let P : H → A−10 ∩ B−10 be the metric projection from H onto
A−10 ∩ B−10. Let {rn} and {sn} be sequences of positive real numbers such that
rn → ∞ and sn → ∞. Let a, b ∈ (0, 1) such that a ≤ b, and let {an}, {bn}, and {cn}
be sequences of real numbers such that an+bn+cn = 1 and 0 < a ≤ an, bn, cn ≤ b < 1
for all n ∈ N. Define a sequence {xn} in C as follows:

x1 ∈ C : given

xn+1 = anxn + bnJ
A
rnxn + cnJ

B
snxn ∈ C for all n ∈ N.

Then, {xn} converges weakly to a common null point x ∈ A−10 ∩ B−10, where
x ≡ limn→∞ Pxn.

As is well-known, the null point problems have direct links with optimization
problems; see Rockafellar [24], Kamimura and Takahashi [12], and Takahashi [28].
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