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WEAK CONVERGENCE THEOREMS TO COMMON
ATTRACTIVE POINTS OF NORMALLY 2-GENERALIZED
HYBRID MAPPINGS WITH ERRORS

ATSUMASA KONDO* AND WATARU TAKAHASHI!

ABSTRACT. We prove weak convergence theorems for finding common attractive
and fixed points of two normally 2-generalized hybrid mappings, which are not
necessarily commutative. Basing on the ideas of mean convergence by Baillon [3],
Shimizu and Takahashi [25,26], and Atsushiba and Takahashi [2], we establish
two alternative methods to approximate common attractive and fixed points.
Moreover, we apply the method to a common null point problem for two maximal
monotone multi-valued mappings. Our results are obtained under settings with
finitely many error terms.

1. INTRODUCTION

Let H be a real Hilbert space. Its inner product and norm are denoted by
(-, -y and |||, respectively. A mapping T : C' — H is said to be nonexpansive if
|Tx —Ty|| < ||z —y]| for all x,y € C, where C' is a nonempty subset of H. For
nonexpansive mappings, many types of approximation methods for finding fixed
points have been proposed. Reich [23] used Mann’s type [21] iteration

(1.1) Tl = AZpn + (L = Ay) Tz, for all n € N,

and showed that the sequence {z,} converges weakly to a fixed point of 7" in a
setting of Banach spaces. In (1.1), 21 = = € C is given, and N is the set of natural
numbers, and {\,} is a sequence of real numbers in the interval [0, 1] that satisfies
certain conditions. Atsushiba and Takahashi [2] employed the following iteration:

n—1n—1
(1.2) Tl = AnZpn + (1 — )\n)% Z Z SkTly, for all n € N,
k=0 =0
where 1 € C' is given, and demonstrated weak convergence to common fixed points
of S and T, where S and T are nonexpansive mappings such that ST = TS. The
idea of mean convergence as (1.2) based on Baillon [3] and Shimizu and Takahashi
[25,26]. For further developments of iteration (1.2), see Kurokawa and Takahashi
[20], Kohsaka [14], and Hojo and Takahashi [§].
Successive studies have demonstrated that conditions on the mapping 7' can be
partly discarded to prove convergence theorems. Kocourek et al., in their 2010’
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paper [13], defined a wide class of mappings that contains nonexpansive mappings
as special cases, and presented methods to approximate its fixed points. A mapping
T :C — H is called generalized hybrid [13] if there exist «, f € R such that

a|Ta = Tyl* + (1 = a) o = Tyl|* < BTz — y|* + (1 - B) = — ylI”

for all z,y € C, where R is the set of real numbers. The class of generalized hybrid
mappings simultaneously includes nonexpansive mappings, nonspreading mappings
[15], hybrid mappings [29], and \-hybrid mappings [1] as special cases. Note that
nonspreading mappings and hybrid mappings are not necessarily continuous; see
[10]. The type of nonspreading mappings is deduced from optimization problems.
The class of generalized hybrid mappings has been further extended. A
mapping 1" : C — C is called normally 2-generalized hybrid [16] if there exist

o, Bo, a1, B1, as, B2 € R such that Zi:o (o + Bn) >0, ag + a1 + o > 0, and
2
@z [|T%z = Ty||” + o | Tz = Ty|* + ao ||z — Ty||?
2
+ B2 | 7% — y||” + BT =yl + Bo l= — y)|> < 0

for all z,y € C. This class of mappings contains generalized hybrid mappings and
other classes of nonlinear mappings, e.g., normally generalized hybrid mappings [33]
and 2-generalized hybrid mappings [22]. Hojo et al. [9] gave examples that were
2-generalized hybrid but not generalized hybrid. Unlike the case of 2-generalized
hybrid mappings, it can be shown that a normally 2-generalized hybrid mapping
has at most one fixed point if 3°%_ (o, + 3,) > 0; see Theorem 4.3 in [18].

For a normally 2-generalized hybrid mapping 7', Kondo and Takahashi [16] de-
fined a sequence {x,} as follows:

(1.3) Tpa1 = anTp + bpTxy + cnT?a, € C,

where z1 € C is given, and {an,bn,cn} is a set of coefficients for a convex com-
bination. They showed a weak convergence of {x,} to an attractive point [31] of
T. An attractive point is defined in the next section. Let S and T be normally
2-generalized hybrid mappings from C' into itself that are not necessarily commuta-
tive. Kondo and Takahashi [19] proved a weak convergence to common attractive
and fixed points of S and T by using the following iteration:

(1.4) Tp+l = ApTn + bpSxy, + cnS?2n + dyTan + en Tz, for all n € N,

where 21 € C is given, and {an, by, cn,dn,en} is a set of coefficients for a con-
vex combination. For a common attractive point problem of two noncommutative
nonlinear mappings, see also [30] and [32].

In this paper, combining the ideas of iterations (1.2) and (1.4), we consider two
types of iterations formulated by

1 & 1 &
(1.5) Tpil = QpTp+ bng Z Sk, + cng ZT’%” and
k=1 k=1
1 n
(1.6) Tpi1 = Gny + bpSxp + cnS%x, + dp— Z T 2,
n

k=1
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where S and T are normally 2-generalized hybrid mappings, which are not necessar-
ily commutative. Using these iterations, we show that the sequence {x,} converges
weakly to common attractive and fixed points of S and T. Moreover, we apply
the method to a common null point problem for two maximal monotone multi-
valued mappings. Our results are obtained under settings with finitely many error
terms. Each error term will vanish rapidly as Kamimura and Takahashi [12] and
Takahashi [28].

2. PRELIMINARIES

This section briefly presents preliminary information and results. Throughout
this paper, we denote a real Hilbert space by H. Let {x,} be a sequence in H, and
let x be an element of H. We write the strong and weak convergence of {z,} to
x by z, — x and z,, — x, respectively. It is well-known that a closed and convex
subset of H is weakly closed. A sequence {z,} converges weakly to x if and only
if for every subsequence {ay,} of {z,}, there exists a subsequence {w,,} of {y,}
that converges weakly to x.

Let T': C — H be a mapping from C into H, where C' is a nonempty subset of
H. We denote sets of fixed and attractive points by

F(T) = {ueC:Tu=u} and
A(T) = {ueH:|Ty—u|| <|y—ul| forally € C},

respectively. Takahashi and Takeuchi, in their 2011’s paper [31], introduced the
concept of attractive points, and showed that the set of attractive points A (T') is
closed and convex in a Hilbert space. A mapping 7' : C — H with F (T) # 0
is called quasi-nonexpansive if ||Tz —ul| < |z —ul| for all z € C and v € F(T).
If a mapping 7" with F (T') # 0 is quasi-nonexpansive, then F (T) C A(T). We
know from [16] that a normally 2-generalized hybrid mapping with F (T') # 0 is
quasi-nonexpansive. We also know that the set of fixed points F'(T') of a quasi-
nonexpansive mapping is closed and convex; see [11]. A mapping T : C — H is
called firmly nonezpansive if |Tx — Ty||* < (x —y, Tx —Ty) for all z,y € C. Tt is
well-known that a firmly nonexpansive mapping is nonexpansive. For this type of
mappings, see, e.g., Browder [4] and Goebel and Kirk [5].

Let A be a nonempty, closed, and convex subset of H, and let P4 be the metric
projection from H onto A, that is, ||x — Paz|| < ||z — z|| for all z € H and z €
A. Tt is known that the metric projection is firmly nonexpansive, and thus, it is
nonexpansive. Furthermore, it holds that (z — Pqx, Psx —2) > 0 for all x € H
and z € A.

Let B : H — 2H be a multi-valued mapping defined on H. We write it as B C
Hx H. Its effective domain is denoted by D (B), that is, D (B) = {z € H : Bx # (}.
A multi-valued mapping B C H x H is called monotone if (x —y, u—v) > 0 for
all z,y € D (B), u € Bz, and v € By. For a monotone multi-valued mapping B on
H and r > 0, define J, = (I +rB)~", where I is the identity mapping on D (B).
It is called the resolvent of B for » > 0. It is well-known that J,. is single-valued
and firmly nonexpansive. Also, it is known that F (.J,) = B0 for all r > 0, where
B7'0 = {z € H:0 € Br}. For a monotone multi-valued mapping B on H and
r > 0, Yoshida approximation is defined as A, = % (I — J,.), which is also a single
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valued-mapping from D (B) into H. It is known that (J,z, A,x) € A for all x € H
and r > 0.

A monotone mapping is said to be maximal if its graph is not properly contained
by any other monotone mappings on H. For a maximal monotone multi-valued
mapping B C H x H, its null point set B~10 is a closed and convex subset of
its effective domain D (B). It is also known that if a multi-valued mapping B
is maximal monotone, its resolvent J, = (I + 7“B)71 and Yoshida approximation

r= % (I — J,) are defined on the whole area of H. In other words, J, is a mapping
from H into D (B), and A, is a mapping from H into itself. Let B C H x H be
a maximal monotone multi-valued mapping, and v,w € H. Then, the following
holds: if (@ —v, b—w) > 0 for all (a,b) € B, then (v,w) € B. For more details,
see Takahashi [27] and [28].

Hojo [6] proved the following theorem, which clarifies a set of assumptions that
guarantees that there exist common attractive and fixed points of two normally
2-generalized hybrid mappings.

Theorem 2.1 ([6]). Let C' be a nonempty subset of H, and let S and T be com-
mutative normally 2-generalized hybrid mappings from C into itself. Suppose that
there exists an element z € C such that {S*T'z : k,1 € N U {0}} is bounded.
Then, A(S) N A(T) is nonempty. Additionally, if C' is closed and convez, then
F(S)NF(T) is nonempty.

In the next lemma, the part (a) was proved by Takahashi [28], while (b) was
established by Maruyama et al. [22] to deal with 2-generalized hybrid mappings.
For a proof of (c), see [19].

Lemma 2.2 ([22,28]). Let z,y,z,w € H and a,b,c,d € R. Then, the following
hold:

(2) If a+b=1, then |lax + by|* = al|z|* + b]|y|* — ab|z — y|*.

(b) Ifa+b+c=1, then

laz + by + cz|* = a||z]|* + b lyl* + ||z
—abllz —y|* = bely — 2> — cal|z — z|*.
(¢c) Ifa+b+c+d=1, then
laz + by + ez + dw|® = a||z|* + blly|* + ¢ ||2]* + d [|w]?
—ablle —y|* - ac|x - z|* - ad ||z — w|®
—belly —z|* —bd ||y — w|* — cd ||z — w|*.

The following lemma was proved by Takahashi [28] as Problem 8.2.1. For com-
pleteness, we prove it here.

Lemma 2.3 ([28]). Let {z,} be a sequence of real numbers that is bounded from
below, and let {n,} be a sequence of nonnegative real numbers such thaty o> | m, <
oo. Supposed that xy+1 < xy + 1y for alln € N. Then, {x,} is convergent.

Proof. We prove that limsup,,, ., Tm < liminf, ,. 2, and limsup,,, ., Tm < 00.
Let m,n € N with m > n. It holds from an assumption that

Tpy1 < Ty + M,
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T2 < Tpgl + Nngtl,

T+l < T+ N

Summing these inequalities, we obtain

m 0
Tm+1 < mn""znk < xn""znk
k=n k=n

for all m € N with m > n. This means that limsup,, ,, zm < oo. Taking
lim sup,,,_,~,, we have that

(o]
limsup x,, <z, + Z Nk

m—00
k=n

for all n € N. Since > 7 | m < 00, it holds that >~ — 0 as n — oo. Therefore,
taking liminf, .., we obtain

limsup x,, < liminf x,.
m—00 n—00

This completes the proof. O

Note that if n, = 0 for all n € N in Lemma 2.3, the lemma simply asserts that
a sequence of real numbers that is monotone decreasing and bounded from below
is convergent. The next lemma, together with Lemma 2.3, will be utilized in the
proofs of our main theorems. Basing on the proofs of Lemma 2 in Kamimura and
Takahashi [12] and Lemma 8.2.1 in Takahashi [28], we extend their results to a case
with finitely many error terms.

Lemma 2.4. Let C' be a nonempty and convex subset of H, let A be a nonempty,
closed and convex subset of H, and let Ps be the metric projection from H onto A.
Let {an}, {bn}, {cn}, and {d,} be sequences of real numbers in the interval [0, 1]
such that an + by, + ¢ +dp, = 1 for all n € N. Let {o}, {Bn}, {m}, and {6,}
be sequences of nonnegative real numbers such that Y 2 ay, < 00, > o2 By < 00,
Yool Y < 00, and Y07 8, < oo. Let {yn}, {zn}, and {w,} be sequences in C.
Given x1 € C, define a sequence {xy} in C as follows:

Tn4+1 = an Xy + bnYn +cpndn + ann (G C) 5

where

(2.1) X, € C such that || X,, — zp]| < ay,
(2.2) Y, € C such that |Yn — ynll < Bn,
(2.3) Zn € C such that || Z,, — zn|| < Yn,
(2.4) W, € C such that |W,, — wy,]|| < dy.

Suppose that
(2.5) lyn —ull < llzn —ull, 20 —ull < [zn —ul],
(2.6) [wn — ul| < [z — ul
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forallu € A andn € N. Then, {Paxz,} converges in A, in other words, there exists
an element T € A and Paz,, — T.

Proof. Define n, = a, + Bn + 7n + 0 € R. Then, it holds that n, > 0 for all n € N
and Y 7 | n, < oo. First, we verify that

(2.7) 241 = ull < [0 = ull +nn
for all w € A and n € N. Indeed, it holds from (2.1)—(2.4) that
[ns1 —ull = llan (Xn —w) +bp (Yo —u) + cn (Zn — u) + dn (Wn — u)|
< ap || Xpn —ull +0p |V — u|| + en | Zn — ul| + dn [|Wh — ul|
< an ([ Xn = @pll + llzn — ull) + bn (Y = yall + lyn — ul)

ten ([[Zn = znll + |20 — ul]) + dn ([Wh — wn || + [Jwy, — ul])
an (an + |20 — ull) + bn (Bn + llyn — ull)
+cn (9 + 120 — ull) + dn (05 + [lwn — ul]) -
Using (2.5) and (2.6), we have that
[2nt1 —ull < an(on + lzn = ul)) + bp (B + llzn —ul)
+en (Vo + |0 — ull) + dn (0n + [lzn — ul])
< lzn —ul| + an + B+ Yo + On

= |len — ull + 1.

IA

From Lemma 2.3, {||z, — u||} converges for all u € A, and thus, {z,} is bounded.
From (2.5)-(2.6), {yn}, {zn}, and {w,} are bounded. Since the metric projection
is nonexpansive, { P4z, } is also bounded.

Define g : A — R by

g(u) = lim ||z, —u|| for each u € A.
n—oo
Then, g is nonexpansive and convex. Additionally, it satisfies that if ||u,|| — oo,

then g (uy,) — oo, where {u,,} is a sequence in A. Therefore, there exists a unique
element T € A such that

9(@) = inf g (u).
(For these points, see Problem 5.3 in Takahashi [28].)
Define | = g (7) (¢ R), that is,

(2.8) l=g([@) = nan;O |z, — || = éggnlingo |xn — ul| .
Since Pjx,,, T € A, we have that % (Pazy, +T) € A for all m € N. Therefore,

1
Tn = 5 (Paxy, + )

n—o0

(2.9) I<g @ (Pam +x)> — lim

for all m € N. Define

(2.10) M = 2sup

1
Tn — = (Paxy + T)
neN 2

—l—Znn(eR).

Since {x,} and {Pax,} are bounded, M is a real number.
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Next, we show that

(2.11) limsup ||z, — Pazy,|| <.

n—oo

Since T € A, it holds that ||z, — Paxy|| < ||z, — Z|| for all n € N. Taking the lim sup
as n — 0o, we obtain

limsup ||z, — Paz,|| < lim ||z, — 7| = 1.

Thus, (2.11) holds.
Our aim is to show that Psx, — T. Suppose by way of contradiction that
Pyx, » T. Then,

Je > 0 that satisfies the following:
(2.12) Vn € N, 3ng > n such that ||[Paxy,, — T|| > .

For [ > 0 and ¢ > 0, choose b > 0 such that

2 i_ ; 2 2 i
(2.13) 0<b< l+8 I, ie., (l+b)<l+8.

For [ > 0 and b > 0, we have from (2.8), (2.11), and > ", 7, < oo that

dny € N such that Vn > nq,

)

o0
_ e
lon =7l <U+b,  on = Pazal ST+, MY mi <,

i=n

where M is defined in (2.10). From (2.12), we can re-choose ng (> n1) that satisfies
the following:

(2.14) |[Pazn, —Z| > &,
(2.15) |2n, — Z| <1+,
(2.16) |Xny — Pa%ngl|l <1+ b,
o0 I
(2.17) Mi;m <5

Since 3 (Paxn, + %) € A, we have from (2.7) that

1 . 1 _
Ln+no+1 — B (Patpny +7)|| < ||Tntne — B (PATng + T)|| + NMntno

<
1 n+ngo

< A, — 3 (Pp%n, +T)|| + Z n;

1=ng

1 o

< A, — 3 (Pp%n, +T)|| + Z N

1=ng
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for all n € N. Thus, we obtain

¥

1
Ty — 5 (Pa%n, +7)

1 _
Lntno+1 — 9 (PA‘rno + LU)

)

1=ng
1 2 >
< |long — 5 (Pawn +7)|| +M Z ni
i=ng
1 1 2 >
— ‘2 (ng = Patng) + 5 (wmy = T)|| +M > i

i=ng
By using Lemma 2.2-(a), we have that

2 1 1
< —

1 _ _
LTn+no+1 — 5 (PAxno + l‘) = 5 HJjno - PAJ;noH2 + 2 Hxno - ‘T||2

1 oo
— 7 [Pacn, —Z*+ MY

1=ng
From (2.14)—-(2.17), we obtain

1 2 2 2
(218) Tn+no+l — 5 ( ATng + f) < (l + b)2 — i + i
2 4 8

2

€

= (I+b?*-=

+0? -

for all n € N. Since 3 (Pazn, + ) € A, we have from (2.7) and Lemma 2.3 that

the sequence
{ | }
neN

is convergent. It follows from (2.9) and (2.18) that

1 _
Tnt+ng+1 — 5 (PAxno + $)

. 1 INIE
I? < nlgl;O Lntno+1 — 9 (PAxno + JJ)
2
€
< (1407 -—.
< aen?- S
Thus, 12 + % < (I +b)?, which contradicts (2.13). Thus, we obtain Pz, — T as
claimed. O

Letting ay, = B, = v = 0, = 0 in Lemma 2.4, we obtain the following corollary.

Corollary 2.5. Let C be a nonempty and convex subset of H, let A be a nonempty,
closed and convex subset of H, and let Ps be the metric projection from H onto A.
Let {an}, {bn}, {cn}, and {d,} be sequences of real numbers in the interval [0, 1]
such that ap,+by,+cn+dy, =1 for alln € N. Let {yn}, {zn}, and {w,} be sequences
in C. Given x1 € C, define a sequence {xn} in C as follows:

Tntl = ATy + bpYn + Cnzn + dpw, (€ C).
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Suppose that [|yn — ul| < |lzn — ul, |20 —ull < |lzn — ull, and [Jwy — ul| < |lzn — ]|
forallu € A andn € N. Then, {Paxz,} converges in A, in other words, there exists
an element T € A and Pax,, — T.

The following two lemmas conclude that a weak limit of a sequence is an attractive
point. The proof of Lemma 2.6 was developed in [26] and [20].

Lemma 2.6 ([17]). Let C be a nonempty subset of H, and let T' be a normally 2-
generalized hybrid mapping from C' into itself with A (T) # 0. Let {x,} be a bounded
sequence in H. Define z, = 130 | T*x, (€ H), and suppose that z,, — v (€ H),
where {zp,;} is a subsequence of {z,}. Then, v e A(T).

For development of proofs of Lemma 2.7, see [13] and [22].

Lemma 2.7 ([16]). Let C be a nonempty subset of H, let S be a normally 2-
generalized hybrid mapping from C into itself, and let {x,} be a sequence in C. If
{x,} satisfies Sxp, — x — 0, S%2 — 2 — 0 and z, — v, then v € A(S).

The next lemma was substantially included in Kamimura and Takahashi [12].

Lemma 2.8. Let C be a nonempty subset of H, and let A C H x H be a maximal
momnotone multi-valued mapping on H such that its domain is included in C. Define
Jp = (I 4+rA)"" forr >0, where I is the identity mapping. Let {r,} be a sequence
of positive real numbers such that r, — oo, and let {x,,} be a bounded sequence in
H. Suppose that J., xn, — v € C, where {ry,} and {x,,} are subsequences of {r,}
and {x,}, respectively. Then, v € A~10.

Proof. Define A, = % (I — J,), which is the Yoshida approximation of A for r > 0.
Since A C H x H is maximal monotone, the domains of J,. and A, are H. Thus,
for the sequence {z,} in H, {J,, x,} and {A,, x,} (C H) are well-defined.

First, we show that A, x,, — 0. Since {z,} is bounded and J,, is nonexpansive
for all n € N, {J,, z,,} is also bounded. Therefore, we have from r, — oo that

—0

4zl = 5= e, = o
Tn;
as ¢ — 00.
Our goal is to prove that (v,0) € A. Since A is maximal monotone, it suffices
to demonstrate that (a — v, b—0) > 0 for all (a,b) € A. Let (a,b) € A. We know
that (J,, xn, Ay, ) € A for all n € N. Since A is monotone, it holds that

(@ — Jp, xn, b— Ay, xy) > 0.

Since ‘]Tniajni — v and Arnixm — 0, replacing n by n; and taking the limit as
i — 00, we obtain (@ — v, b—0) > 0. This completes the proof. O

The following lemma was demonstrated by Takahashi and Takeuchi [31], which
is useful to prove fixed point approximations.

Lemma 2.9 ([31]). Let C be a nonempty subset of H, and let T be a mapping from
C into H. Then, A(T)NC C F(T).
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3. WEAK CONVERGENCE FOR NONLINEAR MAPPINGS

This section presents two types of iterations (1.5) and (1.6) to approximate com-
mon attractive points of normally 2-generalized hybrid mappings. The results are
obtained under settings with finitely many error terms. The proofs do not rely on
the assumption that the domains of the mappings are closed. By additionally sup-
posing that the domains are closed, we obtain approximation methods for finding
fixed points. The fundamentals of the proofs were developed by many authors. For
example, see [7,12,13,19,22,28, 33].

Theorem 3.1. Let C' be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A(S) N
A(T) is nonempty. Let P4 be the metric projection from H onto A(S) N A(T).
Let a,b € (0,1) such that a < b, and let {a,}, {bn}, and {c,} be sequences of
real numbers such that ap +b, +c¢, =1 and 0 < a < ap,by,cp < b < 1 for all
n € N. Let {an}, {Bn}, and {7y} be sequences of nonnegative real numbers such
that > 07 1 < 00, >0 1 B < 00, and Y o0 1n < 00. Define a sequence {xy} in
C as follows:

x1 € C : given,

(3.1) Xy € C such that | X, — xy|| < o,
1 n
(3.2) Y, € C such that ||Y, — - ZSkxn < Bn,
k=1
1 n
(3.3) Zn € C such that || Z, — - ;Tka:n < Yn,

Tpy1 = anXn + 0, Y, +cnZy € C for alln € N.

Then, the sequence {x,} converges weakly to a common attractive point T € A (S)N
A(T), where T = limy, o0 Pazy. Additionally, if C is closed, then {x,} converges
weakly to a common fized point T = lim,_,oo Ppx, € F (S)NF (T), where Pg is the
metric projection form H onto F'(S)NF (T).

Proof. Note that from Takahashi and Takeuchi [31], A(S)N A(T) is a closed and
convex subset of H. Since A(S)N A(T) # () is assumed, there exists the metric
projection P4 from H onto A (S)NA(T).

Define y, = 1 30, Sk, (€ C) and 2, = L 37| TFa,, (€ O). It is easy to verify
that
(3.4) 1yn = ull < llzn —ul and |z, —u|| <[lzn — ull

forallu € A(S)N A(T) and n € N. Indeed, since u € A (S), we have that
EZan—u = ZS’xn—nu
k=1 k=1

MR EFal[CEn]

k=1

”yn - uH

1
n
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1 n
<= llen —ull = llen —ul .
n
k=1

Similarly, ||zn, — u|| < ||zn — ul| can be proved since u € A (T).

We show that the sequence {Pax,} is convergent in A (S)N A (T). Consider the
case of d,, = 0 for all n € N in Lemma 2.4. Assumptions (3.1)—(3.3) imply (2.1)—
(2.3), respectively. Also, from (3.4), the conditions in (2.5) are satisfied. Thus, from
Lemma 2.4, there exists T € A (S) N A(T) such that Pyz, — Z. Our first aim is to
show that z,, — .

Note that the following hold:

1 Xn = ull < llzn = ull + an,
(3.5) Ve = ull < lan = ull + Ba,
120 = ul < llen — ull +vn
forallu € A(S)NA(T) and n € N. Indeed, it holds from (3.1) that
[ Xn —ull < [[Xn = 2a]l + ll2n — ]

o + ||zn — ull .

IN

It follows from (3.2) and (3.4) that
Yo =l < [[Ya = ynll + llyn — ull
< Bnt Hmn - uH

since u € A (S). Similarly, since u € A (T), we can obtain || Z, — u|| < ||z, — u||+7n
by using (3.3) and (3.4).

Next, we show that the sequence {||z, —u||} is convergent in R for all u €
A(S)NA(T). Define n, = ay + By + Yo (= 0). Since Y o2 | m, < o0, from Lemma
2.3, it suffices to demonstrate that
(3.6) [2nt1 = ull < flzn = ull + 90

for all u e A(S)N A(T) and n € N. The inequality (3.6) can be verified by using
(3.5) as follows:

[Zn+1 — ull = [lan (Xn —w) + bn (Yo — w) + cn (Zn — u)|
< an || Xn — ul|| + b | Yy — ul| + e [| Zn — ul]
< ap ([|zn — ull + an) + bn (l2n — ull + Bn) + cn ([[2n — ull +70)
<z — ull + 7.

Thus, {||z, — u||} is convergent. Consequently, {x,} is bounded. Since P4 is non-
expansive, { P4z, } is also bounded.
Let us show that

(3.7) anbn [| X0 = Yoll? 4 bucn | Yn — Znl|* + cnan | Zn — Xn)?
< lwn = ull* = llent1 — ul® + M,
forallu € A(S)NA(T) and n € N, where

M =sup (2||xn —ul| + nn) -
neN
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Since {z,,} and {n,} are bounded, M is a real number. The inequality (3.7) can be
demonstrated as follows. By using Lemma 2.2-(b), we obtain

[@n41 — U”2 = [lan (Xn —u) + bn (Yo — u) + cn (Zn — u)||2
= an || Xn - “H2 + b [[Yn — u”2 +cn | Zn — uH2
— anbn [| X0 = YolI? = bucn | Yo — Znll? — cnan | Zn — Xaul* .
From (3.5), we have that
|1 —ul®
an (o — ull + O‘n)z + by ([[#n — ull + ﬁn)Q + en (len — ull + 'Yn)Q
—anbn || Xn — Yn”2 = bnen [|Yn — Zn||2 — Cnan || Zn — XnH2
= anlzn — U||2 + bn [lzn — u||2 + cn [lan — u||2
Fan (2]l = ull an + az) + b (2llen — ull B + 87)
+cn (2 lzn — ull v + '7721)
—anbn || Xn — Yn”2 = bnen [|Yn — Zn||2 — cnan || Zn — XnH2

IN

< =l + @2llzn =l an + ) + (2llzn = ull B0 + 57)
+ (2|20 — ull v +77)
—anbn || Xn — YnH2 — bncn [|Yn — ZN||2 — Cnan || Zn — XnH2

< lwn = ull® + an (2 [|zn — ul + on) + Ba (2|0 — ull + Bn)
+n (2 ||lzn — ull + )
—anby || Xn — Yn”2 — bncn [|Yn — Zn”2 — Cnan || Zn — Xn||2
< lwn = ull® + an (2 [l@n — ull +10) + Bn (2|20 — ull + 10

+Yn (2 Hxn - UH + 1)

—anbn | Xn = Yoll? = bnen ||V — Znll® = cntn | Zn — X2
< e —ul® + M,

—anbn [| X0 = Vo2 = bucn | Yo — Znll? — cnan | Zn — Xnl* .

This means that (3.7) holds.

Since {||z,, — ul|} is convergent for v € A(S) N A(T) and n, — 0, we have from
(3.7) that
(3.8) X,-Y,—0 and X, —Z, — 0.
Furthermore, it holds that
(3.9) Tp —Yyn — 0 and z, — 2z, — 0.
Indeed, it follow from (3.1), (3.8) and (3.2) that

ln = gall < lzn = Xall + 1 X0 — Yall + ¥ —

< o+ [ X = Yol 4+ B — 0.

Similarly, we can prove that z,, — z, — 0.



WEAK CONVERGENCE TO COMMON ATTRACTIVE POINTS 2561

We show that x,, — =. Let {x,,} be a subsequence of {x,}. Since {z,,} is
bounded, there exists a subsequence {mn]} of {xy, } and v € H such that x,;, — v.
From (3.9), it holds that

Yn; — v and 2z, — v.

We have from Lemma 2.6 that v € A(S) N A(T). Therefore, it follows that

(xy, — Pa%y, Ppxy, —v) >0
for all n € N. Since {z,,} and {Pazy} are bounded, we have

(xn — Ppxp, v —10) (x — Ppxy, Paxy, —7T)

[0 = Patnl| [ Pazn — Z|
L ||PAxn — EH
for all n € N, where L = sup,,cy ||zn — Pazy| € R. Replacing n by n;, and taking
the limit as 7 — oo, we obtain

VAN VAN VAN

(v—=, v—7) <0.

Thus, v = Z. This means that x, — T.

Assume, in addition to the other assumptions, that C' is closed in H. Our goal is to
prove that x, — Z = limy_,o, Prxy. Since C' is weakly closed and x,, — Z, it follows
that T € C, where T = lim,,_ 00 Paz,. This implies that 7 € C N A(S) N A(T).
From Lemma 2.9, we have that T € F (S)NF (T). Thus, F (S)NF (T) is nonempty.
Since S and T are quasi-nonexpansive, F'(S) N F(T') is closed and convex. Hence,
there exists the metric projection Pr from H onto F'(S)N F(T). In much the same
way as the proof of (3.4), we obtain

[yn —ull < llzn —ull and |z, — ul] < lzn —ul]
forallu € F(S)NF(T) and n € N since S and T are quasi-nonexpansive. Thus, we
have from Lemma 2.4 that {Prx,} converges strongly to an element Z of F(S) N
F(T), that is, ¥ = lim,,—oc Prxy,. We show that
T (E lim PAxn> = f(z lim PFxn) .

n—oo n—oo

Since T € F'(S) N F (T'), we have that
(xy, — Py, Ppx, —T) >0

for all n € N. Since z,, = T and Ppzx, — ¥, we have that (T — %, ¥ — ) > 0,
which means that z = Z. Hence, {z,,} converges weakly to T = lim,, o Ppx, €
F(S)N F(T). This completes the proof. O

Letting ay, = B, = v = 0 in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C' into itself. Suppose that A(S)N
A(T) is nonempty. Let Py be the metric projection from H onto A(S)N A(T).
Let a,b € (0,1) such that a <b, and let {ayn}, {bn}, and {c,} be sequences of real
numbers such that a, + b, +c, =1 and 0 < a < ap, by, ¢y, < b <1 for alln € N.
Define a sequence {x,} in C as follows:

x1 € C : given
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1 1
Tpil = Ap¥p + b"ﬁ ;Skxn + Cn ;Tk:cn € C foralln eN.

Then, the sequence {x,} converges weakly to a common attractive point T € A (S)N
A(T), where T = limy,—,o0 Pazy. Additionally, if C is closed, then {x,} converges
weakly to a common fized point T = lim,_,oo Ppx, € F (S)NF (T), where Pg is the
metric projection form H onto F'(S)NF (T).

The next theorem provides an alternative method to approximate common at-
tractive and fixed points of normally 2-generalized hybrid mappings.

Theorem 3.3. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A(S) N
A(T) is nonempty. Let Py be the metric projection from H onto A(S)NA(T). Let
a,b € (0,1) such that a <b, and let {an}, {bn}, {cn}, and {d,} be sequences of real
numbers such that ap, +b, +c, +dp =1 and 0 < a < ap,bn,cpn,d, < b <1 for all
n € N. Let {an}, {Bn}, {m}, and {0,} be sequences of nonnegative real numbers
such that Y07 | o < 00, D02y B < 00, D02 Yn < 00, and Y o0 | b, < 00. Define
a sequence {x,} in C as follows:

x1 € C : given

(3.10) X, € C such that | X, — x| < ay,

(3.11) Y, € C such that ||Y, — Sxy| < Bn,

(3.12) Zn € C such that HZn — SanH < Y,
1 n

(3.13) W, € C such that ||W,, — — ZTk:En < Oy,
" k=1

Tn+l = anXn + 00 Yy +cnZy +dy W, € C for alln € N.

Then, the sequence {xy} converges weakly to a common attractive point T € A (S)N
A(T), where T = limy,_yo0 Paxy,. Additionally, if C is closed, then {x,} converges
weakly to a common fized point T = lim, oo Prx, € F(S)NF (T), where Pg is the
metric projection form H onto F (S)NF (T).

The proof is analogous to that of Theorem 3.1.

Proof. Note that there exists the metric projection P4 from H onto A (S)NA(T).
The following relationships can be easily verified:

(3.14) 1S2n —ull < lm —ull,  [|S%2n — ] < llzn — ul,
1 n
n;Tkmn—u < ||zp — ull

forallu e A(S)NA(T) and n € N.

From (3.14), we have that the sequence {Pax,} is convergent in A (S) N A(T).
This fact can be ascertained as follows: Remind Lemma 2.4. Define y,, = Sz, (€ C),
zn = 5%, (€ C), and wy, = LY} T*z,, (€ C). Assumptions (3.10)-(3.13) imply
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(2.1)—(2.4), respectively. Also, from (3.14), the conditions (2.5) and (2.6) are satis-
fied. Thus, from Lemma 2.4, there exists T € A (S) N A (T) such that Pyx,, — T.
Our first aim is to show that xz,, — 7.

By using (3.14), we can show that

(3.15) [ Xn = ull < llzn —ull + on,  [1Yn —ull < [lon —ull + By,
1Zn = ull < llzn = ull + 90, Wa = ull < [lan —ull + 6n
forallu € A(S)NA(T) and n € N. Indeed, it holds from (3.11) and (3.14) that
Yo — ul 1Yo = Snll + [|Szn — ull
B+ l|wn — ull

since u € A(S). Similarly, we can obtain the other parts of (3.15).

Next, we prove that the sequence {||x,, —u||} is convergent in R for all u €
A(S)NA(T). Define 1, = ay + B +Yn + 0n (€ R). Since Y o2 | n, < 00, it suffices
to demonstrate that

IAINA

(3.16) [2nt1 = ull < lzn — ull + 90
forallu € A(S)NA(T). It holds from (3.15) that
[Znt1 —ull = [lan (Xn —u) +bp (Yo — ) + cn (Zn — u) + dp (W, — u)|
< ap || X —ull 4+ b |Ye — ul| + en | Zn — ul| + dn ||Wa — ul|
< an (lzn —ull + an) + by (|2 — ull + B8r)
+cn (lzn — ull + ) + dn (l2n — ull + 65)
< lzn — ull + 0.

We have from Lemma 2.3 and (3.16) that {||z,, —u||} is convergent for all u €
A(S)NA(T). Thus, the sequence {z,} is bounded. Since P4 is nonexpansive,
{Psx,} is also bounded.

Let us show that

(3.17) anbn || Xn = Yol + ancn | Xn — Znl|? + andn | X — Wa?
+ bncn [ Yo = Zn || + budan | Yo = Wall* + cnd | Zy — W[
<l = ul)? = |zpgr — ul* + Mn,

forallu € A(S)NA(T) and n € N, where

M =sup (2||zy, — u|| + 1) € R.
neN

Indeed, by using Lemma 2.2-(c), we obtain
[@n1 — uH2 = |lan (Xn —u) + by (Yo — u) + cn (Zn — u) + dn (Wy — U)H2
= an|Xn— uHQ + bn [[Yn — “H2 +enl|Zn — “H2 +dn [Wn — “H2
—anbn || Xn — Yn”2 — ancn || Xn — ZnH2 — andy || Xpn — WnH2
—bncn [V — Zu|* = buda |Yn — Wall* = cndn | Zn — Wa?.
We have from (3.15) that

”xn—i-l - UH2 < ap (Hxn —ul + O‘n)Q + b (|20 — uH =+ Bn)2
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+en (| — ull + ’Yn)2 + dn (lzn — uf + 5n)2

—anby || X0 — Yol* = ancn || Xn — Zn||> — andn | X0 — Wal[>

~bncn Yy = Zn|l® = budn | Ve — Wall* = cndn | Zn — Wal?
= ap|lzn — U||2 + by [|lzn — uH2 + cn flan — u||2 +dy |20 — uH2

tan (2| 2n — ul| om + o) + by (2|20 — ul| Bn + B7)

+cn (2 |zn — ul| yn + 7721) + dn (2 lzn — ull 6n + 572@)

—anbn || Xn — Yn”2 — ancn || Xn — Zn||2 — andy || Xy — Wn||2

—bncn ||V — Zn||2 — bndy [|Yn — Wn||2 — cndn || Zn — VVnH2

<l = ull® + an (22 — ull + an) + B (220 — ull + Bn)
+n (2 |lzn — ull + ) + 6 (2|20 — ull + 6,)
—anby || X0 — Yol* = ancn || Xn — Zn||> — andn | X0 — Wal[>
—bney ||Yn — Zn||2 = bpdy || Y — WnH2 — cndn || Zn — WnH2
< o —wl? + i 2llzn — ull + 1) + Ba (220 — ull +70)
T 2 [|#n = ull + 1n) + 60 (2 |20 — ull + 7n)
—anbn || Xn — Yn”2 — ancn || Xn — Zn||2 — andy || Xpn — Wn||2
—bncn [|Yn — Zn||2 — bndn [|Yn — Wn||2 — Cndn || Zn — VVnH2
<l — ull® + M (ap + Bo + 7 + 00)

—anbn || Xn — Yn”2 — ancp || Xn — Zn||2 — andy || Xy — Wn||2
—bnn ||V = Zn||? = budy | Y — Wall? = ndn | Zn — Wal|* .

This means that (3.17) holds.
Since {||zy, — u||} is convergent and 7, — 0, we have from (3.17) that

(3.18) X,-Y, -0, X,-Z2,—0 X,—-W,—0.
Furthermore, it holds that
(3.19) Ty — Sty — 0, x, —S%x, —0,
1 n
(3.20) Tn = ;Tkxn — 0.

Indeed, it follow from (3.10), (3.11) and (3.18) that
[2n = Saall < ln — Xall + 1 X0 = Yol + [[Yn — Szall
Similarly, we can prove z,, — S?z, — 0 and z,, — % > ory Tkz, — 0.

We show that z,, = Z. Let {x,,} be a subsequence of {z,}. Since {z,,} is
bounded, there exists a subsequence {mn j} of {x,,} and v € H such that z, ;.
We have from (3.19) and Lemma 2.7 that v € A(S). Furthermore, it follows from
(3.20) that

1
(3.21) > Tha,, =,
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From (3.21) and Lemma 2.6, we have that v € A (T'). Therefore, v € A(S)NA(T).
As a result, it follows that

(xy, — Pa%y, Paxy, —v) >0
for all n € N. Since {x,,} and {Psx,} are bounded, we have

(xn — Ppxp, v —10) (xp — Paxy, Paxy, —7T)

[2n — Pazn| | Pazn — 7|
L||Psx, — T

VAN VAN VAN

for all n € N, where L = sup,,ey ||zn — Pazn| € R. Replacing n by nj, and taking
the limit as ;7 — oo, we obtain

(v—=, v—=7) <0.

Thus, v = Z. This means that x,, — 7.

Next, we additionally assume that C' is closed in H. We prove that z, — ¥ =
limy_, oo Ppxg. Since C is weakly closed, it follows that T € C N A(S) N A(T),
where T = lim,,,oo Paozy. From Lemma 2.9, we have that T € F (S)NF (T). Thus,
F(S)N F(T) is nonempty. Since S and T are quasi-nonexpansive, F'(S) N F(T)
is closed and convex. Hence, there exists the metric projection Pr from H onto
F(S)N F(T). We can easily prove that

1520 — ull < lon —ull,  ||S%2n — ] < Nz —ul,
1 n
n;Tkmn—u < |z — ul|

for all w € F(S)NF(T) and n € N since S and T are quasi-nonexpansive. Thus, we
have from Lemma 2.4 that {Prxz,} converges strongly to an element  of F(S) N
F(T), that is, ¥ = lim;,_oo Ppz,,. We show that

T <E lim PA:zn> = E(E lim Pan> .

n—oo n—oo

Since T € F' (S) N F (T), we have from a property of the metric projection that
(xy, — Ppxy, Ppx, —T) >0

for all n € N. Since z,, = 7 and Prz,, — T, we have that (Z — Z, ¥ — ) > 0, which
means that ¥ = Z. This implies that {z, } converges weakly to & = lim,,_oc Prx,, €
F(S)N F(T). This completes the proof. O

Letting a,, = B, = Y = 0, = 0 in Theorem 3.3, we obtain the following corollary,
which is a hybrid of the mean convergence method (1.2) and Kondo and Takahashi’s

type (1.4).

Corollary 3.4. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C' into itself. Suppose that A (S) N
A(T) is nonempty. Let Py be the metric projection from H onto A(S)NA(T). Let
a,b € (0,1) such that a < b, and let {an}, {bn}, {cn}, and {d,} be sequences of real
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numbers such that ap + b, +c, +dp =1 and 0 < a < ap,bn,cn,d, < b <1 for all
n € N. Define a sequence {z,,} in C as follows:

x1 € C : given

1 n
Tpi1 = Any + bp Sty + ¢ Sxy + dp— Z T*z, € C for alln € N.
n
k=1

Then, {x,} converges weakly to a common attractive point T € A (S)NA(T), where
T = limy 00 Paxy,. Additionally, if C is closed, then {x,} converges weakly to a
common fized point T = lim,_oo Prz, € F(S)N F(T), where Pr is the metric
projection form H onto F (S)NF (T).

4. WEAK CONVERGENCE FOR RESOLVENT

In this section, we present a weak convergence theorem to a common null point
of two maximal monotone multi-valued mappings by using resolvents.

Theorem 4.1. Let C' be a nonempty, closed and convexr subset of H. Let A, B C
H x H be mazximal monotone multi-valued mappings on H such that their domains
are included in C. Let J& = (I+rA)~" be the resolvent of A for r > 0, and
let JB = (I+sB)™" be the resolvent of B for s > 0. Suppose that A~10 N B~10
is nonempty. Let P : H — A0 N B~'0 be the metric projection from H onto
A7'oN B710. Let {r,} and {s,} be sequences of positive real numbers such that
Ty — 00 and s, — 00. Leta,b € (0,1) such that a < b, and let {a,}, {bn}, and {c,}
be sequences of real numbers such that ap+bp+cn =1 and 0 < a < ayp, by, ¢y <b < 1
for alln € N. Let {an}, {Bn}, and {yn} be sequences of nonnegative real numbers
such that Y 2 an < 00, Y 7 fBp < 00 and Y 2 Y < 00. Define a sequence
{zn} in C as follows:

x1 € C : given

(4.1) X, € C such that || X, — x| < ap,
(4.2) Y, € C such that ||V, — J2z,| < Ba,
(4.3) Zy € C such that HZ” — Js]iaan < Yn,

Tpy1 = anXn + 0, Y, +cnZy € C for allm € N.

Then, {x,} converges weakly to a common null point T € A~'0 N B~10, where
7 = limy, oo Pz

The proof is analogous to that of Theorem 3.1.

Proof. Since A and B are maximal monotone, A~'0N B~10 is closed and convex in
C. Since A~'0N B0 # () is assumed, there exists the metric projection P from H
onto A~'0 N B~'0. Furthermore, note that J;i and in are single-valued mappings
from H into C. Define y, = Ji z, (€ C) and 2z, = JBz, (€ C). It holds that

(4.4) lyn —ull < [lzn —ul and [[zn —ul| < [lzn — ul
for all u € A7'0N B~'0 and n € N since A710 = F (J;,i), B '0=F (Jsli), and

the resolvents are nonexpansive. From Lemma 2.4, we can prove that the sequence
{Px,} is convergent in A710 N B~10. Indeed, consider the case of d,, = 0 in that
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lemma. Assumptions (4.1)—(4.3) imply (2.1)—(2.3), respectively. Also, from (4.4),
the conditions in (2.5) are satisfied. Thus, from Lemma 2.4, there exists an element
Ze A710N B~10 and Pz, — Z. Our aim is to show that x,, — T.

By using (4.4), we can show that

[ Xn —ull < llzn — ull + an,
(4.5) 1Yo — ull < [[zn — ull + Bn,
120 = ull < l#n — ull +m
for all u € A='0N B~'0 and n € N. Indeed, it follows from (4.1) that
[Xn —ull < [[Xn = 2all + [0 — ]
< an+||zn —ul.

Furthermore, it holds from (4.2) and (4.4) that
Yo —ull < (Yo = ynll + [y — ull
A
B+ [lzn — ul
since J/! is nonexpansive and u € A7*0 = F (J/ ). Similarly, by using (4.3), (4.4)
and u € B710 = F (JB), we obtain || Z, — ul| < ||lzn — ul| + .

Next, we verify that the sequence {||x, —u|} is convergent in R for all u €
A~10N B~10. Define M = & + Bn + Y (€ R). In much the same way as the proof
of (3.6), we can demonstrate that
(4.6) [2nt1 —ull < llzn — ull + 1

for all w € A~10N B~10 by using (4.5). Since Y oo m, < 00, it holds from Lemma
2.3 that {||x, — u||} converges for all u € A~10 N B~10. Consequently, {z,} is a
bounded sequence. Since P is nonexpansive, { Pz, } is also bounded.

As the proof of (3.7), we can demonstrate that

(4.7) anbn | X0 = Yoll> 4 bucn | Yo — Znll? + cnan | Zn — Xnl)?

IN

< lan = ull® = [lzns1 — ul® + M,
for all u € A='0N B~'0 and n € N, where

M =sup (2 ||zn, —ul| + nn) € R,
neN

by using Lemma 2.2 and (4.5). Since {||z,, — u||} is convergent and 7,, — 0, we have
from (4.7) that

(4.8) Xp—Y, =0 and X, — Z, — 0.
Furthermore, it follows from (4.8) that
(4.9) Tp— Yo — 0 and x, — 2z, — 0.
Indeed, note that
[2n = ynll < lln = Xall + [ Xn = Yall + 1Y — yal
< ap + [ Xn = Yol + Ba.
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Since a;, — 0 and (3, — 0, we have from (4.8) that z,, — y, — 0. Similarly, we can
prove that z,, — z, — 0.

We show that z,, — Z. For any subsequence {zy,} of {z,}, there exists a subse-
quence {x,;} of {x,,} and v € H such that z,, — v. From (4.9),

Yn; = ‘]rnj Tp; =0 and zp; = anj Tp; — V.

Since Tn; —» OO and Sp; — 00, We have from Lemma 2.8 that v € A~10 N B~10.
Therefore, it follows that

(xy, — Pxy, Pz, —v) >0
for all n € N. Since {z,} and {Pz,} are bounded, we have
(v — Pxp, v—7) < (x,— Pzy, Pr,—T)
[0 — Panl|l [ Prn —Z|
L||Px, —T|

for all n € N, where L = sup,,¢y ||zn, — Pz,|| € R. Replacing n by n;j, and taking
the limit as 5 — oo, we obtain

<
<

(v—7, v—=) <0.
Thus, v = Z. This means that x,, — . The completes the proof. O
Letting oy, = B, = v» = 0, we obtain the following corollary:

Corollary 4.2. Let C' be a nonempty, closed and convex subset of H. Let A, B C
H x H be maximal monotone multi-valued mapping on H such that their domains
are included in C. Let JA = (I+rA)"" be the resolvent of A for r > 0, and
let JB = (I+sB)™" be the resolvent of B for s > 0. Suppose that A~10 N B~10
is nonempty. Let P : H — A~'0 N B~'0 be the metric projection from H onto
A7oN B710. Let {r,} and {s,} be sequences of positive real numbers such that
Ty — 00 and s, — 0o. Leta,b € (0,1) such that a < b, and let {a,}, {bn}, and {c,}
be sequences of real numbers such that a,+b,+c, =1 and0 < a < an, by, cp < b <1
for all n € N. Define a sequence {x,,} in C as follows:

x1 € C: given
Tpyl = AnTn + anéxn + anﬁxn € C foralln € N.

Then, {x,} converges weakly to a common null point T € A~'0 N B~10, where
T = lim, oo Pxyy.

As is well-known, the null point problems have direct links with optimization
problems; see Rockafellar [24], Kamimura and Takahashi [12], and Takahashi [28].
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