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Wittmann’s theorem has been extended to various directions. Kocourek, Taka-
hashi and Yao [8] introduced a wide class of mappings, which contains nonexpansive
mappings as special cases, and proved a weak convergence theorem in Hilbert spaces.
A mapping T : C → H is called

(ii) generalized hybrid [8] if there exist α, β ∈ R such that

(1.1) α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C. Such a mapping T is called (α, β)-generalized hybrid. If (α, β) =
(1, 0), a generalized hybrid mapping T is nonexpansive. The generalized hybrid
mappings are further extended. A mapping T is called

(iii) normally generalized hybrid [16] if there exist α, β, γ, δ ∈ R such that

(1.2) α ∥Tx− Ty∥2 + β ∥x− Ty∥2 + γ ∥Tx− y∥2 + δ ∥x− y∥2 ≤ 0

for all x, y ∈ C, where (1) α+ β + γ + δ ≥ 0 and (2) α+ β > 0 or α+ γ > 0;
(iv) 2-generalized hybrid [11] if there exist α1, α2, β1, β2 ∈ R such that

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + (1− α1 − α2) ∥x− Ty∥2

≤ β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + (1− β1 − β2) ∥x− y∥2

for all x, y ∈ C.
Putting β = 1 − α and δ = − (1− γ) in (1.2), we can recognize that a normally

generalized hybrid mapping is (α,−γ)-generalized hybrid. A 2-generalized hybrid
mapping is generalized hybrid if α2 = β2 = 0. Hojo, Takahashi and Termwuttipong
[7] proved the following strong convergence theorem for 2-generalized hybrid map-
pings in a Hilbert space. Important precursors of [7] are Kurokawa and Takahashi
[10] and Hojo and Takahashi [5]. For other types of convergence theorems, see also
Hojo and Takahashi [6], Termwuttipong, Pongsriiam and Yao [18] and Alizadeh and
Moradlou [1, 2].

Theorem 1.2 ([7]). Let C be a nonempty, closed and convex subset of H, and
let T : C → C be a 2-generalized hybrid mapping with F (T ) ̸= ∅. Let {λn} be
a sequence of real numbers in the interval [0, 1) such that limn→∞ λn = 0 and∑∞

n=1 λn = ∞. Given x1, z ∈ C, define a sequence {xn} in C as follows:

xn+1 = λnz + (1− λn)
1

n

n−1∑
k=0

T kxn

for all n ∈ N. Then, the sequence {xn} converges strongly to z ≡ PF (T )z, where
PF (T ) is the metric projection from H onto F (T ).

On the other hand, Takahashi, Wong and Yao [17] established the following strong
convergence theorem for generalized hybrid mappings in a Hilbert space.

Theorem 1.3 ([17]). Let C be a nonempty and convex subset of H, and let T :
C → C be a generalized hybrid mapping with A (T ) ̸= ∅. Let {λn} and {αn} be
sequences of real numbers in the interval (0, 1) such that

lim
n→∞

λn = 0,

∞∑
n=1

λn = ∞ and lim inf
n→∞

αn (1− αn) > 0.
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Given x1, z ∈ C, define a sequence {xn} in C as follows:

xn+1 = λnz + (1− λn)
(
αnxn + (1− αn)Txn

)
for all n ∈ N. Then, the sequence {xn} converges strongly to z ≡ PA(T )z, where
PA(T ) is the metric projection from H onto A (T ).

Very recently, normally generalized hybrid mappings (iii) and 2-generalized hy-
brid mappings (iv) are unified. A mapping T : C → C is called

(v) normally 2-generalized hybrid [9] if there exist α0, β0, α1, β1, α2, β2 ∈ R such
that

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + α0 ∥x− Ty∥2

+ β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C, where (1)
∑2

n=0 (αn + βn) ≥ 0 and (2) α2 + α1 + α0 > 0. It
is also called an (α0, β0, α1, β1, α2, β2)-normally 2-generalized hybrid mapping. Al-
though Kondo and Takahashi [9] proved weak convergence theorems for normally
2-generalized hybrid mappings, any strong convergence theorem has not yet been
known.

The main purpose of this paper is to establish two types of strong convergence
theorems (Theorem 3.2 and Theorem 3.4) of finding attractive points of normally
2-generalized hybrid mappings in Hilbert spaces. Theorem 3.2 and Theorem 3.4
extend Theorem 1.2 and Theorem 1.3, respectively. These theorems are proved
without assuming that the domain of the mapping is closed. Same types of results
(Theorem 4.1 and Theorem 4.2) regarding fixed points are also demonstrated by
additionally supposing that the domain of the mapping is closed.

2. Preliminaries

This section briefly offers background information and results. For more details,
see Takahashi [13, 14] and earlier studies. We know that

∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨x+ y, y⟩(2.1)

for all x, y ∈ H. We also know that

(2.2) ∥λx+ (1− λ) y∥2 = λ ∥x∥2 + (1− λ) ∥y∥2 − λ (1− λ) ∥x− y∥2

for all x, y ∈ H and λ ∈ R. In particular, if λ ∈ [0, 1],

(2.3) ∥λx+ (1− λ) y∥2 ≤ λ ∥x∥2 + (1− λ) ∥y∥2 .

Let C be a nonempty subset of H. For T : C → H and v ∈ H, it is easy to verify
that

(2.4) v ∈ A (T ) ⇐⇒ ∥Ty − y∥2 + 2 ⟨Ty − y, y − v⟩ ≤ 0, ∀y ∈ C.

A mapping T : C → H with F (T ) ̸= ∅ is called quasi-nonexpansive if

∥Tx− u∥ ≤ ∥x− u∥

for all x ∈ C and u ∈ F (T ). It is known in the literature that all types of mappings
(i)–(v) mentioned in Introduction are quasi-nonexpansive if F (T ) ̸= ∅ (see [9]).
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Furthermore, we know that the set of fixed points F (T ) of a quasi-nonexpansive
mapping is closed and convex (see [8]), which plays important roles in many studies.

Strong and weak convergence of a sequence {xn} in H to a point x ∈ H are
denoted by xn → x and xn ⇀ x, respectively.

Let A be a nonempty, closed and convex subset of H. We know that for any
z ∈ H, there exists a unique nearest point z ∈ A, that is, ∥z − z∥ = infu∈A ∥z − u∥ .
This correspondence is called the metric projection from H onto A, and is denoted
by PA. We know that if PA is the metric projection from H onto A, then

(2.5) ⟨z − PAz, PAz − v⟩ ≥ 0

for all z ∈ H and v ∈ A.
The following lemmas are utilized in the proofs of the main theorems of this

paper.

Lemma 2.1 ([15]). Let C be a nonempty subset of H, and let T be a mapping from
C to H. Then, A (T ) is a closed and convex subset of H.

Lemma 2.2 ([3]; see also [20]). Let {Xn} be a sequence of nonnegative real numbers,
let {λn} be a sequence of real numbers in the interval [0, 1) such that

∑∞
n=1 λn =

∞, and let {Yn} be a sequence of real numbers such that lim supn→∞ Yn ≤ 0. If
Xn+1 ≤ (1− λ n)Xn + λnYn for all n ∈ N, then Xn → 0 as n → ∞.

Lemma 2.3 ([11]). Let x, y, z ∈ H and a, b, c ∈ R such that a+ b+ c = 1. Then,

∥ax+ by + cz∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2

− ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .

Additionally, if a, b, c ∈ [0, 1], then

∥ax+ by + cz∥2 ≤ a ∥x∥2 + b ∥y∥2 + c ∥z∥2 .

Lemma 2.4 ([9]). Let C be a nonempty subset of H, let T : C → C be a normally 2-
generalized hybrid mapping, and let {xn} be a sequence in C satisfying xn−Txn → 0,
T 2xn − xn → 0 and xn ⇀ v. Then, v ∈ A (T ).

Lemma 2.5 ([12]). Let {Xn} be a sequence of real numbers. Assume that {Xn} is
not monotone decreasing for sufficiently large n ∈ N, in other words, there exists a
subsequence {Xni} of {Xn} such that Xni < Xni+1 for all i ∈ N. Let n0 ∈ N such
that {k ≤ n0 : Xk < Xk+1} ̸= ∅. Define a sequence {τ (n)}n≥n0

of natural numbers
as follows:

τ (n) = max {k ≤ n : Xk < Xk+1} , ∀n ≥ n0.

Then, the followings hold:
(i) τ (n) → ∞ as n → ∞;
(ii) Xn ≤ Xτ(n)+1 and Xτ(n) < Xτ(n)+1, ∀n ≥ n0.

Lemma 2.6 ([9]). Let C be a nonempty subset of H, and let T : C → C be a nor-
mally 2-generalized hybrid mapping with F (T ) ̸= ∅. Then, T is quasi-nonexpansive.

Lemma 2.7. Let C be a nonempty subset of H, and let T : C → C be a normally
2-generalized hybrid mapping. Then, F (T ) ⊂ A (T ).



STRONG CONVERGENCE THEOREMS OF HALPERN’S TYPE 621

Proof. Since T is a normally 2-generalized hybrid, there exist α0, β0, α1, β1, α2, β2 ∈
R such that

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + α0 ∥x− Ty∥2

+ β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C, where (1)
∑2

n=0 (αn + βn) ≥ 0 and (2) α2 + α1 + α0 > 0.
Let u ∈ F (T ). We will prove that u ∈ A (T ). For any y ∈ C, we have that

α2

∥∥T 2u− Ty
∥∥2 + α1 ∥Tu− Ty∥2 + α0 ∥u− Ty∥2

+ β2
∥∥T 2u− y

∥∥2 + β1 ∥Tu− y∥2 + β0 ∥u− y∥2 ≤ 0.

Since u = Tu = T 2u,

(α2 + α1 + α0) ∥u− Ty∥2 + (β2 + β1 + β0) ∥u− y∥2 ≤ 0.

Since
∑2

n=0 (αn + βn) ≥ 0, we have that

(α2 + α1 + α0) ∥u− Ty∥2 ≤ − (β2 + β1 + β0) ∥u− y∥2

≤ (α2 + α1 + α0) ∥u− y∥2 .

From α2 + α1 + α0 > 0, we obtain that ∥u− Ty∥2 ≤ ∥u− y∥2 for all y ∈ C, which
means that u ∈ A (T ). �

Lemma 2.8 ([15]). Let C be a nonempty subset of H, and let T be a mapping from
C to H. Then, A (T ) ∩ C ⊂ F (T ).

The following theorems (Theorem 2.9 and 2.10) reveal a sufficient and necessary
conditions for a normally 2-generalized hybrid mapping to have an attractive/fixed
point.

Theorem 2.9 ([9]). Let C be a nonempty subset of H, and let T : C → C be a
normally 2-generalized hybrid mapping. Then, the following three statements are
equivalent:

(a) for any x ∈ C, {Tnx} is a bounded sequence in C;
(b) there exists z ∈ C such that {Tnz} is a bounded sequence in C;
(c) A (T ) ̸= ∅.

Theorem 2.10 ([9]). Let C be a nonempty, closed and convex subset of H, and let
T : C → C be a normally 2-generalized hybrid mapping. Then, the following four
statements are equivalent:

(a) for any x ∈ C, {Tnx} is a bounded sequence in C;
(b) there exists z ∈ C such that {Tnz} is a bounded sequence in C;
(c) A (T ) ̸= ∅;
(d) F (T ) ̸= ∅.

3. Strong convergence to attractive points

This section presents two methods of finding attractive points of normally 2-
generalized hybrid mappings in Hilbert spaces. The theorems (Theorems 3.2 and
3.4) in this section are proved without supposing that a domain of mappings is
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closed. We start with preparing the following lemma, which extends that of Hojo,
Takahashi and Termwuttipong [7].

Lemma 3.1. Let C be a nonempty subset of H, let T : C → C be a normally
2-generalized hybrid mapping with A (T ) ̸= ∅, and let {xn} be a bounded sequence

in C. Define zn ≡ 1
n

∑n−1
k=0 T

kxn (∈ H) and assume that zni ⇀ v, where {zni} is a
subsequence of {zn}. Then, v ∈ A (T ) .

Proof. Let T be (α0, β0, α1, β1, α2, β2) -normally 2-generalized hybrid. Note that the
sequences

{
Tn+1xn

}
, {Tnxn} and {Txn} in C are bounded. Indeed, let u ∈ A (T )

and M ≡ max {∥xn − u∥ : n ∈ N}. Then,∥∥Tn+1xn − u
∥∥ ≤ ∥Tnxn − u∥ ≤ · · · ≤ ∥Txn − u∥ ≤ ∥xn − u∥ ≤ M

for all n ∈ N, which means that
{
Tn+1xn

}
, {Tnxn} and {Txn} are bounded.

Let y ∈ C. From (2.4), it is sufficient to prove that

∥Ty − y∥2 + 2 ⟨Ty − y, y − v⟩ ≤ 0.

Since T is (α0, β0, α1, β1, α2, β2)-normally 2-generalized hybrid, it holds that

α2

∥∥∥T k+2xn − Ty
∥∥∥2 + α1

∥∥∥T k+1xn − Ty
∥∥∥2 + α0

∥∥∥T kxn − Ty
∥∥∥2

+ β2

∥∥∥T k+2xn − y
∥∥∥2 + β1

∥∥∥T k+1xn − y
∥∥∥2 + β0

∥∥∥T kxn − y
∥∥∥2 ≤ 0

for all n ∈ N and k ∈ N∪{0}. We have that

α2

(∥∥∥T k+2xn − y
∥∥∥2 + 2

⟨
T k+2xn − y, y − Ty

⟩
+ ∥y − Ty∥2

)
+ α1

(∥∥∥T k+1xn − y
∥∥∥2 + 2

⟨
T k+1xn − y, y − Ty

⟩
+ ∥y − Ty∥2

)
+ α0

(∥∥∥T kxn − y
∥∥∥2 + 2

⟨
T kxn − y, y − Ty

⟩
+ ∥y − Ty∥2

)
+ β2

∥∥∥T k+2xn − y
∥∥∥2 + β1

∥∥∥T k+1xn − y
∥∥∥2 + β0

∥∥∥T kxn − y
∥∥∥2 ≤ 0

and hence

(α2 + α1 + α0) ∥y − Ty∥2 + (α2 + β2)
∥∥∥T k+2xn − y

∥∥∥2
+ (α1 + β1)

∥∥∥T k+1xn − y
∥∥∥2 + (α0 + β0)

∥∥∥T kxn − y
∥∥∥2

+ 2
⟨
α2T

k+2xn + α1T
k+1xn + α0T

kxn − (α2 + α1 + α0) y, y − Ty
⟩
≤ 0.
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Using the condition
∑2

n=0 (αn + βn) ≥ 0, we obtain that

(α2 + α1 + α0) ∥y − Ty∥2 + (α2 + β2)
∥∥∥T k+2xn − y

∥∥∥2
+ (α1 + β1)

∥∥∥T k+1xn − y
∥∥∥2 − [(α2 + β2) + (α1 + β1)]

∥∥∥T kxn − y
∥∥∥2

+ 2
⟨
α2T

k+2xn + α1T
k+1xn + (α2 + α1 + α0)T

kxn − (α2 + α1)T
kxn

− (α2 + α1 + α0) y, y − Ty
⟩
≤ 0.

This yields that

(α2 + α1 + α0) ∥y − Ty∥2 + (α2 + β2)

(∥∥∥T k+2xn − y
∥∥∥2 − ∥∥∥T kxn − y

∥∥∥2)
+ (α1 + β1)

(∥∥∥T k+1xn − y
∥∥∥2 − ∥∥∥T kxn − y

∥∥∥2)
+ 2

⟨
α2

(
T k+2xn − T kxn

)
+ α1

(
T k+1xn − T kxn

)
+ (α2 + α1 + α0)T

kxn

− (α2 + α1 + α0) y, y − Ty
⟩
≤ 0.

Summing these inequalities with respect to k from 0 to n− 1 and dividing it by n,
we obtain that

(α2 + α1 + α0) ∥y − Ty∥2

+ (α2 + β2)
1

n

(∥∥Tn+1xn − y
∥∥2 + ∥Tnxn − y∥2 − ∥Txn − y∥2 − ∥xn − y∥2

)
+ (α1 + β1)

1

n

(
∥Tnxn − y∥2 − ∥xn − y∥2

)
+ 2

⟨
α2

1

n

(
Tn+1xn + Tnxn − Txn − xn

)
+ α1

1

n
(Tnxn − xn)

+ (α2 + α1 + α0) zn − (α2 + α1 + α0) y, y − Ty
⟩
≤ 0.

Replacing n by ni and taking the limit as i → ∞, we have that

(α2 + α1 + α0) ∥y − Ty∥2 + 2 (α2 + α1 + α0) ⟨v − y, y − Ty⟩ ≤ 0.

Since α2 + α1 + α0 > 0, we obtain that ∥y − Ty∥2 + 2 ⟨v − y, y − Ty⟩ ≤ 0 for all
y ∈ C. This means that v ∈ A (T ). �

Theorem 3.2. Let C be a nonempty and convex subset of H, and let T : C → C
be a normally 2-generalized hybrid mapping with A (T ) ̸= ∅. Let {λn} be a sequence
of real numbers in the interval [0, 1) such that limn→∞ λn = 0 and

∑∞
n=1 λn = ∞.

Given x1, z ∈ C, define a sequence {xn} in C as follows:

xn+1 = λnz + (1− λn)
1

n

n−1∑
k=0

T kxn

for all n ∈ N. Then, the sequence {xn} converges strongly to z ≡ PA(T )z, where
PA(T ) is the metric projection from H onto A (T ).
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Proof. First, note from Lemma 2.1 that A (T ) is a closed and convex subset of H.
Since A (T ) ̸= ∅ is assumed, the metric projection PA(T ) from H onto A (T ) is well-

defined. Define zn ≡ 1
n

∑n−1
k=0 T

kxn. Since C is convex, {zn} is a sequence in C. We
can ascertain that

(3.1) ∥zn − u∥ ≤ ∥xn − u∥

for all u ∈ A (T ) and n ∈ N. Indeed, since u ∈ A (T ), we have that

∥zn − u∥ ≡

∥∥∥∥∥ 1n
n−1∑
k=0

T kxn − u

∥∥∥∥∥
=

∥∥∥∥∥ 1n
n−1∑
k=0

(
T kxn − u

)∥∥∥∥∥
≤ 1

n

n−1∑
k=0

∥∥∥T kxn − u
∥∥∥

≤ ∥xn − u∥ .

Next, we will show that the sequence {xn} is bounded by using the mathematical
induction. Let u ∈ A (T ) , and define M ≡ max {∥z − u∥ , ∥x1 − u∥}.

(i) For the case of n = 1, it holds form the definition of M that ∥x1 − u∥ ≤ M .
(ii) Suppose that ∥xk − u∥ ≤ M . From (3.1), we have that

∥xk+1 − u∥ ≡ ∥λkz + (1− λk) zk − u∥
= ∥λk (z − u) + (1− λk) (zk − u)∥
≤ λk ∥z − u∥+ (1− λk) ∥zk − u∥
≤ λk ∥z − u∥+ (1− λk) ∥xk − u∥
≤ λkM + (1− λk)M = M.

Thus, {xn} is bounded. From (3.1), {zn} is also bounded. For u ∈ A (T ), it holds
that ∥Txn − u∥ ≤ ∥xn − u∥, and thus {Txn} is also bounded. Since {zn} is bounded
and λn → 0 is assumed, we obtain that xn+1 − zn → 0 from

∥xn+1 − zn∥ ≡ ∥λnz + (1− λn) zn − zn∥
= λn ∥z − zn∥ .

Define Xn ≡ ∥xn − z∥2, where z ≡ PA(T )z. Our aim is to show that Xn → 0.
From (2.1) and (3.1), we have that

Xn+1 ≡ ∥xn+1 − z∥2

= ∥λn (z − z) + (1− λn) (zn − z)∥2

≤ (1− λn)
2 ∥zn − z∥2 + 2 ⟨xn+1 − z, λn (z − z)⟩

≤ (1− λn) ∥zn − z∥2 + 2λn ⟨xn+1 − z, z − z⟩
≤ (1− λn) ∥xn − z∥2 + 2λn ⟨xn+1 − z, z − z⟩
≡ (1− λn)Xn + 2λn ⟨xn+1 − z, z − z⟩ .
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From Lemma 2.2, it is sufficient to demonstrate that

lim sup
n→∞

⟨xn+1 − z, z − z⟩ ≤ 0.

Without loss of gererality, there exists a subsequence {xni+1} of {xn+1} such that

lim sup
n→∞

⟨xn+1 − z, z − z⟩ = lim
i→∞

⟨xni+1 − z, z − z⟩

and xni+1 ⇀ v for some v ∈ H. Since xn+1 − zn → 0, it holds that zni ⇀ v. Since
the sequence {xn} is bounded and T is normally 2-generalized hybrid, we have from
Lemma 3.1 that v ∈ A (T ). Since z ≡ PA(T )z and v ∈ A (T ), we obtain from (2.5)
that

lim sup
n→∞

⟨xn+1 − z, z − z⟩ = lim
i→∞

⟨xni+1 − z, z − z⟩

= ⟨v − z, z − z⟩ ≤ 0.

This completes the proof. �

Remark 3.3. From (3.1) in the proof of Theorem 3.2, the averaged sequence{
zn ≡ 1

n

n−1∑
k=0

T kxn

}
also converges strongly to the attractive point z ≡ PA(T )z.

The following theorem offers an alternative method to construct sequences that
converge strongly to attractive points of normally 2-generalized hybrid mappings.

Theorem 3.4. Let C be a nonempty and convex subset of H, and let T : C → C
be a normally 2-generalized hybrid mapping with A (T ) ̸= ∅. Let {λn} , {an} , {bn}
and {cn} be sequences of real numbers in the interval (0, 1) such that

lim
n→∞

λn = 0,

∞∑
n=1

λn = ∞,(3.2)

an + bn + cn = 1, ∀n ∈ N,(3.3)

lim inf
n→∞

anbn > 0, lim inf
n→∞

bncn > 0 and lim inf
n→∞

cnan > 0.(3.4)

Given x1, z ∈ C, define a sequence {xn} in C as follows:

xn+1 = λnz + (1− λn)
(
anxn + bnTxn + cnT

2xn
)

for all n ∈ N. Then, the sequence {xn} converges strongly to z ≡ PA(T )z, where
PA(T ) is the metric projection from H onto A (T ).

Proof. Define zn ≡ anxn + bnTxn + cnT
2xn. Since C is convex, from (3.3), {zn} is

a sequence in C. It is easily ascertained that

(3.5) ∥zn − u∥ ≤ ∥xn − u∥
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for all u ∈ A (T ) and n ∈ N. Indeed, since u ∈ A (T ), we have from (3.3) that

∥zn − u∥ ≡
∥∥[anxn + bnTxn + cnT

2xn
]
− u

∥∥
≤ an ∥xn − u∥+ bn ∥Txn − u∥+ cn

∥∥T 2xn − u
∥∥

≤ an ∥xn − u∥+ bn ∥xn − u∥+ cn ∥xn − u∥
= ∥xn − u∥ .

Furthermore, it holds that the sequences {xn} , {zn} and {Txn} are bounded. Since
their proofs are just same as those in the proof of Theorem 3.2, we omit them here.

Next, note that

∥xn+1 − xn∥ ≤ λn ∥z − xn∥(3.6)

+ (1− λn) bn ∥Txn − xn∥+ (1− λn) cn
∥∥T 2xn − xn

∥∥
for all n ∈ N. The relationship (3.6) can be verified as follows:

∥xn+1 − xn∥
≡ ∥λnz + (1− λn) zn − xn∥
≤ λn ∥z − xn∥+ (1− λn) ∥zn − xn∥
≡ λn ∥z − xn∥+ (1− λn)

∥∥anxn + bnTxn + cnT
2xn − xn

∥∥
= λn ∥z − xn∥+ (1− λn)

∥∥anxn + bnTxn + cnT
2xn − (an + bn + cn)xn

∥∥
= λn ∥z − xn∥+ (1− λn)

∥∥bn (Txn − xn) + cn
(
T 2xn − xn

)∥∥
≤ λn ∥z − xn∥+ (1− λn) bn ∥Txn − xn∥+ (1− λn) cn

∥∥T 2xn − xn
∥∥ .

Furthermore, it holds that

anbn ∥xn − Txn∥2 + bncn
∥∥Txn − T 2xn

∥∥2 + cnan
∥∥T 2xn − xn

∥∥2(3.7)

≤ λn ∥z − u∥2 + ∥xn − u∥2 − ∥xn+1 − u∥2

for all u ∈ A (T ) and n ∈ N. Indeed, from (2.3), (3.3) and Lemma 2.3,

∥xn+1 − u∥2

= ∥λn (z − u) + (1− λn) (zn − u)∥2

≤ λn ∥z − u∥2 + (1− λn) ∥zn − u∥2

≤ λn ∥z − u∥2 +
∥∥an (xn − u) + bn (Txn − u) + cn

(
T 2xn − u

)∥∥2
= λn ∥z − u∥2 + an ∥xn − u∥2 + bn ∥Txn − u∥2 + cn

∥∥T 2xn − u
∥∥2

− anbn ∥xn − Txn∥2 − bncn
∥∥Txn − T 2xn

∥∥2 − cnan
∥∥T 2xn − xn

∥∥2
≤ λn ∥z − u∥2 + an ∥xn − u∥2 + bn ∥xn − u∥2 + cn ∥xn − u∥2

− anbn ∥xn − Txn∥2 − bncn
∥∥Txn − T 2xn

∥∥2 − cnan
∥∥T 2xn − xn

∥∥2
≤ λn ∥z − u∥2 + ∥xn − u∥2

− anbn ∥xn − Txn∥2 − bncn
∥∥Txn − T 2xn

∥∥2 − cnan
∥∥T 2xn − xn

∥∥2 ,
which implies that (3.7) is satisfied.
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Define Xn ≡ ∥xn − z∥2, where z ≡ PA(T )z. Our aim is to show that Xn → 0.
The rest of the proof is divided into two cases.

Case (A). Suppose that there exists a natural number N such that Xn+1 ≤ Xn

for all n ≥ N . In this case, the sequence {Xn} is convergent. From (3.7), it holds
that

anbn∥xn − Txn∥2 + bncn∥Txn − T 2xn∥2 + cnan∥T 2xn − xn∥2

≤ λn∥z − z∥2 + ∥xn − z∥2 − ∥xn+1 − z∥2

≡ λn∥z − z∥2 +Xn −Xn+1

for all n ∈ N. We have from (3.2) and (3.4) that

(3.8) xn − Txn → 0, Txn − T 2xn → 0 and T 2xn − xn → 0

as n → ∞. Since {xn} is bounded, it holds from (3.6) and (3.2) that xn+1−xn → 0.
By using (2.1) and (3.5), we have

Xn+1 ≡ ∥xn+1 − z∥2

= ∥λn (z − z) + (1− λn) (zn − z)∥2

≤ (1− λn)
2 ∥zn − z∥2 + 2 ⟨xn+1 − z, λn (z − z)⟩

≤ (1− λn) ∥zn − z∥2 + 2λn ⟨xn+1 − z, z − z⟩
≤ (1− λn) ∥xn − z∥2 + 2λn ⟨xn+1 − z, z − z⟩
= (1− λn)Xn + 2λn (⟨xn+1 − xn, z − z⟩+ ⟨xn − z, z − z⟩) .

Since xn+1 − xn → 0, from Lemma 2.2, it is sufficient to prove that

lim sup
n→∞

⟨xn − z, z − z⟩ ≤ 0.

Since {xn} is bounded, without loss of generality, there exists a subsequence {xni}
of {xn} such that

lim sup
n→∞

⟨xn − z, z − z⟩ = lim
i→∞

⟨xni − z, z − z⟩

and xni ⇀ v for some v ∈ H. Since T is normally 2-generalized hybrid, we have
from (3.8) and Lemma 2.4 that v ∈ A (T ). Since z ≡ PA(T )z and v ∈ A (T ), we
obtain from (2.5) that

lim sup
n→∞

⟨xn − z, z − z⟩ = lim
i→∞

⟨xni − z, z − z⟩

= ⟨v − z, z − z⟩ ≤ 0.

This completes the proof for Case (A).
Case (B). Suppose that there exists a subsequence {Xni} of {Xn} such that

Xni < Xni+1 for all i ∈ N. Let n0 ∈ N such that {k ≤ n0 : Xk < Xk+1} ̸= ∅. Define
τ (n) = max {k ≤ n : Xk < Xk+1} for all n ≥ n0. As results from Lemma 2.5, the
followings hold:

τ (n) → ∞ as n → ∞;(3.9)

Xn ≤ Xτ(n)+1 for all n ≥ n0;(3.10)

Xτ(n) < Xτ(n)+1 for all n ≥ n0.(3.11)
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From (3.2) and (3.4), it holds that

λτ(n) → 0;(3.12)

0 < lim inf
n→∞

aτ(n)bτ(n);(3.13)

0 < lim inf
n→∞

bτ(n)cτ(n);(3.14)

0 < lim inf
n→∞

cτ(n)aτ(n).(3.15)

From (3.10), it is sufficient to prove that Xτ(n)+1 ≡
∥∥xτ(n)+1 − z

∥∥2 → 0. From
(3.7), we have

aτ(n)bτ(n)
∥∥xτ(n) − Txτ(n)

∥∥2 + bτ(n)cτ(n)
∥∥Txτ(n) − T 2xτ(n)

∥∥2
+ cτ(n)aτ(n)

∥∥T 2xτ(n) − xτ(n)
∥∥2

≤ λτ(n) ∥z − z∥2 +
∥∥xτ(n) − z

∥∥2 − ∥∥xτ(n)+1 − z
∥∥2

≡ λτ(n) ∥z − z∥2 +Xτ(n) −Xτ(n)+1

for all n ≥ n0. From (3.11),

aτ(n)bτ(n)∥xτ(n) − Txτ(n)∥2 + bτ(n)cτ(n)
∥∥Txτ(n) − T 2xτ(n)

∥∥2
+ cτ(n)aτ(n)

∥∥T 2xτ(n) − xτ(n)
∥∥2 ≤ λτ(n) ∥z − z∥2 .

From (3.9), (3.12)–(3.15), we obtain that

(3.16) xτ(n) − Txτ(n) → 0, Txτ(n) − T 2xτ(n) → 0 and T 2xτ(n) − xτ(n) → 0

as n → ∞. From (3.6),∥∥xτ(n)+1 − xτ(n)
∥∥ ≤ λτ(n)

∥∥z − xτ(n)
∥∥+

(
1− λτ(n)

)
bτ(n)

∥∥Txτ(n) − xτ(n)
∥∥

+
(
1− λτ(n)

)
cτ(n)

∥∥T 2xτ(n) − xτ(n)
∥∥

for all n ≥ n0. Since
{
xτ(n)

}
is bounded, we have from (3.9), (3.12)–(3.16) that

xτ(n)+1 − xτ(n) → 0, and thus, Xτ(n)+1 − Xτ(n) → 0. We will demonstrate that

Xτ(n) ≡
∥∥xτ(n) − z

∥∥2 → 0. From (2.1) and (3.5),

Xτ(n)+1 ≡
∥∥xτ(n)+1 − z

∥∥2
=

∥∥λτ(n) (z − z) +
(
1− λτ(n)

) (
zτ(n) − z

)∥∥2
≤

(
1− λτ(n)

)2 ∥∥zτ(n) − z
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − z, z − z

⟩
≤

(
1− λτ(n)

) ∥∥xτ(n) − z
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − z, z − z

⟩
≡

(
1− λτ(n)

)
Xτ(n) + 2λτ(n)

⟨
xτ(n)+1 − z, z − z

⟩
.

This yields

λτ(n)Xτ(n) ≤ Xτ(n) −Xτ(n)+1 + 2λτ(n)

⟨
xτ(n)+1 − z, z − z

⟩
.

From (3.11),

λτ(n)Xτ(n) ≤ 2λτ(n)

⟨
xτ(n)+1 − z, z − z

⟩
.
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Since λτ(n) > 0, we have

Xτ(n) ≤ 2
⟨
xτ(n)+1 − z, z − z

⟩
= 2

⟨
xτ(n)+1 − xτ(n), z − z

⟩
+ 2

⟨
xτ(n) − z, z − z

⟩
.

Since xτ(n)+1 − xτ(n) → 0, it is sufficient to prove that

lim sup
n→∞

⟨
xτ(n) − z, z − z

⟩
≤ 0.

Since
{
xτ(n)

}
is bounded, without loss of generality, there exists a subsequence{

xτ(ni)

}
of

{
xτ(n)

}
such that

lim sup
n→∞

⟨
xτ(n) − z, z − z

⟩
= lim

i→∞

⟨
xτ(ni) − z, z − z

⟩
and xτ(ni) ⇀ v for some v ∈ H. Since T is normally 2-generalized hybrid, we have
from (3.16) and Lemma 2.4 that v ∈ A (T ). Since z ≡ PA(T )z and v ∈ A (T ), we
obtain from (2.5) that

lim sup
n→∞

⟨
xτ(n) − z, z − z

⟩
= lim

i→∞

⟨
xτ(ni) − z, z − z

⟩
= ⟨v − z, z − z⟩ ≤ 0.

This completes the proof. �
Remark 3.5. From (3.5) in the proof of Theorem 3.4, the “averaged sequence”{

zn ≡ anxn + bnTxn + cnT
2xn

}
also converges strongly to the attractive point z ≡ PA(T )z.

4. Strong convergence to fixed points

In this section, we add an assumption that C is closed, and obtain strong conver-
gence theorems of finding fixed points for normally 2-generalized hybrid mappings
in Hilbert spaces. From Theorem 3.2, we obtain the following theorem:

Theorem 4.1. Let C be a nonempty, closed and convex subset of H, and let T :
C → C be a normally 2-generalized hybrid mapping with F (T ) ̸= ∅. Let {λn}
be a sequence of real numbers in the interval [0, 1) such that limn→∞ λn = 0 and∑∞

n=1 λn = ∞. Given x1, z ∈ C, define a sequence {xn} in C as follows:

xn+1 = λnz + (1− λn)
1

n

n−1∑
k=0

T kxn

for all n ∈ N. Then, the sequence {xn} converges strongly to ẑ ≡ PF (T )z, where
PF (T ) is the metric projection from H onto F (T ).

Proof. We know from Lemma 2.6 that T is quasi-nonexpansive. As a consequence,
F (T ) is closed and convex. Since F (T ) ̸= ∅ is assumed, the metric projection PF (T )

from H onto F (T ) is well-defined. We have from Lemmas 2.7 and 2.8 that

F (T ) ⊂ A (T ) and A (T ) ∩ C ⊂ F (T ) ,(4.1)

respectively. Since F (T ) ̸= ∅, it holds from (4.1) that A (T ) ̸= ∅. From Lemma 2.1,
the metric projection PA(T ) from H onto A (T ) is well-defined.



630 A. KONDO AND W. TAKAHASHI

Define z ≡ PA(T )z. From Theorem 3.2, we obtain that xn → z. Thus, it is

sufficient to prove that (ẑ ≡)PF (T )z = z
(
≡ PA(T )z

)
. First, note that z ∈ F (T ).

Indeed, since {xn} is a sequence in C that converges to z and C is closed in H, it
holds that z ∈ C. Since z

(
≡ PA(T )z

)
∈ A (T ), it holds from (4.1) that z ∈ F (T ).

Next, we will verify that ∥z − z∥ ≤ ∥z − u∥ for all u ∈ F (T ), in other words, z is
the nearest point of F (T ) from z. Let u ∈ F (T ). Using (4.1), we have that

∥z − z∥ = inf {∥z − q∥ : q ∈ A (T )}
≤ inf {∥z − q∥ : q ∈ F (T )}
≤ ∥z − u∥ ,

which means z = PF (T )z ≡ ẑ. This completes the proof. �

From Theorem 3.4, we obtain the following strong approximation method of
finding fixed points of normally 2-generalized hybrid mappings.

Theorem 4.2. Let C be a nonempty, closed and convex subset of H, and let T :
C → C be a normally 2-generalized hybrid mapping with F (T ) ̸= ∅. Let {λn} ,
{an} , {bn} and {cn} be sequences of real numbers in the interval (0, 1) such that

lim
n→∞

λn = 0,
∞∑
n=1

λn = ∞,

an + bn + cn = 1, ∀n ∈ N,
lim inf

n→∞
anbn > 0, lim inf

n→∞
bncn > 0 and lim inf

n→∞
cnan > 0.

Given x1, z ∈ C, define a sequence {xn} in C as follows:

xn+1 = λnz + (1− λn)
(
anxn + bnTxn + cnT

2xn
)

for all n ∈ N. Then, the sequence {xn} converges strongly to ẑ ≡ PF (T )z, where
PF (T ) is the metric projection from H onto F (T ).

Proof. The proof is just same as that of Theorem 4.1. �

As the final remark, notice that all results in this paper are extended to normally
N -generalized hybrid mappings. A mapping T : C → C is called normally N -
generalized hybrid [9] if there exist real numbers α0, β0, . . . , αN , βN ∈ R such that

N∑
n=0

αn ∥Tnx− Ty∥2 +
N∑

n=0

βn ∥Tnx− y∥2 ≤ 0

for all x, y ∈ C, where
∑N

n=0 (αn + βn) ≥ 0 and
∑N

n=0 αn > 0.
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