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STRONG CONVERGENCE THEOREMS OF HALPERN’S TYPE
FOR NORMALLY 2-GENERALIZED HYBRID MAPPINGS
IN HILBERT SPACES

ATSUMASA KONDO* AND WATARU TAKAHASHI'

ABSTRACT. This paper establishes two types of strong convergence theorems of
finding attractive points of nonlinear mappings in Hilbert spaces. Sequences that
are constructed in the Halpern’s type iteration converge strongly to attractive
points of normally 2-generalized hybrid mappings. These theorems are proved
without assuming that the domain of the mapping is closed. Same types of results
regarding fixed points are also demonstrated by additionally supposing that the
domain of the mapping is closed. Our results extend many existing results in the
literature.

1. INTRODUCTION

Let H be a real Hilbert space equipped with inner product (-, -) and norm ||||.
We denote the sets of natural and real numbers by N and R, respectively. Let C' be
a nonempty subset of H, and let T' be a mapping from C to H. The sets of fixed
points and attractive points of T are denoted by

F(T) = {u€e H:Tu=u} and
A(T) = {ueH:|Ty—u| <|ly—ul| foralyeC},

respectively. The concept of attractive points was proposed by Takahashi and
Takeuchi [15]. A mapping T : C' — H is called

(i) nonezpansive if |Tx — Ty|| < ||z — y|| for all z,y € C.

It is easily ascertained that a fixed point of a nonexpansive mapping is an at-
tractive point. For a nonexpansive mapping, Wittmann [19] proved the following
strong convergence theorem of Halpern’s iteration [4] in Hilbert spaces:

Theorem 1.1 ([19]). Let C be a nonempty, closed and convex subset of H, and let
T :C — C be a nonexpansive mapping with F (T') # (. For any 1 = x € C, define
a sequence {x,} in C as follows:

Tnt1 =z + (1= A\y) Txyy

for alln € N, where {\,} is a sequence of real numbers in the interval [0, 1) such that
limy oo A = 0, >0 Ay = 00 and Y o0 1 [An — Aps1| < 0o. Then, the sequence
{zn} converges strongly to a fized point of T.
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Wittmann’s theorem has been extended to various directions. Kocourek, Taka-
hashi and Yao [8] introduced a wide class of mappings, which contains nonexpansive
mappings as special cases, and proved a weak convergence theorem in Hilbert spaces.
A mapping T : C — H is called

(ii) generalized hybrid [8] if there exist a, 8 € R such that

(1Y) allTz =Ty + (1 —a) lz = Ty|* < BTz — y|* + (1 = B) |« — y|*

for all z,y € C. Such a mapping T is called («, §)-generalized hybrid. If (o, 5) =
(1,0), a generalized hybrid mapping 7' is nonexpansive. The generalized hybrid
mappings are further extended. A mapping T is called

(iii) normally generalized hybrid [16] if there exist «, 3,7,d € R such that

(1.2) a|[Tz = Ty|* + B lle = Ty|* + 7 |Tz — ylI* + 6 [|lz — y||* < 0

for all x,y € C, where (1) a+p+~v+d6d>0and (2) a+5>00r a+v > 0;

(iv) 2-generalized hybrid [11] if there exist oy, ag, 1, S2 € R such that
2
oz ||T%2z — Ty|” + o | Tz — Tyl> + (1 — o1 — az) ||z — Ty

< B | 7% —y|” + Bu 1Tz — yl* + (1 — B — B2) [l — yl|”

for all x,y € C.

Putting 8 =1—«a and § = — (1 — ) in (1.2), we can recognize that a normally
generalized hybrid mapping is («, —vy)-generalized hybrid. A 2-generalized hybrid
mapping is generalized hybrid if s = S2 = 0. Hojo, Takahashi and Termwuttipong
[7] proved the following strong convergence theorem for 2-generalized hybrid map-
pings in a Hilbert space. Important precursors of [7] are Kurokawa and Takahashi
[10] and Hojo and Takahashi [5]. For other types of convergence theorems, see also
Hojo and Takahashi [6], Termwuttipong, Pongsriiam and Yao [18] and Alizadeh and
Moradlou [1, 2].

Theorem 1.2 ([7]). Let C be a nonempty, closed and conver subset of H, and
let T : C — C be a 2-generalized hybrid mapping with F (T) # 0. Let {\,} be
a sequence of real numbers in the interval [0,1) such that lim, o0 Ay = 0 and
Yol A =00. Given x1,z € C, define a sequence {xy,} in C as follows:

1 n—1
Tpntl = Anz + (]. - )\n) ﬁ Z ka]?n
k=0

for all n € N. Then, the sequence {x,} converges strongly to z = Pr )z, where
Pp(ry is the metric projection from H onto F (T).

On the other hand, Takahashi, Wong and Yao [17] established the following strong
convergence theorem for generalized hybrid mappings in a Hilbert space.

Theorem 1.3 ([17]). Let C' be a nonempty and conver subset of H, and let T :
C — C be a generalized hybrid mapping with A(T) # (0. Let {\,} and {ay} be
sequences of real numbers in the interval (0,1) such that

(o9}
nh_)rgo An =0, zjl)m =00 and limniggo an (1 —ay) > 0.
ne
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Given x1,z € C, define a sequence {z,} in C as follows:
Tnt1 = Az + (1 —Ap) (anxn +(1—ap) Txn)

for all n € N. Then, the sequence {x,} converges strongly to z = Pyryz, where
Py(ry is the metric projection from H onto A(T).

Very recently, normally generalized hybrid mappings (iii) and 2-generalized hy-
brid mappings (iv) are unified. A mapping 7" : C' — C'is called

(v) normally 2-generalized hybrid [9] if there exist ag, 5o, a1, f1, a2, B2 € R such
that

s ||T% — Ty + a1 | Tx — Ty|® + ag ||z — Ty||?
+ 85 || T2 — y||* + By | T — yl)> + Bollz -y < 0

for all z,y € C, where (1) 3.2_,(an +B,) > 0 and (2) ag + a3 +ag > 0. It
is also called an (ag, fo, a1, B1, a2, B2)-normally 2-generalized hybrid mapping. Al-
though Kondo and Takahashi [9] proved weak convergence theorems for normally
2-generalized hybrid mappings, any strong convergence theorem has not yet been
known.

The main purpose of this paper is to establish two types of strong convergence
theorems (Theorem 3.2 and Theorem 3.4) of finding attractive points of normally
2-generalized hybrid mappings in Hilbert spaces. Theorem 3.2 and Theorem 3.4
extend Theorem 1.2 and Theorem 1.3, respectively. These theorems are proved
without assuming that the domain of the mapping is closed. Same types of results
(Theorem 4.1 and Theorem 4.2) regarding fixed points are also demonstrated by
additionally supposing that the domain of the mapping is closed.

2. PRELIMINARIES

This section briefly offers background information and results. For more details,
see Takahashi [13, 14] and earlier studies. We know that

(2.1) lz+yl* < =l +2(z +y, v)

for all x,y € H. We also know that

(2.2) Az + (1= N yl® = Xzl” + (1= A) [lyl* = A (1= A) & — y||?
for all z,y € H and X\ € R. In particular, if A € [0, 1],

(2.3) Az + (1= Nyl < Mlal® + (1= A) [lyl*-

Let C' be a nonempty subset of H. For T': C — H and v € H, it is easy to verify
that

(2.4) veA(T) < Ty —yl> +2(Ty —y, y—v) <0, WyeC.
A mapping T : C — H with F (T) # () is called quasi-nonexpansive if
[Tz —ul| < |z —ull

for all z € C' and v € F(T). It is known in the literature that all types of mappings
(i)—(v) mentioned in Introduction are quasi-nonexpansive if F (T) # 0 (see [9]).
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Furthermore, we know that the set of fixed points F' (T) of a quasi-nonexpansive
mapping is closed and convex (see [8]), which plays important roles in many studies.

Strong and weak convergence of a sequence {z,} in H to a point z € H are
denoted by z, — = and z,, — x, respectively.

Let A be a nonempty, closed and convex subset of H. We know that for any
z € H, there exists a unique nearest point z € A, that is, ||z — Z|| = infyeca ||z — ul| .
This correspondence is called the metric projection from H onto A, and is denoted
by Pa. We know that if P4 is the metric projection from H onto A, then

(2.5) (z — Paz, Paz—v) >0

for all z € H and v € A.
The following lemmas are utilized in the proofs of the main theorems of this
paper.

Lemma 2.1 ([15]). Let C be a nonempty subset of H, and let T' be a mapping from
C to H. Then, A(T) is a closed and convex subset of H.

Lemma 2.2 ([3]; see also [20]). Let {X,} be a sequence of nonnegative real numbers,
let {\n} be a sequence of real numbers in the interval [0,1) such that 7 | A\, =
0o, and let {Y,} be a sequence of real numbers such that limsup,_,. Y, < 0. If
Xnt1 < (1= Xp) Xp + AY, for alln € N, then X, — 0 as n — oo.

Lemma 2.3 ([11]). Let z,y,z € H and a,b,c € R such that a+b+ c=1. Then,
laz + by + c2[|* = a|lz|* + byl +c]l=]*
—abllz —y|* —belly — z|* — callz —|*.
Additionally, if a,b,c € [0,1], then
laz: + by + c2||* < al]|* + bllyl|* + cll=]|*.

Lemma 2.4 ([9]). Let C be a nonempty subset of H, let T : C — C' be a normally 2-
generalized hybrid mapping, and let {x,} be a sequence in C satisfying x,—Tx, — 0,
T%x, —x, — 0 and x,, — v. Then, v € A(T).

Lemma 2.5 ([12]). Let {X,} be a sequence of real numbers. Assume that {X,} is
not monotone decreasing for sufficiently large n € N, in other words, there exists a
subsequence {Xp,} of {X,} such that X,, < Xn,4+1 for alli € N. Let ng € N such
that {k <ng: Xy < Xg+1} # 0. Define a sequence {7 (n)} of natural numbers
as follows:

n>ng

7(n) =max{k <n: X < Xgy1}, Yn>no.
Then, the followings hold:
(i) 7 (n) — o0 as n — oo;
(ii) Xn < XT(n)-i-l and Xr(n) < X’r(n)-i—l: Vn > ng.

Lemma 2.6 ([9]). Let C be a nonempty subset of H, and let T : C — C be a nor-
mally 2-generalized hybrid mapping with F (T) # (. Then, T is quasi-nonexpansive.

Lemma 2.7. Let C' be a nonempty subset of H, and let T : C' — C be a normally
2-generalized hybrid mapping. Then, F (T) C A(T).
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Proof. Since T is a normally 2-generalized hybrid, there exist ay, 8o, a1, 81, a2, B2 €
R such that

az 1% = Ty||* + ax || Tz = Ty|* + ao |}z — Ty||”
+ B2 | 7% — y|* + Bu Tz — yl* + Bo |z — y]* < 0

for all z,y € C, where (1) Zi:o (an + Brn) > 0 and (2) ag + a1 + a9 > 0.
Let u € F'(T). We will prove that u € A(T). For any y € C, we have that

as [|T%u = Ty||* + a1 | Tu = Ty||” + ao |lu — Ty|)*
+ B2 ||T%u — > + B | Tu — y|* + Bo llu — yII* < 0.
Since u = Tu = T?u,
(a2 + a1+ ag) lu—Ty||* + (B2 + Br + Bo) |lu — y||* < 0.
Since ZZ:O (an + Brn) > 0, we have that

(a2 +a1+ag) [lu=Tyl[> < —(Ba+ B+ Bo) lu—vyl
< (a2 + a1 +ag) flu—y|*.

From ag 4 a1 4 ag > 0, we obtain that ||u — Ty||* < ||u — y||* for all y € C, which
means that v € A(T). O

Lemma 2.8 ([15]). Let C be a nonempty subset of H, and let T be a mapping from
C toH. Then, A(T)NC C F (T).

The following theorems (Theorem 2.9 and 2.10) reveal a sufficient and necessary
conditions for a normally 2-generalized hybrid mapping to have an attractive/fixed
point.

Theorem 2.9 ([9]). Let C be a nonempty subset of H, and let T : C — C be a
normally 2-generalized hybrid mapping. Then, the following three statements are
equivalent:

(a) for any v € C, {T"x} is a bounded sequence in C;

(b) there exists z € C such that {T™z} is a bounded sequence in C;

(c) A(T) # 0.

Theorem 2.10 ([9]). Let C be a nonempty, closed and convex subset of H, and let
T :C — C be a normally 2-generalized hybrid mapping. Then, the following four
statements are equivalent:

(a) for any x € C, {T"x} is a bounded sequence in C';

(b) there exzsts z € C such that {T"z} is a bounded sequence in C;

(c) A(T) #

(d) F(T) #

3. STRONG CONVERGENCE TO ATTRACTIVE POINTS

This section presents two methods of finding attractive points of normally 2-
generalized hybrid mappings in Hilbert spaces. The theorems (Theorems 3.2 and
3.4) in this section are proved without supposing that a domain of mappings is
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closed. We start with preparing the following lemma, which extends that of Hojo,
Takahashi and Termwuttipong [7].

Lemma 3.1. Let C' be a nonempty subset of H, let T : C — C be a normally
2-generalized hybrid mapping with A(T) # 0, and let {x,} be a bounded sequence
in C. Define z, = %ZZ;& TFz, (€ H) and assume that z,, — v, where {z,.} is a
subsequence of {z,}. Then, ve A(T).

Proof. Let T be (ay, Bo, a1, B1, ag, B2) -normally 2-generalized hybrid. Note that the
sequences {T" "1z, }, {T"x,} and {Tx,} in C are bounded. Indeed, let u € A(T)
and M = max {||z,, — u|| : n € N}. Then,

| Ty — || < | T"2n —ul < - < | Tap —ull < [lzg —ul| <M

for all n € N, which means that {T""'z, } , {T"z,} and {Tz,} are bounded.
Let y € C. From (2.4), it is sufficient to prove that

1Ty —yl> +2(Ty —y, y—v) <0.
Since T is (ag, Bo, a1, B1, a2, B2)-normally 2-generalized hybrid, it holds that
a9 HTHQ:EH - TyH2 + o HTk‘Ha:n — TyH2 + ag HTkxn — T@/H2
B A g T

for all n € N and k € NU{0}. We have that

2
aa (42 =+ 2(T% %0~ y =10+ Iy~ Tul?)
2
to (HT"‘“:{:n - yH +2 <Tk+lxn —y, Y- Ty> +ly - TyHQ)

k 2 k 9

+ g HT :nn—yH +2<T T — Y, y—Ty>+||y—Ty||

k+2 2 k+1 2 k 2
+52HT + %-Z/H +51HT + an—yH +B0HT wn_yH <0
and hence

2
(a2 + a1 +a0) [y = Tyl + (a2 + o) | T+22, — o
2 2
+ (a1 + B0) || T a0 — | + (a0 + o) | T2 —

+2 <a2Tk+2xn + a1 T ey, + aoTF 2y, — (e + a1+ o)y, y— Ty> < 0.
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Using the condition Zi:o (an, + Brn) > 0, we obtain that
2 k2 2
(a2 + a1+ a0) lly = Ty|* + (az + Bo) | T2, — |

2 2
+ (a1 + B1) HTkaEn - y” - [(Oéz + B2) + (o1 + 51)] HTkl‘n - yH
+ 2<a2Tk+2JJn + o T e, + (o + a1 + ) TRz, — (a + o) Ty,

— (a2 + o1+ a0) y, y—Ty> <0.
This yields that

2 2
(a2 + a1+ ) lly = Ty|]* + (a2 + B2) (HT’““% —y| |-y )
k+1 2 k 2
o0 ([1#0 o = =]
+ 2<a2 (Tk+2xn — Tk:zn> + aq (Tkﬂa:n — Tkﬂsn> + (a2 + a1 + ) Tk:zn

_(a2+041+040)y7 y_Ty> SO

Summing these inequalities with respect to k from 0 to n — 1 and dividing it by n,
we obtain that

(a2 + a1 + ao) ly — Ty|)?

1 2
+ (a2 + 82) = (|7 = yl* + 17720 =y = | T2 =y = Il — 1)

1
+ (a1 +80) = (1770 = ylI* = 2 = yl?)

1 1
+ 2<a27 (T”'H:L’n + T "z, — Tz, — CL‘n) +a1— (T"xy — )
n n
+ (a2 + a1 + ag) 2, — (a2 + a1 + ag) ¥, y—Ty> <0.
Replacing n by n; and taking the limit as ¢ — oo, we have that
(o2 + a1 + o) ly = Tyll” + 2 (02 + a1 + ag) (v —y, y — Ty) < 0.

Since ap + a1 + ag > 0, we obtain that |ly — Ty||* +2(v —y, y — Ty) < 0 for all
y € C. This means that v € A(T). O

Theorem 3.2. Let C' be a nonempty and convex subset of H, and let T : C — C
be a normally 2-generalized hybrid mapping with A (T) # 0. Let {\,} be a sequence
of real numbers in the interval [0,1) such that lim, o Ay = 0 and Y7 Ay = 00.
Given x1,z € C, define a sequence {x,,} in C as follows:

1 n—1
Tl = Az + (1= Ayp) - ZTka:n
k=0

for all n € N. Then, the sequence {x,} converges strongly to Z = Pyryz, where
Py(ry is the metric projection from H onto A(T).
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Proof. First, note from Lemma 2.1 that A (T) is a closed and convex subset of H.
Since A (T') # () is assumed, the metric projection P4y from H onto A (T') is well-

defined. Define z,, = % ZZ;(I) T*z,,. Since C is convex, {2,} is a sequence in C. We
can ascertain that

(3.1) 120 — ull < [lzn — ull

for all w € A(T) and n € N. Indeed, since u € A (T'), we have that
n—1
1
— Z Tkzvn —Uu
n
k=0
n—1
1
— Z (Tka:n — u) |
n
k=0

1 n—1
< 1 ]

< lzn =l

lzn —ull =

Next, we will show that the sequence {z,} is bounded by using the mathematical
induction. Let u € A(T), and define M = max {||z — ul|, |z1 — u|l}.

(i) For the case of n = 1, it holds form the definition of M that ||z — u|| < M.

(ii) Suppose that ||z —u|| < M. From (3.1), we have that

[zt —ull = Az + (1= Ap) 2e — u

Ak (2 = u) + (1 = M) (2 — )]

Mz = ull + (1 = Ae) |26 = wll

A llz = ull + (1= Ag) [lzg — ull

MM A+ (1= N) M = M.

Thus, {x,} is bounded. From (3.1), {z,} is also bounded. For v € A (T), it holds

that || Tz, — u|| < ||z, — u||, and thus {T'z,} is also bounded. Since {z,} is bounded
and A, — 0 is assumed, we obtain that x,4+1 — z, — 0 from

IN AN A

[Tnr1 =zl = [Anz+ (1= An) 20 — 2|
= Mnllz =zl
Define X,, = ||z, — z||?, where z = Pa(ryz. Our aim is to show that X, — 0.

From (2.1) and (3.1), we have that

Xpy1 = |oppr =7

= [ (z=2)+ (1= ) (20 = 2)|?
(1- )\n)Q 2 — EHQ +2(@pt1 — %, A (2 —2))
(1= 2n) |20 — Z|I> + 20n (Zny1 — 2, 2 —2)
(1= M) |lzn — 212 4 27\ (@py1 — 2, 2 — %)
(1=Xp) Xn + 2\ (@py1 — Z, 2 —Z).

IN AN A
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From Lemma 2.2, it is sufficient to demonstrate that

lim sup (zp41—%, 2—2) <0.
n—o0

Without loss of gererality, there exists a subsequence {zp,4+1} of {zp41} such that

lim sup (zp41 — 2, 2 —2) = lim (xy,41 — Z, 2 — Z)
n—oo 1— 00
and x,,41 — v for some v € H. Since x,, 1 — 2, — 0, it holds that z,, — v. Since
the sequence {z,} is bounded and T is normally 2-generalized hybrid, we have from
Lemma 3.1 that v € A(T). Since Z = Py(ryz and v € A(T), we obtain from (2.5)
that

lim sup (xp41 —%, 2—2%) = lim
n—00 i—00

= (v—%, z—2) <0.

<xm‘+1 —Z, 2= E>

This completes the proof. O

Remark 3.3. From (3.1) in the proof of Theorem 3.2, the averaged sequence

also converges strongly to the attractive point z = Py()z.

The following theorem offers an alternative method to construct sequences that
converge strongly to attractive points of normally 2-generalized hybrid mappings.

Theorem 3.4. Let C' be a nonempty and convex subset of H, and let T : C — C
be a normally 2-generalized hybrid mapping with A (T) # 0. Let {\,}, {an}, {bn}
and {cp} be sequences of real numbers in the interval (0,1) such that

oo
(3.2) lim X, =0, Zl An = 00,
n—=
(3.3) an +by,+cn=1 VneN,
(3.4) lim inf a,b, >0, lim inf b,c, >0 and lim inf c,a, > 0.
n—0o0 n—oo n—o0

Given x1,z € C, define a sequence {x,,} in C as follows:
Tpt1 =z + (1= \p) (an:rn + b, Tz, + chan)

for all n € N. Then, the sequence {x,} converges strongly to z = Pyryz, where
Py(ry is the metric projection from H onto A(T).

Proof. Define 2, = anxy + by Ty + ¢, T%w,. Since C is convex, from (3.3), {z,} is
a sequence in C. It is easily ascertained that

(3.5) lzn = wll < flzn = ull
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for all u € A(T) and n € N. Indeed, since u € A(T), we have from (3.3) that
H [anazn + b, T2, + chan} — uH
an |20 — ull + by | T2n — ul| + ¢ || 7?2 — ul|

an ||Tn — ul| + by |20 — ul| + cn [[2n — ull

lzn — ul
<
<

= llan =l

Furthermore, it holds that the sequences {z,}, {z,} and {Tx,} are bounded. Since
their proofs are just same as those in the proof of Theorem 3.2, we omit them here.
Next, note that

(3.6) [#nt1 = @nll < An [z — 24|
+ (1= M) by [Tz, — || + (1= Ap) cn ||T2$n — |
for all n € N. The relationship (3.6) can be verified as follows:
[Znt1 — 2nll
= Az + (1= A\y) 2z — xa|
<A llz = znl + (1 =) [[2n — 2a|
=M ||z — 2l + (1 = Ap) [Jan@n + bp Ty + enT?xy, — Tn|
= |2 = |l + (L= Ao) [|an@n + bp Tz + cn Tz — (an + by + ¢5) @0 |
=Mz =z + (1= M) an (Txy — xn) + Cn (TZq:n ) H
<Mz =znll + (1= X)) by | Tz, — || + (1= Ap) cn HTan - an )
Furthermore, it holds that
(3.7) anbn |20 — Txn||* + bncn | T — T2mnH2 + cpan HT2$n - :an2
< A llz = ul® + flen = ull® = @ns1 = ul®
for all u € A(T) and n € N. Indeed, from (2.3), (3.3) and Lemma 2.3,
|01 — ul?
= [|An (z = u) + (1 = An) (20 — w)|®
< Anllz = ul® + (1= X 20 = ul?
<Mz —ul* + Han (xn —u) + by (Tzy, —u) +cp (T2xn —u) H2
= Mo |2 = ul® + an |20 — ull® + bo | T2y — | + 0 | T2, — u)?
— anby, [|2n — ngan2 — bpen HTa:n — T2xn||2 — Ccpln HT2xn — an2
<Az — UH2 + an [|zn — “||2 + b [|2n — uH2 + cn l|@n — u||2
— apby ||xn — Txn||2 — byep, HT:L’n — T2xn|{2 — cpan, HTan — a:nHQ
< Aallz = ul® + flan — ull?

— apbp ||xn — Tan2 — buep, HTa:n — T2xn||2 — cpan, HTan — an2

which implies that (3.7) is satisfied.
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Define X,, = ||z, — Z||?, where z = Py(ryz. Our aim is to show that X, — 0.
The rest of the proof is divided into two cases.

Case (A). Suppose that there exists a natural number N such that X, ;1 < X,
for all n > N. In this case, the sequence {X,} is convergent. From (3.7), it holds
that

anbnl|Tn — Tap||? + buca || Ton — T2, |2 + cnan|| T2, — 242

< Mallz =2l + llzn — 2 = l|lznsr — 2

= \ollz =212 4+ X0 — Xut1
for all n € N. We have from (3.2) and (3.4) that
(3.8) zp —Tan — 0, Tay—T%x, -0 and T%z, — 2z, — 0
as n — 00. Since {x,} is bounded, it holds from (3.6) and (3.2) that ;41 —x, — 0.
By using (2.1) and (3.5), we have

Xnt1 = |zpg — 2|

[An (2 =2) + (1 = Ap) (20 — ?)H2
(1= )2 |20 — 2 + 2 (@41 — 2, A (2 —2))
(1= M) l|lzn — 2|2 + 2\ (Tpy1 — 2, 2 —2)
(1= M) | — Z|1> + 200 (Zny1 — 2, 2 —2)
(1=Xp) Xn 4+ 2\, ((@py1 — Tpy 2—2) + {2y — 2, 2—2)).

Since xp11 — zyn — 0, from Lemma 2.2, it is sufficient to prove that

IN N IA

lim sup (z, — %, z —%) <0.
n—oo

Since {x,} is bounded, without loss of generality, there exists a subsequence {zy, }
of {z,} such that
lim sup (z, — %, z —%) = lim (x,, — %, 2 —2)
n—00 100
and x,, — v for some v € H. Since T is normally 2-generalized hybrid, we have
from (3.8) and Lemma 2.4 that v € A(T). Since Z = Pyryz and v € A(T), we
obtain from (2.5) that

lim sup (z, —%, 2 —2%) = lim (z,, — %, 2 —%)
n—oo 1—00

= (v—%, z2—%) <0.

This completes the proof for Case (A).

Case (B). Suppose that there exists a subsequence {X,,} of {X,} such that
Xp, < Xy, 41 for all i € N. Let ng € N such that {k < ng: Xy < X1} # 0. Define
7(n) = max{k <n:X; < Xp41} for all n > ng. As results from Lemma 2.5, the
followings hold:

(3.9) T(n) = oo as n — oo;
(3.10) Xn < X7(ny41 for all n > ng;
(3.11) Xrny < Xr(ny4 for all n > ng.
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From (3.2) and (3.4), it holds that

(3.12) Arimy = 0;

(3.13) 0 < lim nlilgo Ar(n)br(n);
(3.14) 0 < T inf b (oo
(3.15) 0 <lm inf c ()ar(n)-

n—oo

From (3.10), it is sufficient to prove that X 41 = H:UT(n)_H —EHQ — 0. From

(3.7), we have

2 2

ey [y = T |+ by o 1Ty = T2 |
+ Cr(m)r(m) [|T2@r() = Toi ||
< ey 12 = 217 + |27y = Z[° = |7y = 21
= Ay 12 = 21 + Xrn) — Xy
for all n > ng. From (3.11),
aruybrn 1Ty = Dol + bruyrt) [T ey = T?2r(o |
t erartn) |72y = oy |” < vty llz =217
From (3.9), (3.12)(3.15), we obtain that
(3.16)  Tr(n) — Txr(m) = 0, Tar(n) — T2,y — 0 and T?2,(,) — Tr(y) — 0
as n — oo. From (3.6),
271 = Tz | < Arey |12 = 2ol + (1= Arwy) briny 1T 27 () — 2o
+ (1= Arw)) €rmy | 722700y — 2|

for all n > ng. Since {x,(,)} is bounded, we have from (3.9), (3.12)-(3.16) that
Tr(n)+1 — Tr(n) — 0, and thus, X711 — Xr) — 0. We will demonstrate that

Xe(m) = ||To(m) — Z||* = 0. From (2.1) and (3.5),
Xemir = [ermyn =2
= At =2+ (1= 2w (2 = 2) |
< (1= 2rw) lery = 2l + 220 (Ery 1 = 7 2= 7)
< (1= Ar) ry = 2l + 220 (Ery 1 = 2 2= 7)
= (1= 2r(w) Xe) + 20e() (r(my41 — 7 2 = %)
This yields
Ar(m)Xr(n) € Xrny = Xemyr1 + 2y (Trmy11 — 7, 2 = 2).-
From (3.11),
Ar() Xr(n) < 2Ae(m) (Tr(my41 = % 2= F)-
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Since A7) > 0, we have

X‘r(n) < 2 <x7'(n)+1 —Z, Z— §>

= 2 <l‘7_(n)+1 — Tr(n)s Z— E> + 2 <.Z‘T(n) —Z, 2 — §> .
Since Tr(n)41 — Tr(n) — 0, it is sufficient to prove that

lim sup <x7(n) —Z, 2 — E> <0.
n—oo
Since {xT(n)} is bounded, without loss of generality, there exists a subsequence
{:UT(W)} of {JET(n)} such that

lim T?EEO <$T(n) —Z, z— 2> = Zlggo <:CT(,%.) —Z, 2 — §>

and x,(,,) — v for some v € H. Since T is normally 2-generalized hybrid, we have
from (3.16) and Lemma 2.4 that v € A(T). Since Z = Pyyz and v € A(T), we
obtain from (2.5) that

lim nsglo)o <:U7(n) —Z, z— E> = Zlgglo <1‘T(ni) —Z, 2 — E>
= (v—2%, z2—2)<0.
This completes the proof. Il
Remark 3.5. From (3.5) in the proof of Theorem 3.4, the “averaged sequence”
{zn = apnxn + b Tx, + chan}

also converges strongly to the attractive point z = Py(r)z.

4. STRONG CONVERGENCE TO FIXED POINTS

In this section, we add an assumption that C' is closed, and obtain strong conver-
gence theorems of finding fixed points for normally 2-generalized hybrid mappings
in Hilbert spaces. From Theorem 3.2, we obtain the following theorem:

Theorem 4.1. Let C be a nonempty, closed and convex subset of H, and let T :
C — C be a normally 2-generalized hybrid mapping with F (T) # 0. Let {\,}
be a sequence of real numbers in the interval [0,1) such that lim, oo Ay = 0 and
Yol A =00. Given x1,z € C, define a sequence {x,} in C as follows:

1 n—1
Tntl = )\nZ + (1 - An) E ZTk.Tn
k=0

for all n € N. Then, the sequence {x,} converges strongly to z = Pp(1yz, where
Pp(y is the metric projection from H onto F (T').

Proof. We know from Lemma 2.6 that 7' is quasi-nonexpansive. As a consequence,
F (T) is closed and convex. Since F' (T) # () is assumed, the metric projection Ppr
from H onto F (T) is well-defined. We have from Lemmas 2.7 and 2.8 that

(4.1) F(T)Cc A(T) and A(T)NC C F(T),

respectively. Since F (T') # (), it holds from (4.1) that A (T') # (). From Lemma 2.1,
the metric projection P4y from H onto A (T) is well-defined.
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Define z = Pyr)z. From Theorem 3.2, we obtain that z, — Zz. Thus, it is
sufficient to prove that (2 =) Pp(ryz = 2 (E PA(T)z). First, note that z € F (7).
Indeed, since {x,} is a sequence in C' that converges to zZ and C' is closed in H, it
holds that z € C. Since z (= Pa(ryz) € A(T), it holds from (4.1) that z € F (T).
Next, we will verify that ||z —Z|| < ||z —u]| for all uw € F (T), in other words, Z is
the nearest point of F' (T') from z. Let uw € F (T'). Using (4.1), we have that

lz=2 = inf{llz—ql:qeA(T)}
< inf{llz—ql: g€ F(T)}
<z —ull,
which means Z = Pp(1)z = z. This completes the proof. O

From Theorem 3.4, we obtain the following strong approximation method of
finding fixed points of normally 2-generalized hybrid mappings.

Theorem 4.2. Let C be a nonempty, closed and conver subset of H, and let T :
C — C be a normally 2-generalized hybrid mapping with F (T) # 0. Let {\,},
{an}, {bn} and {c,} be sequences of real numbers in the interval (0,1) such that

o0
lim A, =0, Y A= o0,
n=1

n—o0

ap +b,+cp, =1, VneN,

lim inf a,b, >0, lim inf b,c, >0 and lim inf c,a, > 0.
n—oo n—o0 n—oo

Given x1,z € C, define a sequence {x,} in C as follows:
Tnt1 = Mz + (1= \p) (anxn + b, Tz, + ch2:cn)
for all n € N. Then, the sequence {x,} converges strongly to z = Pr )z, where
Pp(7y is the metric projection from H onto F'(T).
Proof. The proof is just same as that of Theorem 4.1. O

As the final remark, notice that all results in this paper are extended to normally
N-generalized hybrid mappings. A mapping T : C — C is called normally N-
generalized hybrid [9] if there exist real numbers «, B, - .., an, Sy € R such that

N N
> an || T = Tyl> + > Bu [Tz —y|I> <0
n=0 n=0

for all z,y € C, where Zivzo (an + Br) > 0 and ZnNzo oy > 0.
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