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method of lower and upper solutions has also been very useful to find existence re-
sults. Indeed, existence results were found for the case N = 1 in [14,18,21], and for
systems in [16, 19, 21]. In particular, [14, 16, 21] assumed a version of the following
monotonicity condition

x 7→ x+ f(t, x)(g(t+)− g(t)) is nondecreasing on [α(t), β(t)]

for every t ∈ [0, T ) ∩Dg, where Dg is the set of discontinuity points of g, and α, β
are lower and upper solutions, respectively. This condition was avoided in [18, 19].
Schaeffer’s fixed point theorem was used in [29] to establish existence theorems for
Stieltjes differential equations with a periodic boundary condition. Furthermore,
results for Stieltjes equations using the fixed point index theory were recently found
in [12] for a generalized periodic boundary condition.

Problems with systems of Stietljes differential equations with multiple derivators
were also considered in [15,19,22]. López Pouso and Márquez Albés [15] first devel-
oped basic existence and uniqueness theory for initial value problems with different
derivators in 2019. This was further expanded by Márquez Albés and Tojo [22]
who obtained theorems based on Osgood or Montel-Tonelli conditions. Existence
results for systems with different derivators were also found by Maia, El Khattabi
and Frigon [19] using the method of lower and upper solutions.

Stieltjes differential inclusions with a periodic boundary condition were con-
sidered in [23, 28]. Satco and Smyrlis [28] used Bohnenblust-Karlin set-valued
fixed point theorem to guarantee the existence of regulated solutions. Maraffa
and Satco [23] found existence results when F : [0, T ] × RN → P(RN ) is convex,
compact-valued and upper semicontinuous everywhere except on a set that can be
dense, using the notion of contingent g-derivative.

In [6], Frigon introduced the notion of solution-region to generalize the method of
lower and upper solutions (see [1–4,9,11,13,24,26]) and the method of solution-tubes
(see [5,8,25]) for existence and multiplicity results of systems of classical first-order
differential equations, using the fixed point index. Recent developments on the
method of solution-regions for problems with generalized boundary conditions have
also been made in [10,31].

In this paper, we introduce the method of g-solution-regions to establish existence
results for systems of the form (1.1). A g-solution-region will be a set R ⊂ I × RN

that will guarantee the existence of a solution of (1.1) whose graph is contained in R.
Our results will generalize those using the method of solution-regions, which already
generalizes the method of lower and upper solutions and the method of solution-
tubes for classical differential equations, as we can consider g(t) = t. It will also
generalize the existence results from [16,18] and partially those from [14,19,21], as
lower and upper solutions for Stieltjes differential equations are a particular case of
g-solution-regions.

The rest of the paper is organized as follows. In Section 2, we present preliminary
definitions and results. We also introduce the notion of (g × IRN )-differentiability,
related concepts and results that follow, which will be useful for our definition of
g-admissible region. In Section 3, we recall an exponential function introduced
in [7] and prove related results for systems of linear Stieltjes differential equations
with a periodic boundary condition that will be useful for our existence result for
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the periodic boundary condition problem. Section 4 introduces the notion of g-
admissible regions and presents examples of these regions. Section 5 introduces
g-solution-regions for both the initial value condition and the periodic boundary
condition problems, with examples for both cases. Section 6 is the main section
of our paper, where we prove existence results relying on those new notions. We
present multiple examples to see how g-solution-regions generalize usual methods.
Finally, in Section 7, we present an application of our existence result for the periodic
boundary condition problem to the evolution of the voltage across an electrical
circuit composed by a resonant tunnelling diode (RTD) driving a laser diode (LD).

2. Preliminaries

Let g : R → R be a monotone nondecreasing function and continuous from the
left everywhere. Let us define two sets that will be useful. Let Cg be the set of
points where g is constant in a neighborhood denoted by

(2.1) Cg = {t ∈ R : g is constant on (t− ϵ, t+ ϵ) for a certain ϵ > 0}.
We also denote the set of discontinuities of g, which is a countable set since g is
monotone, by

(2.2) Dg = {t ∈ R : g(t+)− g(t) > 0},
where we note

g(t+) = lim
s→t+

g(s).

A notion of g-continuity can be defined from this function g (see [7]).

Definition 2.1. A function f : A ⊂ R → RN is g-continuous at the point t0 ∈ A
(or continuous with respect to g at the point t0) if, for all ϵ > 0, there exists δ > 0
such that

[t ∈ A, |g(t)− g(t0)| < δ] ⇒ ‖f(t)− f(t0)‖ < ϵ.

We say that f is g-continuous on A if f is g-continuous at every point t0 ∈ A.

We recall the following proposition, shown in [7], that contains useful properties
of g-continuous functions.

Proposition 2.2. Let a, b ∈ R be such that a < b. If f : [a, b] → RN is g-continuous
on [a, b], then we have that

(i) f is continuous from the left at every point t0 ∈ (a, b].
(ii) If g is continuous at t0 ∈ [a, b), then f is also continuous at t0.
(iii) If g is constant on a certain interval [α, β] ⊂ [a, b], then f is also constant

on that interval.

In particular, g-continuous functions on [a, b] are continuous on [a, b] when g is
continuous on [a, b).

Denote by BCg([a, b],RN ) the subset of g-continuous functions with values in RN

that are also bounded on [a, b]. The set BCg([a, b],RN ) is a Banach space when it
is equipped with the following norm:

‖f‖0 = sup
t∈[a,b]

‖f(t)‖ for all f ∈ BCg([a, b],RN ).
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The function g also generates a unique Lebesgue-Stieltjes measure, denoted
µg : Mg → [0,∞], from the following base formula

µg([a, b)) = g(b)− g(a) for all a, b ∈ R, a < b,

where Mg is the σ-algebra of subsets A ⊂ R that respect a Carathéodory condition.
This g-measure µg shares many properties with the Lebesgue measure, but the main
difference between the two is that every t ∈ Dg is an atom. Indeed, let t ∈ Dg, we
have

µg({t}) = µg

( ∞⋂
n=1

[t, t+ 1/n)

)
= lim

n→∞
µg([t, t+ 1/n))

= lim
n→∞

g(t+ 1/n)− g(t)

= g(t+)− g(t) > 0.

We will say that a null set with respect to µg is a set of g-measure zero. A property
will be true g-almost everywhere if it is true outside a set of g-measure zero. Finally,
a function f : E ∈ Mg → R is a g-measurable function if, for every open set V ⊂ R,
we have f−1(V ) ∈ Mg. From this g-measure, the Lebesgue-Stieltjes integral can be
defined, and we note

L1
g(E) =

f : E → R | f is g-measurable and

∫
E

|f(t)|dµg < ∞

 .

The notion of the derivative of a function with respect to g was introduced in [17].

Definition 2.3. Let E ⊂ R and f : E → RN . The derivative with respect to g (or
g-derivative, or Stieltjes derivative) of f at the point t0 ∈ E\Cg is given by

f ′
g(t0) = lim

t→t0

f(t)− f(t0)

g(t)− g(t0)
if t0 6∈ Dg,

f ′
g(t0) = lim

t→t+0

f(t)− f(t0)

g(t)− g(t0)
if t0 ∈ Dg,

if the limit exists, in which case we say that f is g-differentiable at t0. We say
that f is g-differentiable g-almost everywhere on E if f is g-differentiable at every
t0 ∈ E\S, where µg(S) = 0.

It is not necessary to define the g-derivative at points in Cg, since by [17, Propo-
sition 2.5], µg(Cg) = 0, and we will have Cg ⊂ S.

We will look for solutions of (1.1) which are g-absolutely continuous. We recall
the definition given in [17].

Definition 2.4. Let a, b ∈ R with a < b and f : [a, b] → R. The function f
is absolutely continuous with respect to g (or g-absolutely continuous) if, for every
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ϵ > 0, there exists δ > 0 such that, for every family {(an, bn)}mn=1 of pairwise disjoint
open subintervals of [a, b] satisfying

m∑
n=1

(g(bn)− g(an)) < δ,

we have
m∑

n=1

|f(bn)− f(an)| < ϵ.

We note ACg([a, b]) the set of g-absolutely continuous functions.

We can now state the fundamental theorem of calculus for the Lebesgue-Stieltjes
integral proved in [17, Theorem 5.4].

Theorem 2.5. A function F : [a, b] → R is g-absolutely continuous on [a, b] if and
only if the following three conditions are respected:

• there exists F ′
g(t) for g-almost all t ∈ [a, b];

• F ′
g ∈ L1

g([a, b));
• for all t ∈ [a, b], we have

F (t) = F (a) +

∫
[a,t)

F ′
g(s)dµg.

We say that a function f : [a, b] → RN is g-absolutely continuous on [a, b] if each
of its components is g-absolutely continuous. We note ACg([a, b],RN ) the set of
g-absolutely continuous functions with values in RN .

The following two propositions are direct generalizations of [7, Propositions 5.5
and 5.6], by considering functions component by component.

Proposition 2.6. The set ACg([a, b],RN ) is included in BCg([a, b],RN ).

Proposition 2.7. Let S ⊂ ACg([a, b],RN ) be such that {F (a) : F ∈ S} is bounded.
Suppose that there exists h ∈ L1

g([a, b), [0,∞)) such that

‖F ′
g(t)‖ ≤ h(t) for g-almost all t ∈ [a, b) and for all F ∈ S.

Then, S is relatively compact in BCg([a, b],RN ).

Let us recall the definition of a g-Carathéodory function and some related notions.

Definition 2.8. Let X be a nonempty subset of RN . A map f : [a, b] ×X → RN

is g-Carathéodory if it satisfies the following conditions:

(i) for all x ∈ X, f(·, x) is g-measurable;
(ii) for g-almost all t ∈ [a, b], f(t, ·) is continuous on X;
(iii) for all r > 0, there exists hr ∈ L1

g([a, b)) such that

‖f(t, x)‖ ≤ hr(t) for g-almost all t ∈ [a, b) and for all x ∈ X such that ‖x‖ ≤ r.

Definition 2.9. Let X be a nonempty subset of RN . A map f : [a, b] ×X → RN

is g-integrably bounded if there exists h ∈ L1
g([a, b), [0,∞)) such that

‖f(t, x)‖ ≤ h(t) for g-almost all t ∈ [a, b) and for all x ∈ X.
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A set A ⊂ L1
g([a, b),RN ) is uniformly g-integrably bounded in L1

g([a, b),RN ) if there

exists h ∈ L1
g([a, b), [0,∞)) such that

‖u(t)‖ ≤ h(t) for g-almost all t ∈ [a, b) and for all u ∈ A.

The interested reader is referred to Theorem 7.5 of [7] or Lemma 2.12 of [18] for
the proof of the following lemma.

Lemma 2.10. Let f : [a, b] × RN → RN be a g-Carathéodory function. Then, the
operator Nf : BCg([a, b],RN ) → BCg([a, b],RN ) defined by

Nf (x)(t) =

∫
[a,t)

f(s, x(s))dµg

is continuous and completely continuous. Also, if f is g-integrably bounded, then
Nf is a compact operator.

The following definition, introduced in [7], will be helpful to define the g-admissible
regions.

Definition 2.11. Let f : A ⊂ R× RN → RM and let t ∈ R and x ∈ RN such that
(t, x) ∈ A. We say that f is (g× IRN )-continuous at the point (t, x) if, for all ϵ > 0,
there exists δ > 0 such that

[(s, y) ∈ A, |g(s)− g(t)| < δ, ‖y − x‖ < δ] ⇒ ‖f(s, y)− f(t, x)‖ < ϵ.

We introduce the notion of partial g-derivative.

Definition 2.12. Let f : RN → R. The partial g-derivative of f with respect to xi
at the point x = (x1, . . . , xN ) is given by

∂gf

∂gxi
(x) =


lim

yi→xi

f(x1, . . . , yi, . . . , xN )− f(x1, . . . , xi, . . . , xN )

g(yi)− g(xi)
if xi 6∈ Dg,

lim
yi→x+

i

f(x1, . . . , yi, . . . , xN )− f(x1, . . . , xi, . . . , xN )

g(yi)− g(xi)
if xi ∈ Dg,

if the limit exists.

Let us introduce the definition of a (g × IRN )-differentiable function at a point
(t, x) where t 6∈ Cg.

Definition 2.13. Let A ⊂ R, B ⊂ RN and t ∈ A\Cg. A function f : A×B → R is
(g × IRN )-differentiable at the point (t, x) ∈ A×B if there exists a vector J(t, x) ∈
RN+1 and a function r : A×B → R such that, for every s ∈ A and y ∈ B,

f(s, y)− f(t, x) = 〈J(t, x), (g(s)− g(t), y − x)〉+ r(s, y),

where

lim
(s,y)→(t,x)

r(s, y)

‖(g(s)− g(t), y − x)‖
= 0 if t 6∈ Dg,

lim
(s,y)→(t+,x)

r(s, y)

‖(g(s)− g(t), y − x)‖
= 0 if t ∈ Dg.

Theorems similar to the classical differentiability case can be obtained.
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Proposition 2.14. Let A ⊂ R, B ⊂ RN and t ∈ A\(Dg ∪Cg). If f : A×B → R is
(g × IRN )-differentiable at the point (t, x) ∈ A× B, then the vector J(t, x) ∈ RN+1

from Definition 2.13 is given by

J(t, x) =

(
∂gf

∂gt
(t, x),∇xf(t, x)

)
,

where

∇xf(t, x) =

(
∂f

∂x1
(t, x), . . . ,

∂f

∂xN
(t, x)

)
.

Theorem 2.15. Let A ⊂ R, B ⊂ RN and t ∈ A\(Dg ∪Cg). Let h : A×B → R and
u : E ⊂ R → RN such that the following conditions are satisfied:

(i) u is g-differentiable at t;
(ii) u(E) ⊂ B;
(iii) h is (g × IRN )-differentiable at (t, u(t)).

Then, h(·, u(·)) : R → R is g-differentiable at t and

(h(t, u(t)))′g =
∂gh

∂gt
(t, u(t)) + 〈∇xh(t, u(t)), u

′
g(t)〉.

Proof. Since h is (g × IRN )-differentiable at (t, u(t)), we have that, for s ∈ A and
y ∈ B,

(2.3) h(s, y)− h(t, u(t)) = 〈J(t, u(t)), (g(s)− g(t), y − u(t))〉+ r(s, y),

where

(2.4) lim
(s,y)→(t,u(t))

r(s, y)

‖(g(s)− g(t), y − u(t))‖
= 0.

Consider s 6= t, y = u(s) ∈ B and divide the equation (2.3) by g(s)− g(t), we have
that

h(s, u(s))− h(t, u(t))

g(s)− g(t)
=

〈J(t, u(t)), (g(s)− g(t), u(s)− u(t))〉
g(s)− g(t)

+
r(s, u(s))

g(s)− g(t)

=
∂gh

∂gt
(t, u(t)) +

〈
∇xh(t, u(t)),

u(s)− u(t)

g(s)− g(t)

〉
+

r(s, u(s))

g(s)− g(t)

by Proposition 2.14. When s → t, we have that u(s) → u(t) since t 6∈ Dg and u
is g-differentiable at t 6∈ (Dg ∪ Cg), so u is continuous by Proposition 2.2. Also,
observe that

lim
s→t

|r(s, u(s))|
|g(s)− g(t)|

= lim
s→t

|r(s, u(s))|

|g(s)− g(t)|
∥∥∥(1, u(s)−u(t)

g(s)−g(t)

)∥∥∥
∥∥∥∥(1, u(s)− u(t)

g(s)− g(t)

)∥∥∥∥
= lim

(s,y)→(t,u(t))
y=u(s)

|r(s, y)|
‖(g(s)− g(t), y − u(t))‖

‖(1, u′g(t))‖

= 0

by (2.4) and the fact that u is g-differentiable at t. We then obtain

lim
s→t

h(s, u(s))− h(t, u(t))

g(s)− g(t)
= lim

s→t

∂gh

∂gt
(t, u(t)) +

〈
∇xh(t, u(t)),

u(s)− u(t)

g(s)− g(t)

〉
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+
r(s, u(s))

g(s)− g(t)

=
∂gh

∂gt
(t, u(t)) + 〈∇xh(t, u(t)), u

′
g(t)〉.

So h(·, u(·)) is g-differentiable at t and

(h(t, u(t)))′g =
∂gh

∂gt
(t, u(t)) + 〈∇xh(t, u(t)), u

′
g(t)〉.

□

3. Linear Stieltjes differential equations

We recall an exponential function introduced in [7]. Let c ∈ L1
g([a, b)) be such

that

(3.1) 1 + c(t)µg({t}) 6= 0 for all t ∈ [a, b) ∩Dg.

Let T−
c = {t ∈ [a, b) ∩ Dg : 1 + c(t)µg({t}) < 0}. This set has finite cardinality

by [7, Lemma 6.4]. If T−
c = {t1, . . . , tm} with a ≤ t1 < t2 < · · · < tm, we define

êc(·, a) : [a, b] → R\{0} by

(3.2) êc(t, a) =

{
e
∫
[a,t) ĉ(s)dµg if a ≤ t ≤ t1,

(−1)ie
∫
[a,t) ĉ(s)dµg if ti < t ≤ ti+1, i = 1, . . . ,m,

where tm+1 = b and

(3.3) ĉ(t) =

c(t) if t ∈ [a, b]\Dg,

log
∣∣1+c(t)µg({t})

∣∣
µg({t}) if t ∈ [a, b) ∩Dg.

With [20, Lemma 3.1] and [7, Lemma 6.2], we see that êc(·, a) is well defined.

Lemma 3.1. Let c ∈ L1
g([a, b)) be such that (3.1) is verified. Then, we have∑
t∈[a,b)∩Dg

∣∣ log ∣∣1 + c(t)µg({t})
∣∣∣∣ < ∞.

In particular, ĉ ∈ L1
g([a, b)).

Now, consider the following system of nonhomogeneous linear Stieltjes differential
equations

(3.4)
u′g(t) + d(t)u(t) = k(t) for g-almost all t ∈ [a, b),

u(a) = u0,

where u0 ∈ RN , k ∈ L1
g([a, b),RN ) and d ∈ L1

g([a, b)).
We can easily obtain its solution from [7, Proposition 6.8].

Proposition 3.2. Let u0 ∈ RN , k ∈ L1
g([a, b),RN ) and let d ∈ L1

g([a, b)) satisfying

(3.5) d(t)µg({t}) 6= 1 for all t ∈ [a, b) ∩Dg.
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Then, (3.4) has a unique solution u ∈ ACg([a, b],RN ). Also, u verifies

u(t) = ê−1
d

(t, a)

(
u0 +

∫
[a,t)

êd(s, a)k(s)dµg

)
for all t ∈ [a, b],

where

(3.6) d(t) =
d(t)

1− d(t)µg({t})
and

(3.7) k(t) =
k(t)

1− d(t)µg({t})
.

Consider the following system of nonhomogeneous linear Stieltjes differential
equations with a periodic boundary condition:

(3.8)
u′g(t) + d(t)u(t) = k(t) for g-almost all t ∈ [a, b),

u(a) = u(b),

where k ∈ L1
g([a, b),RN ) and d ∈ L1

g([a, b)).
An explicit solution to this problem can be deduced from Proposition 3.2.

Proposition 3.3. Let k ∈ L1
g([a, b),RN ) and d ∈ L1

g([a, b)) verifying (3.5). If

êd(b, a) 6= 1, then (3.8) has a unique solution u ∈ ACg([a, b],RN ) given by

(3.9) u(t) = ê−1
d

(t, a)

(
1

êd(b, a)− 1

∫
[a,b)

êd(s, a)k(s)dµg +

∫
[a,t)

êd(s, a)k(s)dµg

)
for all t ∈ [a, b],

where d and k are defined in (3.6) and (3.7) respectively.

Proof. We remark that the solution of (3.4) will be a solution of (3.8) for a good
choice of u0. Indeed, by Proposition 3.2, the solution of (3.4) is given by

(3.10) u(t) = ê−1
d

(t, a)

(
u0 +

∫
[a,t)

êd(s, a)k(s)dµg

)
.

By taking t = b in (3.10), we must have

u0 = u(b) = ê−1
d

(b, a)

(
u0 +

∫
[a,b)

êd(s, a)k(s)dµg

)
.

So, we get

(êd(b, a)− 1)u0 =

∫
[a,b)

êd(s, a)k(s)dµg.

The unique solution u ∈ ACg([a, b],RN ) of (3.8) is then given by

u(t) = ê−1
d

(t, a)

(
1

êd(b, a)− 1

∫
[a,b)

êd(s, a)k(s)dµg +

∫
[a,t)

êd(s, a)k(s)dµg

)
for all t ∈ [a, b],
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since êd(b, a) 6= 1 by hypothesis. □

Let L : L1
g([a, b),RN ) → BCg([a, b],RN ) be an operator defined by

(3.11) L(k) = u,

where u verifies (3.8) and is given by (3.9) for a function d(t) = d > 0 constant that
respects certain hypotheses. This operator verifies some nice properties, as shown
in the next lemma.

Lemma 3.4. Let d > 0 be such that

dµg({t}) 6= 1 for all t ∈ [a, b) ∩Dg

and such that êd(b, a) 6= 1, where

d(t) =
d

1− dµg({t})
.

Let L : L1
g([a, b),RN ) → BCg([a, b],RN ) be defined in (3.11). Then, L is linear and

continuous. Also, L(A) is relatively compact for all A ⊂ L1
g([a, b),RN ) uniformly

g-integrably bounded in L1
g([a, b),RN ).

Proof. The linearity of the integral implies directly that L is linear. Let us show
that L is continuous. Since L is linear, it suffices to show that there exists c ≥ 0
such that

(3.12) ‖L(k)‖0 ≤ c‖k‖L1
g([a,b),RN ) for all k ∈ L1

g([a, b),RN ).

For k ∈ L1
g([a, b),RN ), we find that

‖L(k)‖0 = sup
t∈[a,b]

∥∥∥∥∥ê−1
d

(t, a)

(
1

êd(b, a)− 1

∫
[a,b)

êd(s, a)k(s)dµg

+

∫
[a,t)

êd(s, a)k(s)dµg

)∥∥∥∥∥
≤ sup

t∈[a,b]
|ê−1

d
(t, a)|

(
1∣∣êd(b, a)− 1

∣∣ ∫
[a,b)

|êd(s, a)|‖k(s)‖dµg

+

∫
[a,t)

|êd(s, a)|‖k(s)‖dµg

)

≤ sup
t∈[a,b]

e
∥d̂∥L1

g([a,b))

(
e
∥d̂∥L1

g([a,b))

(
1∣∣êd(b, a)− 1

∣∣ ∫
[a,b)

‖k(s)‖dµg

+

∫
[a,t)

‖k(s)‖dµg

))

≤
(
e
∥d̂∥L1

g([a,b))

)2
(

1∣∣êd(b, a)− 1
∣∣ + 1

)
‖k‖L1

g([a,b),RN )

= m‖k‖L1
g([a,b),RN ),
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where

(3.13) m =

(
e
∥d̂∥L1

g([a,b))

)2
(

1∣∣êd(b, a)− 1
∣∣ + 1

)
> 0.

Let A∗ = {t ∈ [a, b) : dµg({t}) > 1/2}. We see that A∗ has finite cardinality, since
d ∈ L1

g([a, b)) and thus

∞ > ‖d‖L1
g
≥
∑
t∈A∗

|dµg({t})| >
∑
t∈A∗

1

2
.

We then have

(3.14)

‖k‖L1
g([a,b),RN ) =

∫
[a,b)

‖k(s)‖dµg

≤
∫
[a,b)\A∗

2‖k(s)‖dµg +
∑

s∈[a,b)∩A∗

‖k(s)‖
|1− dµg({s})|

µg({s})

≤ 2‖k‖L1
g([a,b),RN ) +

∑
s∈[a,b)∩A∗

‖k‖L1
g([a,b),RN )

1

|1− dµg({s})|

= r‖k‖L1
g([a,b),RN ),

where

(3.15) r =

2 +
∑

s∈[a,b)∩A∗

1

|1− dµg({s})|

 > 0.

By taking c = mr > 0, we have that L is continuous.
Now, we show that L(A) is relatively compact for all A ⊂ L1

g([a, b),RN ) uniformly

g-integrably bounded in L1
g([a, b),RN ) with the help of Proposition 2.7. Let A ⊂

L1
g([a, b),RN ) be a uniformly g-integrably bounded set in L1

g([a, b),RN ). First, we

directly have that L(A) ⊂ ACg([a, b],RN ) by Proposition 3.2. Let us show that
{L(k)(a) : L(k) ∈ L(A)} is bounded. Let k ∈ A, we have that, for all t ∈ [a, b],

(3.16) ‖L(k)(t)‖ ≤ ‖L(k)‖0 ≤ c‖k‖L1
g([a,b),RN ) ≤ c‖h‖L1

g([a,b))
∈ R

by (3.12), where h ∈ L1([a, b), [0,∞)) comes from the definition of A uniformly
g-integrably bounded.

Finally, let us show that there exists h̃ ∈ L1
g([a, b), [0,∞)) such that

‖(L(k))′g(t)‖ ≤ h̃(t) for g-almost all t ∈ [a, b) and for all L(k) ∈ L(A).

Let k ∈ A. Since L(k) verifies (3.8), we find that, for g-almost all t ∈ [a, b),

‖(L(k))′g(t)‖ = ‖k(t)− dL(k)(t)‖
≤ h(t) + d‖L(k)(t)‖
≤ h(t) + dc‖h‖L1

g([a,b))

= h̃(t) ∈ L1
g([a, b), [0,∞)),

since A is uniformly g-integrably bounded and by (3.16). It follows from Proposi-
tion 2.7 that L(A) is relatively compact. □
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4. g-admissible regions

Let g : R → R be continuous from the left and monotone nondecreasing. To this
function, we associate the sets Cg and Dg as defined in (2.1), (2.2) respectively.

Consider f : [0, T ]× RN → RN and

(4.1) u′g(t) = f(t, u(t)) for g-almost all t ∈ I = [0, T ], u ∈ B,

where B denotes the initial value condition or the periodic boundary condition

u(0) = r,(4.2)

u(0) = u(T ).(4.3)

We generalize the concept of admissible regions presented in [6].

Definition 4.1. We say that a set R ⊂ I × RN is a g-admissible region if there
exist h : I × RN → R and p = (p1, p2) : I × RN → I × RN such that:

(i) R = {(t, x) ∈ I × RN : h(t, x) ≤ 0} is bounded and, for all t ∈ I,

Rt = {x ∈ RN : (t, x) ∈ R} 6= ∅;

(ii) h is (g × IRN )-continuous;
(iii) h is bounded on every bounded set X ⊂ I × RN ;
(iv) h is (g × IRN )-differentiable for g-almost all t ∈ I\Dg and for all x ∈ RN

such that (t, x) ∈ Rc;
(v) p is a continuous and bounded function such that p(t, x) = (t, x) for all

(t, x) ∈ R, and〈
∇xh(t, x), p2(t, x)− x

〉
< 0 for g-almost all t ∈ I\Dg and all x such

that (t, x) ∈ Rc.

We call (h, p) an associated g-admissible pair to R.

Remark 4.2. If B denotes the initial value condition, we can weaken the con-
dition (v) in Definition 4.1 by taking the non strict inequality. If B denotes the
periodic boundary condition, we can consider the inequality of the condition (v)
in Definition 4.1 on a set of strictly positive measure. We use the condition (v) in
Definition 4.1 to alleviate the text.

We can see that from our definition of g-admissible region, one obtains the defi-
nition of an admissible region by taking g(t) = t.

Let us present some examples of g-admissible regions.

Example 4.3. Let M : I → [0,∞) and v : I → RN be functions such that
M ∈ ACg(I, [0,∞)) and v ∈ ACg(I,RN ). The region

R = {(t, x) ∈ I × RN : ‖x− v(t)‖ ≤ M(t)}

is a g-admissible region with the associated g-admissible pair (h, p) given by

h(t, x) = ‖x− v(t)‖ −M(t)

and p(t, x) = (t, p2(t, x)), where p2(t, x) is the projection of x on Rt.
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Example 4.4. Let M : I → [0,∞), v : I → RN and a : I → (0,∞)N be functions
such that M ∈ ACg(I, [0,∞)), v ∈ ACg(I,RN ) and a ∈ ACg(I, (0,∞)N ). The
region

R =
{
(t, x) ∈ I × RN :

〈
a(t), (x− v(t))⊙2

〉
≤ M2(t)

}
,

where we denote x⊙2 = (x21, . . . , x
2
N ) ∈ RN , is a g-admissible region with the asso-

ciated g-admissible pair (h, p) given by

h(t, x) =
〈
a(t), (x− v(t))⊙2

〉
−M2(t)

and p(t, x) = (t, p2(t, x)), where p2(t, x) is the projection of x on Rt.

Example 4.5. Let αi, βi : I → R be functions such that αi, βi ∈ ACg(I) and
αi(t) ≤ βi(t) for all t ∈ I and all i ∈ {1, . . . , N}. The region

R =
{
(t, x) ∈ I × RN : αi(t) ≤ xi ≤ βi(t) for all i ∈ {1, . . . , N}

}
is a g-admissible region with the associated g-admissible pair (h, p) given by

h(t, x) =

N∑
i=1

ci(t, x),

where, for all i ∈ {1, . . . , N},

(4.4) ci(t, x) =


0 if xi ∈ [αi(t), βi(t)],

(αi(t)− xi)
2 if xi < αi(t),

(xi − βi(t))
2 if xi > βi(t),

and p(t, x) = (t, p2(t, x)), where p2(t, x) is the projection of x on Rt.

5. g-solution-regions

Let us now define the notion of g-solution-region that generalizes the concept
of solution-region presented in [6]. These regions will guarantee the existence of a
solution to the problem (4.1) whose graph will be in the region.

5.1. Initial value condition. Let us first look at g-solution-regions for the prob-
lem (4.1) with the initial value condition (4.2).

Definition 5.1. We say that a set R ⊂ I×RN is a g-solution-region of (4.1), (4.2)
if it is a g-admissible region with an associated g-admissible pair (h, p) satisfying
the following conditions:

(i) the function h(·, u(·)) ∈ ACg(J) for all u ∈ ACg(I,RN ), where J = {t ∈ I :
h(t+, u(t+)) > 0};

(ii) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have

∂gh

∂gt
(t, x) +

〈
∇xh(t, x), f(p(t, x))

〉
≤ 0;

(iii) for all t ∈ I ∩Dg and all x such that

(t, x) ∈ K+
I =

{
(t, x) ∈ (I ∩Dg)× RN : h

(
t+, x+ f(p(t, x))µg({t})

)
> 0
}
,

we have
h
(
t+, x+ f(p(t, x))µg({t})

)
≤ h(t, x);
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(iv) h(0, r) ≤ 0.

We present some examples of g-solution-regions of (4.1), (4.2).

Example 5.2. Let f : I×RN → RN ,M ∈ ACg(I, [0,∞)) and v ∈ ACg(I,RN ). Let
(h, p) be the associated g-admissible pair to the g-admissible region

R = {(t, x) ∈ I × RN : ‖x− v(t)‖ ≤ M(t)}

given in Example 4.3. Suppose that h(0, r) ≤ 0 and that the following conditions
are verified:

(i) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have〈
f(p(t, x))− v′g(t),

x− v(t)

‖x− v(t)‖

〉
−M ′

g(t) ≤ 0;

(ii) for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
I , we have∥∥x+ f(p(t, x))µg({t})− v(t+)

∥∥−M(t+) ≤ ‖x− v(t)‖ −M(t).

It is easy to verify that R is a g-solution-region of (4.1), (4.2).

Example 5.3. Let f : I × RN → RN , M ∈ ACg(I, [0,∞)), v ∈ ACg(I,RN )
and a ∈ ACg(I, (0,∞)N ). Let (h, p) be the associated g-admissible pair to the
g-admissible region

R =
{
(t, x) ∈ I × RN :

〈
a(t), (x− v(t))⊙2

〉
≤ M2(t)

}
given in Example 4.4. Suppose that h(0, r) ≤ 0 and the following conditions are
verified:

(i) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have〈
a′g(t), (x− v(t))⊙2

〉
+ 2
(〈
f(p(t, x))− v′g(t), a(t)� (x− v(t))

〉
−M(t)M ′

g(t)
)
≤ 0,

where we denote x � y = (x1y1, . . . , xNyN ) ∈ RN , called the Hadamard
product ;

(ii) for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
I , we have〈

a(t+),
(
x+ f(p(t, x))µg({t})− v(t+)

)⊙2〉−M2(t+) ≤
〈
a(t), (x− v(t))⊙2

〉
−M2(t).

It is not difficult to show that R is a g-solution-region of (4.1), (4.2).

Example 5.4. Let f : I × RN → RN , αi, βi ∈ ACg(I) be functions such that
αi(t) ≤ βi(t) for all t ∈ I and all i ∈ {1, . . . , N}. Let (h, p) be the associated
g-admissible pair to the g-admissible region

R =
{
(t, x) ∈ I × RN : αi(t) ≤ xi ≤ βi(t) for all i ∈ {1, . . . , N}

}
given in Example 4.5. Suppose that h(0, r) ≤ 0 and that the following conditions
are verified:

(i) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have

N∑
i=1

di(t, x) + ki(t, x)fi(p(t, x)) ≤ 0,
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where

(5.1) di(t, x) =


0 if xi ∈ [αi(t), βi(t)],

α′
i,g(t)(αi(t)− xi) if xi < αi(t),

−β′
i,g(t)(xi − βi(t)) if xi > βi(t),

and

(5.2) ki(t, x) =


0 if xi ∈ [αi(t), βi(t)],

−(αi(t)− xi) if xi < αi(t),

xi − βi(t) if xi > βi(t);

(ii) for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
I , we have

N∑
i=1

ci
(
t+, x+ f(p(t, x))µg({t})

)
− ci(t, x) ≤ 0,

where ci is defined in (4.4).

One can verify that R is a g-solution-region of (4.1), (4.2).

5.2. Periodic boundary condition. We now are interested in the Stieltjes differ-
ential equation (4.1) with the periodic boundary condition (4.3).

Definition 5.5. We say that a set R ⊂ I×RN is a g-solution-region of (4.1), (4.3)
if it is a g-admissible region with an associated g-admissible pair (h, p) satisfying
the following conditions:

(i) the function h(·, u(·)) ∈ ACg(J) for all u ∈ ACg(I,RN ), where J =
{
t ∈ I :

h(t+, u(t+)) > 0
}
;

(ii) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have

∂gh

∂gt
(t, x) +

〈
∇xh(t, x), f(p(t, x))

〉
≤ 0;

(iii) there exists d > 0 such that

dµg({t}) 6= 1 for all t ∈ I ∩Dg, êd(T, 0) 6= 1,

where êd(·, 0) and d are defined in (3.2), (3.6) respectively, and for all t ∈
I ∩Dg and all x such that

(t, x) ∈ K+
P =

{
(t, x) ∈ (I ∩Dg)× RN : h

(
t+, x+ fd(p(t, x))µg({t})

)
> 0
}
,

we have

h
(
t+, x+ fd(p(t, x))µg({t})

)
≤ h(t, x),

where we note fd(p(t, x)) = d(p2(t, x)− x) + f(p(t, x));
(iv) for all x such that (0, x) ∈ Rc, we have h(0, x) ≤ h(T, x).

Remark 5.6. We can weaken the conditions of Definition 4.1 by taking the non
strict inequality in the condition (v) of Definition 4.1 if we imposed one of the
following stronger conditions in Definition 5.5:
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(i) we add to the condition (iii) of Definition 5.5 that there exists t ∈ I ∩Dg,
x ∈ RN such that (t, x) ∈ K+

P and

h
(
t+, x+ fd(p(t, x))µg({t})

)
< h(t, x);

(ii) we replace the inequality by the strict inequality in the condition (iv) of
Definition 5.5.

We will use the condition (v) of Definition 4.1 as well as conditions (iii) and (iv) of
Definition 5.5 to alleviate the text.

Remark 5.7. One can see that the condition (iii) of Definition 5.1 can be obtained
from the condition (iii) of Definition 5.5 by taking d = 0 and omitting êd(T, 0) 6= 1.

We notice that, from our definition of g-solution-region, one obtains the definition
of a solution-region by taking g(t) = t.

Let us present some examples of g-solution-regions of (4.1), (4.3).

Example 5.8. Let f : I × RN → RN , M ∈ ACg(I, [0,∞)) and v ∈ ACg(I,RN ).
Let (h, p) be the associated g-admissible pair to the g-admissible region

R = {(t, x) ∈ I × RN : ‖x− v(t)‖ ≤ M(t)}

given in Example 4.3. Suppose that the following conditions are verified:

(i) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have〈
f(p(t, x))− v′g(t),

x− v(t)

‖x− v(t)‖

〉
−M ′

g(t) ≤ 0;

(ii) there exists d > 0 such that

dµg({t}) 6= 1 for all t ∈ I ∩Dg, êd(T, 0) 6= 1,

and for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
P , we have∥∥x+ fd(p(t, x))µg({t})− v(t+)

∥∥−M(t+) ≤ ‖x− v(t)‖ −M(t);

(iii) for all x such that

‖x− v(0)‖ −M(0) > 0,

we have

‖x− v(0)‖ −M(0) ≤ ‖x− v(T )‖ −M(T ).

It is easy to show that R is a g-solution-region of (4.1), (4.3).

Example 5.9. Let f : I × RN → RN , M ∈ ACg(I, [0,∞)), v ∈ ACg(I,RN )
and a ∈ ACg(I, (0,∞)N ). Let (h, p) be the associated g-admissible pair to the
g-admissible region

R =
{
(t, x) ∈ I × RN :

〈
a(t), (x− v(t))⊙2

〉
≤ M2(t)

}
given in Example 4.4. Suppose that the following conditions are verified:

(i) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have〈
a′g(t), (x− v(t))⊙2

〉
+ 2
(〈
f(p(t, x))− v′g(t), a(t)� (x− v(t))

〉
−M(t)M ′

g(t)
)
≤ 0,
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(ii) there exists d > 0 such that

dµg({t}) 6= 1 for all t ∈ I ∩Dg, êd(T, 0) 6= 1,

and for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
P , we have〈

a(t+),
(
x+ fd(p(t, x))µg({t})− v(t+)

)⊙2〉−M2(t+)

≤
〈
a(t), (x− v(t))⊙2

〉
−M2(t);

(iii) for all x such that〈
a(0), (x− v(0))⊙2

〉
−M2(0) > 0,

we have〈
a(0), (x− v(0))⊙2

〉
−M2(0) ≤

〈
a(T ), (x− v(T ))⊙2

〉
−M2(T ).

One can verify that R is a g-solution-region of (4.1), (4.3).

Example 5.10. Let f : I × RN → RN , αi, βi ∈ ACg(I) be functions such that
αi(t) ≤ βi(t) for all t ∈ I and all i ∈ {1, . . . , N}. Let (h, p) be the associated
g-admissible pair to the g-admissible region

R =
{
(t, x) ∈ I × RN : αi(t) ≤ xi ≤ βi(t) for all i ∈ {1, . . . , N}

}
given in Example 4.5. Suppose that the following conditions are verified:

(i) for g-almost all t ∈ I\Dg and all x such that (t, x) ∈ Rc, we have

N∑
i=1

di(t, x) + ki(t, x)fi(p(t, x)) ≤ 0,

where di, ki are defined in (5.1), (5.2) respectively;
(ii) there exists d > 0 such that

dµg({t}) 6= 1 for all t ∈ I ∩Dg, êd(T, 0) 6= 1,

and for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
P , we have

N∑
i=1

ci
(
t+, x+ fd(p(t, x))µg({t})

)
− ci(t, x) ≤ 0,

where ci is defined in (4.4);
(iii) for all x such that

N∑
i=1

ci(0, x) > 0,

we have
N∑
i=1

ci(0, x) ≤
N∑
i=1

ci(T, x).

Then, R is a g-solution-region of (4.1), (4.3).
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6. Existence results

We start with a comparison lemma that is a direct generalization from Lemma 2.13
of [18] and that will be useful to prove our existence results.

Lemma 6.1. Let u, v ∈ BCg([a, b]). Let J = {t ∈ [a, b] : v(t+) < u(t+)}. Suppose
that u, v ∈ ACg(J) and are such that

(i) u′g(t) ≤ v′g(t) g-almost everywhere on J,
(ii) u(a)− v(a) ≤ u(b)− v(b) or u(a) ≤ v(a).

Then, u(t) ≤ v(t) for all t ∈ [a, b], or there exists c > 0 such that u(t) = v(t)+ c for
all t ∈ [a, b].

6.1. Initial value condition. Let us show the first main theorem. It establishes
the existence of a solution to the system of Stieltjes differential equations with the
initial value condition.

Theorem 6.2. Let f : I × RN → RN be a g-Carathéodory function. Suppose that
there exists a g-solution-region R of (4.1), (4.2) such that f ◦ p is a g-Carathéodory
function, where (h, p) is an associated g-admissible pair to R. Then, the prob-
lem (4.1), (4.2) has a solution u ∈ ACg(I,RN ) such that (t, u(t)) ∈ R for all t ∈ I.

Proof. Consider the following problem:

(6.1)
u′g(t) = f(p(t, u(t))) for g-almost all t ∈ I,

u(0) = r.

By the condition (iii) of a g-Carathéodory function for f ◦ p and by the fact that
p is a bounded function by the condition (v) of Definition 4.1, we deduce that f ◦ p
is g-integrably bounded. Let T : BCg(I,RN ) → BCg(I,RN ) be the operator defined
by

T (u)(t) = r +

∫
[0,t)

f(p(s, u(s)))dµg.

We see that T is well defined, since f◦p is a g-Carathéodory function and g-integrably
bounded. So, for all u ∈ BCg(I,RN ), we have

‖T (u)‖0 = sup
t∈I

∥∥∥∥∥r +
∫
[0,t)

f(p(s, u(s)))dµg

∥∥∥∥∥
≤ sup

t∈I
‖r‖+

∫
[0,t)

‖f(p(s, u(s)))‖dµg

≤ ‖r‖+
∫
[0,T )

h(s)dµg

< ∞

for a certain h ∈ L1
g([0, T ), [0,∞)). We also have that T is a continuous and compact

operator by Lemma 2.10.
Let us show that the fixed points of T are solutions of the problem (6.1). Indeed,

if T (u) = u, then for all t ∈ I, we have

u(t) = r +

∫
[0,t)

f(p(s, u(s)))dµg.
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We directly obtain from Theorem 2.5 that u ∈ ACg(I,RN ) and

u′g(t) = f(p(t, u(t))) for g-almost all t ∈ I.

We also have that u(0) = r, so it is a solution of the problem (6.1). Schauder’s fixed
point theorem implies that T has at least one fixed point that is a solution of (6.1).

We now need to deduce that this solution u ∈ ACg(I,RN ) is also a solution of
the problem (4.1), (4.2). In order to do this, since p(t, x) = (t, x) for all (t, x) ∈ R,
it suffices to show that (t, u(t)) ∈ R for all t ∈ I. We then want to show that
h(t, u(t)) ≤ 0 for all t ∈ I. We will use Lemma 6.1 with the functions h(·, u(·)) and
0 to conclude.

Let J = {t ∈ I : 0 < h(t+, u(t+))}. First, we directly have that 0 ∈ ACg(I) ⊂
BCg(I)∩ACg(J). Since u ∈ BCg(I,RN ), the conditions (ii) and (iii) of Definition 4.1
imply that h(·, u(·)) is g-continuous on I and bounded. So, we have that h(·, u(·)) ∈
BCg(I).

We also have that h(·, u(·)) ∈ ACg(J) by the condition (i) of Definition 5.1, since
u ∈ ACg(I,RN ).

Furthermore, condition (iv) of Definition 5.1 assures that

h(0, u(0)) = h(0, r) ≤ 0.

Now, we want to show that

(6.2) (h(t, u(t)))′g ≤ 0 g-almost everywhere on J.

Let t ∈ J . We will separate the proof in two distinct cases.
Case 1: If t 6∈ Dg, we have that

(6.3) lim
s→t

u(s) = u(t),

since u ∈ ACg(I,RN ) ⊂ BCg(I,RN ) and by Proposition 2.2. We also have that
(t, u(t)) ∈ Rc, since h(·, u(·)) is g-continuous and t ∈ J , so

h(t, u(t)) = h(t+, u(t+)) > 0.

The condition (iv) of Definition 4.1 assures that h is (g×IRN )-differentiable at point
(t, u(t)) for g-almost all t ∈ J\Dg ⊂ I\Dg. In addition, u is g-differentiable at t for
g-almost all t ∈ J\Dg ⊂ I. By Theorem 2.15, we find that

(h(t, u(t)))′g =
∂gh

∂gt
(t, u(t)) +

〈
∇xh(t, u(t)), u

′
g(t)
〉

for g-almost all t ∈ J\Dg. We conclude from condition (ii) of Definition 5.1 and
from the fact that u is a solution of (6.1) that

(h(t, u(t)))′g =
∂gh

∂gt
(t, u(t)) +

〈
∇xh(t, u(t)), f(p(t, u(t)))

〉
≤ 0

for g-almost all t ∈ J\Dg ⊂ I\Dg, since (t, u(t)) ∈ Rc.
Case 2: If t ∈ Dg, we have that

(h(t, u(t)))′g =
h(t+, u(t+))− h(t, u(t))

g(t+)− g(t)
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=
h
(
t+, u(t) + u(t+)−u(t)

µg({t}) · µg({t})
)
− h(t, u(t))

µg({t})

=
h
(
t+, u(t) + u′g(t) · µg({t})

)
− h(t, u(t))

µg({t})

=
h
(
t+, u(t) + f(p(t, u(t))) · µg({t})

)
− h(t, u(t))

µg({t})
≤ 0

by condition (iii) of Definition 5.1. Indeed, we have that (t, u(t)) ∈ K+
I since

u(t) + f(p(t, u(t)))µg({t}) = u(t+) and h(t+, u(t+)) > 0.

Furthermore, since t ∈ J ∩Dg, we deduce that

h(t, u(t)) = h(t+, u(t+))− (h(t, u(t)))′gµg({t}) ≥ h(t+, u(t+)) > 0

and then (t, u(t)) ∈ Rc.
Therefore, (6.2) is satisfied. Lemma 6.1 assures that h(t, u(t)) ≤ 0 for all t ∈ I,

or that there exists c > 0 such that h(t, u(t)) = c for all t ∈ I. This last case is
however impossible, since h(0, u(0)) = h(0, r) ≤ 0. So we have that h(t, u(t)) ≤ 0
for all t ∈ I, which is equivalent to have (t, u(t)) ∈ R for all t ∈ I. The solution u
of the problem (6.1) is then also a solution to the problem (4.1), (4.2). □

Here is an example of an application of Theorem 6.2 for a system of two g-differential
equations with an initial value condition.

Example 6.3. Let g : R → R be defined by

g(t) =

{
t if t ≤ 1,

t+ 1 if t > 1.

The function is continuous from the left and nondecreasing. We also have Dg = {1}
and µg({1}) = 1.

Consider the following initial value problem

(6.4)
u′g(t) = f(t, u(t)) for g-almost all t ∈ [0, 2],

u(0) = (4,−4),

where f = (f1, f2) : [0, 2]× R2 → R2 is defined by

f1(t, x1, x2) =


−
(
(x1 − 3)3 + 1

2

) (
cos2(t2x51x

3
2) + 1

)
if t ∈ [0, 1),

−1 if t = 1,

−(x1 − 2)e2x2 log(1 + t3x21) +
t
2 if t ∈ (1, 2].

and

f2(t, x1, x2) =


−
(
(x2 + 5)5 + 1

)(
sin2(t5ex

3
1) + 1

)
if t ∈ [0, 1),

1 if t = 1,

−(x2 + 4)3t4e6x1x2 |x1 − x2|+ 1 if t ∈ (1, 2].
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Let us define v : [0, 2] → R2 by

v(t) =

{
(3,−5) if t ∈ [0, 1],

(2,−4) if t ∈ (1, 2],

and M : [0, 2] → [0,∞) by

M(t) =

{
3t+ 2 if t ∈ [0, 1],

2t+ 3 if t ∈ (1, 2].

Let

R = {(t, x) ∈ [0, 2]× R2 : ‖x− v(t)‖ ≤ M(t)},
h : [0, 2]× R2 → R defined by

h(t, x) = ‖x− v(t)‖ −M(t),

and p : [0, 2]× R2 → [0, 2]× R2 defined by

p(t, x) = (t, p2(t, x))

=

(
t,M(t)

x− v(t)

‖x− v(t)‖
+ v(t)

)
,

where p2(t, x) is the projection of x on Rt. We directly see that v ∈ ACg([0, 2],R2)
and M ∈ ACg([0, 2], [0,∞)). We also have that h(0, 4,−4) ≤ 0.

Let t ∈ (0, 1)\Dg and (x1, x2) ∈ R2 such that (t, x1, x2) ∈ Rc. We see that
v′g(t) = (0, 0) and M ′

g(t) = 3. We find that〈
f(p(t, x))− v′g(t),

x− v(t)

‖x− v(t)‖

〉
−M ′

g(t)

= −
(
((p2(t, x))1 − 3)3 +

1

2

)(
cos2(t2((p2(t, x))1)

5((p2(t, x))2)
3) + 1

)( x1 − 3

‖x− v(t)‖

)
−
(
((p2(t, x))2 + 5)5 + 1

)(
sin2(t5e((p2(t,x))1)

3
) + 1

)( x2 + 5

‖x− v(t)‖

)
− 3

≤ −M3(t)

(
x1 − 3

‖x− v(t)‖

)4

(0 + 1)−M5(t)

(
x2 + 5

‖x− v(t)‖

)6

(0 + 1)

+
1

2
(1 + 1)

(
|x1 − 3|

‖x− v(t)‖

)
+ (1 + 1)

(
|x2 + 5|

‖x− v(t)‖

)
− 3

≤ 0,

since M(t) ≥ 0 for any t ∈ [0, 2], where (p2(t, x))i is the component i of the vector
p2(t, x) for i ∈ {1, 2}. A similar argument shows that the same inequality holds for
t ∈ (1, 2)\Dg and (x1, x2) ∈ R2 such that (t, x1, x2) ∈ Rc. Since µg({0, 2}) = 0, the
condition (i) in Example 5.2 is respected.

Let t = 1 ∈ [0, 2] ∩Dg = {1} and x ∈ R2 such that (t, x) ∈ K+
I , we have that∥∥x+ f(p(1, x))µg({1})− v(1+)

∥∥−M(1+) = ‖x+ (−1, 1)− (2,−4)‖ − 5

= ‖x− (3,−5)‖ − 5

= ‖x− v(1)‖ −M(1).
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The condition (ii) in Example 5.2 holds, thus R is a g-solution-region of (6.4). We
conclude by remarking that f and f ◦ p are g-Carathéodory functions. Then, by
Theorem 6.2, there exists a solution u ∈ ACg([0, 2],R2) to the problem (6.4) such
that (t, u(t)) ∈ R for all t ∈ [0, 2].

6.2. Periodic boundary condition. We can now prove an existence theorem for
the problem with the periodic boundary condition.

Theorem 6.4. Let f : I × RN → RN be a g-Carathéodory function. Suppose
there exists a g-solution-region R of (4.1), (4.3) such that f ◦ p is a g-Carathéodory
function, where (h, p) is an associated g-admissible pair to R. Then, the prob-
lem (4.1), (4.3) has a solution u ∈ ACg(I,RN ) such that (t, u(t)) ∈ R for all t ∈ I.

Proof. Consider the following problem:

(6.5)
u′g(t) + du(t) = dp2(t, u(t)) + f(p(t, u(t))) for g-almost all t ∈ I,

u(0) = u(T ),

where d > 0 satisfies condition (iii) in Definition 5.5.
First, for the same reason as in the proof of Theorem 6.2, we have that f ◦ p

is g-integrably bounded. Consider the operator S : BCg(I,RN ) → L1
g([0, T ),RN )

defined by

S(u)(t) = dp2(t, u(t)) + f(p(t, u(t))).

Note that S is well defined, since for all u ∈ BCg(I,RN ), we have

‖S(u)‖L1
g([0,T ),RN ) =

∫
[0,T )

∥∥dp2(s, u(s)) + f(p(s, u(s)))
∥∥dµg

≤
∫
[0,T )

d‖p2(s, u(s))‖+ ‖f(p(s, u(s)))‖dµg

≤
∫
[0,T )

dQ+ h(s)dµg

= dQµg([0, T )) + ‖h‖L1
g([0,T ))

< ∞,

where Q ≥ 0 is a bound of ‖p2(t, x)‖ by Definition 4.1 and h ∈ L1
g([0, T ), [0,∞))

comes from the fact that f ◦p is a g-integrably bounded function. Also, consider the
operator L : L1

g([0, T ),RN ) → BCg(I,RN ) defined in (3.11), which is well defined
by Lemma 3.4.

We remark that the fixed points of L ◦ S are solutions to the problem (6.5) by
definition of L and S. Let us show that L ◦ S : BCg(I,RN ) → BCg(I,RN ) has a
fixed point insured by Schauder’s fixed point theorem. We need to show that L ◦ S
is compact.

First, we show that L◦S is continuous. By Lemma 3.4, it suffices to show that S
is a continuous operator to conclude, since the composition of continuous operators
is continuous. Let {un} be a sequence such that un → u in BCg(I,RN ). Since p is
continuous, we have that

p2(s, un(s)) → p2(s, u(s)) for all s ∈ I.
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Furthermore, since

‖p2(s, un(s))‖ ≤ Q for all s ∈ I and for all n ∈ N,
the Lebesgue’s dominated convergence theorem implies that

(6.6)

∫
[0,T )

∥∥p2(s, un(s))− p2(s, u(s))
∥∥dµg → 0.

Since f ◦ p is a g-Carathéodory function, we find by the same argument as in [18,
Lemma 2.12] that

(6.7)

∫
[0,T )

∥∥f(p(s, un(s)))− f(p(s, u(s)))
∥∥dµg → 0.

By combining (6.6) and (6.7), we find that∥∥S(un)− S(u)
∥∥
L1
g([0,T ),RN )

=

∫
[0,T )

∥∥dp2(s, un(s)) + f(p(s, un(s)))− (dp2(s, u(s)) + f(p(s, u(s))))
∥∥dµg

≤
∫
[0,T )

d
∥∥p2(s, un(s))− p2(s, u(s))

∥∥+ ∥∥f(p(s, un(s)))− f(p(s, u(s)))
∥∥dµg

→ 0.

So S is continuous.
We now need to show that L

(
S(BCg(I,RN ))

)
is relatively compact. By Lemma 3.4,

it suffices to show that S(BCg(I,RN )) is uniformly g-integrably bounded. For all
u ∈ BCg(I,RN ), we have that

‖S(u)(t)‖ =
∥∥dp2(t, u(t)) + f(p(t, u(t)))

∥∥
≤ Qd+ h(t)

= h̃(t) ∈ L1
g([0, T ), [0,∞)).

So, L(S(BCg(I,RN ))) is relatively compact and L ◦ S is a compact operator. By
Schauder’s fixed point theorem, there exists a function u ∈ BCg(I,RN ) such that u
is a fixed point of L ◦ S, which is a solution of the problem (6.5). We remark that
u ∈ ACg(I,RN ) by Proposition 3.3.

We now have to show that this solution u ∈ ACg(I,RN ) is a solution of the
problem (4.1), (4.3). Since p(t, x) = (t, x) on R, it suffices to deduce that (t, u(t)) ∈
R for all t ∈ I to conclude. To do so, let us show that h(t, u(t)) ≤ 0 for all t ∈ I
with the help of Lemma 6.1.

Let J = {t ∈ I : 0 < h(t+, u(t+))}. By the same argument as in Theorem 6.2, we
have that 0, h(·, u(·)) ∈ ACg(J) ∩ BCg(I). Let us show that

(h(t, u(t)))′g ≤ 0 g-almost everywhere on J.

Let t ∈ J . We will separate the proof in two distinct cases.
Case 1: If t 6∈ Dg, then by the same argument as in Theorem 6.2, we have that

h(t, u(t)) = h(t+, u(t+)) > 0 and

(h(t, u(t)))′g =
∂gh

∂gt
(t, u(t)) +

〈
∇xh(t, u(t)), u

′
g(t)
〉
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for g-almost all t ∈ J\Dg. Since u is a solution of (6.5), we conclude from the
condition (v) of Definition 4.1, the condition (ii) of Definition 5.5 and from the
hypothesis that d > 0 that

(6.8)

(h(t, u(t)))′g =
∂gh

∂gt
(t, u(t))

+
〈
∇xh(t, u(t)), d

(
p2(t, u(t))− u(t)

)
+ f(p(t, u(t)))

〉
=

∂gh

∂gt
(t, u(t)) +

〈
∇xh(t, u(t)), f(p(t, u(t)))

〉
+ d
〈
∇xh(t, u(t)), p2(t, u(t))− u(t)

〉
< 0

for g-almost all t ∈ J\Dg, since (t, u(t)) ∈ Rc.
Case 2: If t ∈ Dg, we have that

(h(t, u(t)))′g =
h
(
t+, u(t+)

)
− h(t, u(t))

µg({t})

=
h
(
t+, u(t) + u(t+)−u(t)

µg({t}) · µg({t})
)
− h(t, u(t))

µg({t})

=
h
(
t+, u(t) + u′g(t)µg({t})

)
− h(t, u(t))

µg({t})

=
h
(
t+, u(t) + fd(p(t, u(t)))µg({t})

)
− h(t, u(t))

µg({t})
≤ 0,

since u is a solution of (6.5) and by condition (iii) of Definition 5.5. Indeed, we have
that (t, u(t)) ∈ K+

P , since

u(t) + fd(p(t, u(t)))µg({t}) = u(t+) and h
(
t+, u(t+)

)
> 0.

Furthermore, since t ∈ J ∩Dg, we deduce by the same argument as in the proof of
Theorem 6.2 that (t, u(t)) ∈ Rc. In every case, we have that (h(t, u(t)))′g ≤ 0 for
g-almost all t ∈ J .

Let us show that h(0, u(0)) ≤ h(T, u(T )) to conclude. Let

A = {t ∈ I : h(t, u(t)) > 0}.

If 0 ∈ A, then, by condition (iv) of Definition 5.5 and the fact that u respects the
periodic boundary condition u(0) = u(T ), we have that

0 < h(0, u(0)) ≤ h(T, u(0)) = h(T, u(T )).

If 0 6∈ A, then h(0, u(0)) ≤ 0. In every case, the condition (ii) of Lemma 6.1 is
satisfied.

Lemma 6.1 then implies that h(t, u(t)) ≤ 0 for all t ∈ I or that there exists c > 0
such that h(t, u(t)) = c for all t ∈ I. This last case is impossible by (6.8). We then
have that (t, u(t)) ∈ R for all t ∈ I and our solution u of the problem (6.5) is also
a solution of the problem (4.1), (4.3). □
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Let us present an example of an application of Theorem 6.4 to a system of g-
differential equations with the periodic boundary condition.

Example 6.5. Consider the function g : R → R defined by

g(t) =

{
t3 + t2 + t if t ≤ 1,

t3 + t2 + t+ 1 if t > 1.

We see that g is continuous from the left and nondecreasing. We also have Dg = {1}
and µg({1}) = 1.

Consider the following problem with the periodic boundary condition

(6.9)
u′g(t) = f(t, u(t)) for g-almost all t ∈ [0, 2],

u(0) = u(2),

where f : [0, 2]× R2 → R2 is defined by

f(t, x1, x2) =

{
−1

2(x1, x2) if t = 1,(
−2x31 − 3x1 − x2 +

t
2 ,−2x32 + x1 − 3x2 +

t
2

)
otherwise.

Define v : [0, 2] → R2 by

v(t) = (0, 0) for all t ∈ [0, 2]

and M : [0, 2] → [0,∞) par

M(t) =

{
4 if t ∈ [0, 1],

2 if t ∈ (1, 2].

We see that v ∈ ACg([0, 2],R2) and M ∈ ACg([0, 2], [0,∞)). Let

R = {(t, x1, x2) ∈ [0, 2]× R2 : ‖x− v(t)‖ ≤ M(t)}.
We can also directly calculate that the conditions of Example 5.8 are verified with
our choice of v and M by choosing d = 1/2 > 0 for the second condition. Thus
R is a g-solution-region of (6.9). Since f and f ◦ p are g-Carathéodory functions,
Theorem 6.4 guarantees that there exists a solution u ∈ ACg([0, 2],R2) such that
(t, u(t)) ∈ R for every t ∈ [0, 2].

7. Application

A resonant tunnelling diode (RTD) is an electrical component that lets current go
in one direction only and that has the negative differential resistance property, which
corresponds to a decrease of the current going through the diode when the voltage
at its terminals increases. It can be connected to a laser diode (LD) to manage the
emission of the laser. It is an optoelectronic integrated circuit, and it is anticipated
that this circuit will lead to new applications in optical communications, notably
in data encryption. Interested readers are referred to [27, 30] for more information
about this RTD-LD circuit.

The voltage output V (t) across a RTD-LD circuit can be described with the help
of a Liénard equation of the following form:

(7.1) V ′′(t) +H(V )V ′(t) +G(V ) = VAC sin(2πfint),
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where H(V ) and G(V ) are given by

H(V ) =
R

L
+

1

C

df̃(V )

dV

and

G(V ) =
V (t)

LC
+

R

LC
f̃(V )− VDC

LC

for f̃ : R → R a function of class C1, and constants R, VAC , VDC , fin ≥ 0 and
L,C > 0, where R is the equivalent resistance of the RTD and LD, VAC is the
driving alternating current voltage, VDC is a direct current bias voltage, fin is the
excitation frequency, L is the inductance and C is the RTD capacitance. Remark
that this differential equation of order two can be transformed in a system of two
differential equations of order one. Indeed, let y = V and z = V ′, we find that (7.1)
can be expressed by

y′(t) = z(t)

z′(t) = VAC sin
(
2πfint

)
−G(y(t))−H(y(t))z(t).

Let us consider the voltage output across a RTD-LD circuit over a period of 10 ns,
where, to simplify the situation, the constants will be such that fin ≥ 0, VAC = 0,
R = C = L = 1 and VDC = 3. Furthermore, suppose that f̃ : R → R is such that

0 ≤ f̃(w) ≤ 1

4
∀w ∈ R,

and

Ψ(w) :=
df̃

dV
(w) ≥ −1 ∀w ∈ R.

A voltage regulator will also be connected to the circuit to maintain a constant
voltage between 4 and 6 ns. At 8 ns, the voltage regulator will adjust the voltage
in a proportional and opposite manner to the difference between the voltage and 3.
Similarly, the derivative of the voltage will be impacted proportionally in the op-
posite direction of V ′(t) by the voltage regulator. The voltage regulator will act
rapidly enough to consider these adjustments as instantaneous.

Let y(t) be the voltage in volts across the RTD-LD circuit at time t ns, and let
z(t) be the derivative of the voltage across the RTD-LD circuit at time t ns, where
t ∈ [0, 10]. We can describe this situation with the following system of two Stieltjes
differential equations

(7.2)
(
y′g(t), z

′
g(t)
)
=
(
f1(t, y(t), z(t)), f2(t, y(t), z(t))

)
for g-almost all t ∈ [0, 10],

where f = (f1, f2) : [0, 10]× R2 → R is defined by

f1(t, x1, x2) =

{
x2 if t ∈ [0, 10]\{8},
−4

5(x1 − 3) if t = 8,

and

f2(t, x1, x2) =

{
VAC sin

(
2πfint

)
−G(x1)−H(x1)x2 if t ∈ [0, 10]\{8},

−4x2
5 if t = 8,
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=

{
−
(
x1 + f̃(x1)− 3

)
−
(
1 + Ψ(x1)

)
x2 if t ∈ [0, 10]\{8},

−4x2
5 if t = 8,

and where g : R → R is defined by

g(t) =



t if t ∈ [0, 4],

4 if t ∈ (4, 6],

t− 2 if t ∈ (6, 8],

t− 1 if t ∈ (8, 10),

9n+ g(t− 10n) if t− 10n ∈ [0, 10), n ∈ Z\{0},

see Figure 7. We first see that this system is not piecewise linear when Ψ is not
constant, and that there is no trivial solution if f̃(3) 6= 0. Furthermore, we have
that

Cg =
⋃
n∈Z

(4 + 10n, 6 + 10n)

and

Dg =
⋃
n∈Z

{8 + 10n},

where µg({t}) = 1 for all t ∈ Dg.

Figure 7.1. Graph of the function g

We will also consider the periodic boundary condition,

(7.3) (y(0), z(0)) = (y(10), z(10))

to ensure the long-term stability of the circuit.
Let us show that the problem (7.2), (7.3) has a solution insured by Theorem 6.4.

Let v : [0, 10] → R2 and M : [0, 10] → [0,∞) be defined by

v(t) = (3, 0)

and

M(t) =


t
4 + 1 if t ∈ [0, 4],

2 if t ∈ (4, 6],
t
4 + 1

2 if t ∈ (6, 8],
t
4 − 3

2 if t ∈ (8, 10].
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Observe that v ∈ ACg([0, 10],R2) and that M ∈ ACg([0, 10], [0,∞)). By Exam-
ple 4.3, the set

R = {(t, x) ∈ [0, 10]× R2 : ‖x− v(t)‖ ≤ M(t)}
is a g-admissible region with the associated g-admissible pair (h, p), where h : [0, 10]×
R2 → R is defined by

h(t, x) = ‖x− v(t)‖ −M(t)

and p : [0, 10]× R2 → [0, 10]× R2 is defined by

p(t, x) = (t, p2(t, x)) =

(
t,M(t)

x− v(t)

‖x− v(t)‖
+ v(t)

)
,

where p2(t, x) is the projection of x on Rt, see Figure 7.

Figure 7.2. Region R

Now, let us show that R is a g-solution-region of (7.2), (7.3) by verifying the
conditions of Example 5.8. First, let us verify that, for g-almost all t ∈ [0, 10]\Dg

and all x such that (t, x) ∈ Rc, we have〈
f(p(t, x))− v′g(t),

x− v(t)

‖x− v(t)‖

〉
−M ′

g(t) ≤ 0.

Let t ∈ (0, 10)\(Dg∪Cg∪{4, 6}) and x be such that ‖x−v(t)‖ > M(t). Then, since

M(t) ≥ 0, Ψ(w) ≥ −1 and 0 ≤ f̃(w) ≤ 1
4 for all w ∈ R and t ∈ [0, 10], we have that〈

f(p(t, x))− v′g(t),
x− v(t)

‖x− v(t)‖

〉
−M ′

g(t)

= M(t)
x2

‖x− v(t)‖
(x1 − 3)

‖x− v(t)‖

+

(
−M(t)

x1 − 3

‖x− v(t)‖
− 3− f̃((p2(t, x))1) + 3

)
x2

‖x− v(t)‖

−
(
1 + Ψ

(
(p2(t, x)

)
1
)
)
M(t)

(
x2

‖x− v(t)‖

)2

− 1

4
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≤ |x2|
4‖x− v(t)‖

− 1

4

≤ 0,

where (p2(t, x))1 is the first component of the vector p2(t, x). The condition (i) of
Example 5.8 is verified, since µg(Cg ∪ {0, 4, 6, 10}) = 0.

Let us show the condition (ii), which asks for the existence of a constant d > 0
such that

dµg({t}) 6= 1 for all t ∈ I ∩Dg, êd(10, 0) 6= 1,

and for all t ∈ I ∩Dg and all x such that (t, x) ∈ K+
P , we have that∥∥x+ fd(p(t, x))µg({t})− v(t+)

∥∥−M(t+) ≤ ‖x− v(t)‖ −M(t).

Let d = 4
5 > 0. We see that dµg({8}) = 4

5 6= 1 and

d(t) =
4

5− 4µg({t})
> 0 for all t ∈ [0, 10],

which implies that êd(10, 0) > 1. Finally, let t = 8 ∈ [0, 10] ∩Dg = {8} and x such

that (t, x) ∈ K+
P = {(t, x) ∈ (I ∩Dg)×RN : h(t+, x+ fd(p(t, x))µg({t})) > 0}. We

have that

0 < h
(
t+, x+ fd(p(t, x))µg({t})

)
=
∥∥x+

(
d(p2(t, x)− x) + f(p(t, x))

)
µg({t})− v(t+)

∥∥−M(t+)

=

∥∥∥∥x+
4

5
(p2(t, x)− x)− 4

5
p2(t, x) +

4

5
(3, 0)− (3, 0)

∥∥∥∥− 1

2

=
1

5

(
‖x− (3, 0)‖ − 5

2

)
.

We also have that

h(t, x) = ‖x− v(t)‖ −M(t) = ‖x− (3, 0)‖ − 5

2
.

So,

0 <
1

5

(
‖x− (3, 0)‖ − 1

2

)
≤ ‖x− (3, 0)‖ − 1

2
.

The condition (ii) is then verified. The last condition is directly verified, since
v(0) = v(10) = (3, 0) and M(0) = M(10) = 1. Thus, we have, for any x ∈ R2,

‖x− v(0)‖ −M(0) ≤ ‖x− v(10)‖ −M(10).

By Example 5.8, R is a g-solution-region of (7.2), (7.3).
We see that f and f ◦ p are g-Carathéodory functions. Thus, Theorem 6.4

guarantees the existence of a solution u = (y, z) ∈ ACg([0, 10],R2) to the prob-
lem (7.2), (7.3) such that (t, y(t), z(t)) ∈ R for all t ∈ [0, 10].

Figure 7 shows the g-solution-region R and the graph of a numerical approxima-
tion of a solution to the problem for f̃ given in [30],

f̃(V ) = A log

(
1 + eq(B−C+n1V (t))/kBT

1 + eq(B−C−n1V (t))/kBT

)(
π

2
+ arctan

(
C − n1V (t)

D

))
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+H(en2qV (t)/kBT − 1),

where A = 6.48·10−3, B = 0.0875, C = 0.1449, D = 0.02132, H = 7.901·10−4,
n1 = 0.1902, n2 = 0.0284, T = 300K, q = 1.602 · 10−19 coulombs, the electric
charge, and kB = 1.381 · 10−23 J·K−1, the Boltzmann constant. We see that the
graph of the approximate solution is in the g-solution-region R for all t ∈ [0, 10].

Figure 7.3. The g-solution-region R and graph of a numerical ap-
proximation of a solution

We also see in Figure 7 that the solution is not trivial, is constant over (4, 6),
which is the orange segment, and has a discontinuity at t = 8.

Figure 7.4. Graph of a numerical approximation of a solution
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