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where α, β, γ ≥ 0 and α + β + γ < 1. Generalizing the condition (1.4), Hardy and
Rogers [10] introduced the condition

(1.5) d (Tx, Ty) ≤ αd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + εd (Tx, y)

for all x, y ∈ X, where α, β, γ, δ, ε ≥ 0 and α+β+γ+ δ+ε < 1. See also Karapınar
et al. [16] and Roldan Lopez de Hierro et al. [25]. For relationships between these
classes of mappings (1.1)–(1.5), see Rhoades [24]. For recent developments, see
Agarwal et al. [1], Berinde [6], and Karapınar and Agarwal [15].

Let H be a real Hilbert space with the norm ∥·∥ induced from an inner product
and let T be a mapping from C into H, where C is a non-empty subset of H. In
2011, Takahashi and Takeuchi [27] introduced a concept called attractive points.
The set of attractive points is denoted by

A (T ) = {x ∈ H : ∥Ty − x∥ ≤ ∥y − x∥ for all y ∈ C} .
They proved a nonlinear ergodic theorem without supposing that C is closed or
convex. The following is a slightly modified version:

Theorem 1.1 ([27]). Let C be a non-empty subset of H and let T : C → C be a
generalized hybrid mapping, that is,

(1.6) α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C, where α, β ∈ R. Suppose that A (T ) ̸= ∅. Let x ∈ C and define

Snx = 1
n

∑n−1
k=0 T

kx (∈ H) for all n ∈ N = {1, 2, · · · }. Then, {Snx} converges weakly
to x̂ ≡ limn→∞ PA(T )T

nx ∈ A (T ), where PA(T ) is the metric projection from H onto
A (T ).

The class of generalized hybrid mappings (1.6) was introduced by Kocourek et
al. [18]. In the case of α = 1 and β = 0 in (1.6), the mapping T is nonexpansive.
Thus, Theorem 1.1 is applicable in cases of nonexpansive mappings. If C is closed
and convex in Theorem 1.1, then the sequence {Snx} converges weakly to a fixed
point of T . In this sense, Theorem 1.1 is an extension of the classical result by
Baillon [3]. For various results regarding attractive points, see [2, 11, 20–22, 28] for
instance. For various types of mappings included in the class of generalized hybrid
mappings, see Appendix in Kondo [19].

In this research, we study a type of mappings characterized by the condition

(1.7)

d (Tx, Ty) ≤ ad (x, y) + b

[
1

2
d (x, Tx) +

1

2
d (y, Ty)

]
+ c

[
1

2
d (x, Ty) +

1

2
d (Tx, y)

]
for all x, y ∈ C, where a, b, c ≥ 0 with a + b + c < 1. Although mappings in this
class are special cases of Hardy and Rogers mappings (1.5), they include contraction
mappings (1.1), Kannan mappings (1.2), and Chatterjea mappings (1.3) simultane-
ously. We prove an attractive point theorem for this class of mappings in complete
metric spaces without assuming that the domain of the mapping is closed. If the
domain is closed, it is guaranteed that there exists a fixed point. In Section 2, to
explain the difference from fixed points, we provide examples of attractive points.
Basic properties regarding attractive points are also revealed in the framework of
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metric spaces. In Section 3, the attractive point theorem is established. From this
result, various fixed point theorems are deduced if the domain of the mapping is
closed. In Section 4, closing comments are concisely presented.

2. Attractive points

In this section, we present examples and basic properties of attractive points. Let
(X, d) be a metric space and C be a non-empty subset of X. The set of attractive
points of a mapping T : C → X is defined as

A (T ) = {x ∈ X : d(Ty, x) ≤ d(y, x) for all y ∈ C} .
The following examples illustrate the difference between attractive points and fixed
points. For Example 2.3 below, the author referred to Example 1.1 in Berinde [5].

Example 2.1. (i) Let C = (0,∞) be an interval in R. Consider the usual metric
d (x, y) = |x− y| in R. Define S : C → C by Sx = 1

2x for all x ∈ C. Then,
A (S) = (−∞, 0] while F (S) = ∅.

(ii) Let C ′ = [0,∞) be an interval in R. Define S : C ′ → C ′ by Sx = 1
2x for all

x ∈ C ′. Then, A (S) = (−∞, 0] while F (S) = {0}.

Example 2.2. (i) Let D = R\{0}. Define S′ : D → D by S′x = −1
2x for all x ∈ D.

Then, A (S′) = {0} while F (S) = ∅.
(ii) Let D′ = R. Define S′ : D′ → D′ by S′x = −1

2x for all x ∈ D′. Then,
A (S′) = F (S′) = {0}.

Example 2.3. (i) Let C = (0,∞) be an interval in R. Define T : C → R as follows:

Tx =

{
0 if 0 < x ≤ 4;
−1 if x > 4.

Then, A (T ) = (−∞, 0] while F (T ) = ∅.
(ii) Let C ′ = [0,∞) be an interval in R. Define T : C ′ → R as follows:

Tx =

{
0 if 0 ≤ x ≤ 4;
−1 if x > 4.

Then, A (T ) = (−∞, 0] while F (T ) = {0}.

The mappings S and S′ in Examples 2.1 and 2.2 are 1
2 -contraction mappings while

T in Example 2.3 is 1
5 -Kannan. As shown in Examples 2.1 and 2.3, an attractive

point is not necessarily unique.

Assertions (1), (3), and (4) in the following proposition were proved in Takahashi
and Takeuchi [27] while (2) was demonstrated in Kondo and Takahashi [20] in the
setting of real Hilbert spaces:

Proposition 2.4. Let C be a non-empty subset of a metric space X and let T be a
mapping from C into X. Then, the following assertions hold:

(1) A (T ) is closed in X;
(2) When T is a self-mapping on C, it holds that A (T ) ⊂ A

(
TM

)
, where

M ∈ N;
(3) A (T ) ∩ C ⊂ F (T );
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(4) Assume that T is quasi-nonexpansive with F (T ) ̸= ∅, that is,
(2.1) d (Ty, q) ≤ d (y, q) for all y ∈ C and q ∈ F (T ) .

Then, F (T ) ⊂ A (T ).

Proof. (1) Let {xn} be a sequence in A (T ) such that xn → x (∈ X). We show
that x ∈ A (T ), in other words, d (Ty, x) ≤ d (y, x) for any y ∈ C. Select y ∈ C
arbitrarily. As xn ∈ A (T ), it follows that d (Ty, xn) ≤ d (y, xn) for all n ∈ N.
Taking the limit as n → ∞, we have the desired result.

(2) Let x ∈ A (T ) and M ∈ N. We show that x ∈ A
(
TM

)
. Let y ∈ C. As

x ∈ A (T ) and TM−1y ∈ C, it holds that

d
(
TMy, x

)
= d

(
T
(
TM−1y

)
, x

)
≤ d

(
TM−1y, x

)
.

Similarly,
d
(
TMy, x

)
≤ d

(
TM−1y, x

)
≤ · · · ≤ d (y, x)

for arbitrarily chosen y ∈ C. This means that x ∈ A
(
TM

)
as claimed.

(3) Let x ∈ A (T )∩C. As x ∈ A (T ), we have d (Ty, x) ≤ d (y, x) for all y ∈ C. As
x ∈ C, set y = x ∈ C in this expression. Then, we obtain d (Tx, x) ≤ d (x, x) = 0.
This indicates that x ∈ F (T ). Thus, we can conclude that A (T ) ∩ C ⊂ F (T ).

(4) Let x ∈ F (T ). We verify that x ∈ A (T ), that is, d (Ty, x) ≤ d (y, x) for
all y ∈ C. Select y ∈ C arbitrarily. From the definition of quasi-nonexpansive
mappings (2.1), the desired result follows. □

To the author’s best knowledge, the following Propositions 2.5 and 2.6 are new
results in the literature:

Proposition 2.5. Let T be a mapping from C into a metric space X, where C is a
non-empty subset of X. Suppose that there exist a, b, c ≥ 0 that satisfy a+ b+ c ≤ 1
and the condition (1.7) for all x, y ∈ C. Then, F (T ) ⊂ A (T ) holds true.

Proof. Let x ∈ F (T ). Our aim is to show that x ∈ A (T ), in other words, d (Ty, x) ≤
d (y, x) for all y ∈ C. As x = Tx, using the condition (1.7), we have

d (Ty, x) = d (Tx, Ty)

≤ ad (x, y) + b

[
1

2
d (x, Tx) +

1

2
d (y, Ty)

]
+ c

[
1

2
d (x, Ty) +

1

2
d (Tx, y)

]
= ad (x, y) + b

[
1

2
d (y, Ty)

]
+ c

[
1

2
d (x, Ty) +

1

2
d (x, y)

]
≤ ad (x, y) + b

[
1

2
d (y, x) +

1

2
d (x, Ty)

]
+ c

[
1

2
d (x, Ty) +

1

2
d (x, y)

]
for all y ∈ C. This yields

(2.2)

(
1− b

2
− c

2

)
d (Ty, x) ≤

(
a+

b

2
+

c

2

)
d (x, y) .

Note that 1− b
2 − c

2 > 0. Define

ρ =
a+ b

2 + c
2

1− b
2 − c

2

.
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From the hypotheses about the parameters a, b, c, it holds that 0 ≤ ρ ≤ 1. Therefore,
from (2.2), we obtain

d (Ty, x) ≤ ρd (x, y) ≤ d (x, y) .

This completes the proof. □

Proposition 2.6. Let C be a non-empty subset of a metric space X. Let Tn and
T be mappings from C into itself, where n ∈ N. Suppose that the sequence {Tn}
of mappings converges to T pointwisely, that is, Tny → Ty for all y ∈ C. Let
x∗n ∈ A (Tn) for all n ∈ N and assume that x∗n → x∗ ∈ X as n → ∞. Then,
x∗ ∈ A (T ).

Proof. As x∗n ∈ A (Tn), we have

(2.3) d (Tny, x
∗
n) ≤ d (y, x∗n) for all y ∈ C and n ∈ N.

Our goal is to show that x∗ ∈ A (T ), in other words, d (Ty, x∗) ≤ d (y, x∗) for
arbitrarily chosen y ∈ C. From (2.3), it follows that

d (Ty, x∗) ≤ d (Ty, Tny) + d (Tny, x
∗
n) + d (x∗n, x

∗)

≤ d (Ty, Tny) + d (y, x∗n) + d (x∗n, x
∗) .

As Tny → Ty and x∗n → x∗, we have in the limit as n → ∞ that d (Ty, x∗) ≤
d (y, x∗). This completes the proof. □

3. Main result

In this section, we prove the main theorem of this study, which asserts that a
mapping with the condition (1.7) has an attractive point. Attractive point and
fixed point theorems for contraction mappings, Kannan mappings, and Chatterjea
mappings are derived from our main theorem.

Theorem 3.1. Let C be a non-empty subset of a complete metric space X and let
T be a self-mapping defined on C. Suppose that there exist a, b, c ≥ 0 that satisfy
a+ b+ c < 1 and the condition (1.7), that is,

d (Tx, Ty) ≤ ad (x, y) + b

[
1

2
d (x, Tx) +

1

2
d (y, Ty)

]
+ c

[
1

2
d (x, Ty) +

1

2
d (Tx, y)

]
for all x, y ∈ C. Then, the set A (T ) of attractive points of T is not empty and for
any x ∈ C, {Tnx} converges to an attractive point x∗ ∈ A (T ) (⊂ X).

Proof. Let x ∈ C and define xn = Tnx (∈ C) for all n ∈ N∪ {0}, where x0 = x. We
show that {xn} (⊂ C ⊂ X) is a Cauchy sequence. It holds from (1.7) that

d (xn, xn+1) = d (Txn−1, Txn)

≤ ad (xn−1, xn) + b

[
1

2
d (xn−1, Txn−1) +

1

2
d (xn, Txn)

]
+ c

[
1

2
d (xn−1, Txn) +

1

2
d (Txn−1, xn)

]
= ad (xn−1, xn) + b

[
1

2
d (xn−1, xn) +

1

2
d (xn, xn+1)

]
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+ c

[
1

2
d (xn−1, xn+1)

]
≤ ad (xn−1, xn) + b

[
1

2
d (xn−1, xn) +

1

2
d (xn, xn+1)

]
+ c

[
1

2
d (xn−1, xn) +

1

2
d (xn, xn+1)

]
for all n ∈ N. From this, it follows that(

1− b

2
− c

2

)
d (xn, xn+1) ≤

(
a+

b

2
+

c

2

)
d (xn−1, xn) .

Defining

(3.1) ρ =
a+ b

2 + c
2

1− b
2 − c

2

∈ [0, 1),

we obtain

d (xn, xn+1) ≤ ρd (xn−1, xn)(3.2)

≤ ρ2d (xn−2, xn−1) ≤ · · · ≤ ρnd (x0, x1) .

for all n ∈ N. Let m,n ∈ N with m ≥ n. Using (3.2), we have

d (xn, xm) ≤ d (xn, xn+1) + · · ·+ d (xm−1, xm)

≤ ρnd (x0, x1) + · · ·+ ρm−1d (x0, x1)

≤ ρnd (x0, x1)
(
1 + ρ+ ρ2 + · · ·

)
=

ρn

1− ρ
d (x0, x1) .

It follows that d (xn, xm) → 0 as m,n → ∞. This indicates that {xn} (⊂ C ⊂ X) is
a Cauchy sequence as claimed.

As X is complete, there exists x∗ ∈ X such that xn → x∗. Note that x∗ ∈ C is
not necessarily guaranteed and consequently, Tx∗ cannot be considered. We verify
that x∗ ∈ A (T ), in other words, d (Ty, x∗) ≤ d (y, x∗) for all y ∈ C. Select y ∈ C
arbitrarily. Using (1.7), we have

d (Ty, x∗) ≤ d (Ty, xn+1) + d (xn+1, x
∗)

= d (Ty, Txn) + d (xn+1, x
∗)

≤ ad (y, xn) + b

[
1

2
d (y, Ty) +

1

2
d (xn, xn+1)

]
+ c

[
1

2
d (y, xn+1) +

1

2
d (Ty, xn)

]
+ d (xn+1, x

∗) .

We have in the limit as n → ∞ that

d (Ty, x∗) ≤ ad (y, x∗) + b
1

2
d (y, Ty) + c

[
1

2
d (y, x∗) +

1

2
d (Ty, x∗)

]
≤ ad (y, x∗) + b

[
1

2
d (y, x∗) +

1

2
d (x∗, T y)

]
+ c

[
1

2
d (y, x∗) +

1

2
d (Ty, x∗)

]
.
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Thus, we obtain (
1− b

2
− c

2

)
d (Ty, x∗) ≤

(
a+

b

2
+

c

2

)
d (y, x∗) ,

which indicates that

d (Ty, x∗) ≤ ρd (y, x∗) ≤ d (y, x∗) ,

where ρ ∈ [0, 1) is defined in (3.1) and y is arbitrarily chosen as an element of C.
This means that x∗ ∈ A (T ) (⊂ X). The proof is completed. □

Remind that A (T )∩C ⊂ F (T ) from (3) in Proposition 2.4. Using this, we obtain
the following fixed point theorem as a corollary, which is a particular case of the
Hardy and Rogers fixed point theorem:

Corollary 3.2 ([10]). Let T be a self-mapping defined on X, where X is a complete
metric space. Suppose that there exist a, b, c ≥ 0 that satisfy a + b + c < 1 and the
condition (1.7) for all x, y ∈ C. Then, T has a unique fixed point x∗ ∈ F (T ) and
for any x ∈ C, {Tnx} converges to the fixed point x∗ ∈ F (T ).

Proof. Set C = X in Theorem 3.1. Then, x∗ ∈ A (T ) ∩ C ⊂ F (T ), where x∗ is the
element in the proof of Theorem 3.1. Therefore, T has a fixed point x∗ and {Tnx}
converges to x∗ for all x ∈ X.

We show the uniqueness. Let u, v ∈ F (T ). Using (1.7), we have

d (Tu, Tv) ≤ ad (u, v) + b

[
1

2
d (u, Tu) +

1

2
d (v, Tv)

]
+ c

[
1

2
d (u, Tv) +

1

2
d (Tu, v)

]
.

As u = Tu and v = Tv, it follows that

d (u, v) = d (Tu, Tv)

≤ ad (u, v) + c

[
1

2
d (u, v) +

1

2
d (u, v)

]
= (a+ c) d (u, v) .

Thus, it holds that (1− a− c) d (u, v) ≤ 0. As 1− a− c > 0, we obtain d (u, v) ≤ 0,
which implies that u = v. This ends the proof. □

Three remarks are provided below. First, Theorem 3.1 does not imply the unique-
ness of fixed points, as an attractive point is not guaranteed to be unique. Second,
Theorem 3.1 and Corollary 3.2 yield the attractive point theorems and fixed point
theorems for contraction mappings (1.1), Kannan mappings (1.2), and Chatterjea
mappings (1.3), respectively. Third, if C (⊂ X) is closed in Theorem 3.1, then C
itself is a complete metric space, as X is complete. In such a case, we assume C = X
and obtain Corollary 3.2.

4. Concluding remarks

In this study, we investigated Hardy and Rogers type contraction mappings (1.7)
and proved an attractive point theorem without assuming that the domain of the
mappings is closed. The existence of an attractive point is guaranteed while the
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uniqueness does not necessarily hold. From the main theorem, we obtained attrac-
tive point theorems for well-known types of contraction mappings. Furthermore,
fixed point theorems are also derived if the domains of the mappings are closed.

However, the class of mappings for which an attractive point theorem has been
established is still limited. It may be difficult to prove attractive point theorems for
Hardy and Rogers contraction mappings (1.5), interpolative contraction mappings
[13, 14], and quasi-contraction mappings [9]. Proving attractive point theorems for
cyclic type contraction mappings [17] is also a topic of future research.
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