


1938 Y. H. WANG, S. CHEBBI, AND H. K. XU

an accretive operator satisfying the range condition, then we can define, for each
r > 0, the resolvent JA

r and the Moreau-Yosida approximation Ar by

JA
r = (I + rA)−1, Ar =

1

r
(I − JA

r ).

It is known that JA
r is nonexpansive and the fixed point set F (JA

r ) = A−1(0) for all
r > 0. Here

A−1(0) = {x ∈ D(A) : 0 ∈ Ax}
is the set of zeros of A.

It is well known that if A is an accretive operator, then the solutions of the
problem 0 ∈ Ax correspond to the equilibrium points of the evolution equation

du(t)

dt
+Au(t) ∋ 0.

Therefore, the problem of solving the inclusion 0 ∈ Ax has been paid much attention
for over 50 years. Rockafellar [20] is the first to introduce the proximal point
algorithm (PPA) in a general Hilbert space H: Initializing with x0 ∈ H, he defines
the (n+ 1)th iterate by

(1.1) xn+1 = JA
rnxn,

where {rn} ⊂ (0,∞) satisfies the condition lim infn→∞ rn > 0. Rockafellar proves
that the sequence {xn} converges weakly to an element of A−1(0) (if any). The weak
and strong convergence of the sequence {xn} defined by (1.1) have been extensively
discussed in Hilbert Banach spaces (see [3, 6, 11, 12, 19] and the references therein).

In 2000, Kamimura and Takahashi [13] showed a strong convergence theorem in
a Hilbert space: For a maximal monotone operator A with A−1(0) ̸= ∅ and u ∈ C,
let the sequence {xn} be defined by

(1.2) xn+1 = αnu+ (1− αn)J
A
rnxn, n ≥ 0.

Under certain conditions, they proved the iterative sequence {xn} converges strongly
to a zero of A. There are several extensions of the above result to the setting
of certain classes of Banach spaces such as uniformly smooth Banach spaces. For
instance, in [5] the algorithm (1.2) is proved to be strongly convergent in a uniformly
smooth Banach space with a weakly continuous duality map. In [14] and [26], the
algorithm (1.2) is extended to a uniformly smooth Banach space or a reflexive
Banach space having a weakly sequentially continuous duality mapping.

The iterative scheme (1.2) and its modified variants have been investigated by
many researchers (see [4, 9, 21, 22, 24, 27, 28, 30] and the references therein).
However, most of the work has been carried out for maximal monotone operators
in Hilbert spaces, and much less attention has been paid to m-accretive operators
in Banach spaces.

In some situations, common solutions are sought. In our framework of this paper,
we consider the problem of finding a common zero of a finite family of m-accretive
operators in a Banach space. Suppose {Ai}ki=1 are a family of k m-accretive oper-
ators with common zeros. It is then an interesting problem of finding a common
zero via iteration. One can adopt this approach: make a convex combination of the
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resolvents with the identity map I and then apply the algorithm (1.2), that is, ap-
ply (1.2) to the case where the resovent JA

rn is replaced with the following averaged
resolvent map:

Sk := a0I + a1J
A1
1 + a2J

A2
1 + · · ·+ akJ

Ak
1

where aj > 0 for all 0 ≤ j ≤ k and
∑k

j=0 aj = 1. In other words, the sequence {xn}
is generated by the iteration process ([29]).

(1.3) xn+1 = αnu+ (1− αn)Skxn, n ≥ 0.

This algorithm is however not innovative since the fixed point set of Sk is precisely

the common fixed point set of the resolvents {JAj

1 } (hence the common zero set

∩jA
−1
j (0)) ([29]) under the mild assumption of strict convexity of the underly Ba-

nach space E and under standard assumptions on the sequence of parameters, {αn},
for the strong convergence of the sequence {xn}.

Another similar modification was recently introduced in [7] where the purpose
is again to find a common zero of the family {Aj}kj=1. But the essence of this
approach is to make a finite family of the resolvents of the accretive operators into
a single nonexpansive averaged operator Sk without exploring possible features of
each individual resolvent.

In this paper we will continue the same line of research, that is, finding a common
zero of finitely many m-accretive operators. However, for the sake of simplicity, we
confine our study to the case of two m-accretive operators A and B, and always
assume A−1(0) ∩ B−1(0) ̸= ∅. We will take each individual resolvent of A and B
into consideration with the hope that the implementation of the proposed algorithm
would be relatively easily realized. In our algorithm we will consider an average
idea instead of shrinking like the algorithm (1.2). In other words, we will adopt the
idea of Mann’s algorithm [15]. More precisely, our algorithm generates a sequence
according to the following recursion:

(1.4)

{
yn = βnJ

A
rnxn + (1− βn)J

B
snxn,

xn+1 = αnxn + (1− αn)yn, n ≥ 0,

where the initialization x0 is chosen arbitrarily, and where {αn}, {βn} are sequences
in [0, 1) and {rn}, {sn} are sequences in (0,∞).

Notice that in (1.4), the resolvent of A and B occurs individually and plays equal
roles. Notice also that if we take αn = 0, then the algorithm (1.4) is reduced to the
algorithm:

xn+1 = βnJ
A
rnxn + (1− βn)J

B
snxn, n ≥ 0.

Another feature is that we allow distinct indexes for the resolvent of A and B.
The aim of this paper is to investigate properties of the algorithm (1.4), in par-

ticular, we will prove the weak convergence of the sequence {xn} to a common zero
of the operators A and B under some mild assumptions on the sequences of pa-
rameters {αn}, {βn}, {rn} and {sn}, in a uniformly convex Banach space with a
Fréchet differentiable norm.

The paper is structured as follows. In the next section we introduce the pre-
liminaries, including uniform convexity of Banach spaces, differentiability of norms,
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Opial’s property, the resolvent identity, and the demiclosedness principle for non-
expansive mappings. In the last section we will prove the weak convergence of our
algorithm (1.4).

2. Preliminaries

Throughout this paper, we always use E to stand for a real Banach space and
the notation: xn → x (respectively, xn ⇀ x) for the strong (respectively, weak)
convergence of the sequence {xn} to x. We also use ωw(xn) to denote the set of
weak cluster points of the sequence {xn}, that is,

ωw(xn) = {x ∈ E : xnj ⇀ x for some subsequence {xnj} ⊂ {xn}}.

A Banach space E is said to be strictly convex if ∥x+y∥
2 < 1 for ∥x∥ = ∥y∥ =

1, x ̸= y. The modulus of convexity of E is defined as the function δE : [0, 2] → [0, 1]
by

δE(ε) = inf{1− ∥x− y∥/2 : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ε}.
E is said to be uniformly convex if δE(ε) > 0 for each ε > 0. Let S(E) = {x ∈ E :
∥x∥ = 1} be the unit sphere of E and consider the

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

.

We have various differentiability concepts for the norm of E described by the limit
(2.1) as follows.

• E is said to be Gâteaux differentiable (or smooth) if the limit (2.1) exists
for each x, y ∈ S(E).

• E is said to be uniformly Gâteaux differentiable if it is smooth and the limit
(2.1) is attained uniformly over x ∈ S(E), for each fixed y ∈ S(E).

• E is said to be Fréchet differentiable if it is smooth and the limit (2.1) is
attained uniformly over y ∈ S(E), for each fixed x ∈ S(E).

• E is said to be a uniformly Fréchet differentiable norm (or uniformly smooth)
if it is smooth and the limit (2.1) is attained uniformly over both x, y ∈ S(E).

Recall also that E is said to satisfy Opial’s property if there holds the implication:

∀{xn} ⊂ E, xn ⇀ x ⇒ lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, ∀y ̸= x.

It is known [17] that for every 1 < p < ∞, ℓp satisfies Opial’s property [17], however,
Lp fails to satisfy it unless p = 2. More details on Banach space can be found in
[16].

For the proof of the weak convergence of our algorithm (1.4), we need the tools
stated below.

Lemma 2.1 ([1]). (The Resolvent Identity) For λ, µ > 0, x ∈ E,

Jλx = Jµ

(µ
λ
x+

(
1− µ

λ

)
Jλx

)
.

Lemma 2.2 ([25]). Suppose that E is a uniformly convex Banach space and C is a
bounded subset of E. Then there exists a convex continuous and strictly increasing
function g : [0,+∞) → [0,∞) satisfying g(0) = 0 and

∥tx+ (1− t)y∥2 ≤ t∥x∥2 + (1− t)∥y∥2 − t(1− t)g(∥x− y∥)
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for any t ∈ [0, 1], x, y ∈ C.

Lemma 2.3 ([2]). (The Demiclosedness Principle) Let C be a closed convex subset
of a uniformly convex Banach space and let T : C → C be a nonexpansive mapping
with fixed points. Then I − T is demiclosed in the sense that

{zn} ⊂ C, zn ⇀ z and (I − T )zn → 0 =⇒ (I − T )z = 0, i.e., z ∈ F (T ).

3. The algorithm and its convergence

Lemma 3.1. Let E be a uniformly convex Banach space and C a nonempty closed
convex subset of X. Suppose Tj : C → X, j = 1, 2, be nonexpansive mappings such
that F (T1) ∩ F (T2) ̸= ∅. Then for any β ∈ (0, 1),

(3.1) F (βT1 + (1− β)T2) = F (T1) ∩ F (T2).

In particular, if A and B are m-accretive operators in X such that A−1(0) ∩
B−1(0) ̸= ∅, then for β ∈ (0, 1) and r, s > 0, we have

(3.2) F (βJA
r + (1− β)JB

s ) = F (JA
r ) ∩ F (JB

s ).

Proof. It suffices to show that F (βT1 + (1 − β)T2) ⊂ F (T1) ∩ F (T2). To see this,
we take some p ∈ F (T1) ∩ F (T2) and let q ∈ F (βT1 + (1 − β)T2). Then we have
T1p = T2p = p and βT1q + (1− β)T2q = q. It follows from Lemma 2.2 that

∥q − p∥2 = ∥β(T1q − p) + (1− β)(T2q − p)∥2

≤ β∥T1q − p∥2 + (1− β)∥T2q − p∥2 − β(1− β)g(∥T1q − T2q∥)
≤ β∥q − p∥2 + (1− β)∥q − p∥2 − β(1− β)g(∥T1q − T2q∥)
= ∥q − p∥2 − β(1− β)g(∥T1q − T2q∥).

Consequently, g(∥T1q − T2q∥) = 0. Namely, T1q = T2q. This then implies that
T1q = T2q = q. □

We now provide a machinery for proving weak convergence of a sequence in a
uniformly convex Banach space.

Lemma 3.2. Let X be a Banach space and {xn} be a bounded sequence in X such
that there exists a nonempty closed convex subset K of X with the properties

(W1) for each x ∈ K, the limn→∞ ∥xn − x∥ exists, and
(W2) if {xnj} is a subsequence of {xn} weakly converging to x̂, then x̂ ∈ K,

namely, ωw(xn) ⊂ K.

Suppose in addition that either X satisfies Opial’s property or X is uniformly con-
vex with a Fréchet differentiable norm and there exists a sequence of nonexpansive
mappings, {Tn}, such that

(W3) F (Tn) ⊃ K for each n, and
(W4) xn+1 = Tnxn for all n.

Then {xn} weakly converges to a point in K.
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Proof. First consider the case that X satisfies Opial’s property. This case is quite
trivial. Indeed, if p, q ∈ ωw(xn) and assume xnj ⇀ p and xml

⇀ q, then it follows
from (W1) that, upon assuming p ̸= q,

lim
n→∞

∥xn − p∥ = lim
j→∞

∥xnj − p∥ < lim
j→∞

∥xnj − q∥ = lim
n→∞

∥xn − q∥

and

lim
n→∞

∥xn − q∥ = lim
l→∞

∥xml
− q∥ < lim

l→∞
∥xml

− p∥ = lim
n→∞

∥xn − p∥.

An evident contradiction is reached.
We next turn to the case whereX is uniformly convex with a Fréchet differentiable

norm. In this case, by a result of Reich [18] (see also [23] and [5, Lemma 3.4]), we
have limn→∞⟨xn, J(f1 − f2)⟩ exists, where f1, f2 ∈ ∩nF (Tn) and thus

⟨p1 − p2, J(f1 − f2)⟩ = 0, p1, p2 ∈ ωw(xn), f1, f2 ∈ ∩nF (Tn).

This together with the conditions (W2) and (W3) guarantees that ωw(xn) consists
of at most one point and consequently, the sequence {xn} must converge weakly to
a point in K. □
Theorem 3.3. Let E be a uniformly convex Banach space. Suppose in addition
E either satisfies Opial’s property or is Fréchet differentiable. Let A and B be m-
accretive operators in E such that A−1(0)∩B−1(0) ̸= ∅. Generate a sequence {xn}
by the algorithm:

initialization: x0 ∈ X is chosen arbitrarily,
iteration:

(3.3)
yn = βnJ

A
rnxn + (1− βn)J

B
snxn,

xn+1 = αnxn + (1− αn)yn,

where {αn}, {βn} are sequences in (0, 1) and {rn}, {sn} sequences in (0,∞) satisfy
the conditions:

(α) 0 < α ≤ αn ≤ α < 1;
(β) 0 < β ≤ βn ≤ β < 1;
(rs) either 0 < c ≤ rn, sn ≤ c < ∞ or limn→∞ rn = limn→∞ sn = ∞.

Then the sequence {xn} converges weakly to a point z ∈ A−1(0) ∩B−1(0).

Proof. Let K = A−1(0)∩B−1(0). Notice that K is a nonempty closed convex subset
of X. To prove the weak convergence of {xn} to a point in K, it suffices to verify
that the four conditions (W1)-(W4) in Lemma 3.2 are satisfied.

We proceed as follows. Let p ∈ K be arbitrarily given. First of all, we claim that
{xn} is bounded. As a matter of fact, using the nonexpansiveness of the resolvent,
we get

∥yn − p∥ = ∥βn(JA
rnxn − p) + (1− βn)(J

B
snxn − p)∥

≤ βn∥JA
rnxn − p∥+ (1− βn)∥JB

snxn − p∥
≤ βn∥xn − p∥+ (1− βn)∥xn − p∥ = ∥xn − p∥

and

∥xn+1 − p∥ = ∥αn(xn − p) + (1− αn)(yn − p)∥



ITERATIVE METHODS FOR ACCRETIVE OPERATORS 1943

≤ αn∥xn − p∥+ (1− αn)∥yn − p∥
≤ ∥xn − p∥.

This verifies (W1) which particularly implies that {xn} is bounded.
However, to verify (W2) we need much more delicate analysis on the sequence

{xn}. Apply Lemma 2.2 to further derive that

∥yn − p∥2 = ∥βn(JA
rnxn − p) + (1− βn)(J

B
snxn − p)∥2

≤ βn∥JA
rnxn − p∥2 + (1− βn)∥JB

snxn − p∥2

− βn(1− βn)g(∥JA
rnxn − JB

snxn∥)
≤ ∥xn − p∥2 − βn(1− βn)g(∥JA

rnxn − JB
snxn∥)(3.4)

and

∥xn+1 − p∥2 = ∥αn(xn − p) + (1− αn)(yn − p)∥2

≤ αn∥xn − p∥2 + (1− αn)∥yn − p∥2 − αn(1− αn)g(∥xn − yn∥)
≤ ∥xn − p∥2 − αn(1− αn)g(∥xn − yn∥)
− (1− αn)βn(1− βn)g(∥JA

rnxn − JB
snxn∥).(3.5)

This implies that

(3.6)

∞∑
n=0

αn(1− αn)g(∥xn − yn∥) < ∞

and

(3.7)
∞∑
n=0

(1− αn)βn(1− βn)g(∥JA
rnxn − JB

snxn∥) < ∞.

By the assumptions (α) and (β), we immediately derive from (3.6) and (3.7) the
following

(a) limn→∞ ∥xn − yn∥ = 0, and
(b) limn→∞ ∥JA

rnxn − JB
snxn∥ = 0.

Now by (3.3),

∥xn+1 − xn∥ = (1− αn)∥xn − yn∥,
∥xn+1 − yn∥ = αn∥xn − yn∥,
∥yn+1 − yn∥ ≤ ∥yn+1 − xn+2∥+ ∥xn+2 − xn+1∥+ ∥xn+1 − yn∥,

and combining with (a), we get

(c) limn→∞ ∥xn+1 − xn∥ = 0,
(d) limn→∞ ∥xn+1 − yn∥ = 0, and
(e) limn→∞ ∥yn+1 − yn∥ = 0.

We are now in a position to prove (W2). Assuming xnj ⇀ z, we have by (a), (c)
and (e) that xnj+1 ⇀ z and ynj+1 ⇀ z. In addition we may assume without loss of
generality (by taking a further subsequence if necessary) that

rnj → r̂ > 0, snj → ŝ > 0, αnj → α̂ ∈ (0, 1), βnj → β̂ ∈ (0, 1).
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By the condition (rs), we have either r̂, ŝ ∈ [c, c] or r̂ = ŝ = ∞.
In the case of r̂, ŝ ∈ [c, c], we set

T̂ = β̂JA
r̂ + (1− β̂)JB

ŝ .

Note that by Lemma 3.1, we see that F (T̂ ) = A−1(0) ∩B−1(0) = K. We also set

Tnj = βnjJ
A
rnj

+ (1− βnj )J
B
snj

.

Now since {xn} is bounded, an application of the resolvent identity (Lemma 2.1)
implies that

∥JA
r̂ xnj − JA

rnj
xnj∥ → 0, ∥JB

ŝ xnj − JB
snj

xnj∥ → 0

so that ∥T̂ xnj − Tnjxnj∥ → 0, from which it follows that

∥xnj − T̂ xnj∥ ≤ ∥xnj − xnj+1∥+ ∥xnj+1 − ynj+1∥+ ∥ynj+1 − T̂ xnj∥

≤ ∥xnj − xnj+1∥+ ∥xnj+1 − ynj+1∥+ ∥Tnjxnj − T̂ xnj∥
→ 0 (j → ∞).

By Lemma 2.3, we immediately get z ∈ F (T̂ ) = K and (W2) is proven.
Next consider the case where rnj → ∞ and snj → ∞. In this case, if we denote

by Aλ the Moreau-Yoshida of A of index λ > 0, that is, Aλ = (I − JA
λ )/λ, then we

derive that

∥(I − JA
1 )JA

rnxn∥ = ∥A1J
A
rnxn∥

≤ |AJA
rnxn| := inf{∥z∥ : z ∈ AJA

rnxn}

≤ ∥Arnxn∥ =
1

rn
∥xn − JA

rnxn∥.

It turns out that

(3.8) ∥(I − JA
1 )JA

rnj
xnj∥ ≤ 1

rnj

∥xnj − JA
rnxnj∥ → 0 (as rnj → ∞).

We rewrite xn+1 in the form

xn+1 = αnxn + (1− αn)J
A
rnxn + (1− αn)(1− βn)(J

B
snxn − JA

rnxn).(3.9)

Noting the facts that αnj → α̂ < 1, (b) and xnj+1 ⇀ z, we immediately get from
(3.9) that

(3.10) JA
rnj

xnj ⇀ z.

By virtue of this and (3.8), we can apply Lemma 2.3 to obtain z ∈ F (JA
1 ) = A−1(0).

By (b), we also have

(3.11) JB
snj

xnj ⇀ z.

Note that (3.8) also holds for B, that is,

(3.12) ∥(I − JB
1 )JB

snj
xnj∥ ≤ 1

snj

∥xnj − JB
snxnj∥ → 0 (as snj → ∞).
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By (3.11)and (3.12), we find that Lemma 2.3 is applicable to (I − JB
1 ), hence,

z ∈ F (JB
1 ) = B−1(0), and we have again verified that z ∈ K.

In any case we have verified (W2).
The conditions (W3) and (W4) are satisfied with Tn defined by

(3.13) Tn = αnI + (1− αn)[βnJ
A
rn + (1− βn)J

B
sn ].

We obviously have that Tn is nonexpansive and xn+1 = Tnxn. Moreover,

F (Tn) = F (βnJ
A
rn + (1− βn)J

B
sn) = F (JA

rn) ∩ F (JB
sn) = A−1(0) ∩B−1(0) = K.

Therefore, by Lemma 3.2, we conclude that the sequence {xn} converges weakly to
a point in K. □

Remark 3.4. In the proof of Theorem 3.3, we find that in the case where both
rn → ∞ and sn → ∞, the sequence {αn} is not required to be bounded below
away from zero since we still have (3.10) from (3.9) (and hence (3.11)) as long as
αnj → α̂ < 1. We therefore have the following result.

Theorem 3.5. Let E be a uniformly convex Banach space with Fréchet differen-
tiable norm and let A,B be m-accretive operators such that A−1(0) ∩ B−1(0) ̸= ∅.
Let {xn} be generated by the algorithm (3.3), where the sequences {αn}, {βn}, {rn}
and {sn} satisfy the conditions

(i) 0 ≤ αn ≤ α < 1;
(ii) 0 < β ≤ βn ≤ β < 1;
(iii) limn→∞ rn = limn→∞ sn = ∞.

Then {xn} converges weakly to a point z ∈ A−1(0) ∩B−1(0).

Taking αn = 0 for all n, we get the result below.

Corollary 3.6. Let E be a uniformly convex Banach space with Fréchet differen-
tiable norm and let A,B be m-accretive operators such that A−1(0) ∩ B−1(0) ̸= ∅.
Generate a sequence {xn} by the algorithm:

xn+1 = βnJ
A
rnxn + (1− βn)J

B
rnxn, n ≥ 0,

where we assume that {βn} and {rn} satisfy the conditions (ii) and (iii) in Theo-
rem 3.5. Then {xn} converges weakly to a point z ∈ A−1(0) ∩B−1(0).

If we take B ≡ 0 in Corollary 3.6, then we get the following

Corollary 3.7. Let E be a uniformly convex Banach space with Fréchet differen-
tiable norm and let A be an m-accretive operator such that A−1(0) ̸= ∅. Generate
a sequence {xn} by the algorithm:

xn+1 = (1− βn)xn + βnJ
A
rnxn, n ≥ 0,

where we assume that {βn} satisfy the condition (ii) in Theorem 3.5, and
limn→∞ rn = ∞. Then {xn} converges weakly to a point z ∈ A−1(0).
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