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It has been extensively investigated in the literature using the projected Landweber
iterative method [20, 24]. Comparatively, the general SFP has received much less
attention so far, due to the complexity arising from the set Q. Therefore, whether
various versions of the projected Landweber iterative method [24] can be extended
to solve the SFP remains an interesting hot topic.

The original algorithm given in [11] involves the computation of the inverse A−1

(assuming the existence of the inverse of A), and thus, did not become very popular.
A seemingly more popular algorithm that solves the SFP is the CQ algorithm of
Byrne [2,3] which is found to be a gradient-projection method in convex minimiza-
tion. It is also a special case of the proximal forward-backward splitting method [17].
The CQ algorithm involves only the computation of the projections PC and PQ onto
the sets C and Q, respectively, and is therefore implementable in the case where
PC and PQ have closed-form expressions; for example, C and Q are closed balls or
half-spaces. However, it remains a challenge how to implement the CQ algorithm
in the case where the projections PC and/or PQ fail to have closed-form expres-
sions, though theoretically we can prove the (weak) convergence of the algorithm.
Recently, Xu [37] applied Mann’s algorithm to the SFP and purposed an averaged
CQ algorithm which was proved to be weakly convergent to a solution of the SFP.
He also established a strong convergence result, showing that the minimum-norm
solution can be obtained.

Throughout this paper, assume that the SFP is consistent, that is, the solution
set Γ of the SFP is nonempty. Set

∇f = A∗(I − PQ)A,

where A∗ is the adjoint of A.

Proposition 1.1 (see [37]). For any x∗ in H1, the following statements are equiv-
alent.

(i) x∗ solves the SFP.
(ii) x∗ solves, for any λ > 0, the fixed point equation

PC(I − λ∇f)x∗ = x∗.

(iii) x∗ solves the variational inequality problem (VIP) of finding x∗ in C such that

(1.1) ⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

It follows from Proposition 1.1 that

Γ = Fix(PC(I − λ∇f)) = VI(C,∇f)

for all λ > 0, where Fix(PC(I−λ∇f)) and VI(C,∇f) denote the set of fixed points
of PC(I − λ∇f) and the solution set of VIP (1.1), respectively.

Very recently, Ceng, Ansari and Yao [4] studied relaxed extragradient methods
for finding a common element of the solution set Γ of the SFP and the set Fix(S)
of fixed points of a nonexpansive mapping S. Combining Mann’s iterative method
and Korpelevich’s extragradient method [23,27,28,33], they proposed two iterative
algorithms for finding an element of Fix(S) ∩ Γ .

Assuming all (real) Hilbert spaces are of arbitrary dimension in this paper. When

C =
∩N

i=1 Fix(Si) is the set of common fixed points of nonexpansive mappings, we
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propose in Theorem 3.3 a hybrid steepest-descent extragradient algorithm ensuring
the norm convergence to the minimum-norm solution of the SFP. On the other hand,
if S is a strictly pseudo-contractive mapping, combining Mann’s iterative method,
Korpelevich’s extragradient method and the hybrid steepest-descent method [44],
we propose in Theorem 3.6 an algorithm ensuring the weak convergence to an
element of Fix(S) ∩ Γ .

Results in this paper are new and novel. Our results supplement, improve, extend
and develop corresponding results of Xu [37, Theorems 5.5 and 5.7], and Ceng,
Ansari and Yao [4, Theorems 3.1 and 3.2]. Since the iterative scheme provided in
Theorem 3.3 can solve two problems simultaneously: the SFP and the problem of
finding a common fixed point of finitely many nonexpansive mappings, it should
be more useful and more applicable than other established methods in literature.
See Remark 3.8 for more details. We also remark that the recent extensive study of
algorithms for split feasibility problems provides us a strong motivation of continuing
investigation in this manuscript. See, e.g., [5,6,8,9,18,19,30,34,35,40,42,43,47,48].

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. We write
xn → x to indicate that a sequence {xn} converges strongly to x, and xn ⇀ x
to indicate that {xn} converges weakly to x in H, respectively. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) := {x : xni ⇀ x for some subsequence {xni} of {xn}}.
Let K be a nonempty closed convex subset of H. Now we present some known

definitions and results which will be used in the sequel. Recall that the metric (or
nearest point) projection from H onto K is the mapping PK : H → K which assigns
to each point x in H the unique point PKx in K satisfying the property

∥x− PKx∥ = inf
y∈K

∥x− y∥ =: d(x,K).

Proposition 2.1 ([21]). For given x in H and z in K, we have

(i) z = PKx ⇔ ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ K;
(ii) z = PKx ⇔ ∥x− z∥2 ≤ ∥x− y∥2 − ∥y − z∥2, ∀y ∈ K;
(iii) ⟨x− y, PKx− PKy⟩ ≥ ∥PKx− PKy∥2, ∀y ∈ H.

Let C be a nonempty subset of H in the following.

Definition 2.2. A mapping T : C → H is said to be:

(a) nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C;

(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2, ∀x, y ∈ C.

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S),

where S : C → H is nonexpansive.
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Definition 2.3. Let T : C → H be a mapping.

(a) T is said to be monotone if

⟨x− y, Tx− Ty⟩ ≥ 0, ∀x, y ∈ C.

(b) T is said to be β-strongly monotone for some β > 0 if

⟨x− y, Tx− Ty⟩ ≥ β∥x− y∥2, ∀x, y ∈ C.

(c) T is said to be ν-inverse strongly monotone for some ν > 0 if

⟨x− y, Tx− Ty⟩ ≥ ν∥Tx− Ty∥2, ∀x, y ∈ C.

It it easy to see that if T is nonexpansive, then I − T is monotone. It is also
easy to see that a projection PK is firmly nonexpansive, monotone, and 1-inverse
strongly monotone. Inverse strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields,
for instance, in traffic assignment problems; see, e.g., [1, 22].

Definition 2.4. A mapping T : C → H is said to be an averaged mapping if it can
be written as the average of the identity I and a nonexpansive mapping, that is,

T ≡ (1− α)I + αS,

where α ∈ (0, 1) and S : C → H is nonexpansive. We say that T is α-averaged in
this case. Firmly nonexpansive mappings (in particular, projections) are 1

2 -averaged
maps.

Proposition 2.5 ([3]). Let T : C → H be a mapping.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -inverse strongly

monotone.
(ii) T is averaged if and only if the complement I − T is ν-inverse strongly mono-

tone for some ν > 1/2. Indeed, T is α-averaged if and only if I − T is
1
2α -inverse strongly monotone for α in (0, 1).

(iii) If T is ν-inverse strongly monotone, then γT is ν
γ -inverse strongly monotone

for any γ > 0.

Proposition 2.6 ([3, 16]). Let S, T, V : C → H be mappings.

(i) If T = (1 − α)S + αV for some α in (0, 1) and if S is averaged and V is
nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement I − T is firmly nonex-
pansive.

(iii) If T = (1−α)S+αV for some α in (0, 1) and if S is firmly nonexpansive and
V is nonexpansive, then T is averaged.

(iv) The composition of finitely many averaged mappings is averaged. In particular,
if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the
composition T1 ◦ T2 is α-averaged, where α = α1 + α2 − α1α2.

(v) If the mappings {Ti}Ni=1 are averaged and have a common fixed point, then

N∩
i=1

Fix(Ti) = Fix(T1 · · · TN ).
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The following result is useful when we verify the weak convergence of a sequence.
Its proof is an immediate consequence of Opial’s property [29] of a Hilbert space;
see Xu [38, Lemma 4.1].

Proposition 2.7. Let K be a nonempty closed convex subset of a real Hilbert space
H. Let {xn} be a bounded sequence which satisfies the following properties:

(i) every weak limit point of {xn} lies in K;
(ii) limn→∞ ∥xn − x∥ exists for every x in K.

Then {xn} converges weakly to a point in K.

Let C be a subset of a normed space, and let k be a constant in [0, 1). A mapping
S : C → C is called k-strictly pseudocontractive if

∥Sx− Sy∥2 ≤ ∥x− y∥2 + k∥(I − S)x− (I − S)y∥2, ∀x, y ∈ C;

see [26]. In case C is a subset of a real Hilbert space, S : C → C is k-strictly
pseudo-contractive if and only if there holds the following inequality:

⟨Sx− Sy, x− y⟩ ≤ ∥x− y∥2 − 1− k

2
∥(I − S)x− (I − S)y∥2, ∀x, y ∈ C. (2.1)

This immediately implies that if S is a k-strictly pseudo-contractive mapping, then
I − S is 1−k

2 -inverse strongly monotone; for further detail, we refer to [26] and the
references therein. Nonexpansive mappings are strict pseudo-contractions.

The so-called demiclosedness principle for strict pseudo-contractive mappings in
the following lemma will often be used.

Lemma 2.8 ( [26, Proposition 2.1]). Let C be a nonempty closed convex subset of a
real Hilbert space H, and let S : C → C be a k-strictly pseudo-contractive mapping.

(i) S satisfies the Lipschitz condition

∥Sx− Sy∥ ≤ 1 + k

1− k
∥x− y∥, ∀x, y ∈ C.

(ii) The mapping I −S is demiclosed at 0, that is, if {xn} is a sequence in C such
that xn ⇀ x̃ and (I − S)xn → 0, then (I − S)x̃ = 0.

(iii) The fixed point set Fix(S) of S is closed and convex so that the projection
PFix(S) is well defined.

Lemma 2.9 ([21]). Let H be a real Hilbert space. Then, for all x, y in H and λ in
R,

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Lemma 2.10 ([41]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S : C → C be a k-strictly pseudo-contractive mapping. Let γ and δ be
two nonnegative real numbers such that (γ + δ)k ≤ γ. Then

∥γ(x− y) + δ(Sx− Sy)∥ ≤ (γ + δ)∥x− y∥, ∀x, y ∈ C.

The following elementary result is quite well-known.

Lemma 2.11 ( [39, Lemma 2.1]). Let {γn}, {δn} be sequences of real numbers such
that



1970 L.-C. CENG, N.-C. WONG, AND J.-C. YAO

(i) {γn} ⊂ [0, 1] and
∑∞

n=0 γn = +∞, or equivalently,
∞∏
n=0

(1− γn) = lim
n→∞

n∏
k=0

(1− γk) = 0;

(ii) lim supn→∞ δn ≤ 0, or

(ii)′
∑∞

n=0 γnδn is convergent.

Let {an} be a sequence of nonnegative numbers satisfying the condition

an+1 ≤ (1− γn)an + γnδn, ∀n ≥ 0.

Then, limn→∞ an = 0.

3. Hybrid extragradient methods

Let C be a nonempty closed convex subset of a real Hilbert space H. Let F :
C → H be κ-Lipschitz continuous and η-strongly monotone on C for some constants
κ, η > 0; that is,

∥Fx− Fy∥ ≤ κ∥x− y∥ and ⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2, ∀x, y ∈ C.

In this case, 0 < η < κ. Let σ be a number in (0, 1] and let µ > 0. Associating with
a nonexpansive mapping T : C → C, we define the mapping T σ : C → H by

T σx := Tx− σµF (Tx), ∀x ∈ C.

Lemma 3.1 (see [39, Lemma 3.1]). T σ is a contraction provided 0 < µ < 2η
κ2 . More

precisely,
∥T σx− T σy∥ ≤ (1− στ)∥x− y∥, ∀x, y ∈ C,

where τ = 1 −
√

1− µ(2η − µκ2) ∈ (0, 1). In particular, if T = I the identity
mapping, then

∥(I − σµF )x− (I − σµF )y∥ ≤ (1− στ)∥x− y∥, ∀x, y ∈ C.

We remark that, whenever 0 < µ < 2η
κ2 , the relation 0 < η < κ obviously implies

0 ≤
√

(1− µη)2 <
√

1− µ(2η − µκ2) <

√
1− 2µη +

2η

κ2
µκ2 = 1,

which hence leads to τ ∈ (0, 1].
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and

H2 of arbitrary dimensions, respectively. Let A : H1 → H2 be a bounded linear
operator. Throughout the paper, we assume that the SFP:

x∗ ∈ C and Ax∗ ∈ Q,

is consistent; that is, the solution set Γ of the SFP is nonempty (and closed and
convex).

Let f, fα : H1 → R be the continuously differentiable functions defined by

f(x) :=
1

2
∥Ax− PQAx∥2,

and

fα(x) :=
1

2
∥Ax− PQAx∥2 + 1

2
α∥x∥2, ∀α > 0.
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As the minimization problem
min
x∈C

f(x)

is ill-posed, Xu [37] considered the following Tikhonov’s regularization problem:

(3.1) min
x∈C

fα(x),

where α > 0 is the regularization parameter. The regularized minimization (3.1)
has a unique solution xα.

Proposition 3.2 ([37]). If the SFP is consistent, then xα converges strongly to the
minimum-norm solution xmin of the SFP as α → 0+; namely, xmin in Γ satisfies

∥xmin∥ = min{∥x∗∥ : x∗ ∈ Γ}.

The point xmin can be obtained in two steps. First, observing that the gradient

∇fα(x) = ∇f(x) + αI = A∗(I − PQ)A+ αI

is (α + ∥A∥2)-Lipschitz continuous and α-strongly monotone, we know that the
mapping PC(I − σλ∇fα) is a contraction with the (Lipschitz) coefficient

1− στ ≤ 1− σ(1−
√
1− ϵαλ) ≤ 1− 1

2
ϵασλ.

Here, 0 < σ ≤ 1, τ = 1−
√

1− λ(2α− λ(∥A∥2 + α)2) and

(3.2) 0 < λ ≤ (2− ϵ)α

(∥A∥2 + α)2
<

2α

(∥A∥2 + α)2
,

for some ϵ in (0, 1]. Indeed, putting F = ∇fα and T = I in Lemma 3.1, we have

∥PC(I − σλ∇fα)x− PC(I − σλ∇fα)y∥
≤∥(I − σλ∇fα)x− (I − σλ∇fα)y∥

≤
[
1− σ(1−

√
1− λ(2α− λ(∥A∥2 + α)2))

]
∥x− y∥

≤
[
1− σ

(
1−

√
1− 2αλ+ λ · (2− ϵ)α

(∥A∥2 + α)2
(∥A∥2 + α)2)

)]
∥x− y∥

=[1− σ(1−
√
1− ϵαλ)]∥x− y∥

≤
[
1− σ

(
1−

(
1− 1

2
ϵαλ

))]
∥x− y∥

=
(
1− 1

2
ϵασλ

)
∥x− y∥.

It is worth noting that xα is a fixed point of the mapping PC(I −σλ∇fα) for any σ
in (0, 1] and λ > 0 satisfying (3.2), and can be obtained through the limit as n → ∞
of the sequence of Picard iterates

xαn+1 = PC(I − σλ∇fα)x
α
n.

Second, letting α → 0 yields xα → xmin in norm.
It is interesting to know whether these two steps can be combined to get xmin in

a hybrid steepest-descent extragradient algorithm. The following result shows that
we can achieve the goals for suitable choices of σ, λ and α.
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Theorem 3.3. Let K be a nonempty closed convex subset of H1. Assume that
{Si : 1 ≤ i ≤ N} be a pool of N nonexpansive mappings from K into K such that

C =

N∩
i=1

Fix(Si) ̸= ∅.

Suppose the non-negative sequences {αn}, {βn}, {γn}, {δn}, {σn} and {λn}, and the
constant ϵ in (0, 1] satisfy the following conditions.

(i) 0 < σn ≤ 1 and 0 < λn ≤ (2−ϵ)αn

(∥A∥2+αn)2
for all large enough n.

(ii) αn → 0 and λn → 0.

(iii)
∑∞

n=0 α
2
nσnλnδn = +∞.

(iv) |σnλn−σn−1λn−1|+σn−1λn−1|αn−αn−1|
α3
nσ

2
nλ

2
nδn

→ 0.

(v) {βn}, {γn}, {δn} ⊂ [0, 1] and βn + γn + δn = 1 for all n ≥ 0.

(vi) 2(2−ϵ)δn
αn+∥A∥2 ≤ ϵγnσnλn for all large enough n.

Define a sequence {xn} through the following Mann type steepest-descent extra-
gradient algorithm:

(3.3)


x1 = x ∈ K, chosen arbitrarily,
yn = PC(S[n]xn − σnλn∇fαn(S[n]xn)),
xn+1 = βnxn + γnyn + δnPC(S[n]xn − σnλn∇fαn(S[n]yn)), ∀n ≥ 1,

Here, S[n] = SnmodN and ∇fαn = αnI +A∗(I − PQ)A for each n ≥ 1.
Then both the sequences {xn} and {yn} converge in norm to the minimum-norm

solution xmin of the SFP.

Proof. For each n ≥ 0, let zn be the unique fixed point of the contraction

PC(I − σnλn∇fαn) : C → C.

Then, zn → xmin in norm. We shall prove that

∥xn+1 − zn∥ → 0.

Define

Tn := PC(I − σnλn∇fαn)S[n].

From zn ∈ C =
∩N

i=1 Fix(Si) it follows that

Tnzn = PC(S[n]zn − σnλn∇fαn(S[n]zn)) = PC(zn − σnλn∇fαn(zn)) = zn.

Noting that PC(I − σnλn∇fαn) has a contraction ratio 1− 1
2ϵαnσnλn, we have

∥yn − zn∥ = ∥Tnxn − Tnzn∥
= ∥PC(I − σnλn∇fαn)S[n]xn − PC(I − σnλn∇fαn)S[n]zn∥

≤
(
1− 1

2
ϵαnσnλn

)
∥S[n]xn − S[n]zn∥(3.4)
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≤
(
1− 1

2
ϵαnσnλn

)
∥xn − zn∥.

We now estimate

∥zn − zn−1∥ = ∥Tnzn − Tn−1zn−1∥
≤ ∥Tnzn − Tnzn−1∥+ ∥Tnzn−1 − Tn−1zn−1∥

≤
(
1− 1

2
ϵαnσnλn

)
∥zn − zn−1∥+ ∥Tnzn−1 − Tn−1zn−1∥.

This implies that

(3.5) ∥zn − zn−1∥ ≤ 2

ϵαnσnλn
∥Tnzn−1 − Tn−1zn−1∥.

However, since ∇f is Lipschitz continuous and {zn} is bounded, we have

∥Tnzn−1 − Tn−1zn−1∥
=∥PC(I − σnλn∇fαn)S[n]zn−1 − PC(I − σn−1λn−1∇fαn−1)S[n−1]zn−1∥
≤∥(I − σnλn∇fαn)S[n]zn−1 − (I − σn−1λn−1∇fαn−1)S[n−1]zn−1∥
=∥(I − σnλn∇fαn)zn−1 − (I − σn−1λn−1∇fαn−1)zn−1∥
≤∥σnλn∇fαn(zn−1)− σn−1λn−1∇fαn−1(zn−1)∥
=∥(σnλn − σn−1λn−1)∇fαn(zn−1)(3.6)

+ σn−1λn−1(∇fαn(zn−1)−∇fαn−1(zn−1))∥
≤|σnλn − σn−1λn−1|∥∇f(zn−1) + αnzn−1∥+ σn−1λn−1|αn − αn−1|∥zn−1∥
≤(|σnλn − σn−1λn−1|+ σn−1λn−1|αn − αn−1|)M,

where M = supn≥1max{∥∇f(zn−1)+αnzn−1∥, ∥zn−1∥} < +∞. Utilizing conditions
(i), (vi), and inequalities (3.3), (3.4), (3.5), we obtain for large n that

∥xn+1 − zn∥
=∥βn(xn − zn) + γn(yn − zn) + δn[PC(S[n]xn − σnλn∇fαn(S[n]yn))− zn]∥
≤βn∥xn − zn∥+ γn∥yn − zn∥

+ δn∥PC(S[n]xn − σnλn∇fαn(S[n]yn))− PC(S[n]zn − σnλn∇fαn(S[n]zn))∥
≤βn∥xn − zn∥+ γn∥yn − zn∥

+ δn∥(S[n]xn − σnλn∇fαn(S[n]yn))− (S[n]zn − σnλn∇fαn(S[n]zn))∥
≤βn∥xn − zn∥+ γn∥yn − zn∥

+ δn[∥S[n]xn − S[n]zn∥+ σnλn∥∇fαn(S[n]yn)−∇fαn(S[n]zn)∥]
≤βn∥xn − zn∥+ γn∥yn − zn∥

+ δn[∥xn − zn∥+ σnλn(αn + ∥A∥2)∥S[n]yn − S[n]zn∥]
≤βn∥xn − zn∥+ γn∥yn − zn∥

+ δn[∥xn − zn∥+ σnλn(αn + ∥A∥2)∥yn − zn∥](3.7)

=(βn + δn)∥xn − zn∥+ (γn + δnσnλn(αn + ∥A∥2))∥yn − zn∥

≤(1− γn)∥xn − zn∥+
(
γn + δn · (2− ϵ)αn

αn + ∥A∥2
)
∥yn − zn∥
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≤(1− γn)∥xn − zn∥+
(
γn + δn · (2− ϵ)αn

αn + ∥A∥2
)(

1− 1

2
ϵαnσnλn

)
∥xn − zn∥

=
[
1− γn + γn +

(2− ϵ)αnδn
αn + ∥A∥2

− 1

2
ϵαnγnσnλn − (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn∥

=
[
1 + αn

( (2− ϵ)δn
αn + ∥A∥2

− 1

2
ϵγnσnλn

)
− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn∥

≤
[
1− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn∥

≤
[
1− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn−1∥+ ∥zn − zn−1∥

≤
[
1− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn−1∥+

2

ϵαnσnλn
∥Tnzn−1 − Tn−1zn−1∥

≤
[
1− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn−1∥

+
2M(|σnλn − σn−1λn−1|+ σn−1λn−1|αn − αn−1|)

ϵαnσnλn

=
[
1− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn−1∥+

(2− ϵ)ϵα2
nσnλnδn

2(αn + ∥A∥2)

× 4M(αn + ∥A∥2)(|σnλn − σn−1λn−1|+ σn−1λn−1|αn − αn−1|)
(2− ϵ)ϵ2α3

nσ
2
nλ

2
nδn

=
[
1− (2− ϵ)ϵα2

nσnλnδn
2(αn + ∥A∥2)

]
∥xn − zn−1∥+

(2− ϵ)ϵα2
nσnλnδn

2(αn + ∥A∥2)
· µn,

where

µn =
4M(αn + ∥A∥2)(|σnλn − σn−1λn−1|+ σn−1λn−1|αn − αn−1|)

(2− ϵ)ϵ2α3
nσ

2
nλ

2
nδn

→ 0

due to conditions (ii) and (iv). Applying Lemma 2.11 to (3.6), we conclude ∥xn+1−
zn∥ → 0. Hence, xn → xmin in norm. Taking into consideration the strong conver-
gence of both {xn} and {zn} to xmin, we deduce from (3.4) that

∥yn − zn∥ ≤ ∥xn − zn∥ → 0.

Therefore, yn → xmin in norm. □

Corollary 3.4. Let C be a nonempty closed convex subset of H1. Suppose the non-
negative sequences {αn}, {βn}, {γn}, {δn} and {λn} satisfy the following conditions.

(i) 0 < λn ≤ αn
(∥A∥2+αn)2

for all large enough n.

(ii) αn → 0 and λn → 0.

(iii)
∑∞

n=1 α
2
nλnδn = +∞.

(iv) |λn+1−λn|+λn|αn+1−αn|
α3
n+1λ

2
n+1δn+1

→ 0.
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(v) {βn}, {γn}, {δn} ⊂ [0, 1] and βn + γn + δn = 1 for all n ≥ 1.

(vi) 2δn
αn+∥A∥2 ≤ γnλn for all large enough n.

Define a sequence {xn} through the following Mann type extragradient algorithm: x1 = x ∈ C, chosen arbitrarily,
yn = PC(xn − λn∇fαn(xn)),
xn+1 = βnxn + γnyn + δnPC(xn − λn∇fαn(yn)), ∀n ≥ 1.

Here, ∇fαn = αnI+A∗(I−PQ)A. Then, both the sequences {xn} and {yn} converge
in norm to the minimum-norm solution of the SFP.

Proof. In Theorem 3.3, putting K = C, Si = I the identity mapping for each
i = 1, 2, . . . , N , and σn = ϵ = 1 for all n ≥ 0, we obtain that

∩N
i=1 Fix(Si) = C ̸= ∅

and 
x1 = x ∈ C, chosen arbitrarily,
yn = PC(S[n]xn − σnλn∇fαn(S[n]xn)) = PC(xn − λn∇fαn(xn)),
xn+1 = βnxn + γnyn + δnPC(S[n]xn − σnλn∇fαn(S[n]yn))
= βnxn + γnyn + δnPC(xn − λn∇fαn(yn)), ∀n ≥ 1.

In this case, the assumptions of Theorem 3.3 are all satisfied. Therefore, Theorem
3.3 applies. □

Remark 3.5. (a) Theorem 3.3 includes [4, Theorem 3.1] as a special case.

(b) In Theorem 3.3, put σn = ϵ = 1, αn = n−δ, λn = n−σ and δn = n−θ,
where δ = 1

10 , σ = 1
5 and θ = 1

4 . It is easy to see that conditions (i)-(iv)
in Theorem 3.3 are satisfied. If lim infn→∞ γn > 0, condition (vi) is also
satisfied.

(c) It is worth emphasizing that the Mann type steepest-descent extragradient
algorithm employed in Theorem 3.3 is essentially the predictor-corrector al-
gorithm. Indeed, the first iterative step yn = PC(S[n]xn−σnλn∇fαn(S[n]xn))
is a predictor, and the second iterative step xn+1 = βnxn + γnyn+
δnPC(S[n]xn − σnλn∇fαn(S[n]yn)) is a corrector. Note also that we ex-
tend the iterative algorithm in [37, Theorem 5.5] to develop the Mann type
steepest-descent extragradient algorithm in Theorem 3.3.

Theorem 3.6. Let S : C → C be a k-strictly pseudocontractive mapping such
that Fix(S) ∩ Γ ̸= ∅. Suppose the sequences of parameters {αn} in (0,∞) and
{βn}, {σn}, {γn}, {δn} in [0, 1] satisfy the following conditions.

(i)
∑∞

n=0 αn < +∞.

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

(iii) σn + γn + δn = 1 and (γn + δn)k ≤ γn for all n ≥ 0.

(iv) 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1 and lim infn→∞ δn > 0.
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Assume that 0 < λ < 2
∥A∥2 , and let {xn} and {yn} be the sequences in C generated

by the following Mann type hybrid extragradient-like algorithm:
(3.8) x0 = x ∈ C, chosen arbitrarily,

yn = (1− βn)xn + βnPC(xn − λ∇fαn(xn)),
xn+1 = σnxn + γnPC(yn − λ∇fαn(yn)) + δnSPC(yn − λ∇fαn(yn)), ∀n ≥ 0.

Then, both the sequences {xn} and {yn} converge weakly to an element z in Fix(S)∩
Γ .

Proof. First, we observe that PC(I−µ∇fα) is ζ-averaged for each µ in (0, 2
2α+∥A∥2 ),

where

ζ =
2 + µ(2α+ ∥A∥2)

4
∈ (0, 1).

See, e.g., [7] and from which it follows that PC(I − λ∇fαn) is nonexpansive for all
λ in (0, 2

∥A∥2 ) and for all sufficiently large n ≥ 0.

We divide the remainder of the proof into several steps.
Step 1. {xn} is bounded.
Indeed, take a fixed point p from Fix(S) ∩ Γ arbitrarily. We get Sp = p and

PC(I − λ∇f)p = p for λ in (0, 2
∥A∥2 ). Hence,

∥yn − p∥ = ∥(1− βn)(xn − p) + βn[PC(I − λ∇fαn)xn − p]∥
≤ (1− βn)∥xn − p∥+ βn∥PC(I − λ∇fαn)xn − p∥
= (1− βn)∥xn − p∥+ βn∥PC(I − λ∇fαn)xn − PC(I − λ∇f)p∥
≤ (1− βn)∥xn − p∥+ βn[∥PC(I − λ∇fαn)xn − PC(I − λ∇fαn)p∥
+ ∥PC(I − λ∇fαn)p− PC(I − λ∇f)p∥](3.9)

≤ (1− βn)∥xn − p∥+ βn[∥xn − p∥+ ∥PC(I − λ∇fαn)p− PC(I − λ∇f)p∥]
≤ (1− βn)∥xn − p∥+ βn[∥xn − p∥+ λαn∥p∥]
= ∥xn − p∥+ λαnβn∥p∥.

Since (γn + δn)k ≤ γn for all n ≥ 0, utilizing Lemma 2.10 we derive from (3.9) that

∥xn+1 − p∥
=∥σn(xn − p) + γn(PC(I − λ∇fαn)yn − p) + δn(SPC(I − λ∇fαn)yn − p)∥
≤σn∥xn − p∥+ ∥γn(PC(I − λ∇fαn)yn − p) + δn(SPC(I − λ∇fαn)yn − Sp)∥
≤σn∥xn − p∥+ (γn + δn)∥PC(I − λ∇fαn)yn − p∥
≤σn∥xn − p∥+ (γn + δn)[∥PC(I − λ∇fαn)yn − PC(I − λ∇fαn)p∥

+ ∥PC(I − λ∇fαn)p− PC(I − λ∇f)p∥]
≤σn∥xn − p∥+ (γn + δn)[∥yn − p∥+ ∥(I − λ∇fαn)p− (I − λ∇f)p∥]
≤σn∥xn − p∥+ (γn + δn)[∥yn − p∥+ λαn∥p∥]
≤σn∥xn − p∥+ (γn + δn)[∥xn − p∥+ λαnβn∥p∥+ λαn∥p∥]
≤σn∥xn − p∥+ (γn + δn)[∥xn − p∥+ 2λαn∥p∥]
≤∥xn − p∥+ 2λαn∥p∥.
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Since
∑∞

n=0 αn < +∞, we conclude that

(3.10) lim
n→∞

∥xn − p∥ exists for each p in Fix(S) ∩ Γ .

Therefore, {xn} is bounded and so are {yn}, {∇f(xn)} and {∇f(yn)}.
Step 2. Let un = PC(I − λ∇fαn)xn and vn = PC(I − λ∇fαn)yn. We have

lim
n→∞

∥un − xn∥ = lim
n→∞

∥xn − yn∥ = lim
n→∞

∥vn − Svn∥ = lim
n→∞

∥xn+1 − xn∥ = 0.

Indeed, by Lemma 2.9 we have

∥yn − p∥2 = ∥(1− βn)(xn − p) + βn(un − p)∥2

= (1− βn)∥xn − p∥2 + βn∥un − p∥2 − βn(1− βn)∥xn − un∥2

≤ (1− βn)∥xn − p∥2 + βn[∥xn − p∥+ λαn∥p∥]2 − βn(1− βn)∥xn − un∥2

= (1− βn)∥xn − p∥2 + βn∥xn − p∥2 + αnβn(2λ∥p∥∥xn − p∥+ αnλ
2∥p∥2)

− βn(1− βn)∥xn − un∥2

≤ (1− βn)∥xn − p∥2 + βn∥xn − p∥2 + αnM1 − βn(1− βn)∥xn − un∥2

= ∥xn − p∥2 + αnM1 − βn(1− βn)∥xn − un∥2.

Here, M1 = supn≥0{βn(2λ∥p∥∥xn − p∥+ αnλ
2∥p∥2)} < +∞.

Note that σn + γn + δn = 1 and hence

xn+1 − xn = σnxn + γnvn + δnSvn − xn = γn(vn − xn) + δn(Svn − xn).

Since (γn+ δn)k ≤ γn for all n ≥ 0, utilizing Lemmas 2.9 and 2.10 we get from (3.9)
that

∥xn+1 − p∥2

=∥σn(xn − p) + γn(vn − p) + δn(Svn − p)∥2

=∥σn(xn − p) + (γn + δn)
1

γn + δn
(γn(vn − p) + δn(Svn − p))∥2

=σn∥xn − p∥2 + (γn + δn)∥
1

γn + δn
(γn(vn − p) + δn(Svn − p))∥2

− σn(γn + δn)∥
1

γn + δn
(γn(vn − xn) + δn(Svn − xn))∥2

≤σn∥xn − p∥2 + (γn + δn)∥vn − p∥2 − σn(γn + δn)∥
1

γn + δn
(xn+1 − xn)∥2

=σn∥xn − p∥2 + (γn + δn)∥vn − p∥2 − σn
1− σn

∥xn+1 − xn∥2

≤σn∥xn − p∥2 + (1− σn)[∥yn − p∥+ λαn∥p∥]2 −
σn

1− σn
∥xn+1 − xn∥2

=σn∥xn − p∥2 + (1− σn)∥yn − p∥2 + αn(1− σn)(2λ∥p∥∥yn − p∥+ αnλ
2∥p∥2)

− σn
1− σn

∥xn+1 − xn∥2

≤σn∥xn − p∥2 + (1− σn)∥yn − p∥2 + αnM2 −
σn

1− σn
∥xn+1 − xn∥2

≤σn∥xn − p∥2 + (1− σn)[∥xn − p∥2 + αnM1 − βn(1− βn)∥xn − un∥2] + αnM2



1978 L.-C. CENG, N.-C. WONG, AND J.-C. YAO

− σn
1− σn

∥xn+1 − xn∥2

≤∥xn − p∥2 + αn(M1 +M2)− (1− σn)βn(1− βn)∥xn − un∥2

− σn
1− σn

∥xn+1 − xn∥2.

Here, M2 = supn≥0{(1− σn)(2λ∥p∥∥yn − p∥+ αnλ
2∥p∥2)} < +∞. It follows that

(1− σn)βn(1− βn)∥xn − un∥2 +
σn

1− σn
∥xn+1 − xn∥2

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn(M1 +M2).

Since limn→∞ αn = 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, and 0 <
lim infn→∞ σn ≤ lim supn→∞ σn < 1, we deduce from the existence of limn→∞ ∥xn−
p∥ that

lim
n→∞

∥xn − un∥ = lim
n→∞

∥xn+1 − xn∥ = 0.

Utilizing (3.8) we get

lim
n→∞

∥yn − xn∥ = lim
n→∞

βn∥un − xn∥ = 0.

Taking into account the nonexpansiveness of PC(I − λ∇fαn), we have

∥vn − xn∥ ≤ ∥vn − un∥+ ∥un − xn∥
= ∥PC(I − λ∇fαn)yn − PC(I − λ∇fαn)xn∥+ ∥un − xn∥
≤ ∥yn − xn∥+ ∥un − xn∥.

Hence

∥δn(Svn − xn)∥ ≤ ∥xn+1 − xn∥+ γn∥vn − xn∥
≤ ∥xn+1 − xn∥+ ∥vn − xn∥
≤ ∥xn+1 − xn∥+ ∥yn − xn∥+ ∥un − xn∥.

Since ∥xn+1 − xn∥ → 0, ∥yn − xn∥ → 0, ∥un − xn∥ → 0 and lim infn→∞ δn > 0, we
immediately obtain that

lim
n→∞

∥vn − xn∥ = lim
n→∞

∥Svn − xn∥ = 0.

This implies

lim
n→∞

∥Svn − vn∥ = 0.

Step 3. ωw(xn) ⊂ Fix(S) ∩ Γ .
Suppose that x̂ ∈ ωw(xn) and {xnj} is a subsequence of {xn} such that xnj ⇀ x̂.

Set T = PC(I−λ∇f). Then T is nonexpansive for each λ in (0, 2
∥A∥2 ). We have seen

that∇f = A∗(I−PQ)A is 1
∥A∥2 -inverse strongly monotone and λ∇f = λA∗(I−PQ)A

is 1
λ∥A∥2 -inverse strongly monotone. Hence, by Proposition 2.5(ii) the complement

I − λ∇f is λ∥A∥2
2 -averaged for each λ in (0, 2

∥A∥2 ). Therefore, noting that PC is
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1
2 -averaged and applying Proposition 2.6(iv), we know that T = PC(I − λ∇f) is

α-averaged for each λ in (0, 2
∥A∥2 ), with

α =
1

2
+

λ∥A∥2

2
− 1

2
· λ∥A∥

2

2
=

2 + λ∥A∥2

4
∈ (0, 1).

Consequently, T is nonexpansive.
Now observe that

∥xn − Txn∥ ≤ ∥xn − un∥+ ∥un − Txn∥
= ∥xn − un∥+ ∥PC(I − λ∇fαn)xn − PC(I − λ∇f)xn∥
≤ ∥xn − un∥+ ∥(I − λ∇fαn)xn − (I − λ∇f)xn∥
= ∥xn − un∥+ λαn∥xn∥.

From ∥xn − un∥ → 0, αn → 0, and the boundedness of {xn} it follows that

lim
n→∞

∥xn − Txn∥ = 0.

Taking into account xnj ⇀ x̂ and utilizing Lemma 2.8(ii), we obtain x̂ ∈ Fix(T ).
But Fix(T ) = Γ ; we therefore have x̂ ∈ Γ . Furthermore, since xnj ⇀ x̂ and

lim
n→∞

∥un − xn∥ = lim
n→∞

∥un − vn∥ = lim
n→∞

∥Svn − vn∥ = 0,

we have

vnj ⇀ x̂ and lim
j→∞

∥Svnj − vnj∥ = 0.

Thus, from Lemma 2.8(ii) we get x̂ ∈ Fix(S). Therefore, we have x̂ ∈ Fix(S) ∩ Γ .
This shows

(3.11) ωw(xn) ⊂ Fix(S) ∩ Γ .

Step 4. Both the sequences {xn} and {yn} converge weakly to an element z in
Fix(S) ∩ Γ .

Indeed, according to (3.10) and (3.11) we apply Proposition 2.7 to Fix(S) ∩ Γ
to show that {xn} converges weakly to a point z in Fix(S) ∩ Γ . Moreover, from
∥xn − yn∥ → 0 it follows that yn ⇀ z. □
Corollary 3.7. Let S : C → C be a nonexpansive mapping such that Fix(S)∩Γ ̸= ∅.
Suppose the sequences of parameters {αn} in (0,∞) and {βn}, {σn} in [0, 1] satisfy
the following conditions.

(i)
∑∞

n=0 αn < +∞.

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

(iii) 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1.

Assume that 0 < λ < 2
∥A∥2 , and let {xn} and {yn} be the sequences in C generated

by the following Mann type extragradient-like algorithm: x0 = x ∈ C, chosen arbitrarily,
yn = (1− βn)xn + βnPC(xn − λ∇fαn(xn)),
xn+1 = σnxn + (1− σn)SPC(yn − λ∇fαn(yn)), ∀n ≥ 0.
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Then, both the sequences {xn} and {yn} converge weakly to an element z in Fix(S)∩
Γ .

Proof. In Theorem 3.6, putting γn = 0 for all n ≥ 0, we conclude that σn + δn =
σn + γn + δn = 1 and

x0 = x ∈ C, chosen arbitrarily,
yn = (1− βn)xn + βnPC(xn − λ∇fαn(xn)),
xn+1 = σnxn + γnPC(yn − λ∇fαn(yn)) + δnSPC(yn − λ∇fαn(yn))
= σnxn + δnSPC(yn − λ∇fαn(yn))
= σnxn + (1− σn)SPC(yn − λ∇fαn(yn)), ∀n ≥ 0.

Being nonexpansive, S is a k-strictly pseudocontractive mapping with constant
k = 0. Moreover, we have (γn + δn)k ≤ γn for all n ≥ 0 and lim infn→∞ δn =
1 − lim supn→∞ σn > 0. All conditions of Theorem 3.6 are satisfied. Therefore,
Theorem 3.6 applies. □

Remarks 3.8. We would like to compare our theorems in this paper with other
established results in recent literature.

(a) Theorem 3.6 includes [4, Theorem 3.2] as a special case.
(b) The corresponding iterative algorithms in [37, Theorem 5.7] and [4, Theorem

3.2] are extended to develop the Mann type hybrid extragradient-like algorithm
in Theorem 3.6. However, the technique of proving weak convergence in Theo-
rem 3.2 is very different from [37, Theorem 5.7] and [4, Theorem 3.2] because
our technique depends on the demiclosedness principle for strictly contractive
mappings in Hilbert spaces.

(c) Theorem 3.3 improves, extends, supplements and develops [4, Theorem 3.1] in
the following aspects.
(i) The problem considered in Theorem 3.3 is more general and more subtle

than that considered in [4, Theorem 3.1]. We consider in Theorem 3.3
the problem of finding the minimum-norm solution of the SFP defined on
the intersection C =

∩N
i=1 Fix(Si) of the fixed point sets of finitely many

nonexpansive mappings {Si : 1 ≤ i ≤ N}. It reduces to the problem in
[4, Theorem 3.1] in the special case that K = C and Si = I, the identity
mapping of K, for each i = 1, . . . , N .

(ii) The iterative scheme in [4, Theorem 3.1] is extended to develop the itera-
tive scheme in Theorem 3.3 by virtue of a hybrid steepest-descent method
developed in [30, Theorem 3.2]. The proof of Theorem 3.3 makes heavy
use of the argument technique given in [30, Lemma 3.1 and Theorem 3.2].

(iii) The iterative scheme in Theorem 3.3 is more advantageous and more flex-
ible than that in [4, Theorem 3.1]. More precisely, our iterative scheme
involves solving two problems: the SFP and the problem of finding a
common fixed point of finitely many nonexpansive mappings. It involves
a hybrid steepest-descent method (namely, we add a Lipschitz continu-
ous and strongly monotone operator F in our iterative scheme) such that
the common fixed point problem of finitely many nonexpansive mappings
{Si : 1 ≤ i ≤ N} can be solved as well. Thus it should be more useful and
more applicable.
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