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VIEWING ATTRACTIVE POINT SETS THROUGH THE
KIRSZBRAUN-VALENTINE THEOREM
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Dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday
with admiration and respect.

ABSTRACT. The concept of attractive points introduced by Takahashi et. al. [14]
is considered via the Kirszbraun-Valentine theorem.

1. INTRODUCTION

Let C be a nonempty subset of a Hilbert space H and let T : C' — H be a
mapping. If ||Ta — Ty|| < ||z — y|| for z,y € C, then T is said to be nonexpansive.
We denote by F(T) the set of fized points of T, i.e.,

F(T)={2€C:Tz=z}.
Takahashi et. al. [14] introduce the set of attractive points A(T) of T as follow:
AT)={z€H:||Tz—z| < ||z — 2|,z € C}.

For a family of mappings S, let F'(S) and A(S) stand for the set of common fixed
points and the set of common attractive points of elements in S, respectively. That
is,
F(8)= [ F(T), AS)=[)A®D).
TesS TeS

For each semigroup S, let B(S) be the Banach space of all bounded real-valued
mappings on S with supremum norm. A continuous linear functional p € B(S)*
(the dual space of B(S)) is called a mean on B(S) if ||u|]| = u(1) = 1. For any
f € B(S), we use the following notation:

u(f) = ps(f(s))-

A mean p on B(S) is said to be left invariant [respectively, right invariant] if
s(f(t5)) = po(F(s)) [respectively, puy(f(st)) = po(f(5))] for all f € B(S) and for
all £ € S. We will say that p is an invariant mean if it is both left and right
invariants. If B(S) has an invariant mean, we call S an amenable semigroup. It
is well known that every commutative semigroup is amenable [6]. For each s € S
and f € B(S), we define elements Isf and rsf in B(S) by (Isf)(t) = f(st) and
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(rsf)(t) = f(ts) for any t € S, respectively. A net {4} of means on B(S) is said
to be asymptotically invariant if for each f € B(S),

hgl(lu’a(lsf) - :UJa(f)) =0= hén(,ua(rsf) - :ua(f))'

From now on, let S be a semitopological semigroup, i.e., a semigroup with a Haus-
dorff topology such that for each a € S, the mappings s — a - s and s — s - a from
S to S are continuous.

Let C be a nonempty subset of a Hilbert space H. A family S = {Ts: s € S} of
mappings on C is said to be a nonexpansive semigroup on C into itself if it satisfies
the following conditions:

(i) for each s € S, T, is nonexpansive,
(ii) Tis = TTs for each t, s € S,

(iii) for each z € C, s +— T,z is continuous.

Let S = {Ts : s € S} be a nonexpansive semigroup on C. Assume {Tsz:s € S} is
bounded for each x € C. Then, for any mean p on C(.5), the space of bounded real
valued continuous functions on S under supremun norm, and x € C, there exists a
unique xg € C such that

Hes <T5x7 y> = <x07 y>
for all y € H. Putting T, x = xo for all x € C.

The following facts [(I), (II)] suggest that A(T") can play the role of F(T'). The
aim of this paper is then to show that these two concepts are closely related. First
we collect some facts on the two concepts.

(I) Some facts on F(T).

Theorem 1.1 ([5, Theorem 8]). Let C' be a nonempty subset of a Hilbert space H.
Let S be a semigroup and let S = {T} : t € S} be a nonexpansive semigroup on C.
Then F(S) is a closed convex subset of H.

Theorem 1.2 ([8, Theorem 2]). Let C be a closed convex subset of a Hilbert space
H and S a semitopological semigroup such that C(S) has a left invariant mean.
Let § = {Ts : s € S} be a nonexpansive semigroup on C. Then the followings are
equivalent:
(i) {Tsx : s € S} is bounded for some x € C;
(ii) {Tsz : s € S} is bounded for all x € C;
(it}) F(S) = Nyes F(T2) # 0.

Theorem 1.3 ([12]). Let S be an amenable semigroup, C a closed convex subset
of a Hilbert space H, S a nonexpansive semigroup on C such that F(S) # (. Let
{ta} be an asymptotically invariant net of means. Then for each u € C, {1}, u}
converges weakly to ugy in F(S) where uy = 1i£n Trs)Tsu and Tps) is the metric

projection from H onto F(S).
Theorem 1.3 is extendable to CAT(0) spaces:

Theorem 1.4 ([1, Theorem 3.9]). Let X be a complete CAT(0) space that has
Property (N), C be a closed convex subset of X, S a commutative semigroup, and
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S ={Ts: s € S} a nonexpansive semigroup on C with F(S) # (. Suppose {pa} is
an asymptotically invariant net of means on B(S) satisfying condition:

(1.1) to (A2 (Tsz,y)) — o, (d*(Tstz,y)) — 0 uniformly for y € C.
Then {1}« } A-converges to xo = lim 7ps)Tsx in F(S) for all x € C.

In the Hilbert space setting, Property (N) and condition (1.1) are always satisfied.

Theorem 1.5 ([13, Theorem 1]). Let C be a closed convez subset of a Hilbert space
H and S a semitopological semigroup such that C(S) has an invariant mean. Let
S = {Ts:s €S} be a nonexpansive semigroup on C with F(S) # 0. Then T,
satisfies the followings:
(i) T,7s = T,T, =T, foralls € S,
(ii) T}, is a nonexpansive retraction of C' onto F(S),
(ili) Tyx € co{Tsx : s € S} for all x € C.

Theorem 1.6. [10, Lemma 3.2] Let C be a closed convex subset of a Hilbert space
H and S a left reversible semitopological semigroup, i.e., any two closed right ideals
of S have nonvoid intersection. Let S = {Ts: s € S} be a nonexpansive semigroup

on C. Suppose that {Tsz : s € S} is bounded for some x € C. Then F(S) # (.

(IT) Some facts on A(T).

Theorem 1.7 ([14, Lemma 2.3]). Let H be a Hilbert space, let C' be a nonempty
subset of H, and let T be a mapping from C into H. Then A(T) is a closed and
convex subset of H.

Theorem 1.8 ([15, Lemma 2.4]). Let H be a Hilbert space, let C be a nonempty
subset of H, and let T be a quasi-nonexpansive mapping from C into H. Then

AT)NC = F(T).

Theorem 1.9 ([2, Lemma 3.1]). Let C be a nonempty closed convex subset of
Hilbert space H, S a commutative semigroup and S = {Ts : s € S} a nonexpansive
semigroup on C. Then, if A(S) # 0, F(S) # 0.

Theorem 1.10 (]2, Theorem 4.1)). Let H be a Hilbert space, let C' be a nonempty
subset of H. Let S be a commutative semigroup and let S = {Ts:s € S} be a
nonexpansive semigroup on C into itself such that {Tsx : s € S} is bounded for some
x € C. Let {ua} be a strongly asymptotically invariant net of means on C(S), i.e.,

lim || = Lpall =0,
o

where I} is the adjoint operator of ls. Then, the followings hold:

(i) A(S) is nonempty, closed and convez,
(ii) for any v e C, {T,,u} converges weakly to ug in A(S), where
up = lim g5y Tsu.
S

We ask if we can extend the given mapping 7' to a closed and convex domain
having A(T) as its fixed point set and results from (I) can be applied to (II) using
only assumptions for 7" on C. Fortunately, the answer is “affirmative”, thanks to
the Kirszbraun-Valentine Theorem.
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Theorem 1.11 ([16, Kirszbraun-Valentine Theorem (KV)]). Let C be an arbitrary
nonempty subset of a Hilbert space H and let T': C' — H be nonexpansive. Then

there exists a nonerpansive extension T of T for which T:H—co T(C).

2. PRELIMINARIES

A short proof of (KV) can be found in [3] using the Minty’s surjectivity theorem.
See [7] for a simpler proof. Several attempt aimed on extending (KV) to more
general spaces. For example, [9] obtained (KV) on CAT(k) spaces under some
conditions.

In general, however, (KV) may fail in CAT(0) spaces:

Example 2.1. Let (X, p) be the gluing of two CAT(0) spaces R?x {0} and {(0,0)} x
R at the point (0,0,0). Since gluing of CAT(0) spaces alongs a convex subset yields
a CAT(0) space by the Basic Gluing Theorem in [4, page 347], (X, p) is a CAT(0)
space. By Lemma 5.24 in [4, page 67], the distance p is given by

’I‘ - y’ T,y € R7
pz,y) = 4 |z =yl z,y €{(0,0)} xR,
lz| + |y| otherwise.

Next consider points x = (0,0, 1) y = (0,0,—1), and z = (1,0,0). It is easy to
see that p(x,y) = p(x, z) = p(y, z) = 2. Moreover, the intersection of closed balls

Blz,1)n B<y, )N B(21) = {(0,0,0)} £ 0.
If we consider points u = (0,0,0),v = (2,0,0),w = (1,v/3,0), we see that p(u,v) =
p(u,w) = p(v,w) = 2 since the restriction of p on R? x {0} is simply the Euclidean
distance. However, the intersection
B(u,1) N B(v,1) N B(w,1) = 0.

Let T : {z,y,z} — {u,v,w} be a bijection. Then T is actually an isometry.
Clearly, there is no way to extend T to a nonexpensive map T : co(z,y,2) - X
because if such T were to exist, we would have p(T(a),T(0,0,0)) < p(a, (0,0,0)) =
foralla € {x,y,z} and hence T(O7 0,0) € B(u,1)NB(v,1)N B(w, 1) which leads to

a contradiction.

In the above example, we can verify directly that (X, p) is a CAT(0) space, i.e.,
it satisfies the CN-inequality: For points x,y,w € X, if z = %Gy is the mid-point of
x and y, there holds

) 1 1 1,
(2.1) P(w,2) < Sp(w,m) + 5o (w,y) = 0% (@,y).
We only consider only the following cases.

Case 1 [z = (a,b,0), y = (¢,d,0), w = (0,0,u)]: We know that |z|* = %|x!2 +

5 yl* = 3z —yl” and 22| < [a[ + |y], thus

pA(w, z) = (Jw| + |2])?
= w]? + |2* + 2 |w| |2]
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1 1 1
= |wl+ 5 2 + 5 [yl* = 7l = yf* + 2] |2]
e Lz YL
< |wl +2’3?\ +2’Z/| 4\33 ylI” + Jwl (2] + [yl)

1 1 1
= S(lul + Jal)? + 5wl +1y))? - § o —yl?.

Case 2 [x = (0,0,a), y = (b, c,0)]: Since the segment [z, y] is an R-tree on which
the CN-inequality holds, we only consider for the case when w is of the form (d, e, 0).
Case 2.1 z € [0,z] : Under this case, we consider the point w’ on the ray starting
from the origin in the direction of y, and |w'| = |w|. Clearly, |y — w'| < |w —y|.
Now, as being an R-tree comprising of the segment [z, y] U [z, w'], (2.1) implies

pP(w, 2) = (Jw| + |2])?

= ('] + [2])?
= P, 2)

1 1 1
< 2P0 ) + L) — 1)

1 , 1 1,
—5(\w'}+lfv\) +§|w’—y{ — 4P @)
< L2, o)+ LA,y - Loty

— w,x — w —_ — X .
< 20 s 2,0 Y 4P Y

Case 2.2 z € [0,y] : For this case we consider the point 2’ on the ray starting from
the origin in the direction of —y having |2/| = |z|. Being a CAT(0) space of R? x {0},
a similar computation as in Case 2.1 giving us an inequality :

1 1 1
p2(w7 Z) < 502(1”71’) + 5,02(111, y) - ZPQ('%" y)

Thus, the CN-inequality holds for both subcases.

Observe that, in the above example, the space (X, p) comprises of two spaces, one
is an R-tree, the other is a Hilbert space, and (KV) holds on both spaces. This space
(X, p) is an example of the following gluing spaces: For two metric spaces (Y, d)
and (Z,n) where d = n on Y N Z. Suppose that A =Y N Z is a nonempty closed
subset of (Y,d) and (Z,7n). Let X =Y U Z and define a metric p on X by p =d on
Y,p=non Z, and fory € Y and z € Z, let p(y, z) = inf {d(y, w) + n(w, z)} where
the infimum is taken over all w € A. Since A is closed, p is indeed a metric on X.
Call X a gluing space of Y and Z.

Proposition 2.2. Let (X, p) be a gluing space of (Y,d) and (Z,n) and let A=Y NZ
be nonempty and closed in'Y and Z. Let T : E — X be a nonexrpansive mapping
on a subset E of X and A C E. If (KV) holds on (Y,d) and (Z,n), T(ENY) CY,
and T(ENZ) C Z, then T can be extended to a nonexpansive mapping on X .

Proof. Extend T to the domain X by extending 7' on Y and Z respectively, and call
the extension also as 7. We show that T is nonexpansive. Let y € Y and z € Z.
Take any w € A and consider an estimate :

p(Ty,Tz) < p(Ty, Tw) + p(Tw, Tz)
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< d(y, w) + n(w, 2),
to conclude that p(Ty,Tz) < p(y, z), and this completes the proof. O

3. MAIN RESULTS

Let C be a nonempty subset of a Hilbert space H and T : C' — H be nonexpan-
sive. Let K be the closed convex hull of the image T'(C). In a proof of (KV), we

first obtain an extension T : H — H and then put T = 7T : H — K where 7 is
the metric projection onto K. Thus

AT)={z€ H:||z—Tx| ||z — |,z € C},

AT)={z€H: HZ—T.TH |z—z|,z€ H},

A(T) = {zEH: Hz—?x” Hz—x”,xEH}.

The attractive point sets and the Kirszbraun-Valentine theorem are related. In fact
we have

(3.1) AT) = JF(T)

where the union is taken over all extensions T : E — X of T over a subset E
of X. Obviously, one of T in (3.1) is the mapping U : C U A(T) — H defined
by putting U = T on C and U to be the identity mapping on A(T"). Clearly, by
the definition of the attractive point set A(T'), U is a nonexpansive extension of 7’
having A(T) = F(U). By the proof of (KV) outlined above, we can extend U to
obtain a nonexpansive extension T : H — H with F(T) = A(T). Thus we have:

Theorem 3.1. For any nonexpansive mapping T : C' — C, there exists a nonex-
pansive extension T : H — H of T having A(T) = A(T) = F(T) > F(T) = A(T) =
AN K =7 (A(T)), and all sets are closed and convex. Here T = myT.

Proof. We need only to prove that (i) F(T') D F(T) and (ii) A(T)NK = wx(A(T)).

(i): Let z = Tz and note that z = kT (z) € K and for every v € C, Tv =Tv =
Tv which implies |Tv—Tz|| = ||[Tv—Tz| < ||v—2z|. I Tz € K, then z = ?(z) =
T'(z) and thus z € F(T). Next we show that this is the only possibility. Otherwise
we choose v € C so that ||z — v||* < d(z,C)?+ Hz - TZHQ < ||Tw - z||*+ Hz - Tz! 2,
where d(z,C) is the distance from z to C. Therefore |Tv —TZHQ < Jlv—z|* <
|Tv — z||> + |z — TZH2 a contradiction.

(ii): It suffices to show that mx(z) € F(T) for z € F(T). For this we take
z € F(T), and observe that ||Tnx(2) — z|| = ||T7k,(2) — Tz|| < ||k (2) — 2| and
thus Tk (2) = mx(2). O

In the following, for a given 7T, the mappings T and T will stand for the corre-
sponding mappings obtained from 7" in Theorem 3.1.

By Theorem 1.9, we have
Corollary 3.2. A(T) #0) = A(T)#0 = A(T) # 0.
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Corollary 3.3. If C' is a nonempty subset of a Hilbert space H, T : C' — C is
nonexpansive, and T(C') is bounded, then A(T) N K is nonempty.

Proof. Just consider the restriction T : T(C) — T(C) to obtain a fixed point of
T. O

The following results are some examples which are consequences of our main
result. It is noted that the conditions given on the mappings T’s and their domains

in each theorem are sufficient for their extensions 7's and T''s.

Theorem 3.4 ([2, Lemma 3.2]). Let C be a nonempty subset of a Hilbert space
H. Let S be a commutative semigroup and let S = {1} : t € S} be a nonexpansive
semigroup on C. Then A(S) is a closed convex subset of H.

Theorem 3.5. Let C' be a nonempty subset of a Hilbert space H and S a semitopo-
logical semigroup such that C(S) has a left invariant mean. Let S = {T; : t € S} be
a nonexpansive semigroup on C. Then the followings are equivalent:

(i) {Tsx : s € S} is bounded for some x € C;

(ii) {Tsz : s € S} is bounded for all x € C;

(iii) A(S) # 0.
Theorem 3.6. Let C' be a nonempty subset of a Hilbert space H and S a left
reversible semitopological semigroup. Let S = {1} : t € S} be a nonexpansive semi-
group on C into itself. Suppose that {Tix : t € S} is bounded for some x € C. Then

A(S) #0. Here S = {T:TGS}.

Theorem 3.7 ([2, Theorem 4.1]). Let C' be a nonempty subset of a Hilbert space
H. Let S be a commutative semigroup and let S = {1} : t € S} be a nonexpansive
semigroup on C such that {Tix : t € S} is bounded for some x € C. Let {uq} be
a strongly asymptotically invariant net of means on C(S), i.e., a net of means on
C(S) such that

lim [ o = Ipall = 0,
(0%

Then, for any u € C, {T, u} converges weakly to ug € A(S) (or A(?), where

ug = liI{nﬁA(g)Ttu = li%nﬂA Tyu. Here S = {T 2T e S}.

S
4. OPEN PROBLEMS

1. Observe that the following result is not a consequence of our main theorem
(Theorem 3.1):

Theorem 4.1 ([14]). Let C be a nonempty subset of a Hilbert space H and let
T :C — C be a generalized hybrid mapping. Then, A(T) # 0 if and only if there
exists an xo € C such that {T™xzo} is bounded.

Thus it is natural to ask if the Kirszbraun-Valentine Theorem can be extended
to a more general class of mappings.

2. Tt is also interesting to extend the Kirszbraun-Valentine Theorem to a more
general space.
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3. Extend Theorem 1.4 and Theorem 1.5 to cover the case where C is not
necessary convex.
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