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(rsf)(t) = f(ts) for any t ∈ S, respectively. A net {µα} of means on B(S) is said
to be asymptotically invariant if for each f ∈ B(S),

lim
α
(µα(lsf)− µα(f)) = 0 = lim

α
(µα(rsf)− µα(f)).

From now on, let S be a semitopological semigroup, i.e., a semigroup with a Haus-
dorff topology such that for each a ∈ S, the mappings s 7→ a · s and s 7→ s · a from
S to S are continuous.

Let C be a nonempty subset of a Hilbert space H. A family S = {Ts : s ∈ S} of
mappings on C is said to be a nonexpansive semigroup on C into itself if it satisfies
the following conditions:

(i) for each s ∈ S, Ts is nonexpansive,
(ii) Tts = TtTs for each t, s ∈ S,
(iii) for each x ∈ C, s 7→ Tsx is continuous.

Let S = {Ts : s ∈ S} be a nonexpansive semigroup on C. Assume {Tsx : s ∈ S} is
bounded for each x ∈ C. Then, for any mean µ on C(S), the space of bounded real
valued continuous functions on S under supremun norm, and x ∈ C, there exists a
unique x0 ∈ C such that

µs ⟨Tsx, y⟩ = ⟨x0, y⟩
for all y ∈ H. Putting Tµx = x0 for all x ∈ C.

The following facts [(I), (II)] suggest that A(T ) can play the role of F (T ). The
aim of this paper is then to show that these two concepts are closely related. First
we collect some facts on the two concepts.

(I) Some facts on F (T ).

Theorem 1.1 ([5, Theorem 8]). Let C be a nonempty subset of a Hilbert space H.
Let S be a semigroup and let S = {Tt : t ∈ S} be a nonexpansive semigroup on C.
Then F (S) is a closed convex subset of H.

Theorem 1.2 ([8, Theorem 2]). Let C be a closed convex subset of a Hilbert space
H and S a semitopological semigroup such that C(S) has a left invariant mean.
Let S = {Ts : s ∈ S} be a nonexpansive semigroup on C. Then the followings are
equivalent:

(i) {Tsx : s ∈ S} is bounded for some x ∈ C;
(ii) {Tsx : s ∈ S} is bounded for all x ∈ C;
(iii) F (S) =

∩
s∈S F (Ts) ̸= ∅.

Theorem 1.3 ([12]). Let S be an amenable semigroup, C a closed convex subset
of a Hilbert space H, S a nonexpansive semigroup on C such that F (S) ̸= ∅. Let
{µα} be an asymptotically invariant net of means. Then for each u ∈ C, {Tµαu}
converges weakly to u0 in F (S) where u0 = lim

s
πF (S)Tsu and πF (S) is the metric

projection from H onto F (S).

Theorem 1.3 is extendable to CAT(0) spaces:

Theorem 1.4 ([1, Theorem 3.9]). Let X be a complete CAT(0) space that has
Property (N), C be a closed convex subset of X, S a commutative semigroup, and
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S = {Ts : s ∈ S} a nonexpansive semigroup on C with F (S) ̸= ∅. Suppose {µα} is
an asymptotically invariant net of means on B(S) satisfying condition:

(1.1) µαs(d
2(Tsx, y))− µαs(d

2(Tstx, y)) → 0 uniformly for y ∈ C.

Then {Tµαx}∆-converges to x0 = lim
s

πF (S)Tsx in F (S) for all x ∈ C.

In the Hilbert space setting, Property (N) and condition (1.1) are always satisfied.

Theorem 1.5 ([13, Theorem 1]). Let C be a closed convex subset of a Hilbert space
H and S a semitopological semigroup such that C(S) has an invariant mean. Let
S = {Ts : s ∈ S} be a nonexpansive semigroup on C with F (S) ̸= ∅. Then Tµ

satisfies the followings:

(i) TµTs = TsTµ = Tµ for all s ∈ S,
(ii) Tµ is a nonexpansive retraction of C onto F (S),
(iii) Tµx ∈ co {Tsx : s ∈ S} for all x ∈ C.

Theorem 1.6. [10, Lemma 3.2] Let C be a closed convex subset of a Hilbert space
H and S a left reversible semitopological semigroup, i.e., any two closed right ideals
of S have nonvoid intersection. Let S = {Ts : s ∈ S} be a nonexpansive semigroup
on C. Suppose that {Tsx : s ∈ S} is bounded for some x ∈ C. Then F (S) ̸= ∅.

(II) Some facts on A(T ).

Theorem 1.7 ([14, Lemma 2.3]). Let H be a Hilbert space, let C be a nonempty
subset of H, and let T be a mapping from C into H. Then A(T ) is a closed and
convex subset of H.

Theorem 1.8 ([15, Lemma 2.4]). Let H be a Hilbert space, let C be a nonempty
subset of H, and let T be a quasi-nonexpansive mapping from C into H. Then
A(T ) ∩ C = F (T ).

Theorem 1.9 ([2, Lemma 3.1]). Let C be a nonempty closed convex subset of
Hilbert space H, S a commutative semigroup and S = {Ts : s ∈ S} a nonexpansive
semigroup on C. Then, if A(S) ̸= ∅, F (S) ̸= ∅.
Theorem 1.10 ([2, Theorem 4.1]). Let H be a Hilbert space, let C be a nonempty
subset of H. Let S be a commutative semigroup and let S = {Ts : s ∈ S} be a
nonexpansive semigroup on C into itself such that {Tsx : s ∈ S} is bounded for some
x ∈ C. Let {µα} be a strongly asymptotically invariant net of means on C(S), i.e.,

lim
α

∥µα − l∗sµα∥ = 0,

where l∗s is the adjoint operator of ls. Then, the followings hold:

(i) A(S) is nonempty, closed and convex,
(ii) for any u ∈ C, {Tµαu} converges weakly to u0 in A(S), where

u0 = lim
s

πA(S)Tsu.

We ask if we can extend the given mapping T to a closed and convex domain
having A(T ) as its fixed point set and results from (I) can be applied to (II) using
only assumptions for T on C. Fortunately, the answer is “affirmative”, thanks to
the Kirszbraun-Valentine Theorem.
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Theorem 1.11 ([16, Kirszbraun-Valentine Theorem (KV)]). Let C be an arbitrary
nonempty subset of a Hilbert space H and let T : C → H be nonexpansive. Then

there exists a nonexpansive extension T of T for which T : H → co T (C).

2. Preliminaries

A short proof of (KV) can be found in [3] using the Minty’s surjectivity theorem.
See [7] for a simpler proof. Several attempt aimed on extending (KV) to more
general spaces. For example, [9] obtained (KV) on CAT(k) spaces under some
conditions.

In general, however, (KV) may fail in CAT(0) spaces:

Example 2.1. Let (X, ρ) be the gluing of two CAT(0) spaces R2×{0} and {(0, 0)}×
R at the point (0, 0, 0). Since gluing of CAT(0) spaces alongs a convex subset yields
a CAT(0) space by the Basic Gluing Theorem in [4, page 347], (X, ρ) is a CAT(0)
space. By Lemma 5.24 in [4, page 67], the distance ρ is given by

ρ(x, y) =


|x− y| x, y ∈ R,
|x− y| x, y ∈ {(0, 0)} × R,
|x|+ |y| otherwise.

Next consider points x = (0, 0, 1), y = (0, 0,−1), and z = (1, 0, 0). It is easy to
see that ρ(x, y) = ρ(x, z) = ρ(y, z) = 2. Moreover, the intersection of closed balls

B(x, 1) ∩B(y, 1) ∩B(z, 1) = {(0, 0, 0)} ̸= ∅.

If we consider points u = (0, 0, 0), v = (2, 0, 0), w = (1,
√
3, 0), we see that ρ(u, v) =

ρ(u,w) = ρ(v, w) = 2 since the restriction of ρ on R2 ×{0} is simply the Euclidean
distance. However, the intersection

B(u, 1) ∩B(v, 1) ∩B(w, 1) = ∅.

Let T : {x, y, z} → {u, v, w} be a bijection. Then T is actually an isometry.

Clearly, there is no way to extend T to a nonexpensive map T : co(x, y, z) → X

because if such T were to exist, we would have ρ(T (a), T (0, 0, 0)) ≤ ρ(a, (0, 0, 0)) = 1

for all a ∈ {x, y, z} and hence T (0, 0, 0) ∈ B(u, 1)∩B(v, 1)∩B(w, 1) which leads to
a contradiction.

In the above example, we can verify directly that (X, ρ) is a CAT(0) space, i.e.,
it satisfies the CN-inequality: For points x, y, w ∈ X, if z = x⊕y

2 is the mid-point of
x and y, there holds

(2.1) ρ2(w, z) ≤ 1

2
ρ2(w, x) +

1

2
ρ2(w, y)− 1

4
ρ2(x, y).

We only consider only the following cases.
Case 1 [x = (a, b, 0), y = (c, d, 0), w = (0, 0, u)]: We know that |z|2 = 1

2 |x|
2 +

1
2 |y|

2 − 1
4 |x− y|2 and 2 |z| ≤ |x|+ |y|, thus

ρ2(w, z) = (|w|+ |z|)2

= |w|2 + |z|2 + 2 |w| |z|
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= |w|+ 1

2
|x|2 + 1

2
|y|2 − 1

4
|x− y|2 + 2 |w| |z|

≤ |w|2 + 1

2
|x|2 + 1

2
|y|2 − 1

4
|x− y|2 + |w| (|x|+ |y|)

=
1

2
(|w|+ |x|)2 + 1

2
(|w|+ |y|)2 − 1

4
|x− y|2 .

Case 2 [x = (0, 0, a), y = (b, c, 0)]: Since the segment [x, y] is an R-tree on which
the CN-inequality holds, we only consider for the case when w is of the form (d, e, 0).
Case 2.1 z ∈ [0, x] : Under this case, we consider the point w′ on the ray starting
from the origin in the direction of y, and |w′| = |w|. Clearly, |y − w′| ≤ |w − y|.
Now, as being an R-tree comprising of the segment [x, y] ∪ [x,w′], (2.1) implies

ρ2(w, z) = (|w|+ |z|)2

= (
∣∣w′∣∣+ |z|)2

= ρ2(w′, z)

≤ 1

2
ρ2(w′, x) +

1

2
ρ2(w′, y)− 1

4
ρ2(x, y)

=
1

2
(
∣∣w′∣∣+ |x|)2 + 1

2

∣∣w′ − y
∣∣2 − 1

4
ρ2(x, y)

≤ 1

2
ρ2(w, x) +

1

2
ρ2(w, y)− 1

4
ρ2(x, y).

Case 2.2 z ∈ [0, y] : For this case we consider the point x′ on the ray starting from
the origin in the direction of −y having |x′| = |x|. Being a CAT(0) space of R2×{0},
a similar computation as in Case 2.1 giving us an inequality :

ρ2(w, z) ≤ 1

2
ρ2(w, x) +

1

2
ρ2(w, y)− 1

4
ρ2(x, y).

Thus, the CN-inequality holds for both subcases.
Observe that, in the above example, the space (X, ρ) comprises of two spaces, one

is an R-tree, the other is a Hilbert space, and (KV) holds on both spaces. This space
(X, ρ) is an example of the following gluing spaces: For two metric spaces (Y, d)
and (Z, η) where d = η on Y ∩ Z. Suppose that A = Y ∩ Z is a nonempty closed
subset of (Y, d) and (Z, η). Let X = Y ∪Z and define a metric ρ on X by ρ = d on
Y , ρ = η on Z, and for y ∈ Y and z ∈ Z, let ρ(y, z) = inf {d(y, w) + η(w, z)} where
the infimum is taken over all w ∈ A. Since A is closed, ρ is indeed a metric on X.
Call X a gluing space of Y and Z.

Proposition 2.2. Let (X, ρ) be a gluing space of (Y, d) and (Z, η) and let A = Y ∩Z
be nonempty and closed in Y and Z. Let T : E → X be a nonexpansive mapping
on a subset E of X and A ⊂ E. If (KV) holds on (Y, d) and (Z, η), T (E ∩Y ) ⊂ Y ,
and T (E ∩ Z) ⊂ Z, then T can be extended to a nonexpansive mapping on X.

Proof. Extend T to the domain X by extending T on Y and Z respectively, and call
the extension also as T . We show that T is nonexpansive. Let y ∈ Y and z ∈ Z.
Take any w ∈ A and consider an estimate :

ρ(Ty, Tz) ≤ ρ(Ty, Tw) + ρ(Tw, Tz)
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≤ d(y, w) + η(w, z),

to conclude that ρ(Ty, Tz) ≤ ρ(y, z), and this completes the proof. □

3. Main results

Let C be a nonempty subset of a Hilbert space H and T : C → H be nonexpan-
sive. Let K be the closed convex hull of the image T (C). In a proof of (KV), we

first obtain an extension T : H → H and then put T = πKT : H → K where πK is
the metric projection onto K. Thus

A(T ) = {z ∈ H : ∥z − Tx∥ ∥z − x∥ , x ∈ C} ,
A(T ) =

{
z ∈ H :

∥∥z − Tx
∥∥ ∥z − x∥ , x ∈ H

}
,

A(T ) =
{
z ∈ H :

∥∥∥z − Tx
∥∥∥ ∥z − x∥ , x ∈ H

}
.

The attractive point sets and the Kirszbraun-Valentine theorem are related. In fact
we have

(3.1) A(T ) =
∪

F (T )

where the union is taken over all extensions T : E → X of T over a subset E
of X. Obviously, one of T in (3.1) is the mapping U : C ∪ A(T ) → H defined
by putting U = T on C and U to be the identity mapping on A(T ). Clearly, by
the definition of the attractive point set A(T ), U is a nonexpansive extension of T
having A(T ) = F (U). By the proof of (KV) outlined above, we can extend U to
obtain a nonexpansive extension T : H → H with F (T ) = A(T ). Thus we have:

Theorem 3.1. For any nonexpansive mapping T : C → C, there exists a nonex-

pansive extension T : H → H of T having A(T ) = A(T ) = F (T ) ⊃ F (T ) = A(T ) =

A(T ) ∩K = πK(A(T )), and all sets are closed and convex. Here T = πKT .

Proof. We need only to prove that (i) F (T ) ⊃ F (T ) and (ii) A(T )∩K = πK(A(T )).

(i): Let z = Tz and note that z = πKT (z) ∈ K and for every v ∈ C, Tv = Tv =

Tv which implies
∥∥Tv − Tz

∥∥ =
∥∥Tv − Tz

∥∥ ≤ ∥v − z∥. If Tz ∈ K, then z = T (z) =

T (z) and thus z ∈ F (T ). Next we show that this is the only possibility. Otherwise

we choose v ∈ C so that ∥z − v∥2 < d(z, C)2+
∥∥z − Tz

∥∥2 ≤ ∥Tv − z∥2+
∥∥z − Tz

∥∥2,
where d(z, C) is the distance from z to C. Therefore

∥∥Tv − Tz
∥∥2 ≤ ∥v − z∥2 <

∥Tv − z∥2 +
∥∥z − Tz

∥∥2 a contradiction.

(ii): It suffices to show that πK(z) ∈ F (T ) for z ∈ F (T ). For this we take
z ∈ F (T ), and observe that

∥∥TπK(z)− z
∥∥ =

∥∥TπK0(z)− Tz
∥∥ ≤ ∥πK(z)− z∥ and

thus TπK(z) = πK(z). □

In the following, for a given T , the mappings T and T will stand for the corre-
sponding mappings obtained from T in Theorem 3.1.

By Theorem 1.9, we have

Corollary 3.2. A(T ) ̸= ∅ =⇒ A(T ) ̸= ∅ =⇒ A(T ) ̸= ∅.
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Corollary 3.3. If C is a nonempty subset of a Hilbert space H, T : C → C is
nonexpansive, and T (C) is bounded, then A(T ) ∩K is nonempty.

Proof. Just consider the restriction T : T (C) → T (C) to obtain a fixed point of

T . □
The following results are some examples which are consequences of our main

result. It is noted that the conditions given on the mappings T ′s and their domains

in each theorem are sufficient for their extensions T ′s and T ′s.

Theorem 3.4 ([2, Lemma 3.2]). Let C be a nonempty subset of a Hilbert space
H. Let S be a commutative semigroup and let S = {Tt : t ∈ S} be a nonexpansive
semigroup on C. Then A(S) is a closed convex subset of H.

Theorem 3.5. Let C be a nonempty subset of a Hilbert space H and S a semitopo-
logical semigroup such that C(S) has a left invariant mean. Let S = {Tt : t ∈ S} be
a nonexpansive semigroup on C. Then the followings are equivalent:

(i) {Tsx : s ∈ S} is bounded for some x ∈ C;
(ii) {Tsx : s ∈ S} is bounded for all x ∈ C;
(iii) A(S) ̸= ∅.

Theorem 3.6. Let C be a nonempty subset of a Hilbert space H and S a left
reversible semitopological semigroup. Let S = {Tt : t ∈ S} be a nonexpansive semi-
group on C into itself. Suppose that {Ttx : t ∈ S} is bounded for some x ∈ C. Then

A(S) ̸= ∅. Here S =
{
T : T ∈ S

}
.

Theorem 3.7 ([2, Theorem 4.1]). Let C be a nonempty subset of a Hilbert space
H. Let S be a commutative semigroup and let S = {Tt : t ∈ S} be a nonexpansive
semigroup on C such that {Ttx : t ∈ S} is bounded for some x ∈ C. Let {µα} be
a strongly asymptotically invariant net of means on C(S), i.e., a net of means on
C(S) such that

lim
α

∥µα − l∗sµα∥ = 0,

Then, for any u ∈ C, {Tµαu} converges weakly to u0 ∈ A(S) (or A(S), where

u0 = lim
t

πA(S)Ttu = lim
t

π
A(S)Ttu. Here S =

{
T : T ∈ S

}
.

4. Open problems

1. Observe that the following result is not a consequence of our main theorem
(Theorem 3.1):

Theorem 4.1 ([14]). Let C be a nonempty subset of a Hilbert space H and let
T : C → C be a generalized hybrid mapping. Then, A(T ) ̸= ∅ if and only if there
exists an x0 ∈ C such that {Tnx0} is bounded.

Thus it is natural to ask if the Kirszbraun-Valentine Theorem can be extended
to a more general class of mappings.

2. It is also interesting to extend the Kirszbraun-Valentine Theorem to a more
general space.
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3. Extend Theorem 1.4 and Theorem 1.5 to cover the case where C is not
necessary convex.

Acknowledgement

The first author is grateful to Hong Kun Xu and the Department of Applied
Mathematics, National Sun Yat-Sen University for kind hospitality and support.

References

[1] W. Anakkamatee and S. Dhompongsa, Rode’s theorem on common fixed points of semigroup
of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2011, 2011:34.

[2] S. Atsushiba andW. Takahashi, Nonlinear ergodic theorems without convexity for nonexpansive
semigroups in Hilbert spaces, J. Nonlinear Convex Anal. 14 (2013), 209–219.

[3] J. M. Borwein, Fifty years of maximal monotonicity, Optimization Letters 4 (2010), 473–490.
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