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ABSTRACT. In this paper, we apply recently result of Lin et al. [16] to study
the solution of the following problems: multiple sets split monotone variational
inclusion problem, multiple sets split fixed point problem for k-strict pseudo con-
tractive problem, multiple sets split systems of variational inclusion problems,
multiple sets split systems of variational inequalities problems, multiple sets split
systems of fixed point problem. We give a simple methods to study these prob-
lems. Our results contain many original results and will have many applications
in many fields of science and mathematics.

1. INTRODUCTION

Let C1,Co, ...,y be nonempty closed convex subsets of a real Hilbert space H.
The well-known convex feasibility problem (CFP) is to find z* € H such that

z* e CiNCyNn---NChy.

Convex feasibility problem has received a lot of attention due to its diverse applica-
tions in mathematics, approximation theory, communications, geophysics, control
theory, biomedical engineering. One can refer to [10,22].

The split feasibility problem (SFP) is to find a point

z* € C such that Az™ € Q,

where ', @ are nonempty closed convex subsets of real Hilbert spaces Hi, Ho,
respectively. A : Hy — Ho is a bounded linear operator. The split feasibility
problem (SFP) in finite dimensional real Hilbert spaces was first introduced by
Censor and Elfving [7] for modeling inverse problems which arise from medical
image reconstruction. Since then, the split feasibility problem (SFP) has received
much attention due to its applications in signal processing, image reconstruction,
approximation theory, control theory, biomedical engineering, communications, and
geophysics. For examples, one can refer to [1,5-10,13-15,17,18,22,23,26] and related
literatures.

In 2011, Moudafi [19] introduced and studied the following split monotone vari-
ational inclusion (SMVI) :

1.1 Find # € Hy such that z € (B; + G1)~10
( :
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and
(1.2) y = A% € Hj such that § € (B+ G)10,

where Hy and Hs are real Hilbert spaces, A : Hy — Hs is a bounded linear operator,
By : HA — Hy and B : Hy — Hy are given operators, G; : H; — H; and
G : Hy — Hs are given multivalued mappings.

Moudafi [19] proved the following weakly convergence theorem for the solution
of the split monotone variational inclusion (SMVI) with the iteration defined by

x1 € C chosen arbitrarily,
Tpi1 = JII = ABy)(I — yA*(I — T)A)wy,

where Jfl is the resolvent of G defined by Jfl = (I + \G1)~! for each A\ > 0 and
T = J%(I — rB) for each r > 0.

Let C1,Co, ..., Cp be nonempty closed convex subsets of Hi, Q1,Qo, ..., Qm be
nonempty closed convex subsets of Hs, and Ay, Ao, ..., Ay, : H1 — Ho be bounded
linear operators. The well-known multiple sets split feasibility problem (MSSFP)
is to find z* € H; such that

x* € C; such that A;x* € Q; foralli=1,2,...,m.

Motivated by the above works, recently Lin et al. [16] considered the following

algorithm:

vg € H is chosen arbitrarily,
(1.3) Von41 i= Anpl + bpvo, + CnJng (I — 5nB1)’U2n, neNU {0},
Vo = fnu + gnvon—1 + th%Q (I - ’YnBZ)UQn—ly n €N,

where G1,Go are two set-valued maximal monotone mappings on a real Hilbert
space Hi, B1,B2 : C — H; are two mappings, {an}, {bn}, {en}, {fn}, {gn} and
{hn} are sequences in [0,1]. Lin et al. [16] showed the sequence {v,} generated by
(1.3) converges strongly to some & € (B1+G1)~1(0)N (B2 +G2)~1(0) under suitable
conditions.

In this paper, we apply recently result of Lin et al. [16] to study the solution
of the following problems: multiple sets split monotone variational inclusion prob-
lem, multiple sets split fixed point problem for k-strict pseudo contractive problem,
multiple sets split systems of variational inclusion problems, multiple sets split sys-
tems of variational inequalities problems, multiple sets split systems of fixed point
problem. We give a simple methods to study these problems. Our results contain
many original results and will have many applications in many fields of science and
mathematics.

2. PRELIMINARIES

Throughout this paper, let H, Hi, Ho, Hs denote the real Hilbert spaces with
inner product (.,.) and norm || - ||, N the set of all natural numbers, and R* be
the set of all positive real numbers. A set-valued mapping A with domain D(A)
on H is called monotone if (u — v,z —y) > 0 for any u € Az, v € Ay and for
all , y € D(A). A monotone operator A is called maximal monotone if its graph
{(z,y) : x € D(A),y € Az} is not properly contained in the graph of any other
monotone mapping. The set of all zero points of A is denoted by A~1(0), i.e.,
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A7Y0) = {x € H : 0 € Ax}. In what follows, we denote the strongly convergence
and the weak convergence of {z,} to = € H by x, — = and z,, — x, respectively.
In order to facilitate our discussion in the next section, we recall some facts. The
following equality is easy to check:

(2.1)

law+By+72I1? = allal 2+ Bllyl 2+ 12112 — aBlz — yl 2 — a2 — 2I|2 — By — =112
for each x,y,z € H and «, 8,y € [0,1] with a +  + v = 1. Besides, we also have
(22) llz +y|? < [le|* +2(y, = +y)

for each x,y € H. Let C be a nonempty closed convex subset of H, and a mapping
T : C — H. We denote the set of all fixed points of T' by Fixz(T). A mapping
T : C — H is said to be nonexpansive if ||Tx —Tyl|| < ||z —y|| for every z,y € C. A
mapping T : C — H is said to be quasi-nonexpansive if Fiz(T) # 0 and ||Tx —y|| <
||z —y|| for all x € C and y € Fiz(T). A mapping T : C — H is said to be firmly
nonexpansive if

1Tz = Ty|* < |lz = yl* = I( = T)a — (1 = D)yl

for every xz,y € C. Besides, it is easy to see that Fiz:(T') is a closed convex subset
of C'if T': C' = H is a quasi-nonexpansive mapping. A mapping T : C' — H is said
to be a-inverse-strongly monotone (a-ism) if

(v —y, Tz —Ty) > o|Tz — Ty|

for all z,y € H and a > 0.
The follows lemmas are needed in this paper.

Lemma 2.1 ([29]). Let A : H1 — Ha be a bounded linear operator, and A* the
adjoint of A. Suppose that C' is a nonempty closed convexr subset of Ho, and F :
C — Hso is a firmly nonexpansive mapping. Then A*(I — F)A is a W-ism, that
is,
1
TAT?
for all x,y € H;.

|A*(I — F)Az — A*(I — F)Ay||? < (z —y, A*(I — F)Az — A*(I — F)Ay)

Lemma 2.2 ([2]). Let C be a nonempty closed convex subset of H, and F' : C — H
a firmly nonexpansive mapping. Suppose that Fix(F) is nonempty. Then (x —
Fz,Fx —w) >0 for each x € H and each w € Fix(F).

Let C be a nonempty closed convex subset of H. Then for each x € H, there is a
unique element z € C such that ||z — Z|| = minycc ||z — y||. Here, we set Pcx =z
and P¢ is said to be the metric projection from H onto C.

Lemma 2.3 ([25]). Let C be a nonempty closed convex subset of H, and let Pc be
the metric projection from H onto C. Then (x — Pox, Pox —y) > 0 for each x € H
and each y € C.

For a set-valued maximal monotone operator G on H and r > 0, we may define
an operator J¢ : H — H with J& = (I + rG)~! which is called the resolvent
mapping of G for r.
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A mapping T : H — H is said to be averaged if T = (1 — a)I + «.S, where
a € (0,1) and S : H — H is a nonexpansive mapping.
Lemma 2.4 ([11]). Let C be a nonempty closed convex subset of H, and T : C' — H
a mapping. Then the following hold:
(i) T is nonexpansive mapping if and only if I —T is %—mverse—stmngly mono-
tone (3-ism).
(ii) If S is v-ism, then S is Z-ism.
(iii) S is averaged if and only if I — S is v-ism for some v > %
Indeed, S is a-averaged if and only if I — S is (Tz)—ism, for a € (0,1).
(iv) If S and T are averaged, then the composition ST is also averaged.
(v) If the mappings {T;}, are averaged and have a common fized point,
then (i, Fiz(T;) = Fiz(Ty - - - T,,) for each n € N.

Let C' be a nonempty closed convex subset of H. The indicator function t¢

defined by
0,zeC

o= { 0, z¢C
is a proper lower semicontinuous convex function and its subdifferential 0t defined
by

Owcx={zeH: (y—uz,2) <ic(y) —c(x), Yy € H}

is a maximal monotone operator [21]. Furthermore, we also define the normal cone
Ncou of C at u as follows;

Neuw={z€eH:(z,v—u) <0, YveC}.
We can define the resolvent inc of dic for A > 0, i.e.
incx = (I + \0i¢) =
for all x € H. Since
dicx ={z€H:icx+ {2,y —z) <icy, Yy € H}
={zeH:(z2,y—2x) <0, VyeC}
= Ngx
for all x € C, we have that
U= incx S €u+ Adicu
S r—u € ANou
S (r—uy—u) <0, VYyeC
& u = Pox.

Let C, Q and Q' be nonempty closed convex subsets of Hi, Ho and Hs, respec-
tively. For each i = 1,2, and k; > 0, let B; be a k;—inverse-strongly monotone
mapping of C' into Hi, G; a set-valued maximal monotone mapping on H; such
that the domain of G; is included in C. Let G be a set-valued maximal monotone

mapping on Hs such that the domain of G is included in Q and let G’ be a set-valued
maximal monotone mapping on Hs such that the domain of G is included in Q. For
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v > 0, let B be a v—inverse-strongly monotone mapping of () into Ho. For Vo> 0,
let B' be a V/—inverse—strongly monotone mapping of Q" into Hs. Let I} be a firmly
nonexpansive mapping of Hs into Ho and F5 a firmly nonexpansive mapping of Hs
into Hs. Let T; be an averaged mappings of Hs into Hs for ¢ = 1,2...,m and S;
be an averaged mapping of Hs into Hs for j = 1,2,...,n. Note Jfl = (I +XGy)7!
and J&2 = (I +rGo)~ ! for each A > 0 and r > 0. Let A; : H1 — Ha be a bounded
linear operator, Az : H; — Hs3 a bounded linear operator, and A} be the adjoint
of A; for i = 1,2. Throughout this paper, we use these notations unless specified
otherwise.

Theorem 2.5 ([16]). Suppose that (B1+G1)~1(0)N(B2+G2)~1(0) is nonempty, and
{an}, (bn}, {cnbs Un}, {gn}, Uhn} are sequences in [0, 1] such that an-+bn-+cn = 1,
fntognt+h,=10<a, <1, and 0 < f, <1 for each n € N. For an arbitrarily
fized u € H. Define a sequence {v,} by

vg € H is chosen arbitrarily,
(2.3) Vopt1 = Gpt + bpvo, + anng (I — 6, B1)vapn, n € NU{0},
Von 1= full + gnU2n—1 + th%Q (I - WRBQ)Uanla n € N.

Then nh_)rglo Un = P(B,4+G1)~1(0)n(Ba+G2)-1(0)U provided the following conditions are

satisfied:
(i) lim a, = lim f, =0;

n—oo n—o0

(ii) either Y 7 an =00 or Yy 2 fn = 00;

(iii) 0 C (0,00), v C (0,00), 0 < a <0y <b <2k and 0 < f <, < g < 2kKa,
for each n € N and for some a,b, f,g € RT;

(iv) liminf ¢, > 0, liminf Ay, > 0.
n— o0 n—oo

3. MULTIPLE SETS SPLIT FIXED POINT PROBLEM

Let C be a nonempty closed convex subset of H. Let g : C x C — R. Then the
equilibrium problem is to find & € C such that

g(z,y) >0, forally € C

whose solution set is denoted by EP(g). For solving an equilibrium problem, we
may assume the bifunction g satisfies the following conditions such that

(A1) g(z,z) =0, V2 e}

(A2) g is monotone, that is, g(x,y) + g(y,x) <0, V x € C;

(A3) for all @,y,z € C,limsup,g((1 — t)x +t2,y) < g(=,y);

(A4) for all z € C, g(x,-) is convex and lower semicontinuous.

We have the following lemmas from Blum and Oettli [3], and Combettes and
Hirstoaga [12].

Lemma 3.1 ([3]). Let C be a nonempty closed convex subset of H and g : CxC — R
a function satisfying conditions (A1)—-(A4), and supposer > 0, x € H. Then, there
exists a unique z € C such that

1
g(z,y)—l—;(y—z,z—x) >0, forally e C.
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Lemma 3.2 ([12]). Let C be a nonempty closed convex subset of H and g : C xC —
R a function satisfying conditions (A1)-(A4). Forr >0, define J? : H — C by

1
J;f’ac:{ZEC:g(z,y)—i—r(y—z,z—x>20, VyEC}.

for all x € H. Then the following hold:
(a) J? is single-valued;

(b) J? is firmly nonexpansive;

(c) FZJJ(JQ) EP(g);
(d

) EP(g) is closed and convex.

We call J7 the resolvent of g for r > 0.
Takahashi, Takahashi and Toyoda [24] gave the following lemma.

Lemma 3.3 ([24]). Let g : C x C — R be a bifunction satisfying the conditions
(A1)-(A4). Define Ay as follows:

_J{zeH gz, y) >y —x,2),YVyeC} if zecC,;
B ap={ el F oeeC

Then, EP(g) = Ag_IO and Ay is a maximal monotone operator with the domain
of Ay C C. Furthermore, for any x € Hy and r > 0, the resolvent T{ of g coincides
with the resolvent of Ay, i.e., T¢x = (I +rA,) 'z

Recently Yu et al. [28] give an essential result in this paper for the following
essential problem (SFP-1):
Find z € H; such that Az € (B + G)71(0).

Lemma 3.4 ([28]). Given any T € H;

(i) If  is a solution of (SPF — 1), then (I — NAJ(I — Uy)A1)T = & where
Uy =JS(I - oB).

(ii) Suppose that Uy = JS(I — oB), 0 < \ < R%’ 0 < o < 2v. Then
A(I = Ur)Ay is a f--ism mapping, JG(I —oB) and (I — NAL(I — Uy)A;)
are averaged.

(iii) Suppose that Uy = JF(I —0B), 0 < A < -, 0 < 0 < 2v, (I — NAj(I -
U1)A1)z = Z and the solutions set of (SPF — 1) is nonempty. Then T is a
solution of (SPF — 1),

The following lemma whose proof is essential the same as Theorem 4.1 in [28] is
a special case of Theorem 3.2 in [27]:

(SFP-2) Find z € H; such that A1z € Fiz(Fy).

Lemma 3.5. Given any T € H;

(i) If T is a solution of (SFP — 2), then (I — p,AJ(I — F1)A1)T = & for each
n € N.

(ii) Suppose that 0 < p, < 7 ”2+2, for each n € N. Then Ai(I — F1)A; is a
ﬁ—ism mapping and (I — p,AJ(I — F1)A1) are averaged. Suppose fur-
ther that (I — pn,AJ(I — F1)A1)T = & and the solution set of (SFP — 2) is
nonempty. Then T is a solution of (SFP — 2).
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Recently, Lin et al. [16] study the following problem.
(SFP-3) Find Z € H; such that z € Fiz(J$!) and A1 € Fiz(F}).
As a special case of Lemma 3.5, we have the following recently result of Lin et
al. [16].
Lemma 3.6 ([16]). Given any T € H,;.
(i) If = is a solution of (SFP — 3), then J/il (I — ppAi(I — F1)A1)T = T for
each n € N.
(ii) Suppose that Jpcil (I—pnA5(I—F1)A1)T =T with0 < p, < m, for each
n € N and the solution set of (SFP — 3) is nonempty. Then (I — p, A5(I —
F1)Ay) and Jpcil (I — pnAj(I — F1)A1) are averaged and T is a solution of
(SFP — 3).
Proof. To prove(ii), suppose that all the assumption is satisfied. Then there exists
w € Hj such that w € Fix(ngl) and Ajw € Fiz(Fy). Hencew € Fix(JpCle) N Fixz(I—
pnAi (I — F1)A1). Since ngl(l — A5l — F1)A1)T = Z, it follows from Lemma
2.4 that € Fiz(J$') (N Fiz(I — ppAj(I — F1)A1). Therefore z € Fiz(JS') and
z € Fiz(I — p,Aj(I — F1)A;). Then Lemma 3.6 follows from Lemma 3.5. O
Now, we recall the following multiple sets split feasible problem (MSSFP-A1):
Find Z € H; such that Z € G71(0) N G5 1(0),
Al.f < FZ.’B(Fl) and Ag.f' S FZ.%'(FQ)
Theorem 3.7 ([16]). Suppose that the solutions set Qa1 of (MSSFP — Al) is
nonempty, and {an}, (b, {ca}, Un} {gn}, {hn} are sequences in [0,1] with
an+bpnt+cen=1 fo+gn+h,=1,0<a,<1, and 0 < f, <1 for each n € N.
For an arbitrary fized u € H, a sequence {v,} be defined by
{ Vant1 i= Ant+ byvag + cn JSH (I — pp AT (I — Fi)Ay)van, n € NU{0},
Vo, 1= fnu + gnV2n—1 + thUan (I — UnAE(I — F2)A2)'U2n_1, n € N.

Then ILm vp, = Po,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;

n—oo n—0o0
(i) either Y 00 apn =00 or Y o0 frn = 00;
iv)

(iv) liminfe, > 0 and liminf A, > 0.

We consider the following multiple sets split monotonic variational inclusion prob-
lem (MSSMVIP — B1):

{ Find Z € H; such that Z € GT1(0) N G5 1(0),
A1z € (B4 G)71(0) and Az € (B + G')71(0).
That is,
Find z € H; such that 7 € Fim(JAGl) N Fiz(JS?),
A1z € Fiz(Uy) and Asx € Fiz(Us) where
Uy =J(I~0B),Uy=JG (I -0'B
Let Q1 be the solutions set of (MSSMVIP — B1).

).
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Theorem 3.8. Suppose that the solutions set Qp1 of ( MSSFP — B1) is nonempty,
and {an}, {bn}, {en}, {fn}, {gn}, {hn} are sequences in [0,1] with ap+bp+cp =1,
fmtgn+thy,=10<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
fized u € H, a sequence sequence {v,} is defined by
{ Von4+1 i=  apt + bpvay + Canl (I - AAT(I - Ul)Al)UQm n € NU {0},
Von = falUl + gnUon—1 + thTGQ (I — T‘Ag([ - Ug)AQ)Ugn_l, n € N,

where Uy = JS(I — 0B),Us = Jg([ —o'B'). Then ILm v, = Pqy, u. provided the
n o
following conditions are satisfied:
(i) lim a, = lim f, =0;
n—o0o n—o0
(ii) either Y 7 an =00 or Yy 2 fn = 00;
(i) 0< A< A, 0<r< 4, 0<o<2vand0<o <2V
) 1 2

(iv) liminf ¢, > 0 and liminf A, > 0.
n—oo n—o0

Proof. For each ¢ = 1,2, by Lemma 3.4, A*(I — U;)A; is %—ism for some p; > %

Put By = Aj(I — U1)A; and By = A3(I — Uz) Az in Theorem 2.5. Then algorithm
in Theorem 2.5 follows immediately from algorithm in Theorem 3.8.
Since the solution set of (MSSFP — B1) is nonempty, we have,
(3.2)
W € FizJJt (| Fix(I - AAT(I-U1)Av)) (| FixJ > () Fia(I - rA5(I - Up) Ag) # 0.
This implies that,

_ . G . G2

w € Fiz(JN(I = ABy)) (| Fiz(JF>(I = rBy)) # 0
and

W € (B +G1) M0 \(Bz + G2) 10 # 0.

By Theorem 2.5, nh_)rrolo Un = P(B,4+G1)~10n(Bo+Ga)—10U-
On the other hand, by Lemma 3.4, we have that
(3.3) I—ABy =I—-XAT(I-Uy)A; and I —rBy = I —rA5(I —Us) Az are averaged .

since J)\Gl, JTG 2 are firmly nonexpansive mappings, it easy see that
(3.4) Jfl, JE2 are % averaged.
By (3.2), (3.3), (3.4) and Lemma 2.4(v), we see that

Fig(J{Y) (Fiz(I = ABy) (| Fia(J&2) (| Fix(I — rBy)
(35) = Fiz(J$ (I — ABy)) (| Fiz(JE2(I — rBy)).

If we (By +G1)~'0N (B + G2)~'0 , we have that w € Fiz(JU'(I — ABy))()
Fix(JS2(I — rBs)). By (3.5), we have that

(3.6)

w € Fiz(JJY) (| Fiz(I = ABy) (| Fia(J92) (| Fiz(I — rBy)

= Piz(J{Y) (Fiz(I = MA(I - Uy)Ay) [ Fiz(JC?) (| Fiz(I — rAs(I — Us) As).
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By (3.6) and Lemma 3.4(iii), w € G7'0N G510, Ajw € (B + G)™10 and Ayw €
(B/ + G/)_lo. Therefore, (Bl + Gl)‘l()ﬂ (BQ + Gg)_lo C Qp1. If w € Qpq, we have
that
(3.7)

w € FigJ{t (Fiz(I = MAj(I = Uy)Av) (| FizJ > (| Fia(I - rA5(I — Uz) As)
= PizJ{' (Fiz(I — ABy) (| FizJZ? (| Fiz(I — rBy).

This implies that w € FizJ (I —ABy) (| FizJE2 (I —rBs) = (By +G1) 10N (Bz +
Gg)flo. Therefore, Qg1 C (Bl + Gl)flo N (BQ + Gg)flo and (Bl + Gl)flo N (BQ +
G2)710 = Qp;. This complete the proof of Theorem 3.8. O

Remark 3.9. The proof, iteration of Theorem 3.8 are different from Theorem
4.2 [28]. In Theorem 4.2 [28], we use a result of hierarchical inequality to study the
problem (MSSMVIP — B1), but in theorem 3.8, we use proximal point algorithm
to study this problem. Theorem 3.8 improves Theorem 3.1 [19].

Now, we consider the following multiple sets split monotonic variational inclusion
problem (MSSMVIP — C1):
Find z € H; such that Z € G71(0) N G5 1(0),
A7 € Fiz(Fy) and Asz € (B'+ G")~1(0).
That is,
Find & € Hy such that 7 € Fiz(J) () Fiz(J&?),
A7 € Fiz(Fy) and As € Fiz(Us) where Uy = JG (I — o' B)).
Let Q¢1 be the solutions set of (MSSMVIP — B1).

Theorem 3.10. Suppose that the solutions set Qo1 of ( MSSEFP — C1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an,+b,+c, =1,
fmtgn+h,=10<a, <1, and0 < f, <1 for each n € N. For an arbitrary
fized u € H, a sequence sequence {v,} is defined by

{ Vona1 :=  QpU + byvoy, + anpCfll (I — pnA5(I — F1)A1)van, n € NU{0},
Vop = foU + gpvon—1 + thTGQ (I — TA;(I — UQ)AQ)UQn_l, n €N,

where Uy = Jﬁ (I — O',B,). Then lim v, = Pq,,u provided the following conditions
n— oo
are satisfied:
(i) lim a, = lim f, =0;
n—oo n—oo
(i) either Y o7 an =00 or Y o0 frn = 00;
(iii) 0<pn<m,0<r<1%2 and 0 <o <2v for eachn € N;

(iv) liminfe, > 0, liminf A, > 0.

Proof. Since F; is a firmly nonexpansive, it follow from Lemma 3.5 that we have
that Af(I —F1)A; : Ch — Hy is m—ism. By Lemma 3.4, A5(I —Usz)A; is %—ism.
Put By = Aj(I — F1)A; and By = A5(I — Uz) A2 in Theorem 2.5. Then algorithm
in Theorem 2.5 follows immediately from algorithm in Theorem 3.10.

Since the solution set of (MSSFP — C1) is nonempty, by Lemmas 3.4 and 3.5, we

have that, w € Fz‘x(Jfl(I — NS — F)AD) O Fiz(JG2 (I — r A5(I — Us) Ag) # 0.
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This implies that, @w € (By + G1) 710 (B2 + G2) 710 # 0.

By Theorem 2.5, nh—>Holo Un = P(B,4G1)-1(0)n(B2+G2)-1(0)U- Let nh_)rgo vp = Z. Then
follow the same arguments as in Theorems 3.7 and 3.8. We can prove Theorem
3.10. 0

4. MULTIPLE SETS SPLIT SYSTEM OF VARIATIONAL INEQUALITIES PROBLEMS

Let T be a nonexpansive mappings of Hs into Hs and S be a nonexpansive
mapping of Hs into Hs.
Now, we study the following multiple sets split feasible problem (MSSFP-D1):
Find 7 € H; such that & € G71(0) NG5 *(0), A1Z € Fiz(T) and
Az e I ’LHZ(S )

Theorem 4.1. Suppose that the solutions set Qp1 of (MSSFP — D1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with a,+by,+cy, =1,
fatgn+h,=10<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
fixzed u € H, a sequence {v,} be defined by

Vontl i=  QpU + bpvoy + anGl (I — ppA5(I —T)A1)ve,, n € NU{0},
Von :=  faU + gnvon_1 + h JGQ( — o AS(I — S)Az)van—1, n € N.

Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;
n—oo n—0o0
(ii) esther Y o7, (in =00 or Yy o7, fq = 00;
(iii) 0 < p, < Az 0 < on < [ for each n € N;
(iv) liminf ¢, > 0 and liminf A, > 0.

n—oo n—o0

Proof. Put Fy =1 +T and F = 1 +S Since T is a nonexpansive mappings of Hs into
Ho and S is a nonexpanswe mappmg of Hs into Hs. It is easy to see that F} and
F5 are firmly nonexpansive mappings. It is easy to see that algorithm in Theorem
4.1 follows immediately from algorithm in Theorem 3.7, Fiz(Fy) = Fiz(T) and
Fix(Fy) = Fix(S). Therefore, Theorem 4.1 follows immediately from Theorem
3.7. O

For each ¢ = 1,2,...,m; and j = 1,2,...,mo, let T; and S; are averaged. We
study the following multiple sets split feasible problem (MSSFP-D2):
Find # € H; such that z € G71(0) N G51(0), A1z € N, Fiz(T;) and
AsT € ﬂ?:l sz(S])

Theorem 4.2. For each i = 1,2,...,m1 and j = 1,2,...,ma, let T; and S; are
averaged. Suppose that the solutions set Qpy of ((MSSFP — D2) is nonempty, and
{an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0,1] with a, + by, + ¢, = 1,
fatgn+h,=10<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
fixzed u € H, a sequence {v,} be defined by

Vong1 = At + byvon + cn JSH (I — ppAf(I — TVToTs . . . Ty ) A1 )2y,
n € NU {0},
Vop, 1= fnu + gnVon—1 + thUG,f (I - UnAz(I - 5152 - SmQ)Ag)Ugn_l,
n € N.
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Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;

n—oo n—oo

(i) either Y o7 an =00 or y -7 fn = 00;

(iii) 0 < pn < m, 0<o,< m for each n € N;
(iv) liminf ¢, > 0 and hm 1nfh > 0.

n—oo

Proof. Since for each ¢ = 1,2,...,m; and j = 1,2,...,mg, T; and §; are aver-
aged. By Lemma 2.4, we knows that 7" = T115--- T, and S = 5152 Sm,
are averaged. This shows that T" = T115---T;,, and S = S1.52--- S, are non-
expansive. By assumption, Qps # @), hence there exists w € H; such that w €
GH0) NG 1H(0), Ajw € N, Fiz(T;) and Ayw € Nj=1 Fiz(S;). By Lemma 2.4,
w € GTH(0)NG5(0), Ayw € Fiz(T) and Ayw € Fiz(S) and Qp; # (. By Theorem
4.1, there exists # € H; such that z € G71(0) NG5 (0), 417 € Fix(TyTy- - Trn,)
and AT € Fi:E(Slsg -Smy). By Lemma 2.4, Fiz(T'Ty -+ Tp,) = iz, Fiz(T;)
and Fiz (5152 Sm,) = (;=; Fiz(S;). Therefore, the proof is completed. O

Let C, Q and Q  be nonempty closed convex subsets of Hi,Hs and Hs,
respectively. For each ¢ = 1,2,...,2mq, 7 = 1,2,...,2me, k; > 0, and
Iﬁlg» > 0, let L; be a k;—inverse-strongly monotone mapping of () into Hy and L;- be
a fi;-—inverse—strongly monotone mapping of Q' into Hs. For each i =1,2,...,2m;,
7=1,2,...,2ms, let M; be a maximal monotone mapping on Hy and MJ’ be a be a
maximal monotone mapping on Hj such that the domain of M; is included in @, the
domain of M} is included in Q. We define the set M 0as M;'0={zecH:0¢c

Mz} Let JM = (I + A M;) ™" and Jp’ = (I + 7, M)~ for each n € N, A, > 0
and 7, > 0 . Throughout this section and next section, we use these notations and
assumptions unless specified otherwise.

In the following theorem, we study the following multiple sets split systems of
variational inequalities problem (MSSFP-D3):

Find z € Hq, such that for each ¢ =1,3,...,2m; —1, 7 =1,3,...,2mg — 1,
thee exist 4; € Ho, w; € Hs, with

() 2 € G (0) N Gy (0);

(0Lis1 A% + 1 — A2, u; — 1;) > 0 for all u; € FizJo
(aL w; + A% — a5,y — A17) > 0 for all y € FizJM:;

(oL, 1 AsZ + wj — AsZ, wj — w;) > 0 for all w; € FixJC],wj“; and
{

’

oL W5 + Ao —wj,z — Axx) > 0 for all z € FixJéwj.

Theorem 4.3. Suppose that the solutions set Qps of (MSSFP — D3) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with a,+by,+cn, =1,
fatgn+h,=1,0<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
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fized u € H, a sequence {v,} be defined by

Von1 = A+ byvag + cn JSH(I — pp AT(I — JM(I = oLy) M2 (1 — o Ly)
o TN g L 1) TR (I = 0 Lo, ) A1 )van, n € NU {0},

Vo = fatt + Guvan—1 + b JC2 (I — o A5(I1 — J3N (I — 6LY)J)"2 (1 — 6LY)
Mémz—l / M;mg /

Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;
i) either S50 . a, =00 or Y oo frn = 00;
n=1 1 n=1 1
(iii) 0<pn<m,0<an<mforeachn€N,

0 <o <2min{ki, k2,...,Komy } and 0 < & < 2min{Ky, Ky, ..., Koy, }
(iv) liminf ¢, > 0 and liminf A, > 0.
n—oo n—oo

Proof. For each i = 1,3,..,2m; — 1 and j = 1,3,...,2my — 1, put T; = JMi(I —

. M, r oM )
oLi)J2" (I — oLigr) and S; = J5 7 (I — 6L})J5 7' (I — §L),) in Theorem 4.2.
By Lemma 3.4, for each i = 1,2,...,m; and j = 1,2,...,mg, JMi(I — oL;) and

J;Mj (I — (5L;) are averaged. By Lemma 2.4, we see that T; and S; are averaged.
Then, by Theorem 4.2, there exists Z € H; such that & € G7(0) N G5 1(0), A7 €
Nizy Fiz(Ti) and A2z € (i, Fiz(S;).

Put A1z = g, and AsZ = Z, then for each i = 1,3,...,2m1 — 1 and j =
1,3,...,2ms — 1,

§ € FiaT, = Fiz(JM (I — oLi)J3"™ (I — 0Li1))
and
5 € FixS; = Fia(Jy * (I — L)), " (I = 6L),,)).
Therefore,
— M Mi+1 _
Yy = Jg Z(I — ULZ‘)JO- (I — ULi+1)y
and

!

= Jy (I = 6L,)J, (I = 6L),)%

Foreachi=1,3,...,2m;—1and j=1,3,...,2m9 — 1, Put
u; = Jé\/[iﬂ(f —oLiy1)y
and /
Wy = Jy (I = 6L, )z,
Then, for each i =1,3,...,2my —1land j =1,3,...,2my — 1,
g=JM(I - oL)u,
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and

zZ= J§ (I — SL. )W;
By Lemma 2.2, for each ¢ =1,3,...,2m; —1 and] =1,3,...,2mo — 1, we obtain
that

(i) (oLiy19y + U; — §,u; — ;) > 0 for all u; € FixJéw"“;
(i) (oLiu; + 9 — @i,y — ) > 0 for all y € FizJMi;
(iii) (6L ]_HZ +w; — Z,wj —w;) > 0 for all w; € Fz'a;Jéwj“; and
M/
(iv) <(5L Wi+ Z—wj,z—Z) >0forall z€ FixJy”’

0

In the following theorem, we study the following split systems of variational
inequalities problem (MSSFP-D4):
Find z € H4, such that for each i =1,3,...,2m1 — 1, j =1,3,...,2mgy — 1, thee
exist @; € Ha, w; € Hz, with
(i) € G1(0) NGy (0),
(i1) (oLit1T + u; — T, u; — u;) > 0 for all u; € FixJMi“;
(iii) (oL;u; + % — 5,y — ) > 0 for all y € FizJM:;
)
1)

/

(iv
/

(
(8 j_HAga? +wj — AsZ, w; — w;) > 0 for all w; € FiJ:J;V[j“; and
(

M
(vi SL. ;W0; + A% — wj, z — Apx) > 0 for all z € FixJ;~’

Theorem 4.4. Suppose that the solutions set Qp4 of ((MSSFP — D4) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with a, 4+ by, +cn =1,
fmtgn+thy,=10<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
fized u € H, a sequence {v,} be defined by
Uopil i=  apt + bpvoy, + anGl (I — pn(I Jéwl (I — aLl)J(f,V[?(I —oLs)
- To PN = g Ly 1) o (I — 7La )z, n € NU {0},

Vo = fatl 4 Gnvan_1 4 hn (I — 0, A5(1 — J; 0 (1 = SLY)J)" (1 - oL,
M/m _ ’ M/m ’
“Ja e 1(1_ 5L2m2—1)J5 ’ (I - 5L2m2))A2)U2n*17 n € N.

Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;
(ii) either 22%1 an = 00 or Z}fﬁzl fn = 00;
(iii) 0 < pn < 3, 0<Un<mf0reachnEN,

0 <o <2min{k1, Ko, ..., Ko } and 0 <0 < 2min{ky, Ky, ..., K, };
(i )hm1nfcn>0andhm1nfh > 0.
n—oo n—oo

Proof. Put Ay = I in Theorem 4.3, then Theorem 4.4 follows immediately from
Theorem 4.3. U

In the following theorem, we study the following multiple sets split systems of
variational inequalities problem (MSSFP-D5):
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Find z € Hq, such that for each i =1,3,...,2my — 1, j=1,3,...,2mgy — 1, thee
exist @; € Ha, w; € Hz, with
(i) = € GH(0) NGy H(0);
(ii) <O’Li+1A1.T +u; — A1T,u; — 1_L1> > 0 for all u; € Q;
(ii) (oL;u; + A1T — 4,y — A1Z) > 0 for all y € Q;
(iv) <5L;+1A2:Z“ +; — A, wj — ;) > 0 for all w; € Q; and
(V) <(5L;-'u_)j + AT — Wy, 2 — A2E> > for all z € Ql.
The following theorem is a special case of multiple set split systems of variational
inequalities problem.

Theorem 4.5. Suppose that the solutions set Qps of ((MSSFP — D5) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with a, 4+ by +cn =1,
fmtogn+h,=1,0<a, <1, and0 < f, <1 for each n € N. For an arbitrary
fized u € H, a sequence {v,} be defined by

Vop41 = GpU + bpvay,
+enJSH (I — pnAf(I — Po(I — oL1)Po(I — oLy)
.- PQ(I — O'Lgml,l)PQ(I — O'Lgml))Al)’UQn, neNU {0},
Von = fall + gnUon—1
+hnJ§2(I — 0y A5(I — Py (I = 6Ly) Py (I — 6Ly)
< Py (I = 6Ly, 1) P, ,(I 6L2m2))A2)v2n_1, n € N.
Then lim v, = Pq,. u provided the following conditions are satisfied:
n—oo
(i hm ap = hm fn=0;

)
(ii ; eztherz ,1an—oo or y > 1fn— ;

0<pn< HA1||2+2’O<U" A3 ”2+2 for each n € N,

\

(ii

0 <o <min{ki,k2,...,Kom } and 0 <0 < min{wy, kY, ..., KY,, };
(iv) liminfe, > 0 and liminf h,, > 0.
n—oo n—oo

Proof. For each i = 1,2,...,2my and j = 1,2,...,2mg, put M; = dig and M; =
aiQ/ Then M; is maximal monotone operator on Hs, for each i = 1,2,...,2m; and
M’ is a maximal monotone operator on Hs, for each j = 1,2,...,2mo. Since for
eachi=1,2,...,2my, JJ = Py, Fix( é)Q) @ and for each ji=1,2,...,2mg,

Ja,in = Py, Fw:(JdZQ,) = @'. Then Theorem 4.5 follows from Theorem 4.3. O

g

Remark 4.6. to the best of our knowledge, there is no result on the problems
(MSSFP — D2, MSSFP — D3, MSSFP — D4, MSSFP — D5).

For each i = 1,2,...,m1 and j = 1,2,...,mg, let T; and S; be average. In the
following theorem, we study the following convex feasibility problem (MSSFP-D6):
Find z € H; such that Z € G;*(0) NG5 (0) N Fiz(T1) N Fix(Ty)N---N
Fix(Tp,) N Fix(S1) N Fix(S2) N--- N Fix(Sp,)-
The following theorem is a special case of Theorem 4.2, but it is useful to the
study of other types of multiple sets split feasibility problems.

Theorem 4.7. For each i = 1,2,...,m1 and j = 1,2,...,ma, let T; and S; be
average. Suppose that the solutions set Qpg of (MSSFP — D6) is nonempty, and
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{an}, {bn}, {cn}, {fn}, {9n}, {hn} are sequences in [0,1] with a, + by, + ¢, = 1,
fantgnth,=1,0<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
fized u € H, a sequence {v,} be defined by

Vana1 =t + bpvag + cn JSH (I — pp(I — TiToT5 ... T, ) Jvan, n € NU {0},
Von = fpU + gnvon—1 + thg';f (I — O'n(f —515;... SmQ))Ugn_l, n € N.

Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;

(ii) either Y o7 an =00 or y o7 fn = 00;
(ili) 0 < pn < %, 0< 0, < % for eachn €N,
(iv) liminf ¢, > 0 and liminf A, > 0.

n—oo n—o0

Proof. Put A1 = I and As = I in Theorem 4.2, then Theorem 4.7 follows immedi-
ately from Theorem 4.2. O

5. MULTIPLE SETS SPLIT SYSTEM OF VARIATIONAL INCLUSION PROBLEMS AND
MULTIPLE SETS SPLIT SYSTEMS OF FEASIBILITY PROBLEMS

For each i € N, j € N, let F; be a firmly nonexpansive of Ho into Hs, FJ/ be a
firmly nonexpansive mapping of Hs into Hs. For each ¢ € N, let 4; : H1 — Ho
be a bounded linear operator and A} be the adjoint of A;, for each j € N, let
A;. : H1 — Hs be a bounded linear operator and (A;)* be the adjoint of A;.
Throughout this section, we use these notations and assumptions unless specified
otherwise.

In the following theorem, we study the multiple sets split system of variational
inclusion problems (MSSFP-E1):

Find Z € H; such that z € G{*(0)( G50, A4;z € (L; + M;)~'0 for each i =
1,2,...,mq and A}z € (L} + M]’-)_l() for each 7 = 1,2, ..,mo.

Theorem 5.1. Suppose that the solutions set Qg1 of (MSSFP — E1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with a, +by+cp =1,
fantgn+h,=1,0<a,<1,and0< f, <1 for eachn € N,

For an arbitrary fized u € H, a sequence {v,} be defined by

( Vop+1 = Apl + bpvay,
+enJSH I — pn(I — (I — 0 A5(I — Ur)A1)(I — 0 A5(1 — Us) Ag)
(I =0 A (I = Upy)Amy))v2n, m € NU {0},

Van 1= fnu + gnVon—1
+hn G2 (I — on(I — (I — §AY (I — U A (I — AL (I — Uj)Ab)
<o (I — (SA;nQ*(I — U;nQ)A;nQ))UQn_l, n € N.

\

where U; = JM(I — aL;) and U} = J; " (I - BL}).

Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;

(ii) either Y )"  ap =00 or Y | fn = 00;
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(iii) 0<pn<%, O<Un<%foreachn€N, 0 <a<2min{ki,...,km,}, 0<
g ’ o1l 1 1
B < ?mlln{lil,...l,limQ}, 0 <o < mln{R—l,R—Q,...,R—m} and 0 < § <
min{Ri/17R7/27...,R/7mz ;
(iv) liminf ¢, > 0 liminf A, > 0.
n—oo n—oo

Proof. For each i =1,2,...,my and j =1,2,...,mg, let T; = (I — c A} (I — U;) 4;)
and S; = (I — 5A;-*(I — Uj)A%). By Lemma 3.4, for each i = 1,2,...,m; and
Jj=1,2,...,mg, T; and S; are averaged. By Theorem 4.7, there exists T € H;
such that Find Z € H; such that z € G71(0) NG5 H(0) N Fiz(Ty) N Fix(Ty) N --- N
Fix(Ty,,) N Fiz(S1) N Fiz(S2) N -+ N Fiz(Sy,,). For each i = 1,2,...,m; and
j=1,2,...,me, & € Fiz(I — 0 A{(I — U;)A;) and T € Fix(I — §A} (I — U))A)).
By Lemma 3.4, for each i = 1,2,...,mq and j = 1,2,...,mq, A;T € FizU;, and
A’z € Fi:L‘UJ/-. Since FizU; = FixJMi(I — aL;) = (L1 + M;)~'0 and FizU} =

. M. / / I\
FizJg (I = BL;) = (L; + M;)~10. O

Remark 5.2. There are some differences between Theorems 5.1 and 3.8. The
multiple sets split monotone variational inclusion problem studies in Theorem 5.1
has system type, but Theorem 3.8 does not study system type.

In the following theorem, we study the multiple sets split system of variational
inclusion problems (MSSFP-E2):

Find Z € H; such that Z € Gfl()ﬂ G;l(], Az € Fix(F;) foreachi=1,2,....m
and A’T € Fiz(F}) for each j = 1,2,..,n.

Theorem 5.3. Suppose that the solutions set Qps of (MSSFP — E2) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn}, are sequences in [0, 1] with an+bp+cn =1,
fmtgn+h, =1 0<a, <1, and 0 < f, < 1 for each n € N. For each

1=12,...,m1 and j = 1,2,...,mg. For an arbitrary fixed v € H1i, a sequence
{vn} be defined by
( Von+1 = anu + by,

FenJSHI — pp(I — (I — 0 A5(I — F1) A1) (I — 0 A5(I — F)As)
(I =0 A (I = Fpy)Amy))van, n € NU{0},

Vo 1= fall + gnV2n—1
+hn JG2 (1 = (I — (I = §AY (I — Fy)A)(I = 54, (I — Fy) Ay)
(I =6A, (I —F,,)A,,.)van—1, n€N.

Then lim v, = Pqo,,u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;
n—oo n—o0
(ii) either Y 7 an =00 or Yy >2 fn = 00;
(iii) 0 < pn < %, 0<op < % for each
2 2 2
AP TAzrer \\Am1||2+2} and
. 2 2 2 .
0 <0 <min { TATIP2: A7+ o T, P+2

(iv) liminf ¢, > 0 and liminf A, > 0.
n—oo n—oo

neN,0<a<min{‘
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Proof. For each i =1,2,...,m; and j =1,2,...,mg, let T; = (I — cAX(I — F})A;)
and S; = (I — 6A}"(I — Fj)A}). By Lemma 3.5, for each i = 1,2,...,m; and
Jj=1,2,...,my, T; and S; are averaged. By Theorem 4.7, there exists T € H;
such that z € G71(0) N G5 (0) N Fix(Ty) N Fix(Tz) N --- N Fiz(Ty,) N Fiz(S1) N
Fiz(Se) N --- N Fix(S,). For each i = 1,2,...,my and j = 1,2,...,mg, T €
Fiz((I — oA} (I — F;)4;)) and z € Fiz((I —0A,"(I — F{)A})). By Lemma 3.5,, for
eachi=1,2,...,my and j = 1,2,...,mo, A;x € Fix(F;) and A;i‘ € Fm(FJ/) O

In the following theorem, we study the multiple sets split system of variational
inclusion problems (MSSFP-E3):

Find z € H; such that z € G{*(0)( G50, A4;7 € (L; + M;)~'0 for each i =
1,2,...,mq and A;-:E € Fw;(F]’) for each j =1,2,...,mo.

Remark 5.4. There are some differences between Theorems 5.3 and 3.7. The
multiple sets split feasibility problem study in Theorem 5.3 has system type, but
Theorem 3.7 does not study system type.

Theorem 5.5. Suppose that the solutions set Qps of ((MSSFP — E3) is nonempty,
and {an}, {bn}, {cn}, {fu}, {gn}, {hn}, are sequences in [0,1] with ap+by+c, =1,
fontgn+th,=1,0<a,<1,and0< f, <1 for eachn € N,
For an arbitrary fized u € Hi, a sequence {v,} be defined by
Vongl = ApU + byug,
Fen ST — pp(I — (I — 0 A5(I — Ur)Ar)(I — 0 A5(1 — Us) Ag)
(I =0 A, (I = Upy)Am,))v2n, n € NU{0},
Von = fall + gnon_1
FhpJS2 (I — o (I — (I — 6A, (I — F)ANI — 645 (I — Fy)Ay)
(I =6A, (I —F,,)A;,.))van-1, n€N.

where U; = Jéwi (I —aL;). Then lim v, = Pq,u provided the following conditions
n—0o0
are satisfied:
(i) lim a, = lim f, =0;
n—oo n—o0
(ii) either Y o7 an =00 or y o7 fn = 00;
(iii) 0 < pp < %, 0<op < % for eachn € N, 0 < a < 2min{rK1,...,Km},

o< mln{”A1H2+2) ||A2||2+27 ey ||A;nl||2+2} and

. 1 1 1 .
0<5<m1n{R—,1,Rf,2,.--,R/7W},

(iv) liminf ¢, > 0 and liminf A, > 0.

n—oo n—oQ

Proof. For each i =1,2,...,my and j = 1,2,...,mg, let T; = (I — c A} (I — U;) 4;)
and S; = (I — 5A;-*(I — Fj)A%). By Lemmas 3.4 and 3.5, for each i = 1,2,...,m1
and j = 1,2,...,mg, T; and S; are averaged. By Theorem 4.7, there exists € H;
such that Find Z € H; such that z € G71(0) N G5 H(0) N Fiz(Ty) N Fix(Te) N --- N
Fizx(Ty,) N Fiz(S1) N Fiz(S2) N -+ N Fiz(Sy,,). For each i = 1,2,...,m; and
j=1,2,...,mae, T € Fiz(I — cA}(I — U;)4;)) and T € Fiz(I — 64" (I — F|)A)).
By Lemmas 3.4 and 3.5, for each i = 1,2,...,m; and j = 1,2,...,mo, T € G1_10,
A;x € FizU;, © € G2_10 and Aj’i € FixF; and we also know that FizU; =
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FizJ ,Mi(I — aL;) = (L1 + M;)~'0. Therefore, this complete the proof of Theorem
5.9. U

Remark 5.6. There are some differences between Theorems 5.5 and 3.10.

For each i = 1,2,...,m; and j = 1,2,...,mo, let T; and S; are nonexpansive
mappings. In the following theorem, we study the multiple sets split system of
variational inclusion problems (MSSFP-E4):

Find z € H; such that = € GfIOﬂGQ_IO, A;z € Fix(T;) foreach i =1,2,...,m
and ALz € Fiz(S;) for each j =1,2,..,n.

Theorem 5.7. For each i = 1,2,...,m1 and j = 1,2,...,mg, let T; and S; are

nonezxpansive mappings. Suppose that the solutions set Qg4 of (MSSFP — E4)

is nonempty and {an}, {bn}, {cn}, {fn}, {9n}, {hn} are sequences in [0,1] with

an+bp+cen=1, fpt+tgn+h,=1,0<a,<1, and0< f, <1 for each n € N.
For an arbitrary fivzed uw € Hi, a sequence {v,} be defined by

( Vongl = AplU + byvg,
FenJSH I — pp(I — (I — 50 A5(I — T1) A1) (I — $0A3(1 — T) As)
(I = 3045, (I — Tny)Am,)))v2n, n € NU{0},
Von ‘= fnu + gnVan—1
Fh G2 (I — 0 (I — TS (1 — $5AL (T — S1)A})
TS (I = §045"(I — Sp)Ay) -+ J§* (I — $6A7,, (I = Smy) Alp,) Jv2n-1,

neN
Then lim v, = Pq,,u provided the following conditions are satisfied:
n—oo
(i) lim a, = lim f, =0;
n—oo n—o0
(ii) either Y o7 an =00 or Y o2 fn = 00;
(iii) 0 < pn < 3, 0 < 0n < % for eachn € N,
. 2 2 2
0<o< mm{HA1”2+2, A2 HAW1”2+2} and
. 2 2 2 .
0 <0 <min { TATP+2> T2 T, P2 f
(iv) liminf ¢, > 0 and liminf A, > 0.
n—oo n—oo
Proof. For each i =1,2,...,mq and j = 1,2,...,mg, let F; = # and F]’ = #
in Theorem 5.3. Applying Theorem 5.3 and following the same argument as in
Theorem 4.1, we can prove Theorem 5.7. O

Remark 5.8. There are some differences between Theorems 5.5 and 3.10. To the
best of our knowledge, there is no results on the problem (MSSFP-E1, MSSFP-
E2, MSSFP-E3, MSSFP-E4 and MSSFP-E5).

In the following theorem, we study the following multiple sets split systems of
variational inequalities problem (MSSFP-E5):
Find T € H4, such that for each i = 1,2,...,2m1, 7 = 1,2,...,2ms, thee exist
U; € Ho, wjp1 € Ha, with
(i) 7 € Gy (0) N Gy (0);
(i1) (o0L2jAix + u; — AT, u; — u;) > 0 for all u; € FixJéV[%;
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(i) (0Loi 17 + A — T, ugi1 — AZ) > 0 for all ug;_y € FiaJy Y

! M,
(iv) (0Lg;ALT + wj — AT, wj —w;) > 0 for all w; € FixJy *; and
2j-1

(v) (8Ly;_yw; + AT — j,wyq1 — AST) > 0 for all wyyy € FizJy
Theorem 5.9. Suppose that the solutions set Qg5 of (MSSFP — E5) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with a, +by,+c, =1,
fatgn+h,=1,0<a, <1, and 0 < f, <1 for each n € N. For an arbitrary
fixed u € H1, a sequence {v,} be defined by
(Vont1 :=  anpU + byvay

Fen ST — pp(I — (I — 50 A5(I — JM (I — 0Ly) JM> (I — 0Ly)) Ar)
(I — 30A5(I — JM3(I — oLs)JM4(I — 0Ly))As) -+ -
(I — Yo Ar, (I —J3"™ (I = 0 Lo, 1)Ja ™ (I = 0Lom, ) Amy ) )2,
n € NU {0},
V2n = fnu + gnV2n—1 ) )
+hnJS2 (I — on(1 ~ (- oA (1 - T = 8Ly T2 (I — 5Ly)) AY)
(I —46A5(1 — T} (I —6Ls")JM (I — 0L4))A) -+ (I — 364!,

Mam,— Mam,’
\ (I —J5 " (I = 6Lamy—1")J5 ™ (I — 6Lam,")) ALy, ) van—1,n € N
Then lim v, = P, u provided the following conditions are satisfied:
n—oo

(i) lim a, = lim f, =0;
(ii) esther Y 7 an =00 or Yy 2 fn = 00;
(ili) 0< pn < %, 0< 0, < % for each

: 2 2 2
neN,0<o< mln{HA1||2+2’ TAzZr2 " HAm1||2+2} and
: 2 2 2 .
0< 8 <min { prrfres, prgfres o )
0 <o <2min{ky,K,...,Kom, } and

0 <6 <2min{k],Kh,... Kby, };
(iv) liminf e, > 0 and liminf h,, > 0.

Proof. Applying Theorem 5.7 and following the same arguments as in the proof of
Theorem 4.3, we can prove Theorem 5.9. Il
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