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and

(1.2) ȳ = Ax̄ ∈ H2 such that ȳ ∈ (B +G)−10,

where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a bounded linear operator,
B1 : H1 → H1 and B : H2 → H2 are given operators, G1 : H1 ⊸ H1 and
G : H2 ⊸ H2 are given multivalued mappings.

Moudafi [19] proved the following weakly convergence theorem for the solution
of the split monotone variational inclusion (SMVI) with the iteration defined by{

x1 ∈ C chosen arbitrarily,

xn+1 = JG1
λ (I − λB1)(I − γA∗(I − T )A)xn,

where JG1
λ is the resolvent of G1 defined by JG1

λ = (I + λG1)
−1 for each λ > 0 and

T = JG
r (I − rB) for each r > 0.

Let C1, C2, . . . , Cm be nonempty closed convex subsets of H1, Q1, Q2, . . . , Qm be
nonempty closed convex subsets of H2, and A1, A2, . . . , Am : H1 → H2 be bounded
linear operators. The well-known multiple sets split feasibility problem (MSSFP)
is to find x∗ ∈ H1 such that

x∗ ∈ Ci such that Aix
∗ ∈ Qi for all i = 1, 2, . . . ,m.

Motivated by the above works, recently Lin et al. [16] considered the following
algorithm:

(1.3)


v0 ∈ H is chosen arbitrarily,

v2n+1 := anu+ bnv2n + cnJ
G1
δn

(I − δnB1)v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1 + hnJ

G2
γn (I − γnB2)v2n−1, n ∈ N,

where G1, G2 are two set-valued maximal monotone mappings on a real Hilbert
space H1, B1, B2 : C → H1 are two mappings, {an}, {bn}, {cn}, {fn}, {gn} and
{hn} are sequences in [0, 1]. Lin et al. [16] showed the sequence {vn} generated by
(1.3) converges strongly to some x̄ ∈ (B1+G1)

−1(0)∩(B2+G2)
−1(0) under suitable

conditions.
In this paper, we apply recently result of Lin et al. [16] to study the solution

of the following problems: multiple sets split monotone variational inclusion prob-
lem, multiple sets split fixed point problem for k-strict pseudo contractive problem,
multiple sets split systems of variational inclusion problems, multiple sets split sys-
tems of variational inequalities problems, multiple sets split systems of fixed point
problem. We give a simple methods to study these problems. Our results contain
many original results and will have many applications in many fields of science and
mathematics.

2. Preliminaries

Throughout this paper, let H, H1, H2, H3 denote the real Hilbert spaces with
inner product ⟨., .⟩ and norm || · ||, N the set of all natural numbers, and R+ be
the set of all positive real numbers. A set-valued mapping A with domain D(A)
on H is called monotone if ⟨u − v, x − y⟩ ≥ 0 for any u ∈ Ax, v ∈ Ay and for
all x, y ∈ D(A). A monotone operator A is called maximal monotone if its graph
{(x, y) : x ∈ D(A), y ∈ Ax} is not properly contained in the graph of any other
monotone mapping. The set of all zero points of A is denoted by A−1(0), i.e.,
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A−1(0) = {x ∈ H : 0 ∈ Ax}. In what follows, we denote the strongly convergence
and the weak convergence of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively.
In order to facilitate our discussion in the next section, we recall some facts. The
following equality is easy to check:
(2.1)
||αx+βy+γz||2 = α||x||2+β||y||2+γ||z||2−αβ||x−y||2−αγ||x−z||2−βγ||y−z||2

for each x, y, z ∈ H and α, β, γ ∈ [0, 1] with α+ β + γ = 1. Besides, we also have

(2.2) ||x+ y||2 ≤ ||x||2 + 2⟨y, x+ y⟩
for each x, y ∈ H. Let C be a nonempty closed convex subset of H, and a mapping
T : C → H. We denote the set of all fixed points of T by Fix(T ). A mapping
T : C → H is said to be nonexpansive if ||Tx−Ty|| ≤ ||x−y|| for every x, y ∈ C. A
mapping T : C → H is said to be quasi-nonexpansive if Fix(T ) ̸= ∅ and ||Tx−y|| ≤
||x − y|| for all x ∈ C and y ∈ Fix(T ). A mapping T : C → H is said to be firmly
nonexpansive if

||Tx− Ty||2 ≤ ||x− y||2 − ||(I − T )x− (I − T )y||2

for every x, y ∈ C. Besides, it is easy to see that Fix(T ) is a closed convex subset
of C if T : C → H is a quasi-nonexpansive mapping. A mapping T : C → H is said
to be α-inverse-strongly monotone (α-ism) if

⟨x− y, Tx− Ty⟩ ≥ α∥Tx− Ty∥2

for all x, y ∈ H and α > 0.
The follows lemmas are needed in this paper.

Lemma 2.1 ([29]). Let A : H1 → H2 be a bounded linear operator, and A∗ the
adjoint of A. Suppose that C is a nonempty closed convex subset of H2, and F :
C → H2 is a firmly nonexpansive mapping. Then A∗(I − F )A is a 1

∥A∥2 -ism, that

is,

1

∥A∥2
||A∗(I − F )Ax−A∗(I − F )Ay||2 ≤ ⟨x− y,A∗(I − F )Ax−A∗(I − F )Ay⟩

for all x, y ∈ H1.

Lemma 2.2 ([2]). Let C be a nonempty closed convex subset of H, and F : C → H
a firmly nonexpansive mapping. Suppose that Fix(F ) is nonempty. Then ⟨x −
Fx, Fx− w⟩ ≥ 0 for each x ∈ H and each w ∈ Fix(F ).

Let C be a nonempty closed convex subset of H. Then for each x ∈ H, there is a
unique element x̄ ∈ C such that ||x− x̄|| = miny∈C ||x− y||. Here, we set PCx = x̄
and PC is said to be the metric projection from H onto C.

Lemma 2.3 ([25]). Let C be a nonempty closed convex subset of H, and let PC be
the metric projection from H onto C. Then ⟨x−PCx, PCx− y⟩ ≥ 0 for each x ∈ H
and each y ∈ C.

For a set-valued maximal monotone operator G on H and r > 0, we may define
an operator JG

r : H → H with JG
r = (I + rG)−1 which is called the resolvent

mapping of G for r.



2020 Z. T. YU AND L. J. LIN

A mapping T : H → H is said to be averaged if T = (1 − α)I + αS, where
α ∈ (0, 1) and S : H → H is a nonexpansive mapping.

Lemma 2.4 ([11]). Let C be a nonempty closed convex subset of H, and T : C → H
a mapping. Then the following hold:

(i) T is nonexpansive mapping if and only if I − T is 1
2 -inverse-strongly mono-

tone (12 -ism).
(ii) If S is ν-ism, then γS is ν

γ -ism.

(iii) S is averaged if and only if I − S is ν-ism for some ν > 1
2 .

Indeed, S is α-averaged if and only if I − S is 1
(2α) -ism, for α ∈ (0, 1).

(iv) If S and T are averaged, then the composition ST is also averaged.
(v) If the mappings {Ti}ni=1 are averaged and have a common fixed point,

then
∩n

i=1Fix(Ti) = Fix(T1 · · · Tn) for each n ∈ N.

Let C be a nonempty closed convex subset of H. The indicator function ιC
defined by

ιCx =

{
0, x ∈ C

∅, x /∈ C

is a proper lower semicontinuous convex function and its subdifferential ∂ιC defined
by

∂ιCx = {z ∈ H : ⟨y − x, z⟩ ≤ ιC(y)− ιC(x), ∀y ∈ H}
is a maximal monotone operator [21]. Furthermore, we also define the normal cone
NCu of C at u as follows;

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.

We can define the resolvent J∂iC
λ of ∂iC for λ > 0, i.e.

J∂iC
λ x = (I + λ∂iC)

−1x

for all x ∈ H. Since

∂iCx = {z ∈ H : iCx+ ⟨z, y − x⟩ ≤ iCy, ∀y ∈ H}
= {z ∈ H : ⟨z, y − x⟩ ≤ 0, ∀y ∈ C}
= NCx

for all x ∈ C, we have that

u = J∂iC
λ x ⇔ x ∈ u+ λ∂iCu

⇔ x− u ∈ λNCu

⇔ ⟨x− u, y − u⟩ ≤ 0, ∀y ∈ C

⇔ u = PCx.

Let C, Q and Q
′
be nonempty closed convex subsets of H1,H2 and H3, respec-

tively. For each i = 1, 2, and κi > 0, let Bi be a κi−inverse-strongly monotone
mapping of C into H1, Gi a set-valued maximal monotone mapping on H1 such
that the domain of Gi is included in C. Let G be a set-valued maximal monotone
mapping onH2 such that the domain of G is included in Q and let G

′
be a set-valued

maximal monotone mapping on H3 such that the domain of G
′
is included in Q

′
. For
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ν > 0, let B be a ν−inverse-strongly monotone mapping of Q into H2. For ν
′
> 0,

let B
′
be a ν

′−inverse-strongly monotone mapping of Q
′
into H3. Let F1 be a firmly

nonexpansive mapping of H2 into H2 and F2 a firmly nonexpansive mapping of H3

into H3. Let Ti be an averaged mappings of H2 into H2 for i = 1, 2 . . . ,m and Sj

be an averaged mapping of H3 into H3 for j = 1, 2, . . . , n. Note JG1
λ = (I + λG1)

−1

and JG2
r = (I + rG2)

−1 for each λ > 0 and r > 0. Let A1 : H1 → H2 be a bounded
linear operator, A2 : H1 → H3 a bounded linear operator, and A∗

i be the adjoint
of Ai for i = 1, 2. Throughout this paper, we use these notations unless specified
otherwise.

Theorem 2.5 ([16]). Suppose that (B1+G1)
−1(0)∩(B2+G2)

−1(0) is nonempty, and
{an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] such that an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrarily
fixed u ∈ H. Define a sequence {vn} by

(2.3)


v0 ∈ H is chosen arbitrarily,

v2n+1 := anu+ bnv2n + cnJ
G1
δn

(I − δnB1)v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1 + hnJ

G2
γn (I − γnB2)v2n−1, n ∈ N.

Then lim
n→∞

vn = P(B1+G1)−1(0)∩(B2+G2)−1(0)u provided the following conditions are

satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;
(iii) δn ⊂ (0,∞), γn ⊂ (0,∞), 0 < a ≤ δn ≤ b < 2κ1 and 0 < f ≤ γn ≤ g < 2κ2,

for each n ∈ N and for some a, b, f, g ∈ R+;
(iv) lim inf

n→∞
cn > 0, lim inf

n→∞
hn > 0.

3. Multiple sets split fixed point problem

Let C be a nonempty closed convex subset of H. Let g : C × C → R. Then the
equilibrium problem is to find x̂ ∈ C such that

g(x̂, y) ≥ 0, for all y ∈ C

whose solution set is denoted by EP (g). For solving an equilibrium problem, we
may assume the bifunction g satisfies the following conditions such that
(A1) g(x, x) = 0, ∀ x ∈ C;
(A2) g is monotone, that is, g(x, y) + g(y, x) ≤ 0, ∀ x ∈ C;
(A3) for all x, y, z ∈ C, lim supt↓0 g((1− t)x+ tz, y) ≤ g(x, y);
(A4) for all x ∈ C, g(x, ·) is convex and lower semicontinuous.

We have the following lemmas from Blum and Oettli [3], and Combettes and
Hirstoaga [12].

Lemma 3.1 ([3]). Let C be a nonempty closed convex subset of H and g : C×C → R
a function satisfying conditions (A1)–(A4), and suppose r > 0, x ∈ H. Then, there
exists a unique z ∈ C such that

g(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, for all y ∈ C.



2022 Z. T. YU AND L. J. LIN

Lemma 3.2 ([12]). Let C be a nonempty closed convex subset of H and g : C×C →
R a function satisfying conditions (A1)–(A4). For r > 0, define Jg

r : H → C by

Jg
r x =

{
z ∈ C : g(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀ y ∈ C

}
.

for all x ∈ H. Then the following hold:
(a) Jg

r is single-valued;
(b) Jg

r is firmly nonexpansive;
(c) Fix(Jg

r ) = EP (g);
(d) EP (g) is closed and convex.

We call Jg
r the resolvent of g for r > 0.

Takahashi, Takahashi and Toyoda [24] gave the following lemma.

Lemma 3.3 ([24]). Let g : C × C → R be a bifunction satisfying the conditions
(A1)-(A4). Define Ag as follows:

(3.1) Agx =

{
{z ∈ H1 : g(x, y) ≥ ⟨y − x, z⟩,∀y ∈ C} if x ∈ C;
∅ if x /∈ C.

Then, EP (g) = A−1
g 0 and Ag is a maximal monotone operator with the domain

of Ag ⊂ C. Furthermore, for any x ∈ H1 and r > 0, the resolvent T g
r of g coincides

with the resolvent of Ag, i.e., T
g
r x = (I + rAg)

−1x.

Recently Yu et al. [28] give an essential result in this paper for the following
essential problem (SFP-1):

Find x̄ ∈ H1 such that A1x̄ ∈ (B +G)−1(0).

Lemma 3.4 ([28]). Given any x̄ ∈ H1

(i) If x̄ is a solution of (SPF− 1), then (I − λA∗
1(I − U1)A1)x̄ = x̄ where

U1 = JG
σ (I − σB).

(ii) Suppose that U1 = JG
σ (I − σB), 0 < λ < 1

R1
, 0 < σ < 2ν. Then

A∗
1(I − U1)A1 is a µ1

R1
-ism mapping, JG

σ (I − σB) and (I − λA∗
1(I − U1)A1)

are averaged.
(iii) Suppose that U1 = JG

σ (I − σB), 0 < λ < 1
R1

, 0 < σ < 2ν, (I − λA∗
1(I −

U1)A1)x̄ = x̄ and the solutions set of (SPF− 1) is nonempty. Then x̄ is a
solution of (SPF− 1),

The following lemma whose proof is essential the same as Theorem 4.1 in [28] is
a special case of Theorem 3.2 in [27]:

(SFP-2) Find x̄ ∈ H1 such that A1x̄ ∈ Fix(F1).

Lemma 3.5. Given any x̄ ∈ H1

(i) If x̄ is a solution of (SFP− 2), then (I − ρnA
∗
1(I − F1)A1)x̄ = x̄ for each

n ∈ N.
(ii) Suppose that 0 < ρn < 2

∥A1∥2+2
, for each n ∈ N. Then A∗

1(I − F1)A1 is a
1

∥A1∥2 -ism mapping and (I − ρnA
∗
1(I − F1)A1) are averaged. Suppose fur-

ther that (I − ρnA
∗
1(I − F1)A1)x̄ = x̄ and the solution set of (SFP− 2) is

nonempty. Then x̄ is a solution of (SFP− 2).
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Recently, Lin et al. [16] study the following problem.

(SFP–3) Find x̄ ∈ H1 such that x̄ ∈ Fix(JG1
ρn ) and A1x̄ ∈ Fix(F1).

As a special case of Lemma 3.5, we have the following recently result of Lin et
al. [16].

Lemma 3.6 ([16]). Given any x̄ ∈ H1.

(i) If x̄ is a solution of (SFP− 3), then JG1
ρn (I − ρnA

∗
1(I − F1)A1)x̄ = x̄ for

each n ∈ N.
(ii) Suppose that JG1

ρn (I−ρnA
∗
1(I−F1)A1)x̄ = x̄ with 0 < ρn < 2

∥A1∥2+2
, for each

n ∈ N and the solution set of (SFP− 3) is nonempty. Then (I − ρnA
∗
1(I −

F1)A1) and JG1
ρn (I − ρnA

∗
1(I − F1)A1) are averaged and x̄ is a solution of

(SFP− 3).

Proof. To prove(ii), suppose that all the assumption is satisfied. Then there exists
w ∈ H1 such that w ∈ Fix(JG1

ρn ) andA1w ∈ Fix(F1). Hence w ∈ Fix(JG1
ρn )

∩
Fix(I−

ρnA
∗
1(I − F1)A1). Since JG1

ρn (I − ρnA
∗
1(I − F1)A1)x̄ = x̄, it follows from Lemma

2.4 that x̄ ∈ Fix(JG1
ρn )

∩
Fix(I − ρnA

∗
1(I − F1)A1). Therefore x̄ ∈ Fix(JG1

ρn ) and
x̄ ∈ Fix(I − ρnA

∗
1(I − F1)A1). Then Lemma 3.6 follows from Lemma 3.5. □

Now, we recall the following multiple sets split feasible problem (MSSFP-A1):{
Find x̄ ∈ H1 such that x̄ ∈ G−1

1 (0) ∩G−1
2 (0),

A1x̄ ∈ Fix(F1) and A2x̄ ∈ Fix(F2).

Theorem 3.7 ( [16]). Suppose that the solutions set ΩA1 of (MSSFP−A1) is
nonempty, and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with
an + bn + cn = 1, fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N.
For an arbitrary fixed u ∈ H, a sequence {vn} be defined by{

v2n+1 := anu+ bnv2n + cnJ
G1
ρn (I − ρnA

∗
1(I − F1)A1)v2n, n ∈ N ∪ {0},

v2n := fnu+ gnv2n−1 + hnJ
G2
σn

(I − σnA
∗
2(I − F2)A2)v2n−1, n ∈ N.

Then lim
n→∞

vn = PΩA1
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 2
∥A1∥2+2

, 0 < σn < 2
∥A2∥2+2

for each n ∈ N;
(iv) lim inf

n→∞
cn > 0 and lim inf

n→∞
hn > 0.

We consider the following multiple sets split monotonic variational inclusion prob-
lem (MSSMVIP−B1):{

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩G−1

2 (0),
A1x̄ ∈ (B +G)−1(0) and A2x̄ ∈ (B′ +G′)−1(0).

That is, 
Find x̄ ∈ H1 such that x̄ ∈ Fix(JG1

λ )
∩

Fix(JG2
r ),

A1x̄ ∈ Fix(U1) and A2x̄ ∈ Fix(U2) where

U1 = JG
σ (I − σB), U2 = JG

′

σ′ (I − σ
′
B

′
).

Let ΩB1 be the solutions set of (MSSMVIP−B1).
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Theorem 3.8. Suppose that the solutions set ΩB1 of (MSSFP−B1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence sequence {vn} is defined by{

v2n+1 := anu+ bnv2n + cnJ
G1
λ (I − λA∗

1(I − U1)A1)v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1 + hnJ

G2
r (I − rA∗

2(I − U2)A2)v2n−1, n ∈ N,

where U1 = JG
σ (I − σB), U2 = JG

′

σ′ (I − σ
′
B

′
). Then lim

n→∞
vn = PΩB1

u. provided the

following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < λ < 1
R1

, 0 < r < 1
R2

, 0 < σ < 2ν and 0 < σ
′
< 2ν

′
;

(iv) lim inf
n→∞

cn > 0 and lim inf
n→∞

hn > 0.

Proof. For each i = 1, 2, by Lemma 3.4, A∗
i (I − Ui)Ai is

µi

Ri
-ism for some µi >

1
2 .

Put B1 = A∗
1(I − U1)A1 and B2 = A∗

2(I − U2)A2 in Theorem 2.5. Then algorithm
in Theorem 2.5 follows immediately from algorithm in Theorem 3.8.
Since the solution set of (MSSFP−B1) is nonempty, we have,
(3.2)

w̄ ∈ FixJG1
λ

∩
Fix(I−λA∗

1(I−U1)A1))
∩

FixJG2
r

∩
Fix(I−rA∗

2(I−U2)A2) ̸= ∅.

This implies that,

w̄ ∈ Fix(JG1
λ (I − λB1))

∩
Fix(JG2

r (I − rB2)) ̸= ∅

and
w̄ ∈ (B1 +G1)

−10
∩

(B2 +G2)
−10 ̸= ∅.

By Theorem 2.5, lim
n→∞

vn = P(B1+G1)−10∩(B2+G2)−10u.

On the other hand, by Lemma 3.4, we have that

(3.3) I−λB1 = I−λA∗
1(I−U1)A1 and I−rB2 = I−rA∗

2(I−U2)A2 are averaged .

since JG1
λ , JG2

r are firmly nonexpansive mappings, it easy see that

(3.4) JG1
λ , JG2

r are
1

2
averaged.

By (3.2), (3.3), (3.4) and Lemma 2.4(v), we see that

Fix(JG1
λ )

∩
Fix(I − λB1)

∩
Fix(JG2

r )
∩

Fix(I − rB2)

= Fix(JG1
λ (I − λB1))

∩
Fix(JG2

r (I − rB2)).
(3.5)

If w ∈ (B1 + G1)
−10 ∩ (B2 + G2)

−10 , we have that w ∈ Fix(JG1
λ (I − λB1))

∩
Fix(JG2

r (I − rB2)). By (3.5), we have that

w ∈ Fix(JG1
λ )

∩
Fix(I − λB1)

∩
Fix(JG2

r )
∩

Fix(I − rB2)

= Fix(JG1
λ )

∩
Fix(I − λA∗

1(I − U1)A1))
∩

Fix(JG2
r )

∩
Fix(I − rA∗

2(I − U2)A2).

(3.6)
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By (3.6) and Lemma 3.4(iii), w ∈ G−1
1 0 ∩ G−1

2 0, A1w ∈ (B + G)−10 and A2w ∈
(B′ +G′)−10. Therefore, (B1 +G1)

−10∩ (B2 +G2)
−10 ⊆ ΩB1. If w ∈ ΩB1, we have

that

w ∈ FixJG1
λ

∩
Fix(I − λA∗

1(I − U1)A1))
∩

FixJG2
r

∩
Fix(I − rA∗

2(I − U2)A2)

= FixJG1
λ

∩
Fix(I − λB1)

∩
FixJG2

r

∩
Fix(I − rB2).

(3.7)

This implies that w ∈ FixJG1
λ (I−λB1)

∩
FixJG2

r (I−rB2) = (B1+G1)
−10∩ (B2+

G2)
−10. Therefore, ΩB1 ⊆ (B1 +G1)

−10∩ (B2 +G2)
−10 and (B1 +G1)

−10∩ (B2 +
G2)

−10 = ΩB1. This complete the proof of Theorem 3.8. □
Remark 3.9. The proof, iteration of Theorem 3.8 are different from Theorem
4.2 [28]. In Theorem 4.2 [28], we use a result of hierarchical inequality to study the
problem (MSSMVIP−B1), but in theorem 3.8, we use proximal point algorithm
to study this problem. Theorem 3.8 improves Theorem 3.1 [19].

Now, we consider the following multiple sets split monotonic variational inclusion
problem (MSSMVIP−C1):{

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩G−1

2 (0),
A1x̄ ∈ Fix(F1) and A2x̄ ∈ (B′ +G′)−1(0).

That is, {
Find x̄ ∈ H1 such that x̄ ∈ Fix(JG1

λ )
∩
Fix(JG2

r ),

A1x̄ ∈ Fix(F1) and A2x̄ ∈ Fix(U2) where U2 = JG
′

σ′ (I − σ
′
B

′
).

Let ΩC1 be the solutions set of (MSSMVIP−B1).

Theorem 3.10. Suppose that the solutions set ΩC1 of (MSSFP−C1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence sequence {vn} is defined by{

v2n+1 := anu+ bnv2n + cnJ
G1
ρn (I − ρnA

∗
1(I − F1)A1)v2n, n ∈ N ∪ {0},

v2n := fnu+ gnv2n−1 + hnJ
G2
r (I − rA∗

2(I − U2)A2)v2n−1, n ∈ N,

where U2 = JG
′

σ′ (I −σ
′
B

′
). Then lim

n→∞
vn = PΩC1

u provided the following conditions

are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 2
∥A1∥2+2

, 0 < r < 1
R2

and 0 < σ
′
< 2ν

′
for each n ∈ N;

(iv) lim inf
n→∞

cn > 0, lim inf
n→∞

hn > 0.

Proof. Since Fi is a firmly nonexpansive, it follow from Lemma 3.5 that we have
that A∗

1(I−F1)A1 : C1 → H1 is 1
∥A1∥2 -ism. By Lemma 3.4, A∗

2(I−U2)Ai is
µ2

R2
-ism.

Put B1 = A∗
1(I − F1)A1 and B2 = A∗

2(I − U2)A2 in Theorem 2.5. Then algorithm
in Theorem 2.5 follows immediately from algorithm in Theorem 3.10.
Since the solution set of (MSSFP−C1) is nonempty, by Lemmas 3.4 and 3.5, we

have that, w̄ ∈ Fix(JG1
λ (I − λA∗

1(I − F1)A1))
∩

Fix(JG2
r (I − rA∗

2(I − U2)A2) ̸= ∅.
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This implies that, w̄ ∈ (B1 +G1)
−10

∩
(B2 +G2)

−10 ̸= ∅.
By Theorem 2.5, lim

n→∞
vn = P(B1+G1)−1(0)∩(B2+G2)−1(0)u. Let lim

n→∞
vn = x̄. Then

follow the same arguments as in Theorems 3.7 and 3.8. We can prove Theorem
3.10. □

4. Multiple sets split system of variational inequalities problems

Let T be a nonexpansive mappings of H2 into H2 and S be a nonexpansive
mapping of H3 into H3.

Now, we study the following multiple sets split feasible problem (MSSFP–D1):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩G−1

2 (0), A1x̄ ∈ Fix(T ) and
A2x̄ ∈ Fix(S).

Theorem 4.1. Suppose that the solutions set ΩD1 of (MSSFP−D1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence {vn} be defined by{

v2n+1 := anu+ bnv2n + cnJ
G1
ρn (I − ρnA

∗
1(I − T )A1)v2n, n ∈ N ∪ {0},

v2n := fnu+ gnv2n−1 + hnJ
G2
σn

(I − σnA
∗
2(I − S)A2)v2n−1, n ∈ N.

Then lim
n→∞

vn = PΩD1
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
∥A1∥2+2

, 0 < σn < 1
∥A2∥2+2

for each n ∈ N;
(iv) lim inf

n→∞
cn > 0 and lim inf

n→∞
hn > 0.

Proof. Put F1 =
I+T
2 and F2 =

I+S
2 . Since T is a nonexpansive mappings of H2 into

H2 and S is a nonexpansive mapping of H3 into H3. It is easy to see that F1 and
F2 are firmly nonexpansive mappings. It is easy to see that algorithm in Theorem
4.1 follows immediately from algorithm in Theorem 3.7, Fix(F1) = Fix(T ) and
Fix(F2) = Fix(S). Therefore, Theorem 4.1 follows immediately from Theorem
3.7. □

For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti and Sj are averaged. We
study the following multiple sets split feasible problem (MSSFP-D2):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩ G−1

2 (0), A1x̄ ∈
∩m

i=1 Fix(Ti) and
A2x̄ ∈

∩n
j=1 Fix(Sj).

Theorem 4.2. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti and Sj are
averaged. Suppose that the solutions set ΩD2 of (MSSFP−D2) is nonempty, and
{an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an + bn + cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n + cnJ
G1
ρn (I − ρnA

∗
1(I − T1T2T3 . . . Tm1)A1)v2n,

n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1 + hnJ

G2
σn

(I − σnA
∗
2(I − S1S2 . . . Sm2)A2)v2n−1,

n ∈ N.
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Then lim
n→∞

vn = PΩD2
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
∥A1∥2+2

, 0 < σn < 1
∥A2∥2+2

for each n ∈ N;
(iv) lim inf

n→∞
cn > 0 and lim inf

n→∞
hn > 0.

Proof. Since for each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, Ti and Sj are aver-
aged. By Lemma 2.4, we knows that T = T1T2 · · ·Tm1 and S = S1S2 · · ·Sm2

are averaged. This shows that T = T1T2 · · ·Tm1 and S = S1S2 · · ·Sm2 are non-
expansive. By assumption, ΩD2 ̸= ∅, hence there exists w ∈ H1 such that w ∈
G−1

1 (0) ∩ G−1
2 (0), A1w ∈

∩m
i=1 Fix(Ti) and A2w ∈

∩n
j=1 Fix(Sj). By Lemma 2.4,

w ∈ G−1
1 (0)∩G−1

2 (0), A1w ∈ Fix(T ) and A2w ∈ Fix(S) and ΩD1 ̸= ∅. By Theorem

4.1, there exists x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩ G−1

2 (0), A1x̄ ∈ Fix(T1T2 · · ·Tm1)
and A2x̄ ∈ Fix(S1S2 · · ·Sm2). By Lemma 2.4, Fix(T1T2 · · ·Tm1) =

∩m
i=1 Fix(Ti)

and Fix(S1S2 · · ·Sm2) =
∩n

j=1 Fix(Sj). Therefore, the proof is completed. □

Let C, Q and Q
′
be nonempty closed convex subsets of H1,H2 and H3,

respectively. For each i = 1, 2, . . . , 2m1, j = 1, 2, . . . , 2m2, κi > 0, and
κ′j > 0, let Li be a κi−inverse-strongly monotone mapping of Q into H2 and L′

j be

a κ′j−inverse-strongly monotone mapping of Q′ into H3. For each i = 1, 2, . . . , 2m1,

j = 1, 2, . . . , 2m2, let Mi be a maximal monotone mapping on H2 and M ′
j be a be a

maximal monotone mapping on H3 such that the domain of Mi is included in Q, the
domain of M ′

j is included in Q′. We define the set M−1
i 0 as M−1

i 0 = {x ∈ Hi : 0 ∈

Mix}. Let JMi
λn

= (I + λnMi)
−1 and J

M ′
j

rn = (I + rnM
′
j)

−1 for each n ∈ N, λn > 0
and rn > 0 . Throughout this section and next section, we use these notations and
assumptions unless specified otherwise.

In the following theorem, we study the following multiple sets split systems of
variational inequalities problem (MSSFP–D3):

Find x̄ ∈ H1, such that for each i = 1, 3, . . . , 2m1 − 1, j = 1, 3, . . . , 2m2 − 1,
thee exist ūi ∈ H2, w̄j ∈ H3, with

(i) x̄ ∈ G−1
1 (0) ∩G−1

2 (0);

(ii) ⟨σLi+1A1x̄+ ūi −A1x̄, ui − ūi⟩ ≥ 0 for all ui ∈ FixJ
Mi+1
σ ;

(iii) ⟨σLiūi +A1x̄− ūi, y −A1x̄⟩ ≥ 0 for all y ∈ FixJMi
σ ;

(iv) ⟨σL′
j+1A2x̄+ w̄j −A2x̄, wj − w̄j⟩ ≥ 0 for all wj ∈ FixJ

M
′
j+1

σ ; and

(v) ⟨σL′
jw̄j +A2x̄− w̄j , z −A2x̄⟩ ≥ 0 for all z ∈ FixJ

M
′
j

σ .

Theorem 4.3. Suppose that the solutions set ΩD3 of (MSSFP−D3) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
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fixed u ∈ H, a sequence {vn} be defined by
v2n+1 := anu+ bnv2n + cnJ

G1
ρn (I − ρnA

∗
1(I − JM1

σ (I − σL1)J
M2
σ (I − σL2)

· · · JM2m1−1
σ (I − σL2m1−1)J

M2m1
σ (I − σL2m1))A1)v2n, n ∈ N ∪ {0},

v2n := fnu+ gnv2n−1 + hnJ
G2
σn

(I − σnA
∗
2(I − J

M
′
1

δ (I − δL
′
1)J

M
′
2

δ (I − δL
′
2)

· · · J
M

′
2m2−1

δ (I − δL
′
2m2−1)J

M
′
2m2

δ (I − δL
′
2m2

))A2)v2n−1, n ∈ N.

Then lim
n→∞

vn = PΩD3
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
∥A1∥2+2

, 0 < σn < 1
∥A2∥2+2

for each n ∈ N,
0 < σ < 2min{κ1, κ2, . . . , κ2m1} and 0 < δ < 2min{κ′1, κ′2, . . . , κ′2m2

};
(iv) lim inf

n→∞
cn > 0 and lim inf

n→∞
hn > 0.

Proof. For each i = 1, 3, .., 2m1 − 1 and j = 1, 3, . . . , 2m2 − 1, put Ti = JMi
σ (I −

σLi)J
Mi+1
σ (I − σLi+1) and Sj = J

M
′
j

δ (I − δL
′
j)J

M
′
j+1

δ (I − δL
′
j+1) in Theorem 4.2.

By Lemma 3.4, for each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, J
Mi
σ (I − σLi) and

J
M

′
j

δ (I − δL
′
j) are averaged. By Lemma 2.4, we see that Ti and Sj are averaged.

Then, by Theorem 4.2, there exists x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩G−1

2 (0), A1x̄ ∈∩m
i=1 Fix(Ti) and A2x̄ ∈

∩n
j=1 Fix(Si).

Put A1x̄ = ȳ, and A2x̄ = z̄, then for each i = 1, 3, . . . , 2m1 − 1 and j =
1, 3, . . . , 2m2 − 1,

ȳ ∈ FixTi = Fix(JMi
σ (I − σLi)J

Mi+1
σ (I − σLi+1))

and

z̄ ∈ FixSj = Fix(J
M

′
j

δ (I − δL
′
j)J

M
′
j+1

δ (I − δL
′
j+1)).

Therefore,

ȳ = JMi
σ (I − σLi)J

Mi+1
σ (I − σLi+1)ȳ

and

z̄ = J
M

′
j

δ (I − δL
′
j)J

M
′
j+1

δ (I − δL
′
j+1)z̄.

For each i = 1, 3, . . . , 2m1 − 1 and j = 1, 3, . . . , 2m2 − 1, Put

ūi = J
Mi+1
σ (I − σLi+1)ȳ

and

w̄j = J
M

′
j+1

δ (I − δL
′
j+1)z̄.

Then, for each i = 1, 3, . . . , 2m1 − 1 and j = 1, 3, . . . , 2m2 − 1,

ȳ = JMi
σ (I − σLi)ūi
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and

z̄ = J
M

′
j

δ (I − δL
′
j)w̄i.

By Lemma 2.2, for each i = 1, 3, . . . , 2m1−1 and j = 1, 3, . . . , 2m2−1, we obtain
that

(i) ⟨σLi+1ȳ + ūi − ȳ, ui − ūi⟩ ≥ 0 for all ui ∈ FixJ
Mi+1
σ ;

(ii) ⟨σLiūi + ȳ − ūi, y − ȳ⟩ ≥ 0 for all y ∈ FixJMi
σ ;

(iii) ⟨δL′
j+1z̄ + w̄j − z̄, wj − w̄j⟩ ≥ 0 for all wj ∈ FixJ

M
′
j+1

δ ; and

(iv) ⟨δL′
jw̄j + z̄ − w̄j , z − z̄⟩ ≥ 0 for all z ∈ FixJ

M
′
j

δ .

□

In the following theorem, we study the following split systems of variational
inequalities problem (MSSFP-D4):

Find x̄ ∈ H1, such that for each i = 1, 3, . . . , 2m1 − 1, j = 1, 3, . . . , 2m2 − 1, thee
exist ūi ∈ H2, w̄j ∈ H3, with

(i) x̄ ∈ G−1
1 (0) ∩G−1

2 (0),

(ii) ⟨σLi+1x̄+ ūi − x̄, ui − ūi⟩ ≥ 0 for all ui ∈ FixJ
Mi+1
σ ;

(iii) ⟨σLiūi + x̄− ūi, y − x̄⟩ ≥ 0 for all y ∈ FixJMi
σ ;

(iv) ⟨δL′
j+1A2x̄+ w̄j −A2x̄, wj − w̄j⟩ ≥ 0 for all wj ∈ FixJ

M
′
j+1

δ ; and

(vi) ⟨δL′
jw̄j +A2x̄− w̄j , z −A2x̄⟩ ≥ 0 for all z ∈ FixJ

M
′
j

δ .

Theorem 4.4. Suppose that the solutions set ΩD4 of (MSSFP−D4) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n + cnJ
G1
ρn (I − ρn(I − JM1

σ (I − σL1)J
M2
σ (I − σL2)

· · · JM2m1−1
σ (I − σL2m1−1)J

M2m1
σ (I − σL2m1)))v2n, n ∈ N ∪ {0},

v2n := fnu+ gnv2n−1 + hnJ
G2
σn

(I − σnA
∗
2(I − J

M
′
1

δ (I − δL
′
1)J

M
′
2

δ (I − δL
′
2)

· · · J
M

′
2m2−1

δ (I − δL
′
2m2−1)J

M
′
2m2

δ (I − δL
′
2m2

))A2)v2n−1, n ∈ N.

Then lim
n→∞

vn = PΩD4
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
3 , 0 < σn < 1

∥A2∥2+2
for each n ∈ N,

0 < σ < 2min{κ1, κ2, . . . , κ2m1} and 0 < δ < 2min{κ′1, κ′2, . . . , κ′2m2
};

(iv) lim inf
n→∞

cn > 0 and lim inf
n→∞

hn > 0.

Proof. Put A1 = I in Theorem 4.3, then Theorem 4.4 follows immediately from
Theorem 4.3. □

In the following theorem, we study the following multiple sets split systems of
variational inequalities problem (MSSFP–D5):
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Find x̄ ∈ H1, such that for each i = 1, 3, . . . , 2m1 − 1, j = 1, 3, . . . , 2m2 − 1, thee
exist ūi ∈ H2, w̄j ∈ H3, with

(i) x̄ ∈ G−1
1 (0) ∩G−1

2 (0);
(ii) ⟨σLi+1A1x̄+ ūi −A1x̄, ui − ūi⟩ ≥ 0 for all ui ∈ Q;
(iii) ⟨σLiūi +A1x̄− ūi, y −A1x̄⟩ ≥ 0 for all y ∈ Q;

(iv) ⟨δL′
j+1A2x̄+ w̄j −A2x̄, wj − w̄j⟩ ≥ 0 for all wj ∈ Q

′
; and

(v) ⟨δL′
jw̄j +A2x̄− w̄j , z −A2x̄⟩ ≥ 0 for all z ∈ Q

′
.

The following theorem is a special case of multiple set split systems of variational
inequalities problem.

Theorem 4.5. Suppose that the solutions set ΩD5 of (MSSFP−D5) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n
+cnJ

G1
ρn (I − ρnA

∗
1(I − PQ(I − σL1)PQ(I − σL2)

· · ·PQ(I − σL2m1−1)PQ(I − σL2m1))A1)v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1

+hnJ
G2
σn

(I − σnA
∗
2(I − PQ′ (I − δL

′
1)PQ′ (I − δL

′
2)

· · ·PQ′ (I − δL
′
2m2−1)PQ′ (I − δL

′
2m2

))A2)v2n−1, n ∈ N.
Then lim

n→∞
vn = PΩD5

u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
∥A1∥2+2

, 0 < σn < 1
∥A2∥2+2

for each n ∈ N,
0 < σ < min{κ1, κ2, . . . , κ2m1} and 0 < δ < min{κ′1, κ′2, . . . , κ′2m2

};
(iv) lim inf

n→∞
cn > 0 and lim inf

n→∞
hn > 0.

Proof. For each i = 1, 2, . . . , 2m1 and j = 1, 2, . . . , 2m2, put Mi = ∂iQ and Mj
′ =

∂iQ′ . Then Mi is maximal monotone operator on H2, for each i = 1, 2, . . . , 2m1 and
MJ

′ is a maximal monotone operator on H3, for each j = 1, 2, . . . , 2m2. Since for

each i = 1, 2, . . . , 2m1, J
∂iQ
σ = PQ, F ix(J

∂iQ
σ ) = Q and for each j = 1, 2, . . . , 2m2,

J
∂iQ′

σ′ = PQ′ , F ix(J
∂iQ′

σ′ ) = Q′. Then Theorem 4.5 follows from Theorem 4.3. □
Remark 4.6. to the best of our knowledge, there is no result on the problems
(MSSFP−D2, MSSFP−D3, MSSFP−D4, MSSFP−D5).

For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti and Sj be average. In the
following theorem, we study the following convex feasibility problem (MSSFP-D6):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0)∩G−1

2 (0)∩Fix(T1)∩Fix(T2)∩· · ·∩
Fix(Tm1) ∩ Fix(S1) ∩ Fix(S2) ∩ · · · ∩ Fix(Sm2).

The following theorem is a special case of Theorem 4.2, but it is useful to the
study of other types of multiple sets split feasibility problems.

Theorem 4.7. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti and Sj be
average. Suppose that the solutions set ΩD6 of (MSSFP−D6) is nonempty, and
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{an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an + bn + cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H, a sequence {vn} be defined by{

v2n+1 := anu+ bnv2n + cnJ
G1
ρn (I − ρn(I − T1T2T3 . . . Tm1))v2n, n ∈ N ∪ {0},

v2n := fnu+ gnv2n−1 + hnJ
G2
σn

(I − σn(I − S1S2 . . . Sm2))v2n−1, n ∈ N.

Then lim
n→∞

vn = PΩD6
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
3 , 0 < σn < 1

3 for each n ∈ N,
(iv) lim inf

n→∞
cn > 0 and lim inf

n→∞
hn > 0.

Proof. Put A1 = I and A2 = I in Theorem 4.2, then Theorem 4.7 follows immedi-
ately from Theorem 4.2. □

5. Multiple sets split system of variational inclusion problems and
multiple sets split systems of feasibility problems

For each i ∈ N, j ∈ N, let Fi be a firmly nonexpansive of H2 into H2, F
′
j be a

firmly nonexpansive mapping of H3 into H3. For each i ∈ N, let Ai : H1 → H2

be a bounded linear operator and A∗
i be the adjoint of Ai, for each j ∈ N, let

A′
j : H1 → H3 be a bounded linear operator and (A

′
j)

∗ be the adjoint of A′
j .

Throughout this section, we use these notations and assumptions unless specified
otherwise.

In the following theorem, we study the multiple sets split system of variational
inclusion problems (MSSFP-E1):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0)

∩
G−1

2 0, Aix̄ ∈ (Li + Mi)
−10 for each i =

1, 2, . . . ,m1 and A′
j x̄ ∈ (L′

j +M ′
j)

−10 for each j = 1, 2, ..,m2.

Theorem 5.1. Suppose that the solutions set ΩE1 of (MSSFP−E1) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N.

For an arbitrary fixed u ∈ H, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n
+cnJ

G1
ρn (I − ρn(I − (I − σA∗

1(I − U1)A1)(I − σA∗
2(I − U2)A2)

· · · (I − σA∗
m1

(I − Um1)Am1))v2n, m ∈ N ∪ {0},
v2n := fnu+ gnv2n−1

+hnJ
G2
σn

(I − σn(I − (I − δA′
1
∗(I − U ′

1)A
′
1)(I − δA′

2
∗(I − U ′

2)A
′
2)

· · · (I − δA′
m2

∗(I − U ′
m2

)A′
m2

))v2n−1, n ∈ N.

where Ui = JMi
α (I − αLi) and U

′
j = J

M
′
j

β (I − βL
′
j).

Then lim
n→∞

vn = PΩE1
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;
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(iii) 0 < ρn < 1
3 , 0 < σn < 1

3 for each n ∈ N, 0 < α < 2min{κ1, . . . , κm1}, 0 <

β < 2min{κ′
1, . . . , κ

′
m2

}, 0 < σ < min{ 1
R1

, 1
R2

, . . . , 1
Rm1

} and 0 < δ <

min{ 1
R′

1
, 1
R′

2
, . . . , 1

R′
m2

};
(iv) lim inf

n→∞
cn > 0 lim inf

n→∞
hn > 0.

Proof. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti = (I − σA∗
i (I − Ui)Ai)

and Sj = (I − δA′
j
∗(I − U ′

j)A
′
j). By Lemma 3.4, for each i = 1, 2, . . . ,m1 and

j = 1, 2, . . . ,m2, Ti and Sj are averaged. By Theorem 4.7, there exists x̄ ∈ H1

such that Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩G−1

2 (0) ∩ Fix(T1) ∩ Fix(T2) ∩ · · · ∩
Fix(Tm1) ∩ Fix(S1) ∩ Fix(S2) ∩ · · · ∩ Fix(Sm2). For each i = 1, 2, . . . ,m1 and
j = 1, 2, . . . ,m2, x̄ ∈ Fix(I − σA∗

i (I − Ui)Ai) and x̄ ∈ Fix(I − δA′
j
∗(I − U ′

j)A
′
j).

By Lemma 3.4, for each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, Aix̄ ∈ FixUi, and
Aj

′x̄ ∈ FixU
′
j . Since FixUi = FixJMi

α (I − αLi) = (L1 + Mi)
−10 and FixU ′

j =

FixJ
M

′
j

β (I − βL
′
j) = (L

′
j +M

′
j)

−10. □

Remark 5.2. There are some differences between Theorems 5.1 and 3.8. The
multiple sets split monotone variational inclusion problem studies in Theorem 5.1
has system type, but Theorem 3.8 does not study system type.

In the following theorem, we study the multiple sets split system of variational
inclusion problems (MSSFP-E2):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 0

∩
G−1

2 0, Aix̄ ∈ Fix(Fi) for each i = 1, 2, . . . ,m
and A′

j x̄ ∈ Fix(F ′
j) for each j = 1, 2, .., n.

Theorem 5.3. Suppose that the solutions set ΩE2 of (MSSFP−E2) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn}, are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For each
i = 1.2, . . . ,m1 and j = 1, 2, . . . ,m2. For an arbitrary fixed u ∈ H1, a sequence
{vn} be defined by

v2n+1 := anu+ bnv2n
+cnJ

G1
ρn (I − ρn(I − (I − σA∗

1(I − F1)A1)(I − σA∗
2(I − F2)A2)

· · · (I − σA∗
m1

(I − Fm1)Am1))v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1

+hnJ
G2
σn

(I − σn(I − (I − δA
′
1
∗
(I − F

′
1)A

′
1)(I − δA

′
2
∗
(I − F

′
2)A

′
2)

· · · (I − δA
′
m2

∗
(I − F

′
m2

)A
′
m2

))v2n−1, n ∈ N.

Then lim
n→∞

vn = PΩE2
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
3 , 0 < σn < 1

3 for each

n ∈ N, 0 < σ < min
{

2
∥A1∥2+2

, 2
∥A2∥2+2

, . . . , 2
∥Am1∥2+2

}
and

0 < δ < min
{

2
∥A′

1∥2+2
, 2
∥A′

2∥2+2
, . . . , 2

∥A′
m2

∥2+2

}
;

(iv) lim inf
n→∞

cn > 0 and lim inf
n→∞

hn > 0.
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Proof. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti = (I − σA∗
i (I − Fi)Ai)

and Sj = (I − δA′
j
∗(I − F ′

j)A
′
j). By Lemma 3.5, for each i = 1, 2, . . . ,m1 and

j = 1, 2, . . . ,m2, Ti and Sj are averaged. By Theorem 4.7, there exists x̄ ∈ H1

such that x̄ ∈ G−1
1 (0) ∩ G−1

2 (0) ∩ Fix(T1) ∩ Fix(T2) ∩ · · · ∩ Fix(Tm) ∩ Fix(S1) ∩
Fix(S2) ∩ · · · ∩ Fix(Sn). For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, x̄ ∈
Fix((I − σA∗

i (I −Fi)Ai)) and x̄ ∈ Fix((I − δA′
1
∗(I −F ′

1)A
′
1)). By Lemma 3.5,, for

each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, Aix̄ ∈ Fix(Fi) and A
′
j x̄ ∈ Fix(F

′
j ). □

In the following theorem, we study the multiple sets split system of variational
inclusion problems (MSSFP-E3):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0)

∩
G−1

2 0, Aix̄ ∈ (Li + Mi)
−10 for each i =

1, 2, . . . ,m1 and A′
j x̄ ∈ Fix(F ′

j) for each j = 1, 2, . . . ,m2.

Remark 5.4. There are some differences between Theorems 5.3 and 3.7. The
multiple sets split feasibility problem study in Theorem 5.3 has system type, but
Theorem 3.7 does not study system type.

Theorem 5.5. Suppose that the solutions set ΩE3 of (MSSFP−E3) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn}, are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N.

For an arbitrary fixed u ∈ H1, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n
+cnJ

G1
ρn (I − ρn(I − (I − σA∗

1(I − U1)A1)(I − σA∗
2(I − U2)A2)

· · · (I − σA∗
m1

(I − Um1)Am1))v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1

+hnJ
G2
σn

(I − σn(I − (I − δA
′
1
∗
(I − F

′
1)A

′
1)(I − δA

′
2
∗
(I − F

′
2)A

′
2)

· · · (I − δA
′
m2

∗
(I − F

′
m2

)A
′
m2

))v2n−1, n ∈ N.

where Ui = JMi
α (I − αLi). Then lim

n→∞
vn = PΩE3

u provided the following conditions

are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
3 , 0 < σn < 1

3 for each n ∈ N, 0 < α < 2min{κ1, . . . , κm},
σ < min

{
2

∥A1∥2+2
, 2
∥A2∥2+2

, . . . , 2
∥A′

m1
∥2+2

}
and

0 < δ < min
{

1
R′

1
, 1
R′

2
, . . . , 1

R′
m2

}
;

(iv) lim inf
n→∞

cn > 0 and lim inf
n→∞

hn > 0.

Proof. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti = (I − σA∗
i (I − Ui)Ai)

and Sj = (I − δA′
j
∗(I − F ′

j)A
′
j). By Lemmas 3.4 and 3.5, for each i = 1, 2, . . . ,m1

and j = 1, 2, . . . ,m2, Ti and Sj are averaged. By Theorem 4.7, there exists x̄ ∈ H1

such that Find x̄ ∈ H1 such that x̄ ∈ G−1
1 (0) ∩G−1

2 (0) ∩ Fix(T1) ∩ Fix(T2) ∩ · · · ∩
Fix(Tm1) ∩ Fix(S1) ∩ Fix(S2) ∩ · · · ∩ Fix(Sm2). For each i = 1, 2, . . . ,m1 and
j = 1, 2, . . . ,m2, x̄ ∈ Fix(I − σA∗

i (I − Ui)Ai)) and x̄ ∈ Fix(I − δA′
1
∗(I − F ′

1)A
′
1).

By Lemmas 3.4 and 3.5, for each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, x̄ ∈ G−1
1 0,

Aix̄ ∈ FixUi, x̄ ∈ G−1
2 0 and Aj

′x̄ ∈ FixFj and we also know that FixUi =
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FixJα
Mi(I − αLi) = (L1 +Mi)

−10. Therefore, this complete the proof of Theorem
5.5. □
Remark 5.6. There are some differences between Theorems 5.5 and 3.10.

For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti and Sj are nonexpansive
mappings. In the following theorem, we study the multiple sets split system of
variational inclusion problems (MSSFP-E4):

Find x̄ ∈ H1 such that x̄ ∈ G−1
1 0

∩
G−1

2 0, Aix̄ ∈ Fix(Ti) for each i = 1, 2, . . . ,m
and A′

j x̄ ∈ Fix(Sj) for each j = 1, 2, .., n.

Theorem 5.7. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Ti and Sj are
nonexpansive mappings. Suppose that the solutions set ΩE4 of (MSSFP−E4)
is nonempty and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with
an + bn + cn = 1, fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N.

For an arbitrary fixed u ∈ H1, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n
+cnJ

G1
ρn (I − ρn(I − (I − 1

2σA
∗
1(I − T1)A1)(I − 1

2σA
∗
2(I − T2)A2)

· · · (I − 1
2σA

∗
m1

(I − Tm1)Am1)))v2n, n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1

+hnJ
G2
σn

(I − σn(I − JG2
δ (I − 1

2δA
′
1
∗(I − S1)A

′
1)

JG2
δ (I − 1

2δA
′
2
∗(I − S2)A

′
2) · · · J

G2
δ (I − 1

2δA
′
m2

∗(I − Sm2)A
′
m2

))v2n−1,
n ∈ N

Then lim
n→∞

vn = PΩE4
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
3 , 0 < σn < 1

3 for each n ∈ N,
0 < σ < min

{
2

∥A1∥2+2
, 2
∥A2∥2+2

, . . . , 2
∥Am1∥2+2

}
and

0 < δ < min
{

2
∥A′

1∥2+2
, 2
∥A′

2∥2+2
, . . . , 2

∥A′
m2

∥2+2

}
;

(iv) lim inf
n→∞

cn > 0 and lim inf
n→∞

hn > 0.

Proof. For each i = 1, 2, . . . ,m1 and j = 1, 2, . . . ,m2, let Fi =
I+T1
2 and F ′

j =
I+Sj

2
in Theorem 5.3. Applying Theorem 5.3 and following the same argument as in
Theorem 4.1, we can prove Theorem 5.7. □
Remark 5.8. There are some differences between Theorems 5.5 and 3.10. To the
best of our knowledge, there is no results on the problem (MSSFP-E1, MSSFP-
E2, MSSFP-E3, MSSFP-E4 and MSSFP-E5).

In the following theorem, we study the following multiple sets split systems of
variational inequalities problem (MSSFP–E5):

Find x̄ ∈ H1, such that for each i = 1, 2, . . . , 2m1, j = 1, 2, . . . , 2m2, thee exist
ūi ∈ H2, w̄j+1 ∈ H3, with

(i) x̄ ∈ G−1
1 (0) ∩G−1

2 (0);
(ii) ⟨σL2iAix̄+ ūi −Aix̄, ui − ūi⟩ ≥ 0 for all ui ∈ FixJM2i

σ ;
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(iii) ⟨σL2i−1ūi +Aix̄− ūi, u2i−1 −Aix̄⟩ ≥ 0 for all u2i−1 ∈ FixJ
M2i−1
σ ;

(iv) ⟨δL′
2jA

′
j x̄+ w̄j −A′

j x̄, wj − w̄j⟩ ≥ 0 for all wj ∈ FixJ
M

′
2j

δ ; and

(v) ⟨δL′
2j−1w̄j +A

′
j x̄− w̄j , wJ+1 −A

′
j x̄⟩ ≥ 0 for all wj+1 ∈ FixJ

M
′
2j−1

δ .

Theorem 5.9. Suppose that the solutions set ΩE5 of (MSSFP−E5) is nonempty,
and {an}, {bn}, {cn}, {fn}, {gn}, {hn} are sequences in [0, 1] with an+bn+cn = 1,
fn + gn + hn = 1, 0 < an < 1, and 0 < fn < 1 for each n ∈ N. For an arbitrary
fixed u ∈ H1, a sequence {vn} be defined by

v2n+1 := anu+ bnv2n
+cnJ

G1
ρn (I − ρn(I − (I − 1

2σA
∗
1(I − JM1

σ (I − σL1)J
M2
σ (I − σL2))A1)

(I − 1
3σA

∗
2(I − JM3

σ (I − σL3)J
M4
σ (I − σL4))A2) · · ·

(I − 1
2σA

∗
m1

(I − J
M2m1−1
σ (I − σL2m1−1)J

M2m1
σ (I − σL2m1))Am1))v2n,

n ∈ N ∪ {0},
v2n := fnu+ gnv2n−1

+hnJ
G2
σn

(I − σn(I − (I − 1
2δA

′
1
∗(I − JM1

′

δ (I − δL1
′)JM2

′

δ (I − δL2
′))A′

1)

(I − 1
2δA

′
2
∗(I − JM3

′

δ (I − δL3
′)JM4

′

δ (I − δL4
′))A′

2) · · · (I − 1
2δA

′
m2

∗

(I − J
M2m2−1

′

δ (I − δL2m2−1
′)J

M2m2
′

δ (I − δL2m2
′))A′

m2
))v2n−1, n ∈ N

Then lim
n→∞

vn = PΩE5
u provided the following conditions are satisfied:

(i) lim
n→∞

an = lim
n→∞

fn = 0;

(ii) either
∑∞

n=1 an = ∞ or
∑∞

n=1 fn = ∞;

(iii) 0 < ρn < 1
3 , 0 < σn < 1

3 for each

n ∈ N, 0 < σ < min
{

2
∥A1∥2+2

, 2
∥A2∥2+2

, . . . , 2
∥Am1∥2+2

}
and

0 < δ < min
{

2
∥A′

1∥2+2
, 2
∥A′

2∥2+2
, . . . , 2

∥A′
m2

∥2+2

}
;

0 < σ < 2min {κ1, κ2, . . . , κ2m1} and
0 < δ < 2min

{
κ′1, κ

′
2, . . . , κ

′
2m2

}
;

(iv) lim inf
n→∞

cn > 0 and lim inf
n→∞

hn > 0.

Proof. Applying Theorem 5.7 and following the same arguments as in the proof of
Theorem 4.3, we can prove Theorem 5.9. □
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