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ABSTRACT. In this paper, we introduce some generalized semi-continuity for
vector-valued functions to obtain the existence of a solution to Pareto’s opti-
mization problem for vector-valued convex functions in reflexive Banach spaces.

1. INTRODUCTION

Let E be a topological vector space and C' C E be a closed cone (i.e., C is
closed convex, A\C' C C for all A > 0, C' N (—C) = {0} and define a partial order
< induced by C on E by x < y if and only if y — 2 € C). Vector optimization
problems have been extensively studied by many authors in the past years (see
Cesari and Suryanarayana [6, 7, 8], Corley [10, 11], Hartley [12], Jahn [13], Yu
[25] and Wagner [24]. In 1980, Corley [10] introduced very interesting notions, C-
semicontinuity and C-semicompactness, to obtain the existence of a solution to a
generalized Pareto’s maximization problem. We note that a C-semicompact subset
is essentially weaker than a compact subset since a compact subset is necessarily
closed, but a C-semicompact subset may not be closed. For example, if F' = R?,
C = {(xz,z),r >0} C R?is a cone and B = {(2,0) : z € (0,1)} is not closed, then,
for any open covering of B C Ujcr ..c(0,1)[(2i,0) + C]¢, one can easily see that

B C ((#1,0) + P)° U ((22,0) + C)°,

where 21 # 22, and so B is C'—semicompact. In [9], Chen et al. used a generalized
semi-continuity which is called lower semi-continuous from above to study the min-
imization of a convex function in reflexive Banach spaces. In fact, the concept of a
generalized semi-continuity has been generalized by Khanh and Quy [14, 15, 16] to
study variational problems for vector functions.

Definition 1.1 (see [25]). Let X, Y be topological vector spaces, C C F' be a cone
and < be the partial order induced by C' on F.

(1) A vector valued function ¢ : X — F' is said to be C-convex if

Plax + By) < ap(x) + Bo(y)
for all z,y € D(¢) and o, B > 0 with o + f = 1;
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(2) A vector valued function ¢ : X — F' is said to be C-concave if

plax + By) > ag(x) + Bo(y)
for all z,y € D(¢) and o, B > 0 with o + 5 = 1.

The following definition is essentially introduced by Corley [10]:

Definition 1.2. Let X be a topological space, Y be a topological vector space,
C C F be a cone and < be the partial order induced by C on F'.

(1) A vector valued function f : X — Y is said to C-lower semi-continuous if
f~1(y — P) is closed for any y € Y;

(2) A vector valued function f : X — Y is said to C-upper semi-continuous if
f~Yy + P) is closed for any y € Y.

Definition 1.3 (see [9]). Let X be a topological space.

(1) A function f: X — R is said to be sequentially lower semi-continuous from
above at x if, for any sequence {z,, } with x,, — xo, f(zn+1) < f(x,) implies
that f($0) < hmn—)oo f(xn)

(2) f is said to be sequentially upper semi-continuous from below at xq if, for
any sequence {z,} with =, — zo, f(zn+1) > f(z,) implies that f(z) <
lim,, 00 f(20)-

Lower semi-continuous from above has been used and generalized by many au-
thors to study variational problem, optimization problem and fixed point problem
(see [2, 3, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21]) and it has been generalized by Khanh
and Quy to study variational problem for vector valued functions.

Definition 1.4 (see [14]). Let X be a topological space, F' be a topological vector
space, C' C F be a cone and < be the partial order induced by C on F.

(1) A function f : X — F is said to be sequentially C-lower semi-continuous
from above at xg if, for any sequence {x,} with z, — xo, f(zp+1) < f(xn)
implies that f(zg) < f(z,) for each n > 1;

(2) f is said to be sequentially C-upper semi-continuous from below at xq if, for
any sequence {z,} with =, — xo, f(xny1) > f(x,) implies that f(xg) >
f(zy) for each n > 1.

Clearly, the C-lower semi-continuity introduce by [10] implies that the C-lower
semi-continuity from above, but the reverse is not true. See [9] and [14].

Definition 1.5. Let X be a topological space, F' be a topological vector space,
C C F be a cone and < be the partial order induced by C on F'.

(1) A function f : X — F' is said to be sequentially strongly C-lower semi-
continuous from above at xo if, for any sequences {z,} and {y,} with
f(@nt1) < f(zn) and y, — x0, respectively, f(y,) < f(x,) implies that
f(zo) < f(xy,) for each n > 1;

(2) f issaid to be sequentially strongly C-upper semi-continuous from below at
xo if, for any sequences {x,} and {y,} with f(zn41) < f(zy,) and y, — o,
respectively, f(y,) > f(zy) implies that f(z¢) > f(x,) for each n > 1.
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2. THE EXISTENCE OF A SOLUTION TO PARETO’S OPTIMIZATION PROBLEM
Now, we give the main results in this paper.

Theorem 2.1. Let E be a reflexive Banach space, F be a separable norm space,
C C F be a cone and ¢ : D(¢) C E — F be C-convex and strongly C-lower semi-
continuous from above. Then, for any r > 0 such that D(¢) N B(0,7) # 0, there
exists yo € D(¢) N B(0,7) such that

¢(yo) = min{¢(z) : = € D(¢) N B(0,7)}.

Proof. For each totally ordered subset {¢(x;)}rer of {¢(x) : x € D(¢) N B(0,r)},
we prove that it has a lower bound in {¢(z) : x € D(¢) N B(0,7)}.

Since F' is a separable norm space, there exists {¢(x,,) :> 1} such that {¢(x,,) :
n > 1} is dense in {¢(x;)}rer, which is simply denoted by {¢(x,) : n > 1}.
We may also assume that ¢(x1) > ¢(z2) > ---. Since E is reflexive, {x,} has
a weak convergence subsequence. For simplicity, we still denote it by z, — zg.

Obviously, we have xy € B(0,r) By Banach-Mazur Theorem (see [24]), we know

that z¢ € co{z,, : n > 1} and so there exists y; = Ef’;laixm € co{x, : n > 1} such
that |y1 — xo|| < 1, where o; > 0 for each ¢ = 1,2,...,ky, and Ef;lai = 1. Again,
ko

Jj=k1

by zo € co{xn :n > ny, }, there exists yo = X2, \jxp, € co{w, : n > ny, } such

that ||y2 — x| < %, where \; > 0 and Z;?Q:kl Aj = 1. By using the convexity of ¢,

we have
S(y1) < Dfty, cid(wi) < Blak,)

and, similarly, ¢(y2) < ¢(xg,).

Continuously, by using zg € co{xy, : n > ng,, ,}, we get a sequence {y,,} with
Ym € cof{zn 1 n > ny,, |} such that |y, — ol < = and ¢(ym) < ¢(zs,,) for each
m > 3. By assumption, we get ¢(zo) < ¢(zn,, ) for each m > 1 and thus zg € D¢).
Consequently, we have ¢(zg) < ¢(x,,) for each n > 1.

Now, we prove ¢(x¢) is a lower bound for {¢(x;) : 7 € T}, i.e., p(xo) < ¢(z,) for
all 7 € T. In fact, for each 7 € T', there exists {¢(zy,;)} such that ¢(z,;) — ¢(x,).
By using ¢(zo) < ¢(xn;), we have ¢(z,;) = ¢(x0) + 2;, where z; € P for each
j > 1. By letting j — oo and noting that P is closed, we get ¢(x;) = ¢(zo) + 20
for some zp € P and so ¢(x0) < ¢(z,). Therefore, by Zorn’s lemma, there exists
yo € D(¢) N B(0,r) such that

#(yo) = min{op(x) : x € D(¢) N B(0,7)}.
This completes the proof. O

By the similar argument, we get the following:

Theorem 2.2. Let E be a reflexive Banach space, F be a separable norm space,
C C F be a closed conver cone and ¢ : D(¢) C E — F be P-concave and strongly
C'—upper semi-continuous from below. Then, for any r > 0 such that D(¢) N
B(0,7) # 0, there exists yo € D(¢) N B(0,7) such that

d(yo) = max{p(z) : x € D(¢p) N B(0,7)}.
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Theorem 2.3. Let E be a reflexive Banach space, F be a separable norm space,
C C F be a closed convex cone and ¢ : D(¢) C E — F be C-lower semi-continuous

from above in the weak topology. Then, for any r > 0 such that D(¢) N B(0,r) # 0,
there exists yo € D(¢) N B(0,r) such that

¢(yo) = min{¢(z) : z € D(¢) N B(0,7)}.

Proof. For each totally ordered subset {¢(x;)}rer of {¢(x) : x € D(¢) N B(0,r)},
we prove that it has a lower bound in {¢(z) : x € D(¢) N B(0,7)}.

Since F' is separable, there exists {¢(z,) : n > 1} such that {¢(z,,) : n > 1}
is dense in {¢(z;)}rer, which is simply denoted by {¢(z,) : n > 1}. We may
also assume that ¢(x1) > ¢(z2) > ---. Since E is reflexive, {z,} has a weak
convergence subsequence {zy, } with z,, — z¢. Obviously, we have zy € B(0,r).
Using the assumption that ¢ is C-lower semi-continuous from above in the weak
topology, we get ¢(zg) < ¢(xy, ). Consequently, we have ¢(xg) < ¢(z).

By the similar argument as in the proof of Theorem 2.1, we get ¢(zp) is a lower
bound for {¢(z;)}rer. Therefore, by Zorn’s lemma, there exists yo € D(¢)NB(0,r)
such that

d(yo) = min{¢p(x) : x € D(¢) N B(0,7)}.
This completes the proof. O

Remark 2.4. The conclusions of Theorems 2.1-2.3 are also true if B(0, r) is replaced
by a bounded closed convex subset in F.

Recall that ug € B(0,r) is a generalized Pareto solution of the problem (E1) if
there exists u; € B(0,7) such that G(u1) < G(up), then u; = up.

Example 2.5. Let g1(z),g2(z) : R* — R be two continuous convex functions.
Consider the following multi-objective programming:
Find uy € R™ with ||Jug|| < r such that

(E1) {91(’&0) < g1 (),

g2(up) < go(u) for all uw € R™ with |Jul| <r.

Set C = {(x1,22) € R?> : x; > 0, u = 1,2}. Then C is a closed convex cone of
R? and set G : R™ — R? by G(u) = (g1(u),g2(u)) for all w € R™. Tt is easy to
see that the continuity and convexity of g; and go imply that G is C-convex and
strongly C-lower semi-continuous from above. Tus, by Theorem 2.1, we know that
the problem (E1) has a generalized Pareto solution.

Recall that (ug,v9) € HE(Q) x HI(Q) is a generalized Pareto solution to the
problem (E2) if G(u1,v1) < G(ug, vo) implies that (ui,v1) = (ug, vo).

Example 2.6. Let f(x,%),9(z,y) : R — R be two continuous convex functions.

Suppose that the following conditions are satisfied:

(1) |f(z,y)| < L||z||+b for all (z,y) € R?, where L > 0 and b > 0 are constants;
(2) lg(z,vy)| < K|ly||+cfor all (z,y) € R?, where K > 0 and ¢ > 0 are constants.
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Let 2 C R™ be an open bounded subset with smooth boundary and H{ () be
the Sobolev space. Let

I(u,v) = /Q =02, (2) + Fu(z), o(x)))dx
and
J(u,v) = /Q 57102, () + g(u(z), o(x))|dx

for all u,v € H}(2). We consider the following problem:
Find ug, vo € H} () such that |Jug|| < ro, |Jvo| < 7o and

I, 0) = it ey o) ol ()+f( (2), v(a))]de,
J(up, v0) = ming e g1 o) Sl Ziy 02 (2) + glu(), v())]da.

Set C = {(21,72) E R2: 2, >0, u =1, 2}. Then C is a closed convex cone of R? and
define G : H}(Q) x H}(Q) — R? by G(u,v) = (I(u,), J(u,v)) for all u,v € H}().

Under the assumptions, we know that both I and J are continuous and convex
and so G is continuous and C-convex. Thus G is strongly C-lower semi-continuous
from above. Therefore, by Theorem 2.1, we know that the problem (E2) has a
generalized Pareto solution.

(E2)
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