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(2) A vector valued function ϕ : X → F is said to be C-concave if

ϕ(αx+ βy) ≥ αϕ(x) + βϕ(y)

for all x, y ∈ D(ϕ) and α, β > 0 with α+ β = 1.

The following definition is essentially introduced by Corley [10]:

Definition 1.2. Let X be a topological space, Y be a topological vector space,
C ⊂ F be a cone and ≤ be the partial order induced by C on F .

(1) A vector valued function f : X → Y is said to C-lower semi-continuous if
f−1(y − P ) is closed for any y ∈ Y ;

(2) A vector valued function f : X → Y is said to C-upper semi-continuous if
f−1(y + P ) is closed for any y ∈ Y .

Definition 1.3 (see [9]). Let X be a topological space.

(1) A function f : X → R is said to be sequentially lower semi-continuous from
above at x0 if, for any sequence {xn} with xn → x0, f(xn+1) ≤ f(xn) implies
that f(x0) ≤ limn→∞ f(xn).

(2) f is said to be sequentially upper semi-continuous from below at x0 if, for
any sequence {xn} with xn → x0, f(xn+1) ≥ f(xn) implies that f(x0) ≤
limn→∞ f(x0).

Lower semi-continuous from above has been used and generalized by many au-
thors to study variational problem, optimization problem and fixed point problem
(see [2, 3, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21]) and it has been generalized by Khanh
and Quy to study variational problem for vector valued functions.

Definition 1.4 (see [14]). Let X be a topological space, F be a topological vector
space, C ⊂ F be a cone and ≤ be the partial order induced by C on F .

(1) A function f : X → F is said to be sequentially C-lower semi-continuous
from above at x0 if, for any sequence {xn} with xn → x0, f(xn+1) ≤ f(xn)
implies that f(x0) ≤ f(xn) for each n ≥ 1;

(2) f is said to be sequentially C-upper semi-continuous from below at x0 if, for
any sequence {xn} with xn → x0, f(xn+1) ≥ f(xn) implies that f(x0) ≥
f(xn) for each n ≥ 1.

Clearly, the C-lower semi-continuity introduce by [10] implies that the C-lower
semi-continuity from above, but the reverse is not true. See [9] and [14].

Definition 1.5. Let X be a topological space, F be a topological vector space,
C ⊂ F be a cone and ≤ be the partial order induced by C on F .

(1) A function f : X → F is said to be sequentially strongly C-lower semi-
continuous from above at x0 if, for any sequences {xn} and {yn} with
f(xn+1) ≤ f(xn) and yn → x0, respectively, f(yn) ≤ f(xn) implies that
f(x0) ≤ f(xn) for each n ≥ 1;

(2) f is said to be sequentially strongly C-upper semi-continuous from below at
x0 if, for any sequences {xn} and {yn} with f(xn+1) ≤ f(xn) and yn → x0,
respectively, f(yn) ≥ f(xn) implies that f(x0) ≥ f(xn) for each n ≥ 1.
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2. The existence of a solution to Pareto’s optimization problem

Now, we give the main results in this paper.

Theorem 2.1. Let E be a reflexive Banach space, F be a separable norm space,
C ⊂ F be a cone and ϕ : D(ϕ) ⊂ E → F be C-convex and strongly C-lower semi-

continuous from above. Then, for any r > 0 such that D(ϕ) ∩ B(0, r) ̸= ∅, there
exists y0 ∈ D(ϕ) ∩B(0, r) such that

ϕ(y0) = min{ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.

Proof. For each totally ordered subset {ϕ(xτ )}τ∈T of {ϕ(x) : x ∈ D(ϕ) ∩ B(0, r)},
we prove that it has a lower bound in {ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.

Since F is a separable norm space, there exists {ϕ(xτn) :≥ 1} such that {ϕ(xτn) :
n ≥ 1} is dense in {ϕ(xτ )}τ∈T , which is simply denoted by {ϕ(xn) : n ≥ 1}.
We may also assume that ϕ(x1) ≥ ϕ(x2) ≥ · · · . Since E is reflexive, {xn} has
a weak convergence subsequence. For simplicity, we still denote it by xn ⇀ x0.
Obviously, we have x0 ∈ B(0, r) By Banach-Mazur Theorem (see [24]), we know

that x0 ∈ co{xn : n ≥ 1} and so there exists y1 = Σk1
i=1αixni ∈ co{xn : n ≥ 1} such

that |y1 − x0∥ ≤ 1, where αi ≥ 0 for each i = 1, 2, . . . , k1, and Σk1
i=1αi = 1. Again,

by x0 ∈ co{xn : n ≥ nk1}, there exists y2 = Σk2
j=k1

λjxnj ∈ co{xn : n ≥ nk1} such

that ∥y2 − x0∥ ≤ 1
2 , where λj ≥ 0 and Σk2

j=k1
λj = 1. By using the convexity of ϕ,

we have

ϕ(y1) ≤ Σk1
i=k0

αiϕ(xi) ≤ ϕ(xk1)

and, similarly, ϕ(y2) ≤ ϕ(xk2).

Continuously, by using x0 ∈ co{xn : n ≥ nkm−1}, we get a sequence {ym} with

ym ∈ co{xn : n ≥ nkm−1} such that ∥ym − x0∥ < 1
m and ϕ(ym) ≤ ϕ(xkm) for each

m ≥ 3. By assumption, we get ϕ(x0) ≤ ϕ(xnkm
) for each m ≥ 1 and thus x0 ∈ Dϕ).

Consequently, we have ϕ(x0) ≤ ϕ(xn) for each n ≥ 1.
Now, we prove ϕ(x0) is a lower bound for {ϕ(xτ ) : τ ∈ T}, i.e., ϕ(x0) ≤ ϕ(xτ ) for

all τ ∈ T . In fact, for each τ ∈ T , there exists {ϕ(xnj )} such that ϕ(xnj ) → ϕ(xτ ).
By using ϕ(x0) ≤ ϕ(xnj ), we have ϕ(xnj ) = ϕ(x0) + zj , where zj ∈ P for each
j ≥ 1. By letting j → ∞ and noting that P is closed, we get ϕ(xτ ) = ϕ(x0) + z0
for some z0 ∈ P and so ϕ(x0) ≤ ϕ(xτ ). Therefore, by Zorn’s lemma, there exists

y0 ∈ D(ϕ) ∩B(0, r) such that

ϕ(y0) = min{ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.

This completes the proof. □

By the similar argument, we get the following:

Theorem 2.2. Let E be a reflexive Banach space, F be a separable norm space,
C ⊂ F be a closed convex cone and ϕ : D(ϕ) ⊂ E → F be P -concave and strongly
C−upper semi-continuous from below. Then, for any r > 0 such that D(ϕ) ∩
B(0, r) ̸= ∅, there exists y0 ∈ D(ϕ) ∩B(0, r) such that

ϕ(y0) = max{ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.
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Theorem 2.3. Let E be a reflexive Banach space, F be a separable norm space,
C ⊂ F be a closed convex cone and ϕ : D(ϕ) ⊂ E → F be C-lower semi-continuous

from above in the weak topology. Then, for any r > 0 such that D(ϕ)∩B(0, r) ̸= ∅,
there exists y0 ∈ D(ϕ) ∩B(0, r) such that

ϕ(y0) = min{ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.

Proof. For each totally ordered subset {ϕ(xτ )}τ∈T of {ϕ(x) : x ∈ D(ϕ) ∩ B(0, r)},
we prove that it has a lower bound in {ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.

Since F is separable, there exists {ϕ(xτn) : n ≥ 1} such that {ϕ(xτn) : n ≥ 1}
is dense in {ϕ(xτ )}τ∈T , which is simply denoted by {ϕ(xn) : n ≥ 1}. We may
also assume that ϕ(x1) ≥ ϕ(x2) ≥ · · · . Since E is reflexive, {xn} has a weak

convergence subsequence {xnk
} with xnk

⇀ x0. Obviously, we have x0 ∈ B(0, r).
Using the assumption that ϕ is C-lower semi-continuous from above in the weak
topology, we get ϕ(x0) ≤ ϕ(xnk

). Consequently, we have ϕ(x0) ≤ ϕ(xn).
By the similar argument as in the proof of Theorem 2.1, we get ϕ(x0) is a lower

bound for {ϕ(xτ )}τ∈T . Therefore, by Zorn’s lemma, there exists y0 ∈ D(ϕ)∩B(0, r)
such that

ϕ(y0) = min{ϕ(x) : x ∈ D(ϕ) ∩B(0, r)}.

This completes the proof. □

Remark 2.4. The conclusions of Theorems 2.1-2.3 are also true ifB(0, r) is replaced
by a bounded closed convex subset in E.

Recall that u0 ∈ B(0, r) is a generalized Pareto solution of the problem (E1) if
there exists u1 ∈ B(0, r) such that G(u1) ≤ G(u0), then u1 = u0.

Example 2.5. Let g1(x), g2(x) : Rn → R be two continuous convex functions.
Consider the following multi-objective programming:

Find u0 ∈ Rn with ∥u0∥ ≤ r such that

(E1)

{
g1(u0) ≤ g1(u),

g2(u0) ≤ g2(u) for all u ∈ Rn with ∥u∥ ≤ r.

Set C = {(x1, x2) ∈ R2 : xi ≥ 0, u = 1, 2}. Then C is a closed convex cone of
R2 and set G : Rn → R2 by G(u) = (g1(u), g2(u)) for all u ∈ Rn. It is easy to
see that the continuity and convexity of g1 and g2 imply that G is C-convex and
strongly C-lower semi-continuous from above. Tus, by Theorem 2.1, we know that
the problem (E1) has a generalized Pareto solution.

Recall that (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) is a generalized Pareto solution to the
problem (E2) if G(u1, v1) ≤ G(u0, v0) implies that (u1, v1) = (u0, v0).

Example 2.6. Let f(x, y), g(x, y) : R2 → R be two continuous convex functions.
Suppose that the following conditions are satisfied:

(1) |f(x, y)| ≤ L∥x∥+b for all (x, y) ∈ R2, where L > 0 and b > 0 are constants;

(2) |g(x, y)| ≤ K∥y∥+c for all (x, y) ∈ R2, whereK > 0 and c > 0 are constants.
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Let Ω ⊂ Rn be an open bounded subset with smooth boundary and H1
0 (Ω) be

the Sobolev space. Let

I(u, v) =

∫
Ω
[Σn

i=1u
2
xi
(x) + f(u(x), v(x))]dx

and

J(u, v) =

∫
Ω
[Σn

i=1v
2
xi
(x) + g(u(x), v(x))]dx

for all u, v ∈ H1
0 (Ω). We consider the following problem:

Find u0, v0 ∈ H1
0 (Ω) such that ∥u0∥ ≤ r0, ∥v0∥ ≤ r0 and

(E2)

{
I(u0, v0) = minu,v∈H1

0 (Ω)

∫
Ω[Σ

n
i=1u

2
xi
(x) + f(u(x), v(x))]dx,

J(u0, v0) = minu,v∈H1
0 (Ω)

∫
Ω[Σ

n
i=1v

2
xi
(x) + g(u(x), v(x))]dx.

Set C = {(x1, x2) ∈ R2 : xi ≥ 0, u = 1, 2}. Then C is a closed convex cone of R2 and
define G : H1

0 (Ω)×H1
0 (Ω) → R2 by G(u, v) = (I(u, v), J(u, v)) for all u, v ∈ H1

0 (Ω).
Under the assumptions, we know that both I and J are continuous and convex

and so G is continuous and C-convex. Thus G is strongly C-lower semi-continuous
from above. Therefore, by Theorem 2.1, we know that the problem (E2) has a
generalized Pareto solution.

References

[1] S. Al-Homidan, Q. H. Ansari and J. C. Yao, Some generalizations of Ekeland-type variational
principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69
(2008), 126–139.

[2] A. Aruffo and G. Bottaro, Generalizations of sequential lower semicontinuity, Boll. Uni. Mat.
Ital. Serie 9 1 (2008),e 293–318.

[3] A. B. Aruffo and G. Bottaro, Some variational results using generalizations of sequential lower
semicontinuity, Fixed Point Theory Appl. 2010, 2010.

[4] D. Bugajewskia and P. Kasprzak, Fixed point theorems for weakly F -contractive and strongly
F -expansive mappings, J. Math. Anal. Appl. 359 (2009), 126–134.

[5] M. Castellania, M. Pappalardob and M. Passacantandob, Existence results for nonconvex
equilibrium problems, Optim. Methods and Software 25 (2010), 49–58.

[6] L. Cesari and M. B. Suryanarayana, Existence theorems for Pareto optimization in Banach
spaces, Bull. Amer. Math. Soc. 82 (1976), 306–308.

[7] L. Cesari and M. B. Suryanarayana, An existence theorem for Pareto problems, Nonlinear
Anal. 2 (1978), 225–233.

[8] L. Cesari and M. B. Suryanarayana, Existence theorems for Pareto optimization: Multivalued
and Banach space valued functionals, Trans. Amer. Math. Soc. 244 (1978), 37–65.

[9] Y. Q. Chen, Y. J. Cho and L. Yang, Note on the results with lower semi-continuity, Bull.
Korean Math. Soc. 39 (2002), 535–541.

[10] H. W. Corley, An existence result for maximizations with respect to cones, J. Optim. Theory
Appl. 31 (1980), 277–281.

[11] H. W. Corley, On optimality conditions for maximizations with respect to cones, J. Optim.
Theory Appl. 46 (1985), 67–77.

[12] R. Hartley, On cone efficiency, cone-convexity and cone-compactness, SIAM. J. Appl. Math.
34 (1978), 211–222.

[13] J. Jahn, Mathematical Vector Optimization in Partially Ordered Spaces, Lang Verlag Frank-
furt, Bern, New York, 1986.

[14] P. Q. Khanh and D. N. Quy, A generalized distance and enhanced Ekeland’s variational prin-
ciple for vector functions, Nonlinear Anal. 73 (2010), 2245–2259.



2058 Y. Q. CHEN, Y. J. CHO, AND J. K. KIM

[15] P. Q. Khanh and D. N. Quy, On generalized Ekeland’s variational principle and equivalent
formulations for set-valued mappings, J. Glob. Optim. 49 (2011), 381–396.

[16] P. Q. Khanh and D. N. Quy, On Ekeland’s variational principle for Pareto minima of set-
valued mappings, J. Optim. Theory Appl. 153 (2012), 280–297.

[17] L. J. Lin and W. S. Du, Ekeland’s variational principle, minimax theorems and existence of
nonconvex equilibria in complete metric spaces J. Math. Anal. Appl. 323 (2006), 360–370.

[18] L. J. Lin and W. S. Du, On maximal element theorems, variants of Ekeland’s variational
principle and their applications, Nonlinear Anal. 68 (2008), 1246–1262.

[19] J. H. Qiu, On Ha’s version of set-valued Ekeland’s variational principle, Acta Math. Sinica
28 (2012), 717–726.

[20] J. H. Qiu and F. He, P -distances, q-distances and a generalized Ekeland’s variational principle
in uniform spaces, Acta Math. Sinica 28 (2012), 235–254.

[21] J. H. Qiu and F. He, A general vectorial Ekeland’s variational principle with a p-distance,
Acta Math. Sinica 29 (2013), 1655–1678.

[22] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
[23] W. Rudin, Functional Analysis, MacGraw-Hill, New York, 1973.
[24] D. H. Wagner, Semicompactness with respect to a Euclidean cone, Canad. J. Math. 29 (1977),

29–36.
[25] P. L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision prob-

lems with multiobjectives, J. Optim. Theory Appl. 14 (1974), 319–377.

Manuscript received March 3, 2014

revised June 21, 2014

Yuqing Chen
College of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong
510090, P. R. China

E-mail address: ychen64@163.com

Yeol Je Cho
Department of Mathematics Education and the RINS, Gyongsang National University, Jinju 660-
701, Korea, and Center for Genaral Education, China Medical University, Taichung, 40402, Taiwan

E-mail address: yjcho@gnu.ac.kr

Jong Kyu Kim
Department of Mathematics Education, Kyungnam University, Changwon 631-701, Korea

E-mail address: jongkyuk@kyungnam.ac.kr


