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A b-metric space is said to be complete if and only if each b-Cauchy sequence in
this space is b-convergent.

Proposition 1.4 ([7]). In a b-metric space (X, d) , the following assertions hold:

(p1) A b-convergent sequence has a unique limit.
(p2) Each b-convergent sequence is b-Cauchy.
(p3) In general, a b-metric is not continuous.

In this paper we prove some fixed point theorems for generalized α-ψ-contractive
mappings in b-metric spaces. The notion of α-ψ-contractive type mapping was
introduced by Samet et al. [22]. They also established some fixed point results
in complete metric space. Karapinar and Samet [14] introduced generalized α-ψ-
contractive type mappings in complete metric spaces. Bota et al. in [8] gived
α-ψ-contraction in b-metric spaces.

Now we give some definitions that will be used throughout this paper.
A mapping ψ : [0,∞) → [0,∞) is called a comparison function if it is increasing

and limn→∞ ψn (t) = 0 for all t > 0.

Lemma 1.5 ([5]). Let ψ : [0,∞) → [0,∞) is a comparison function then

(a) each iterate ψn of ψ, n ≥ 1, is also a comparison function,
(b) ψ is continuous at t = 0,
(c) ψ (t) < t for all t > 0.

Definition 1.6 ([5]). A function ψ : [0,∞) → [0,∞) is said to be a (c)-comparison
function if

(c1) ψ is increasing,
(c2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms

∞∑
k=1

vk, such that ψk+1 (t) ≤ aψk (t) + vk, for k ≥ k0 and any t ∈ [0,∞).

In [6] Berinde also defined (b)-comparison function.

Definition 1.7. Let s ≥ 1 be a real number. A function ψ : [0,∞) → [0,∞) is said
to be a (b)-comparison function if

(b1) ψ is monotonically increasing,
(b1) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms

∞∑
k=1

vk, such that sk+1ψk+1 (t) ≤ askψk (t)+vk, for k ≥ k0 and any t ∈ [0,∞).

When s = 1, (b)-comparison function reduces to (c)-comparison function.
We denote by Ψb for the class of (b)-comparison function.

Lemma 1.8 ([4]). If ψ : [0,∞) → [0,∞) is a (b)-comparison function then one has
the following:

(i)
∞∑
k=0

skψk (t) converges to any t ∈ R+,

(ii) the function bs : [0,∞) → [0,∞) defined by bs (t) =
∞∑
k=0

skψk (t) , t ∈ R+,

increasing and continuous at 0.
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Any (b)-comparison function is a comparison function.

Definition 1.9 ([22]). For any nonempty set X, let T : X → X and α : X ×X →
[0,∞) be mappings. T is called α-admissible if for all x, y ∈ X,

α (x, y) ≥ 1 ⇒ α (Tx, Ty) ≥ 1.

Bota et. al. in ([8]) gived the definition of α-ψ-contractive mapping of type (b)
in b-metric space which is a generalization of Definition 1.9.

Definition 1.10. Let (X, d) be a b-metric space and T : X → X be a given
mapping. T is called an α-ψ-contractive mapping of type (b), if there exists two
functions α : X ×X → [0,∞) and ψ ∈ Ψb such that

α (x, y) d (Tx, Ty) ≤ ψ (d (x, y)) , ∀x, y ∈ X.

2. Main results

Definition 2.1. Let (X, d) be a b-metric space and T : X → X be a given mapping.
T is called generalized α-ψ-contractive mapping of type (I), if there exists two
functions α : X ×X → [0,∞) and ψ ∈ Ψb such that for all x, y ∈ X

(2.1) α (x, y) d (Tx, Ty)) ≤ ψ(Ms (x, y))

where,

Ms (x, y) = max

{
d (x, y) , d (Tx, x) , d (Ty, y) ,

d (Tx, y) + d (x, Ty)

2s

}
.

Theorem 2.2. Let (X, d) be a complete b-metric space. Suppose that T : X → X
be a generalized α-ψ-contractive mapping of type (I) and satisfies:

(i) T is α-admissible,
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1,
(iii) T is continuous,

then T has a fixed point.

Proof. By assumption (ii), there exists x0 ∈ X such that α (x0, Tx0) ≥ 1. Define
the sequence {xn} in X by xn+1 = Txn for all n ∈ N. If xn = xn+1 for some n ∈ N,
then xn is a fixed point of T .

Assume that xn ̸= xn+1 for all n ∈ N.
Since T is α-admissible, then

α (x0, x1) = α (x0, Tx0) ≥ 1 =⇒ α (Tx0, Tx1) = α (x1, x2) ≥ 1.

By induction, we get for all n ∈ N,
(2.2) α (xn, xn + 1) ≥ 1.

Using (2.1) and (2.2)
(2.3)
d (xn, xn+1) = d (Txn−1, Txn) ≤ α (xn−1, xn) d (Txn−1, Txn) ≤ ψ(Ms (xn−1, xn)).

where

Ms (xn−1, xn) = max

{
d (xn−1, xn) , d (Txn−1, xn−1) , d (Txn, xn) ,

d(Txn−1,xn)+d(Txn,xn−1)
2s

}
,
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= max

{
d (xn−1, xn) , d (xn, xn−1) , d (xn+1, xn) ,

d(xn,xn)+d(xn+1,xn−1)
2s

}
,

= max

{
d (xn−1, xn) , d (xn+1, xn) ,

s[d(xn+1,xn)+d(xn,xn−1)]
2s

}
≤ max {d (xn−1, xn) , d (xn+1, xn)} .

If Ms (xn−1, xn) = d (xn, xn+1) , then from (2.3) and definition of ψ,

d (xn, xn+1) ≤ ψ (d (xn, xn+1)) < d (xn, xn+1)

a contradiction. Thus Ms (xn−1, xn) = d (xn−1, xn). By (2.3) and definition of ψ,

d (xn, xn+1) ≤ ψ (d (xn−1, xn)) < d (xn−1, xn)

for all n ≥ 1. By induction we get

(2.4) d (xn, xn+1) ≤ ψn (d (x0, x1)) .

Thus, for all p ≥ 1,

d (xn, xn+p) ≤ sd (xn, xn+1) + s2d (xn+1, xn+2) + · · ·
+sp−1d (xn+p−2, xn+p−1) + spd (xn+p−1, xn+p)

≤ sψn (d (x0, x1)) + s2ψn+1 (d (x0, x1)) + · · ·
+sp−1ψn+p−2 (d (x0, x1)) + spψn+p−1 (d (x0, x1))

=
1

sn−1
[snψn (d (x0, x1)) + sn+1ψn+1 (d (x0, x1)) + · · ·

+sp−n−2ψp−n−2 (d (x0, x1)) + sp+n−1ψp+n−1 (d (x0, x1))].

Denoting Sn =
∞∑
k=0

skψk (d (x0, x1)) , n ≥ 1, we obtain

(2.5) d (xn, xn+p) ≤
1

sn−1
[Sn+p−1 − Sn−1]

for n ≥ 1, p ≥ 1. From Lemma 1.8, we conclude that the series
∞∑
k=0

skψk (d (x0, x1))

is convergent. Thus there exists

S = limn→∞ Sn ∈ [0,∞) .

Regarding s ≥ 1 and by (2.5) {xn} is a Cauchy sequence in b-metric space (X, d).
Since (X, d) is complete, there exists x∗ ∈ X such that xn → x∗ as n → ∞. Using
continuity of T ,

xn+1 = Txn → Tx∗

as n → ∞. By the uniqueness of the limit, we get x∗ = Tx∗. Hence x∗ is a fixed
point of T . □

Definition 2.3. Let (X, d) be a b-metric space and T : X → X be a given mapping.
T is called generalized α-ψ-contractive mapping of type (II), if there exists two
functions α : X ×X → [0,∞) and ψ ∈ Ψb such that for all x, y ∈ X

(2.6) α (x, y) d (Tx, Ty)) ≤ ψ(Ns (x, y))
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where,

Ns (x, y) = max

{
d (x, y) ,

d (Tx, x) + d (Ty, y)

2s
,
d (Tx, y) + d (Ty, x)

2s

}
.

Theorem 2.4. Let (X, d) be a complete b-metric space. Suppose that T : X → X
be a generalized α-ψ-contractive mapping of type (II) and satisfies:

(i) T is α-admissible,
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1
(iii) T is continuous

then T has a fixed point.

Proof. The proof is evident due to Theorem 2.2. Indeed ψ is nondecreasing and

α (x, y) d (Tx, Ty)) ≤ ψ(Ns (x, y)) ≤ ψ(Ms (x, y)).

□
In the following two theorems we are able to remove the continuity condition for

the α-ψ-contractive mappings of type (I) and type (II).

Theorem 2.5. Let (X, d) be a complete b-metric space. Suppose that T : X → X
be a generalized α-ψ-contractive mapping of type (I) and satisfies:

(i) T is α-admissible,
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1
(iii) if {xn} is a sequence in X such that α (xn, xn+1) ≥ 1 for all n and xn →

x ∈ X,as n→ ∞, then there exists a subsequence
{
xn(k)

}
of {xn} such that

α
(
xn(k), x

)
≥ 1, for all k.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.2 , we know that the sequence {xn} defined
by xn+1 = Txn for all n ≥ 0, is Cauchy and converges to some u ∈ X.

We shall show that Tu = u. Suppose on the contrary that d (Tu, u) > 0. From
(2.2) and (iii), there exists a subsequence

{
xn(k)

}
of {xn} such that α

(
xn(k), u

)
≥ 1

for all k. By (2.1)

(2.7) d
(
xn(k)+1, Tu

)
≤ α

(
xn(k), u

)
d
(
Txn(k), Tu

)
≤ ψ

(
Ms

(
xn(k), u

))
,

where

Ms

(
xn(k), u

)
= max

{
d
(
xn(k), u

)
, d

(
Txn(k), xn(k)

)
, d (Tu, u) ,

d(Txn(k),u),d(Tu,xn(k))
2s

}
.

As k → ∞, limk→∞ Ms

(
xn(k), u

)
= d (Tu, u).

In (2.7), as k → ∞
d (u, Tu) ≤ ψ (d (u, Tu)) < d (u, Tu)

which is a contradiction. Hence, u = Tu and u is a fixed point of T . □
Theorem 2.6. Let (X, d) be a complete b-metric space. Suppose that T : X → X
be a generalized α-ψ-contractive mapping of type (II) and satisfies:

(i) T is α-admissible,
(ii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1,
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(iii) if {xn} is a sequence in X such that α (xn, xn+1) ≥ 1 for all n and xn →
x ∈ X,as n→ ∞, then there exists a subsequence

{
xn(k)

}
of {xn} such that

α
(
xn(k), x

)
≥ 1, for all k.

then T has a fixed point.

Proof. Following the proof of Theorem 2.5, we know that the sequence {xn} defined
by xn+1 = Txn , for all n ≥ 0, is Cauchy and converges to some u ∈ X.

We shall show that Tu = u. Suppose on the contrary that d (Tu, u) > 0. From
(2.2) and (iii), there exists a subsequence

{
xn(k)

}
of {xn} such that α

(
xn(k), u

)
≥ 1

for all k. Applying (2.6),

(2.8) d
(
xn(k)+1, Tu

)
≤ α

(
xn(k), u

)
d
(
Txn(k), Tu

)
≤ ψ

(
Ns

(
xn(k), u

))
where

Ns

(
xn(k), u

)
= max

 d
(
xn(k), u

)
,
d(Txn(k),xn(k))+d(Tu,u)

2s ,
d(Txn(k),u),d(Tu,xn(k))

2s

 .

As k → ∞, limk→∞ Ns

(
xn(k), u

)
= d(Tu,u)

2s , for s ≥ 1.
In (2.8), as k → ∞

d (u, Tu) ≤ ψ

(
d (Tu, u)

2s

)
<
d (Tu, u)

2s

which is a contradiction. Hence, u = Tu and u is a fixed point of T . □

Example 2.7. Let X = R+ endowed with b-metric

d : X ×X → R+, d (x, y) = (x− y)2

with constant s = 2. (X, d) is a complete b-metric space. Let the functions T :
X → X and α : X ×X → [0,∞) be defined by

T (x) = 2x− 3

2
, if x > 1 and T (x) =

x

2
if 0 ≤ x ≤ 1

α (x, y) = 1 if x, y ∈ [0, 1] and α (x, y) = 0, other

Clearly, T is α-admissible and continuous. Also α-ψ-contraction of type (I) is sat-
isfied with ψ (t) = t

2 , for all t ≥ 0. In fact
if x, y ∈ [0, 1] ,

α (x, y) d (Tx, Ty)) =
∣∣∣x
2
− y

2

∣∣∣2 ≤ 1

2
|x− y|2 = ψ (d (x, y))

≤ ψ (Ms (x, y)) .

Then (2.1) is satisfied for all x, y ∈ X. 0 and 3
2 are two fixed points of T .

Corollary 2.8. Let (X, d) be a complete b-metric space and T : X → X be contin-
uous mapping. Suppose that there exists a function ψ ∈ Ψb such that

d (Tx, Ty) ≤ ψ (Ms (x, y))

for all x, y ∈ X, then T has a fixed point.

Similarly, be taken α (x, y) = 1 in Theorem 2.4, the following result is obtained.
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Corollary 2.9. Let (X, d) be a complete b-metric space and T : X → X be contin-
uous mapping. Suppose that there exists a function ψ ∈ Ψb such that

d (Tx, Ty) ≤ ψ (Ns (x, y))

for all x, y ∈ X, then T has a fixed point.
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[16] M. Păcurar, A fixed point result for contractions and fixed points on b-metric spaces without
the boundness assumption, Fasc. Math. 43 (2010), 127–136.

[17] H. K. Pathak, R. George, H. A. Nabwey, M. S. El-Paoumy and K. P. Reshma, Some generalixed
fixed point results in a b-metric space and application to matrix equation, Fixed Point Theory
Appl. 2015 (2015), Article ID 101.

[18] R. Plebaniak, New generalized pseudodistance and coincidence point theorem in a b-metric
space, Fixed Point Theory Appl. 2013 (2013), Article ID 270.

[19] J. R. Roshan, V. Parvaneh and I. Altun, Some coincidence point results in ordered b- metric
spaces and applications in a system of integral equations, Appl. Math. Comput. 226 (2014),
725–737.
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