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PRICING ASIAN OPTIONS VIA TAYLOR APPROXIMATIONS
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This paper is dedicated to Professor Wataru Takahashi on the occasion of his 70th Birthday.

ABSTRACT. Asian options are path dependent derivatives that have payoffs de-
pending on some form of averaged prices of the underlying asset. The valuation
of Asian options is complicated and no closed form solution exists, in general,
due to the fact that the distribution of the arithmetic average is no longer lognor-
mal. Several analytic approaches have been proposed in the literature, including,
among others, partial differential equations, Laplace and Fourier transforms, and
analytic approximations. In this paper we derive new analytic approximate for-
mulas for the pricing of Asian options with arithmetic averages via higher order
Taylor approximations. The resulted formulas are in closed form. Comparisons
with the first- and quadratic-order approximations are included.

1. INTRODUCTION

Asian options are path dependent derivatives whose payoff depends on some
form of averaging prices of the underlying asset. Since Black and Scholes (1973) [3]
and Merton [24] introduced the pricing and hedging theory for the option market,
their model has been the most popular model for option pricing. Pricing European
options have a closed form called Black-Scholes formula. European options are path-
independent. This means that their payoffs are solely determined by the price of the
underlying asset at the expiration date of the options. However far insufficient from
the need of the financial trading. Many exotic options have therefore been invented
and traded in the financial markets. Among them are the Asian (or average rate)
options. One important feature of an Asian option is that its payoff depends on
the average of the underlying asset price over a certain time interval before and/or
including the expiration time.

The valuation of Asian options is always complicated and no closed form solution
exists, in general. The difficulties come from the fact that the distribution of the
arithmetic average is no longer log normal and it is quite complex to analytically
characterize it. Therefore the distribution cannot be given explicitly and the Black-
Scholes method cannot be applied, so far no one has produced an exact formula for
their values. Nevertheless, Asian options are popular in the financial community,
because they are often cheaper than the equivalent classical European option.

Several analytic approaches have been proposed to price Asian options, we recall:

e Laplace transform approach, see [11,17,18], Dewynne and Shaw [12] found
asymptotic solutions for the case of low volatility.
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e PDE approach, see Rogers and Shi [1,15,26] and Vecer [30] reduce the Asian
pricing problem to one-dimensional PDE that can model both continuous
and discrete average Asian option.

e Taylor approximations, see [4,28] and Ju [19] utilizes the Taylor expan-
sion of the ratio of the characteristic function of the average to that of the
approximating lognormal variable around zero volatility.

e Fourier transform approach, see [8,20].

e Approximation for the density, see [25,29].

e Path integral approach, see [7] and Devreese [13] derive a closed-form solu-
tion for the price of an average strike as well as an average price geometric
Asian option.

e Approximate analytic methods, see [31-33]. Most recently, Jiangiang [27]
approximation of the arithmetic average with the geometric average of log-
normal variables, Chang and Tsao [9] use quadratic approximated by the
Chi-square distribution.

While most of the literature focuses on the log-normal dynamics and provides
ad hoc methods for pricing Asian options in the special case of the Black-Scholes
model, there are some notable exceptions given by the very recent papers in [21,23]
(for geometric Asian options), [2,5] where models with jumps are considered, [6]
consider on stochastic average and [16] consider in local volatility models.

In this paper, we develop approximations formulae expressed Taylor series for
the pricing of arithmetic Asian options. The remainder of this paper is built up as
follows. In Section 2, we giving some preliminary notions of stochastic analysis and
pricing theory. We describe the arithmetic and geometric Asian options, and recall
that symmetry results. In Section 3, we derive new analytic approximate formulas
for the pricing of Asian option with arithmetic averages via higher order Taylor
approximations. The resulting formulas are in closed form. Comparisons with first
and quadratic orders are included in Section 4. Eventually we conclude prices of
arithmetic Asian options in Section 5.

2. PRICES OF ASIAN OPTIONS

We assume that the underlying asset (stock) Sy follows the geometric Brownian
motion :

dSt = ’I”Stdt + UStth,

where WQ 0 <t < T, is a Brownian motion under the risk-neutral probability
measure P, and the interest rate r and the volatility ¢ are both assumed to be
constant.

Introducing the processes A; and I; defined by

t ¢
Ay —/ Sudu, I —/ log S, du,
0 0

we can classify Asian options as follows
(1) Arithmetic average floating strike call option:

Ve = (7 - %AT)+.
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(2) Arithmetic average fixed strike call option:
1 +
Vi = (zAr-K)

where K is the strike price.
(3) Geometric average floating strike call option:

Vpr = (ST — eIT/T)+.
(4) Geometric average fixed strike call option:
Vr = (eIT/T — K)+.
Consider the payoff of an Asian call option with arithmetic average floating strike

is
Vi = (ST - % /OTSudu)+.

By usual no-arbitrage arguments, the value at time ¢ of this option is

(2.1) V= e—’"<T—t>1E[<S - % /T Sudu)+ ft]
0

The Black-Scholes equation for the arithmetic Asian option is

OV 1,0V AV 9V B
E"‘§US@"‘TS%+S87A—TV—O,

V<T7 ST7 AT) - VTa

(2.2)

where S is a stock price, r is interest rate, o is the volatility, T" is the expiration

date,
t
A:/ Sydu
0

is the running sum of the asset price, and Vr is the payoff function which depends
on the type of the arithmetic Asian option.

By the Feynman-Kac representation, the price function V in (2.2) is the solu-
tion to the Cauchy problem. Under suitable regularity and growth conditions, the
existence and the uniqueness of the solution to the Cauchy problem were proved
in [1].

3. ARITHMETIC AVERAGES VIA TAYLOR SERIES

Consider the payoff of an Asian call option with arithmetic average floating strike

18 L N
sz(s _T/o Sudu> .

The value at time ¢ of Asian call option is

(3.1) V= e’T(T’t)IEKST - % /T Sudu)+‘ft}.
0
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Now we fix the 0 <t < T. We split the integral

1 [T 1 [T 1 [t
= u = M, = wdu, My = — u@U.
T/OSdu t+T/tSdu f T/OSdu

The time-t value of the option is then given by

= e +
— —r(T—t) o -
(3.2) Vi=e E[(ST My - — /t Sudu> ‘]—}}
Set
X, = o0 (Wr=We)+(r—302)(T—1)
1 / b (T Wyt r— o)) g
T J; ’
Since )
774 T 7e 2
= - — - - >
S, = S;exp (O’(Wu Wy) + (7" 57 )(u t)), u>t
We have

T -
ST o Mt o 11_’/ Sudu — Stea(WT—Wt)+(T—%U2)(T—t) - Mt
t

1 T W T 1_2
_/ Stea(Wu—Wz)+(r—§a )(u—t)du
T t
- StXt—Mt

and the pricing formula (3.2) can be rewritten as

(3.3) V= e TT-OE [(StXt - Mt)+’ft]

Bouaziz et al.(1994) use a simple linearize procedure and propose an approximate
closed-form solution to the pricing of floating-strike Asian options. Unfortunately
their formula is not correct, there was a missing term in the pricing formula. Tsao
et al. (2003) derive the correct Bouaziz et al. (1994) pricing formulae and then
added the second-order term to the Taylor series using the normal distribution.

Bouaziz et al. (1994) linearize both exponential terms in X,

T Wr=Wo+(r=30%)(T—t) + (7" - %UQ) (T —t)+ O'(WT - Wt)

T 1 (1 o) (1) 4 (T = W)

In order to have efficient approximations, given the interest rate r and volatility

o, and fixed t and T, the term of e(r=29(T=1) ig 5 constant, we derive new liner
approximates:

eo(WT*Wt)Jr(rf%Uz)(Tft) s e(rfégz)(Tft)[l +U(WT _Wt)]-
o Wum Wit (r=30)(u=t) e“iég?)(u%)[l +o(W, — W).

Applying the new liner approximate to X; as the following.
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3.1. First-Order Approximations. To approximate V;, we using liner approxi-
mate to the exponential function :
e*~l+a,weget T=T—t,p=r— 107

—~ 1 (T —~
Xy~ X1y = epT[1+a(WT—Wt)]—T/ W01 + o(W,, — Wy)]du
t
— 1 /7 N
= epT[1+UWT]_T/ e[l 4+ oWyldv let v =wu—t.
0

= ep7[1+UW]—1mo—o/Tep”de
T oT T/ vaU,

where mo = [ e”’dv. We have

1
(3.4) E[Xl,t] = €pT — =My
T
To find the variance of X ;, we have
Var(X; ;) = Var(X1; — E[X14]) = E[(X1+ — E[X1.4]))%,
where

—_—~ T —_—~—
X1t —E[X14] =0e’ "W, — ;/ e’ Wydv.
0

Next we compute

— 29 o~ [T o2 T 2
— 2 201172 pT pU pv
Var(Xi;) =E [O’ e PTW: e %% /0 e’ Wydv + T2 (/0 e Wvdv> }

Since E[WUWU] = min{u, v} , we get

T _—_ 2 T T o
E[ / erWvdv] :E[ / / ep(“Jr”)Wqududv}
0 0o Jo
:/ / ep(“H)E[WuWU}dudv
o Jo
:/ / ") minf{u, v} dudv
o Jo

—/0 ep”{/ov uep“du—i-/v Ue”“du}dv

_ /T e/’”{vem} — e 2_ 1 + E(el”' — e/’”)}dv
p

~Jo p p
1 T 1 T pT T
= 2/ e’’dv — 2/ 2P dy + e/ veldv
P~ Jo P Jo P Jo
1 elT
(35) = ?(mo — mg) + 77’”1
Let

T T T
mi :/ ve’’dv, ma :/ v2ef’dv,  mg :/ eV dy.
o o o
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Then we have

207 ;2 1 e’
Var(Xy¢) =e T+ Ts (7(7710 —mg3) + 7m1>

1+ 4ePT + €207 (2p7 — 3)>

2 2
(3.6) ot 4 —( T

T2
ary = E[X1], v =1/ Var(Xiy)
Then we can write
Xit=a1t+v1Z, Z~N(0,1) independent of F.
The value V; in (3.3) is approximated by V; ¢ as follows:
VieVig = €_T(T_t)~[(StX1 ¢ — My)T| R
(3.7) = e "TIE[(Si(ars + 1142) — My)T|F).
By the independence lemma, we get
‘/1,1‘/ = U*(tv Stv Mt)a
where N
vi(t,x,y) = e " TR [(z(a1s + v142) — y) .
We therefor have

o0
1
v (t, z,y) = e”/ (x(a1p +v142) — y)*" \/ﬂefézzdz
—o0

Solving the inequality for z:
z(oy +viez) —y >0
yields

So we obtain, with 7 =T — ¢,

0 1
v (t, 2, y) =€ / ——(x(o1 +v1e2) — y)e_%,ﬁdz
p

(tay) V2T
oo
1.2
=e (a1 — / e “2%dz
P tw,y
o0
+ / %szz
e " ze
ptay) V2T

=e (a1 —y)N(—p(t,z,y))

e 3Ptay)?

+e v
I

Therefore, eventually, we get

Vi~ Vi = e—T(T_t){(aLtSt - MQN(VL (a1 - %))
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+ V\l/v;t exp (2(;1i)2 <Jgf _ al,t) 2) }

3.2. Quadratic Approximations. In this subsection we will consider quadratic
expansions:

1
ex;wl—i-x—i-ixg.

Tsao et al. (2003) added the second terms to the Taylor series, as follows:
T30 1t (= Z0?)(T 1) + oW — T7)

Al Y-

vo(r- %&’) (T — ) (W — ).

Instead of expansion X; we use the new quadratic approximation to derive more
accurate approximate pricing formulae for Asian options.

— o 1 —
T et [1 +oW, + §J2W3} .

We obtain
1

—~ 1 ,—~
Xt%XZ,t = €p7-|:].+O'WT+*O'2WEi| —T

2
= epT[l—i—UW —l—1 2W2+}—lm
T 2 T T 0
T 2 T
—— | ePWydv— — [ e’"W2dv
0 0
We have
1 1 1
(3.8) E[Xs,] = any = e (1 n 5027> - <m0 v 5azml)

To find the variance of X5, we have

o2
Xoy —E[Xoy] = (ml TepT> +€"T[0W + J2W2}

—/ ep”W dv—/ ep”Wde
=1L —
where
o? my o 1 ,—~
_ 2 (2 pT pT -2 2
I <T Te )+e [UWT+ O'W],

2
1 T __ T

I, = 7( / PP o Wodv + / e W2dv>
T\ Jo 0

Next we have (Xa; — a4 2)? = I? — 21115 + I3. Moreover,

4 2 —~ 1 ,—~
I? :%<% - TepT> + 02<% — Tep7>ep7 [O’WT + 502Wf}
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— — 1 ,~
+ 2T [azwz + 0P WE 4 o'W,

Since
—~ 2k)! .
E[Wfk] = (Qk‘k?' t* for integer k> 1,
E(W}] =0 for odd integer k > 1.
We have
4 2 4
2 :‘L<@_ pT) EPT(@_ pT) 2pr( 2 3 4 2)
(3.9  E[] 1\ TE + 5 e T Te +e 07—1—407 .
I22 = 1((/T PV oW dv>2 + Z/T P’ oW, du - /T epvg—zw2dv
T2\ Jo 0 0 2"
T 2 __ 2
+ </ e’wU—WEdv) )
0 2
Since o
E[W2W?2] = 2(min{u, v})? + uv,
we get
T — 2 T T o
E[ / eP”Wfdv} - / / ep(““)E[Wng}dudv
0 o Jo
= / / ") [2(min{u, v})? + uvldudv
0o Jo
:2/ e””{/ Uerudu+v2/ ep“du}dv—}—m%
0 0 v
T 1 2 2 2 2
= 2/ ep“{; KUQ -2y p7>ep” - —2} + %(e’” — e’“’)}dv +mi
0 p P
2 2 2 2
(3.10) = *( — M4+ —5Mm3 — —Mmo + €p7m2) + m%,
p\ p p p
where

.
m4—/ ve2P’ du.
o

Therefore, by (3.5) and (3.10), we obtain

1 /o? e’
21
E[Iz] = ﬁ(ﬁ (mo —ms + 7m1)
ot/ 2 2 2 ot
(311) + 27[)( - ;m4 + ﬁmg — ;mo —+ eme2) + Zm%) .
To evaluate E[II5], we have
(3.12) LI = [A+ BW, + CW2|I,.

where ,
1
A= —02 (—ml — TCPT), B=¢e"0o, C= 502.
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0.2 T 0.2
1 B[] = — Py — 2
(3.13) [I2] 2T/0 veldv = .

_ T _ __ 2 T __ o
W_.I, = g epv(WT_u + Wv)Wvd’U + 7 / €pU(WT_u + Wv)ng’U.
T/, °T J,
Since Wy_, and Wy_; (= W,,) are independent, and since E[W}] = 0 for odd
integer kK > 1 | we arrive that

(3.14) E[W, L] = % /0 veP’dy = %ml.

. T . . . 2 T . . .
W=7 / (W + T Wodv + o / e (Wp_y + W) 2 W 2d.
0 0

where - - - L
(Wr_w + W) 2 = Wa2_, + 2Wp_ W, + W2,

It turns out that
— 2 T — — — N —
E[W2,] = ;—TE[ / &P (W%_u + AW Wy + Wf)Wﬁdv}
0

2 T
-7 e (1 — u)v + 3v%)dv
°oT J,

0.2 T

=oF ; e (Tv 4 20%)dv
0.2

(3.15) = 2T (Tml + 2m2)

From (3.13)-(3.15), we arrive at

E[I,1,] = AE|[LL] + BE[W, L] + CE[W2I,)]
2 2

—A2T7TL1 +BTm1 +C (( —u)m1+3m2)
4 2 4
_ (2 (M Pt ) 9 07') o
(3.16) <4T<T +7(1—¢€)) + Te my + onme
Now, we get by combining (3.9), (3.11) and (3.16),
Var[Xs,] = E[I7] — 2E[[1I5] + E[I3]

E[ |+ E[I5
4 2 4
-Gy

—(

3
I T err (% — Te’”) + e (UQT + 1047'2)

N

2 4
m _pT) 2LPT) _ 7

(T+7'(1 e)+Te m Tm2
o

ﬂ\%

ef™
(*2 mo — ms + —m1>
p
2 ot
+ 55 (= pmat ggma = S+ ) + o)

“’\% ﬁ\
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o’ 2 2, 2 2 3 9
= g2 P =30 3007 4 p (=24 80°T) — 2p°0° T

—2e"2(=1+ 0%) + p(1 + 0%) + 3p*0?T7? + p*T (4 + 7 — To*7)
+ (=2 =T+ 0*(4T +7))]
+ T[4+ 707 + 20 (14 7) (=1 + 0°7) + p°T?7 (4 + 7 + 0°7)
+2p*Tr(—4+ (=14 207)7)
= p(=1 =47+ 0% (1+67)) + p*(=(=1 + 0*)7?

(3.17) +T(8+ 27 — 4o°7))]}

Let
E[Xgﬂg] = 0427,5, Var(XQ,t) = V22,t'

Then we can write
Xot=aot+1v2:Z, Z~ N(0,1) independent of F;.
The value V; in (3.3) is approximated by Va as follows:
Vim Vo, = e_r(T_t)IE[(Sth,t - Mt)+|-7:t]
= e "TOE((Sy(any + 10,4 Z) — My) | F].

Similarity, eventually , we get

Vi~V = e—r(T—t>{(a27tst - MQN(L (2 - %))

n Vj;t exp (2(;2i)2 <J,S\{5t _ a2,t> 2) }

3.3. Third-Order Approximations. Intuitively, in order to approach more ac-
curate pricing formulae for Asian options, incorporating higher order terms should
once again improve the approximation. We use third-order approximate to the

exponential function :

1 1
ele—l-x—i-imz—i-g:c?’.

To approximate Vi, we adding third-order term to the Taylor series for both

exponential terms in Xy,

er=30)(T =)o (Wr=W2) o (r=30)(T—1) {1 + o (Wr — Wh)
L+ Loy
=30 =t +o(Wu=Wr)  (r—Lo?)(u—1) [1 + o (W, — W)
+%U2(Wu — W)+ %“3@“ N Wtﬂ'
Let =T —tand p=1r— %02. We obtain

—~ —~ 1 —~ —~ 1 —~ —~
Xi~ X3y = e |14+ o(Wp—W,) + 502(WT —Wy)* + 6a?’(WT — Wt)?’]



PRICING ASTAN OPTIONS VIA TAYLOR APPROXIMATIONS 2077
1T(u—t) 774 770 L 5= 7 \2
_T/t 0 [1 4 oW — W) + 50( W — W)
*0'3(Wu - Wt)3} du
T 774 L oz 1 323
— [1+aWT+§a W2+ 2o WT}
—1/Tep” [1 + oW, + 102W2 +
T /o v Y

L 3578 oy
rid Wv}dv (vi=u—t)

U T R
= e [loll, 4 S0 W2+ 603W3} +

T 2 T 3 T
o — o — o —
_T/o evaUdv_QT/O GPUWEdv_GST/O P W3do
= Ji—J

1—e)

where
1

(1 — e
+pT( € )7

2 3
(3.19) Jo = 2 /T P Wodv + —— /T P W 2dy + —— /T " Widv.
T J, 2T J, T T, v

P U T
(3.18)  Ji=e [1 + oWr + S0 W2 + 603Wf}

Let
m5:/ v2e?PV du, m6:/ v3eP’do, m7:/ v3e?du.
o o o
We have
E[X34] = e’”(l + 10 T) + i(1 —efT)
ot 2 oT
0.2 T .
“ar ), ePE[W2dv
1 1 o [T
— P (1 ) (1 —efT) - pv
e (+2UT —I—pT( efT) QT/Oevdv
1 1 o?my
3.20 - pT(1 e ) —(1—e) - .
(3.20) e + 59T + pT( e’) 5T

Next we compute E[(X3:)?]. We have (X5¢)? = J? — 2J1.J5 + J2. Moreover,

p1T(1 —en)”

o2 ~.12
—|—ae2pT[W+ w242 WE]

JE = {ep‘r +

2
200 [ L= )| [+ T2+ T
pT 27 6 7

‘We have

1 2 3 5
E[Jf} = [em + piT(l — e’”)} + o2 |:T+ 40 2+ 120 T +U27‘2}
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1
(3.21) + o2relT [e’” + ﬁ(l — e’”)]
2 T . 2 4 T . 2 6 T —~ 2
2 g v g v 2 o v 3
=gl [ ]+ ful [l erWia) + o [ e Wiar
o® T IR 7e T VT2 a° T v TR 2 T v A3
+ 2[ﬁ ePYWodu - eP'Wydv + 1272 eP'Widv - eP' Wy dv
0 0 0 0
4 T . T __
(3.22) + U—Q e’ Wydv - / e’”’WS’dv}.
61 0 0

Indeed, we have , for p # 0,
T 1 1 1
m1—/ ue"“:fKT—f)epT-i—*},
0 p p p
T 1 2 2 2
mgz/ u2ep“:f{(72—l+f2)em—ﬁ},
0 p p P p

T 176 -6 61 372
m6:/u3€p“=[3—1—(3—1—72-_7-1-73)@/’7}.
0 plp " \p3 Tt

Since it is not hard to find that
EW W2 =0 , EW2W23 =0 and E[W,W?]=3vmin{u,v}.

We get
E[/ / ep(“+”)WuW§dv} = / / ep(“+”)E{WuW3} dvdu
0o Jo 0o Jo
:/ / () . 3y min{u, v}dudv
o Jo
= / ep”(/ 3vuel du +/ 31)26p“du)dv
0 0 v
T 1 1 1 1
= / Jvel! — ((v — f)e"’” + 7) + 31)26’"’(7(6’” - ep”)>dv
0 p p p p
T 3022 ZueP Zuelt  3u2ePUtT) 3y2e2pv
-/ ( R T = Jav
0 p p p p p
-3 3 3ef”
Since o
E[W3W3] = 3<3uv min{u, v} + 2(min{u, v})?’),
we get

E[/OT eP”WEdz}r = /OT /OT ep(“"'”)E[WEL’WE’] dvdu

= 3/ / eP(utv) <3uv min{u, v} + 2(min{u,v})3)dvdu
o Jo

9/ ep“(/ e’”’qudv—i—/ ep”u%dz;)du
0 0 u
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T u T
+6/ e”“(/ e””v?’dv—i-/ ep”u3dv)du
0 0 u
T pu 2 2 2
[ (B2 2
0 p p o p*) p
p p
T u
+6/ ep“</ v?’e"”dv)du
0 0

T 1
+ 6/ u3e”“(f(e”7 — e”“))du
0 p

ude2rt 2u262p“ QuePr  qePt ) J
— u

2079

=" 0 ( P P
u Tep(u—l—T ude2pu uep(utT) u2e2pu
+9 ( P - 2 -+ 2 )du
0
6/T 66”“ 66”(“‘”) 6Ter(utT  372ep(utt)  p3ep(utt) d
+ ( + 3 - 5 ) U
0 P p
T p(u+T) 3 2pu
+6/ (u ¢ )du
0 P
2m 2m Te’™m e’"m m
:9<_ p? o p34_ p21+ p - p? 2 p25)
6(1 —ef™)  67ePT  372ePT  T3efT
+ 6( 1 + 3 2 )mo
p p P p
pT 1
(3 24) + 6(67m6 - 7m7>
p p
Therefore, by (3.5), (3.10), (3.22), (3.23) and (3.24), we obtain
o /1 el”
EJ2:7( mo — 1ms3 +7ml>
3 = 5 (gmo = ma) + &
ot 12/ 2 2 2 i 5
+ﬁ[;(_ —m4+ﬁm3— ;m0+€p mz) +m1}
o 2me  2my4  2my1  TeP"mo e’ "my ms
+4T2< 2T TE T p P +7>
ot [(6(1 —efT) n 67efT  372erT 7'36’”)
_ mo
67 p* p P p
e” 1
(St
p p
4 T
o* /-3 3 3eP
(3.25) + @ (727714 + ?ﬂh + 71715)

To evaluate E[J; 2], we have

J1dy = [a+ bWy + W2 4 dW3].J,.

(3.26)
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where
a=e" + i(1 —efM), b=oefT, c= 10'26‘” d= 10'36’”
pT ’ ’ 2 ’ 6
02 T 0.2

3.27 ElJ3] = — PPdy = —my.
(3.27) [J2] 5T /0 vedv = S

__ o T N o 0_2 T o ~

WTJ2 = T /0 epv(WT—u + Wv)WvdU + ﬁ /0 epU(WT—u + WU)WU dv

03 T __ ~ —~
+ o7 e’ (Wr_y + W) Wdo.
0

Since WT—u and /I/I\?u,t< = WU> are independent, and since

E[(Wtk] =0 for odd integerk > 1,

we arrive that

__ T 3 T
E[W,J2] = / vefdv + U/ 3vZeldy
0 67" Jo
3
o o
2 - _ Z
(3.28) T+ e

. T . . . 2 T . . .
W2Jy = % / P’ (Wry—y + Wy) 2 Wydv + ;’—T / e (Wr—y + Wy)2Widv
0 0

0_3 T

e pv 17 17 \27173
+ o7 |, e’ (Wr_y + Wy)* W dv.
where - - . I
(Wr_u + W)2 = Wi_, + 2Wr_ W, + W2
It turns out that
E[W2J5] = ;7’ / er? (W;%,u oW W, + WE) W2dv
0
_ [T
2T J,
2

:ﬁ(

e” (1 — v)v + 3v?)dv

(3.29) Tmy + 2msa).

Last, we calculate

Wity = 2 [ e (Wi + 3R W, 3p V2 4 T2 ) Wodo
0
2 T . . __ _ _ N
+ ;—T er? (W;%,u 4 3WE_ W, + 3Wr_ W2 + Wj}) W2dv
0
3 T ey N . _ N N
+ %T eP? (W%_u + 3WE_ W, + 3Wr_ W2 + ij’) W3do.
0
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Since
_ 2k)! .
BT = Gt forinteger > 1,

it turns out that

__ T 3 T
E[W3.Jy] = g / e (3(1 — v)v + 3v?)dv + 7 / e’ (3(1 —v) - 30 + 150%)dv
T 0 6T 0
3
o o
(330) = f(BTml + 2m2) + 67T(97m2 + 6m6).

From (3.26)-(3.30), we arrive at

E[J1J5] = aE[J3] 4+ bE[W, Jo] + cEB[W2Jo] + dE[W2 J,]
2 3 2

o +b(" +Z )+ T (71 + 2m2)
= a——m —m —m C—\Tm m
or 1 T T or? or ! 2
3

o
2T
ac + 2b + (6d + co)T)my

+ d[%(ngl + 2m2) + (37'm2 + 2m6)

g
= ol
(3.31) + (4d + 2co + (b + 3d7)0?)ma + 2do?mg].

Now, we get by combining (3.21), (3.25) and (3.31),

E[(X})*] = E[J] — 2E[J1.Jo] + E[J3]
1 2 3 )
_ [ pr 71_m] 22pT|: 9 22, 2 43 22]
[e —i—pT( e’N)| +o%e T+ ot po T ot
+ o?refT {e’” + L(1 - epT)}
T
— %[(aa+2b+ (6d + co)T)my

+ (4d + 2co + (b + 3dr)o*)ms + 2d02m6}

o2 /1 el
+ ( (mo —mg) + Tml)

T2\ p?

+U4|:2( 2 +2 2 e )+ 2}
— || — —Mmy4 —_m3 — —5Myo €" My m
a2 lp\ p p? p? !

n o ( 2mo  2ma  2m1  T€’Tme  ePTmy @)
477? p? p? p? p p? p?
o8 1/6(1 —efm)  6TelT  372ePT 13T

2 K 1 5T 2 T )mo
6T P p p P
efT 1
(e o)
p p

ot /-3 3 3efT



2082 C.-C. LAI AND H.-K. XU

Finally, by (3.20) and (3.32), we obtain
Var(Xs,) = E[(X5.)%] — E[X3,]?

1 2 3 b
= [em + p—T(l — epT)} + 02T [T + 1027'2 + 50473 + o272
1
+ o%refT [em + ﬁ(l - epT)]
- % [(ag b+ (6d + co)ryma + (4d + 2¢o + (b + 3dr)o)ma
+ 2d02m6}
o2 /1 ( ) ef”
+7<* mo — ms +7m1)
T2\ p? p
+a4[2< 2 +2 2 e )+ 2}
— |—| — —My —= M3 — —5My e mo m
a2 [p\ p p? p? !
n ob ( 2mo  2myg  2mq1  TePTmo e’ "mg n m5>
417 P2 p PP p p? p?
n o6 [<6(1—e’”) 67e’T  372elT TSC’DT)
677 pt p? p? p
el” 1
(e )
p p
N ot (—3 N 3 +36pT >
o\ T e T —5 My — —5- M5
672 p2 p2 p2
1 1 o*my12
3.33 —[PT<1 72) (1) — ]
(3.33) e + 50T + pT( efT) 5T

Let
azy =E[X34], w34 =1/Var(Xs,)

Then we can write
X3i=a3s+v3:Z, Z~N(0,1) independent of  F;.
The value V; in (3.3) is approximated by V3 as follows:
Vim V3 = G_T(T_t)E[(StX&t - Mt)+|}-t]
= e "TIE[(Sy(asy + v Z) — My) | R

_ e—T(T_t){(a&tSt - Mt)N<Vit <a37t B ]\54:»

(3.34) % e (g (G~ o) )

4. NUMERIC RESULTS

In this section we show some numeric results for the price of an Asian option
obtained with the method described above. The numeric results have been obtained
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using the computational software program matlab to carry on the computations
showed in the precedent section.
The approximation of the prices function

_ r(Tt) _ L _%)) w8t (;1(%_ )2)}
Vi=e {(oztSt MgN(Vt o S, + NGt exp 22 \5, oy .
The case t = 0 can be considered without losing generality. In the following table our
approximation formulae are compared with the value of Black-Scholes model(BSM)
Furopean call option, arithmetic average floating strike call option with first order
(v = a1y, 1y = v1,) and quadratic orders (a; = agy, vy = v24). We first assume
that the time to maturity 7" = 1 , the initial asset price Sy = 100, the strike K, the
interest rate r and the volatility o for some case.

TABLE 1. Related to the K = 95, K = 100 and K = 105.

o T K=95 K=100 K =105 1 order 2 order
0.05 10.4053 6.8049 4.0461 6.2693  2.5220
0.1 0.09 13.5083 9.5663 6.2527 7.3806  4.3869
0.15 18.3068 14.2008 10.3990 9.1896  7.1415
0.05 13.3465 10.4506 8.0214 10.7964 3.2657
0.2 0.09 15.8027 12.6820 9.9879 11.7589 4.9102
0.015 19.7163 16.3560 13.3415 13.2591 7.4475
0.05 16.7953 14.2313 11.9703 14.8796 4.7862
0.3 0.09 18.8769 16.2193 13.7529 15.7570 6.2085
0.15 21.8471 19.4027 16.2965 17.1000 &.4513

In the case, show the approximations of the prices function with quadratic orders
is lower than first order and BSM, so the approximations of the quadratic orders is
better than first order.

Next we tested our method with a low-volatility parameter ¢ = 0.01 and ¢ =
0.005 with the strike K = 100, the values of the quadratic orders and first order are
not far-off.

TABLE 2. Tests with low volatility o = 0.01, 0.005 and K = 100.

o T BSM 1 order 2 order
0.05 4.8771 2.4699 2.4588
0.01 0.09 &8.6069 4.3655 4.3680
0.15 13.9292 7.1360 7.1387
0.05 4.8771 2.4582 2.4588
0.005 0.09 8.6069 4.3673 4.3680
0.015 13.9292 7.1380 7.1387

With a low-volatility parameter ¢ = 0.01, we tried a variety of the time to
maturity 7" = 2 and T = 5. As T increases, the approximations of the prices
function are increases, and the quadratic orders and first order are low than BSM.
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TABLE 3. Tests with different T" with o = 0.01.

T r BSM 1 order 2 order
0.05 4.8771 2.4699 2.4588
1 0.09 8.6069 4.3655 4.3680
0.15 13.9292 7.1360 7.1387
0.05 9.5163 4.8343 4.8374
2 0.09 16.4730 8.4782 8.4835
0.015 25.9182 13.6006 13.6061
0.05 22.1199 11.5068 11.5203
5 0.09 36.2372 19.4587 19.4730
0.15 52.7633 29.6338 29.6489

Comparisons with first and quadratic orders, as can be seen, the approximations
of the prices function with quadratic orders is lower than first order in large volatility.
However, as low-volatility case, the value of the first order and quadratic orders are
closed.

5. CONCLUSIONS

We derived new analytic approximate formulas for the pricing of Asian option
with arithmetic averages via higher order Taylor approximations. Comparisons the
numeric results, our technique illustrates that adding order Taylor approximations

can

(1]
2]

[10]

(11]

increase the accuracy of an Asian option pricing in general.
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