


2088 F. Q. XIA AND C. F. WEN

unique minimizer, which has been known as Levitin and Polyak (for short, LP) well-
posedness. There are a very large number of results concerned with Tykhonov well-
posedness, LP well-posedness and their generalizations for minimization problems.
For details, we refer the readers to [2, 13,15,21,24,25].

In recent years, the concepts of well-posedness have been extended to other
contexts: equilibrium problems, variational inequalities, inclusion problems and
fixed point problems [1, 3–9, 12, 14, 16, 19, 20, 22, 23]. For Tykhonov well-posedness,
Lemaire [12] discussed the relations among the well-posedness of minimization prob-
lems, inclusion problems and fixed point problems. In the setting of Hilbert space,
Fang, Huang and Yao [5] proved that under suitable conditions the well-posedness
of a general mixed variational inequality is equivalent to the existence and the
unique of its solution. They also considered the relations of the well-posedness of
mixed variational inequality, the corresponding inclusion problem and a correspond-
ing fixed point problem. Recently, Ceng and Yao [3] derived some results for the
well-posedness of the generalized mixed variational inequality, the corresponding
inclusion problem and the corresponding fixed point problem.

Furthermore, Hu and Fang [8] considered the Levitin-Polyak well-posedness of
general variational inequalities in Rn. They derived a characterization of the LP
well posedness by considering the size of LP approximating solution sets of general
variational inequalities. They also proved that the LP well-posedness of general
variational inequalities is closely related to the LP well-posedness of minimization
problems and fixed point problems. Finally, they showed that under suitable con-
ditions, the LP well-posedness of general variational inequality is equivalent to the
uniqueness and existence of its solution. Li and Xia [14] derived some results for
the Levitin-Polyak well-posedness of the generalized mixed variational inequality,
the corresponding inclusion problem and the corresponding fixed point problem.

Our attention here will be focused on the following generalized variational in-
equality with generalized mixed variational inequality constraint problem associated
with (F,G, ϕ,K) (denoted by GGV I(F,G, ϕ,K)):

find x ∈ Ω and u ∈ F (x) such that

⟨u, x− y⟩ ≤ 0, ∀y ∈ Ω,

where Ω ≜ {x ∈ K : ∃v ∈ G(x) such that ⟨v, x−y⟩+ϕ(x)−ϕ(y) ≤ 0, ∀y ∈ K}. X
is a real reflexive Banach space with its dual X∗ and K be a nonempty, closed and
convex subset of X. F,G : X → 2X

∗
are two set-valued mappings, and ϕ : X →

R ∪ {+∞} is a proper, convex and lower semicontinuous function.
The GGV I(F,G, ϕ,K) is commonly referred to as of bilevel (or hierarchical)

type, because the set of constraints Ω itself is given as a subproblem. A large
variety of problems can be as special instances of problem GGV I(F,G, ϕ,K). For
example, if G = 0 and ϕ = 0, the GGV I(F,G, ϕ,K) reduces to the following
generalized variational inequality problem: find x ∈ K and u ∈ F (x) such that

⟨u, x− y⟩ ≤ 0, ∀y ∈ K.

If f : X → R be a Gâteaux differentiable function (over an open set containing
K). Special instances of GGV I(F,G, ϕ,K) are given below:
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When F = ∇f and G = 0, the GGV I(F,G, ϕ,K) reduces to the bi-level mini-
mization problem:

min
x∈argmin ϕ

f(x).

When F = ∇f , ϕ = 0, K = Rn
+ and G is a single valued mapping, the

GGV I(F,G, ϕ,K) reduces to the following MPCC:

min
x≥0, G(x)≥0, ⟨x,G(x)⟩=0

f(x),

which enters the class of problems considered in [10].
Recently, Maingé [17] has constructed an efficient algorithm for solving

GGV I(F,G, ϕ,K). However, to the best of our knowledge, there is no a result con-
cerning the LP well-posedness forGGV I(F,G, ϕ,K). Therefore, it is worth studying
implementable results for the Levitin-Polyak well-posedness of theGGV I(F,G, ϕ,K).

Motivated and inspired by the research work going on this field, we extend the
notion of Levitin-Polyak well-posedness to the GGV I(F,G, ϕ,K) in Banach spaces,
and give some characterizations of its Levitin-Polyak well-posedness. We also derive
some conditions under which the GGV I(F,G, ϕ,K) is Levitin-Polyak well-posed.

2. Preliminaries

Let X be a real reflexive Banach space with its dual X∗ and K be a nonempty,
closed and convex subset of X. Let F,G : X → 2X

∗
be two set-valued mappings,

and let ϕ : X → R∪{+∞} be a proper, convex and lower semicontinuous function.
Denote by domϕ the domain of ϕ, i.e.,

domϕ = {x ∈ X : ϕ(x) < +∞}.

In this paper we always assume that domϕ
∩

K ̸= ∅. Consider the following
GGV I(F,G, ϕ,K) problem:

find x ∈ Ω and u ∈ F (x) such that

⟨u, x− y⟩ ≤ 0, ∀y ∈ Ω,

where

Ω ≜ {x ∈ K : ∃v ∈ G(x) such that⟨v, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K}.

First, we give some definitions and lemmas.

Definition 2.1. A nonempty set-valued mapping F : X → 2X
∗
is said to be

monotone, if for all x, y ∈ X,u ∈ F (x), v ∈ F (y),

⟨u− v, x− y⟩ ≥ 0.

Definition 2.2. Let A,B be nonempty subsets of Banach space X. The Hausdorff
metric H(·, ·) between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},

Where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ∥a− b∥.
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Lemma 2.3 (Nadler’s Theorem [18]). Let (X, ∥ · ∥) be a normed vector space and
H(·, ·) be the Hausdorff metric on the collection CB(X) of all nonempty, closed and
bounded subsets of X. If U and V lie in CB(X), then for any ϵ > 0 and any u ∈ U ,
there exists v ∈ V such that ∥u − v∥ ≤ (1 + ϵ)H(U, V ). In particular, whenever U
and V are compact subsets in X, one has ∥u− v∥ ≤ H(U, V ).

Definition 2.4 ( [3]). A nonempty compact-valued mapping F : X → 2X
∗
is said

to be

(i) H-semicontinuous, if for any x, y ∈ X, the function t 7→ H(F (x + t(y −
x), F (x)) from [0, 1] into R+ = [0,+∞) is continuous at 0+, where H(·, ·) is
the Hausdorff metric defined on CB(X).

(ii) H-uniformly continuous, if for all ϵ > 0 there exists δ > 0 such that for all
x, y ∈ X, with ∥x− y∥ < δ, one has H(F (x), F (y)) < ϵ, where H(·, ·) is the
Hausdorff metric defined on CB(X).

Definition 2.5. Let X and Y be two topological spaces and x ∈ X. A set-valued
mapping F : X → 2Y is said to be upper semicontinuous (for short, u.s.c) at x, if
for any neighbourhood V of F (x), there exists a neighbourhood U of x such that
F (y) ⊂ V , ∀y ∈ U . If F is u.s.c at each point of X, we say that F is u.s.c on X.

Definition 2.6 ( [11]). Let A be a nonempty subset of Banach space X. The
measure of noncompactness u of the set A is defined by

u(A) = inf{ϵ > 0 : A ⊂
n∪

i=1

Ai, diamAi < ϵ, i = 1, 2, . . . , n},

where diam means the diameter of a set.

The following Proposition is a special case of Lemma 2.2 in Ceng and Yao [3].

Proposition 2.7. Let K be a nonempty, closed and convex subset of Banach
space X and F : X → 2X

∗
be a nonempty compact-valued mapping which is H-

hemicontinuous and monotone. Let ϕ : X → R ∪ {+∞} be a proper and convex
function. Then for a given x ∈ K, the following statements are equivalent:

(i) there exists u ∈ F (x) such that ⟨u, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K;
(ii) ⟨v, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K, v ∈ F (y).

We first prove the following Proposition which is the key Proposition of this
paper.

Proposition 2.8. Let K be a nonempty, closed and convex subset of Banach space
X. Let F , G : X → 2X

∗
be nonempty compact-valued mappings which are H-

hemicontinuous and monotone, respectively. Let ϕ : X → R ∪ {+∞} be a proper
and convex function. Let S be the soluton set of problem GGV I(F,G, ϕ,K). Then
for a given x∗ ∈ K, x∗ ∈ S if and only if there exists u ∈ F (x∗) and v ∈ G(x∗) such
that

(2.1) ⟨u, x∗ − y⟩ ≤ α

2
∥x∗ − y∥2, ∀y ∈ Ω,

and

(2.2) ⟨v, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ α

2
∥x∗ − y∥2, ∀y ∈ K,
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where α > 0 is constant.

Proof. If x∗ ∈ S, it is easy to know that (2.1) and (2.2) hold. Conversely, for a given
x∗ ∈ K, suppose (2.1) and (2.2) hold. Let yt = ty+(1−t)x∗ ∈ K, ∀y ∈ K, t ∈ (0, 1).
It follows from (2.2) that

⟨v, x∗ − yt⟩+ ϕ(x∗)− ϕ(yt) ≤
α

2
∥x∗ − yt∥2, ∀y ∈ K.

We deduce that

⟨v, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ tα

2
∥x∗ − y∥2, ∀y ∈ K.

Let t → 0+, we have

⟨v, x∗ − y⟩+ ϕ(x∗)− ϕ(y) ≤ 0, ∀y ∈ K.

Then x∗ ∈ Ω.
Now, we will prove that Ω is a convex set. Indeed, for any x1, x2 ∈ Ω, there

exists u ∈ G(x1) and v ∈ G(x2) such that

(2.3) ⟨u.x1 − y⟩+ ϕ(x1)− ϕ(y) ≤ 0, ∀y ∈ K,

and

(2.4) ⟨v.x2 − y⟩+ ϕ(x2)− ϕ(y) ≤ 0, ∀y ∈ K.

Let x = λx1 + (1− λ)x2, ∀λ ∈ (0, 1). It follows from (2.3) and (2.4) that

(2.5) λ⟨u, x1 − y⟩+ (1− λ)⟨v, x2 − y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K.

Since G is a monotone mapping, we obtain that

(2.6) ⟨u, x1 − y⟩ ≥ ⟨w, x1 − y⟩, ∀w ∈ G(y),

and

(2.7) ⟨v, x2 − y⟩ ≥ ⟨w, x2 − y⟩, ∀w ∈ G(y).

(2.5)-(2.7) implies that

λ⟨w, x1 − y⟩+ (1− λ)⟨w, x2 − y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀w ∈ G(y), y ∈ K.

That is,

⟨w, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀w ∈ G(y), y ∈ K.

By Proposition 2.7, we know that there exists r ∈ G(x) such that

⟨r, x− y⟩+ ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ K.

This implies that x ∈ Ω. So, Ω is a convex set.
Now, for any y ∈ Ω, t ∈ (0, 1), let yt = ty + (1 − t)x∗. Since x∗ ∈ Ω and Ω is a

convex set, we know that yt ∈ Ω. It follows from (2.1) that

⟨u, x∗ − y⟩ ≤ tα

2
∥x∗ − y∥2, ∀y ∈ Ω.

Let t → 0+, we obtain that there exists u ∈ F (x∗) such that

(2.8) ⟨u, x∗ − y⟩ ≤ 0, ∀y ∈ Ω.

By x∗ ∈ Ω and (2.8), we deduce that x∗ ∈ S. The proof is complete. □
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3. Levitin-Polyak well-posedness of GGV I(F,G, ϕ,K)

In this section, we extend the concepts of Levitin-Poylak well-posedness to the
problem GGV I(F,G, ϕ,K) and establish its metric characterizations. In the se-
quel, we always denote by → and ⇀ the strong convergence and weak convergence,
respectively. Let α ≥ 0 be a fixed number.

Definition 3.1. A sequence {xn} ⊂ X is said to be an Levitin-Polyak(for short,
LP)α-approximating sequence for GGV I(F,G, ϕ,K), if there exist wn ∈ X with
wn → 0 and 0 < ϵn → 0 such that xn + wn ∈ K for all n ∈ N , and there exists
un ∈ F (xn), vn ∈ G(xn) such that

(3.1) ⟨un, xn − y⟩ ≤ α

2
∥xn − y∥2 + ϵn, ∀y ∈ Ω, n ∈ N,

and

(3.2) xn ∈ domϕ, ⟨vn, xn−z⟩+ϕ(xn)−ϕ(z) ≤ α

2
∥xn−z∥2+ϵn, ∀z ∈ K,n ∈ N.

Definition 3.2. We say that GGV I(F,G, ϕ,K) is strongly (resp., weakly) LP α-
well-posed ifGGV I (F,G, ϕ,K) has a unique solution and every LP α-approximating
sequence converges strongly (resp., weakly) to the unique solution.

In the sequel, strongly (resp., weakly) LP 0-well-posed is always called as strongly
(resp., weakly) LP well-posed. If α1 > α2 ≥ 0, then strongly (resp., weakly) LP
α1-well-posed implies strongly (resp., weakly) LP α2-well-posed.

Definition 3.3. We say that GGV I(F,G, ϕ,K) is strongly (resp., weakly) LP α-
well-posed in the generalized sense if GGV I has nonempty solution set S and ev-
ery LP α-approximating sequence has subsequence which converges strongly (resp.,
weakly) to some point of S.

In the sequel, strongly (resp., weakly) LP 0-well-posed in the generalized sense is
always called as strongly (resp., weakly) LP well-posed in the generalized sense.

To derive the metric characterizations of LP α-well-posedness, we consider the
following approximating solution set of GGV I(F,G, ϕ,K): for any ϵ ≥ 0,

∆α(ϵ) = {x ∈ domϕ : d(x,K) ≤ ϵ, ∃u ∈ F (x), v ∈ G(x) s.t. for all y ∈ Ω

⟨u, x− y⟩ ≤ α

2
∥x− y∥2 + ϵ, ⟨v, x− z⟩+ ϕ(x)− ϕ(z) ≤ α

2
∥x− z∥2 + ϵ,∀z ∈ K}.

Theorem 3.4. Let K be a nonempty, closed and convex subset of X. Let F ,
G : X → 2X

∗
be nonempty H-hemicontinuous, compact-valued and monotone

mappings, respectively. Let ϕ : X → R ∪ {+∞} be a proper, convex and lower
semicontinuous functional. Then GGV I(F,G, ϕ,K) is strongly LP α-well-posed if
and only if

(3.3) ∆α(ϵ) ̸= ∅, ∀ϵ > 0 and diam(∆α(ϵ)) → 0 as ϵ → 0.

Proof. Suppose that GGV I(F,G, ϕ,K) is strongly LP α-well-posed and x∗ ∈ Ω is
the unique solution of GGV I(F,G, ϕ,K). It is obvious that x∗ ∈ ∆α(ϵ) ̸= ∅, for all
ϵ ≥ 0. If diam(∆α(ϵ)) does not converge to 0 as ϵ → 0, then there exists l > 0 and

0 < ϵn → 0 and {x(1)n }, {x(2)n } with x
(1)
n , x

(2)
n ∈ ∆α(ϵn) such that

(3.4) ∥x(1)n − x(2)n ∥ > l, ∀n ∈ N.
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Since x
(1)
n ∈ ∆α(ϵn), by the definition of ∆α(ϵn), we have

d(x(1)n ,K) ≤ ϵn < ϵn +
1

n
,

and there exists un ∈ F (x
(1)
n ), vn ∈ G(x

(1)
n ) such that

⟨un, x(1)n − y⟩ ≤ α

2
∥x(1)n − y∥2 + ϵn, ∀y ∈ Ω,

⟨vn, x(1)n − z⟩+ ϕ(x(1)n )− ϕ(z) ≤ α

2
∥x(1)n − z∥2 + ϵn, ∀z ∈ K.

Since K is closed and convex, then there exists x
(1)
n ∈ K such that ∥x(1)n − x

(1)
n ∥ <

ϵn + 1
n . Let wn = x

(1)
n − x

(1)
n , then we have wn + x

(1)
n = x

(1)
n ∈ K and ∥wn∥ =

∥x(1)n − x
(1)
n ∥ → 0 as n → ∞. This implies that wn → 0. Thus, {x(1)n } is an LP

approximating sequence for GGV I(F,G, ϕ,K). By the similar argument, we get

{x(2)n } is an LP approximating sequence for GGV I(F,G, ϕ,K). So they have to
converge strongly to the unique solution of GGV I(F,G, ϕ,K) which is a contradic-
tion to (3.4).

Conversely, suppose that condition (3.3) holds. Let {xn} ⊂ X be a LP α-
approximating sequence for GGV I(F,G, ϕ,K). Then there exists wn ∈ X with

wn → 0 such that xn + wn ∈ K, and there exists 0 < ϵ
′
n → 0, un ∈ F (xn),

vn ∈ G(xn) such that

(3.5) ⟨un, xn − y⟩ ≤ α

2
∥xn − y∥2 + ϵ

′
n, ∀y ∈ Ω, n ∈ N.

(3.6) xn ∈ domϕ, ⟨vn, xn− z⟩+ϕ(xn)−ϕ(z) ≤ α

2
∥xn− z∥2+ ϵ

′
n, ∀z ∈ K,n ∈ N.

Since xn + wn ∈ K, then there exists xn ∈ K such that xn + wn = xn. It is easy
to see d(xn,K) ≤ ∥xn − xn∥ = ∥wn∥ → 0 as n → ∞. Set ϵn = max{ϵ′n, ∥wn∥}. We
deduce that xn ∈ ∆α(ϵn). By (3.3), we get {xn} is a Cauchy sequence and so it
converges to a point x ∈ K.

Now, we will prove that x ∈ K is a solution of GGV I(F,G, ϕ,K). Since G is
monotone and ϕ is lower semicontinuous, it follows from (3.6) that for any z ∈ K,
v ∈ G(z),

⟨v, x− z⟩+ ϕ(x)− ϕ(z) ≤ lim inf
n→∞

{⟨v, xn − z⟩+ ϕ(xn)− ϕ(z)}

≤ lim inf
n→∞

{⟨vn, xn − z⟩+ ϕ(xn)− ϕ(z)}

≤ lim inf
n→∞

{α
2
∥xn − z∥2 + ϵ

′
n}

=
α

2
∥x− z∥2.(3.7)

For any z ∈ K, let zt = x+ t(z − x) for all t ∈ [0, 1]. Since K is a nonempty, closed
and convex subset, this implies that zt ∈ K. Then, (3.7) implies that

⟨vt, x− zt⟩+ ϕ(x)− ϕ(zt) ≤
α

2
∥x− zt∥2, ∀vt ∈ G(zt).
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Since ϕ is convex,

⟨vt, x− z⟩+ ϕ(x)− ϕ(z) ≤ αt

2
∥x− z∥2, ∀vt ∈ G(zt), z ∈ K.(3.8)

Since G is a nonempty compact-valued mapping which is H-hemicontinuous. Ac-
cording to Lemma 2.3, for each fixed vt ∈ G(zt) and each t ∈ (0, 1), there exist
rt ∈ G(x) such that ∥vt − rt∥ ≤ H(G(zt), G(x)). Since G is H-hemicontinuous, one
deduces that ∥vt− rt∥ ≤ H(G(zt), G(x)) → 0 as t → 0+. Since G is compact-valued
mapping, without loss of generality, we may assume that rt → r ∈ G(x) as t → 0+.
Thus, we deduces that

∥vt − r∥ ≤ ∥vt − rt∥+ ∥rt − r∥ ≤ H(G(zt), G(x)) + ∥rt − r∥ → 0 as t → 0+.

This implies that vt → r as t → 0+. It follows from (3.8) that

⟨r, x− z⟩+ ϕ(x)− ϕ(z) ≤ 0, ∀z ∈ K.

So x ∈ Ω. Since F is monotone, it follows from (3.5) that for any y ∈ Ω, u ∈ F (y),

⟨u, x− y⟩ ≤ lim inf
n→∞

{⟨u, xn − y⟩}

≤ lim inf
n→∞

{⟨un, xn − y⟩}

≤ lim inf
n→∞

{α
2
∥xn − y∥2 + ϵ

′
n}

=
α

2
∥x− y∥2.

For any y ∈ Ω, let yt = x + t(y − x) for all t ∈ [0, 1]. By the proof of Proposition
2.8, we know Ω is convex set. So, we deduce that yt ∈ Ω. By the similar arguments,
we have that there exists s ∈ F (x) such that

⟨s, x− y⟩ ≤ 0, ∀y ∈ Ω.

This implies that x is a solution of GGV I(F,G, ϕ,K).
To complete the proof, we need only to prove that GGV I(F,G, ϕ,K) has a unique

solution. Assume by contradiction that GGV I(F,G, ϕ,K) has two distinct solution
x1 and x2. Then it is easy to see that x1, x2 ∈ ∆α(ϵ) for all ϵ > 0 and

0 < ∥x1 − x2∥ ≤ diam(∆α(ϵ)) → 0,

which is a contradiction to (3.3). The proof is complete. □
Theorem 3.5. Let K be a nonempty, closed and convex subset of X. Let F ,
G : X → 2X

∗
be nonempty upper semicontinuous, compact-valued and monotone

mappings, respectively. Let ϕ : X → R ∪ {+∞} be a proper, convex and lower
semicontinuous function. Then GGV I(F,G, ϕ,K) is strongly LP α-well-posed in
the generalized sense if and only if

(3.9) ∆α(ϵ) ̸= ∅, ∀ϵ > 0 and u(∆α(ϵ)) → 0 as ϵ → 0.

Proof. Suppose that GGV I(F,G, ϕ,K) is strongly LP α-well-posed in the general-
ized sense. Let S be the solution set of GGV I(F, ϕ,K). Then S is nonempty and
compact. Indeed, let {xn} be any sequence in S, then {xn} is a strongly LP α-
approximating sequence for GGV I(F,G, ϕ,K). Since GGV I(F,G, ϕ,K) is strongly
LP α-well-posed in the generalized sense, {xn} has a subsequence which converges
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strongly to some point of S. Thus S is compact. It is obvious that ∆α(ϵ) ⊃ S ̸= ∅
for all ϵ > 0. Now we show that

u(∆α(ϵ)) → 0 as ϵ → 0.

Observe that for every ϵ > 0,

H(∆α(ϵ), S) = max{e(∆α(ϵ), S), e(S,∆α(ϵ))} = e(∆α(ϵ), S).

Taking into account the compactness of S, we get

u(∆α(ϵ)) ≤ 2H(∆α(ϵ), S) + u(S) = 2e(∆α(ϵ), S).

To prove (3.9), it is sufficient to show that

e(∆α(ϵ), S) → 0 as ϵ → 0.

Indeed, if e(∆α(ϵ), S) does not converge to 0 as ϵ → 0, then there exist l > 0 and
{ϵn} ⊂ R+ with ϵn → 0, and xn ∈ ∆α(ϵn) such that

(3.10) xn /∈ S +B(0, l), ∀n ∈ N,

where B(0, l) is the closed ball centered at 0 with radius l. By the definition of
∆α(ϵn), we know d(xn,K) ≤ ϵn < ϵn + 1

n , and there exist un ∈ F (xn), vn ∈ G(xn)
such that

⟨un, xn − y⟩ ≤ α

2
∥xn − y∥2 + ϵn, ∀y ∈ Ω,

and

⟨vn, xn − z⟩+ ϕ(xn)− ϕ(z) ≤ α

2
∥xn − z∥2 + ϵn, ∀z ∈ K.

Thus, there exists xn ∈ K such that ∥xn − xn∥ < ϵn + 1
n . Let wn = xn − xn. Then

we have wn + xn ∈ K with wn → 0. Thus {xn} is an LP α-approximating sequence
for GGV I(F,G, ϕ,K). Since GGV I(F,G, ϕ,K) is strongly LP α-well-posed in the
generalized sense, there exists a subsequence {xnk

} of {xn} which converges to some
point of S. This contradicts (3.10) and so

e(∆α(ϵ), S) → 0 as ϵ → 0.

Conversely, assume that (3.9) holds. We first show that ∆α(ϵ) is closed . Let
{xn} ⊂ ∆α(ϵ) and xn → x as n → ∞. Then there exists un ∈ F (xn), vn ∈ G(xn)
such that d(xn,K) ≤ ϵ and

(3.11) ⟨un, xn − y⟩ ≤ α

2
∥xn − y∥2 + ϵ, ∀y ∈ Ω, n ∈ N,

(3.12) ⟨vn, xn − z⟩+ ϕ(xn)− ϕ(z) ≤ α

2
∥xn − z∥2 + ϵ, ∀z ∈ K,n ∈ N.

Since F,G are nonempty upper semicontinuous and compact-valued mappings, there
exist sequences {unk

} of {un}, {vnk
} of {vn} and some u ∈ F (x), v ∈ G(x) such

that unk
→ u and vnk

→ v, respectively. Therefore, it follows from (3.11), (3.12)
and the lower semicontinuity of ϕ that

⟨u, x− y⟩ ≤ α

2
∥x− y∥2 + ϵ, ∀y ∈ Ω,

and

⟨v, x− z⟩+ ϕ(x)− ϕ(z) ≤ α

2
∥x− z∥2 + ϵ, ∀z ∈ K.
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It is easy to see d(x,K) ≤ ϵ. This implies that x ∈ ∆α(ϵ) and so ∆α(ϵ) is nonempty
closed for all ϵ > 0.

Now, we will prove

S =
∩
ϵ>0

∆α(ϵ).

Indeed, it is obvious that S ⊂ ∆α(ϵ), for any ϵ > 0. On the other hand, if 0 < ϵ1 <
ϵ2, it is easy to know that ∆α(ϵ1) ⊂ ∆α(ϵ2). We deduce that∩

ϵ>0

∆α(ϵ) = lim
ϵ→0

∆α(ϵ).

That is,∩
ϵ>0

∆α(ϵ) = {x ∈ K : ∃u ∈ F (x), ∃v ∈ G(x), ⟨u, x− y⟩ ≤ α

2
∥x− y∥2, ∀y ∈ Ω;

⟨v, x− z⟩+ ϕ(x)− ϕ(z) ≤ α

2
∥x− z∥2, ∀z ∈ K}.

By Proposition 2.8, we know that
∩

ϵ>0∆α(ϵ) ⊂ S. So, we obtain that S =∩
ϵ>0∆α(ϵ).
Since u(∆α(ϵ)) → 0, the Theorem in page 412 of [11] can be applied and one

concludes that S is nonempty and compact with

H(∆α(ϵ), S) = e(∆α(ϵ), S) → 0 as ϵ → 0.

Let {x̂n} ⊂ X be an LP α-approximating sequence for GGV I(F,G, ϕ,K). Then
there exists wn ∈ X with wn → 0 such that x̂n+wn ∈ K, and there exist ûn ∈ F (x̂n),

v̂n ∈ G(x̂n) and 0 < ϵ
′
n → 0 such that

⟨ûn, x̂n − y⟩ ≤ α

2
∥x̂n − y∥2 + ϵ

′
n, ∀y ∈ Ω, n ∈ N,

⟨v̂n, x̂n − z⟩+ ϕ(x̂n)− ϕ(z) ≤ α

2
∥x̂n − z∥2 + ϵ

′
n, ∀z ∈ K,n ∈ N.

Since x̂n + wn ∈ K, there exists xn ∈ K such that x̂n + wn = xn. It follows that

d(x̂n,K) ≤ ∥x̂n − xn∥ = ∥wn∥ → 0 as n → ∞.

Set ϵn = max{∥wn∥, ϵ
′
n}. We get x̂n ∈ ∆α(ϵn). It follows from (3.9) and the

definition of ∆α(ϵn) that

d(x̂n, S) ≤ e(∆α(ϵn), S) → 0 as n → ∞.

Since S is compact, there exists pn ∈ S such that

∥pn − x̂n∥ = d(x̂n, S) → 0.

Again from the compactness of S, there exists a subsequence {pnk
} of {pn} which

converges strongly to p ∈ S. Hence the corresponding subsequence {xnk
} of {x̂n}

converges strongly to p ∈ S. Thus, GGV I(F,G, ϕ,K) is strongly LP α-well-posed
in the generalized sense. The proof is complete. □
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4. Conditions for Levitin-Poylak well-posedness

In this section, we derive some conditions under which the GGV I(F,G, ϕ,K) is
Levitin-Poylak well-posed in Banach spaces.

Theorem 4.1. Let K be a nonempty, closed and convex subset of X. Let F ,
G : X → 2X

∗
be nonempty compact-valued mappings which are H-semicontinuous

and monotone, respectively. Let ϕ : X → R
∪
{+∞} be a proper, convex and

uniformly continuous functional. Then GGV I(F,G, ϕ,K) is weakly LP well-posed
if and only if it has a unique solution.

Proof. The necessity is obvious. For the sufficiency, suppose thatGGV I (F,G, ϕ,K)
has a unique solution x∗. If GGV I(F,G, ϕ,K) is not weakly LP well-posed, then
there exists an LP approximating sequence {xn} such that {xn} is not weakly
converging to x∗. Thus, there exist wn ∈ X with wn → 0 and 0 < ϵn → 0 such that
xn + wn ∈ K, and there exist un ∈ F (xn), vn ∈ G(xn) such that

⟨un, xn − y⟩ ≤ ϵn, ∀y ∈ Ω, n ∈ N,(4.1)

and

⟨vn, xn − z⟩+ ϕ(xn)− ϕ(z) ≤ ϵn, ∀z ∈ K,n ∈ N.(4.2)

Since xn + wn ∈ K, there exists xn ∈ K such that xn + wn = xn. Thus,

d(xn,K) ≤ ∥xn − xn∥ = ∥wn∥ → 0 as n → ∞.

If {xn} is unbounded, then {xn} is an unbounded sequence of K, without loss of
generality, we can suppose that ∥xn∥ → +∞. Let

tn =
1

∥xn − x∗∥
, zn = x∗ + tn(xn − x∗).

Without loss of generality, we can suppose tn ∈ (0, 1] and zn ⇀ z(̸= x∗). Then we
have, for each y ∈ K, v ∈ G(y),

⟨v, z − y⟩ = ⟨v, z − zn⟩+ ⟨v, zn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn + wn − x∗⟩+ ⟨v, x∗ − y⟩
= ⟨v, z − zn⟩+ tn⟨v, xn − y⟩+ (1− tn)⟨v, x∗ − y⟩+ tn⟨v, wn⟩.(4.3)

Since x∗ is the unique solution of GGV I(F,G, ϕ,K), there exist u∗ ∈ F (x∗), v∗ ∈
G(x∗) such that

⟨u∗, x∗ − y⟩ ≤ 0, ∀y ∈ Ω,(4.4)

and

⟨v∗, x∗ − z⟩+ ϕ(x∗)− ϕ(z) ≤ 0, ∀z ∈ K.(4.5)

Since G is monotone,

⟨v, x∗ − y⟩ ≤ ⟨v∗, x∗ − y⟩, ⟨v, xn − y⟩ ≤ ⟨vn, xn − y⟩.(4.6)

It follows from (4.2),(4.3), (4.5), (4.6) and the convexity of ϕ that, for all ∀y ∈ K
and v ∈ G(y),

⟨v, z − y⟩ ≤ ⟨v, z − zn⟩+ tnϕ(y)− tnϕ(xn) + tnϵn
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+(1− tn)(ϕ(y)− ϕ(x∗)) + tn⟨v, wn⟩
= ⟨v, z − zn⟩+ ϕ(y)− [tnϕ(xn) + (1− tn)ϕ(x

∗)]

+tnϵn + tn⟨v, wn⟩
= ⟨v, z − zn⟩+ ϕ(y)− [tnϕ(xn) + (1− tn)ϕ(x

∗) + tnϕ(xn)− tnϕ(xn)]

+tnϵn + tn⟨v, wn⟩
≤ ⟨v, z − zn⟩+ ϕ(y)− ϕ(zn)− [tnϕ(xn)− tnϕ(xn)] + tnϵn + tn⟨v, wn⟩.(4.7)

Since ϕ is uniformly continuous, we have

⟨v, z − y⟩
≤ lim inf

n→∞
{⟨v, z − zn⟩+ ϕ(y)− ϕ(zn)− [tnϕ(xn)− tnϕ(xn)] + tnϵn + tn⟨v, wn⟩}

≤ ϕ(y)− ϕ(z)

This together with Proposition 2.7 implies that z ∈ Ω. For any y ∈ Ω, u ∈ F (y),

⟨u, z − y⟩ = ⟨u, z − zn⟩+ ⟨u, zn − x∗⟩+ ⟨u, x∗ − y⟩
= ⟨u, z − zn⟩+ tn⟨u, xn − x∗⟩+ ⟨u, x∗ − y⟩
= ⟨u, z − zn⟩+ tn⟨u, xn + wn − x∗⟩+ ⟨u, x∗ − y⟩
= ⟨u, z − zn⟩+ tn⟨u, xn − y⟩+ (1− tn)⟨u, x∗ − y⟩+ tn⟨u,wn⟩.(4.8)

Since F is monotone,

⟨u, x∗ − y⟩ ≤ ⟨u∗, x∗ − y⟩, ⟨u, xn − y⟩ ≤ ⟨un, xn − y⟩.(4.9)

It follows from (4.1), (4.4), (4.8), (4.9) that, for all u ∈ F (y),

⟨u, z − y⟩ ≤ ⟨u, z − zn⟩+ tnϵn + tn⟨u,wn⟩.
We deduce that

⟨u, z − y⟩ ≤ 0, ∀y ∈ Ω.

This together with z ∈ Ω implies that z is a solution of GGV I(F,G, ϕ,K), a con-
tradiction. Thus, {xn} is bounded.

Let {xnk
} be any subsequence of {xn} such that xnk

⇀ x as k → ∞. Clearly
x ∈ K. It follows from (4.1), (4.2) that

⟨unk
, y − xnk

⟩ ≤ ϵnk
, ∀y ∈ Ω,

and
⟨vnk

, z − xnk
⟩+ ϕ(xnk

)− ϕ(z) ≤ ϵnk
, ∀z ∈ K.

Since F,G is monotone, ϕ is convex lower semicontinuous, we have

⟨u, x− y⟩ ≤ lim inf
k→∞

{⟨u, xnk
− y⟩} ≤ lim inf

k→∞
{⟨unk

, xnk
− y⟩}

≤ lim inf
k→∞

ϵnk
= 0, y ∈ Ω, u ∈ F (y),(4.10)

and

⟨v, x− z⟩+ ϕ(x)− ϕ(z)} ≤ lim inf
k→∞

{⟨v, xnk
− z⟩+ ϕ(xnk

)− ϕ(z)}

≤ lim inf
k→∞

{⟨vnk
, xnk

− z⟩+ ϕ(xnk
)− ϕ(z)}

≤ lim inf
k→∞

ϵnk
= 0, ∀z ∈ K, v ∈ G(z).(4.11)
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This together with Proposition 2.8 yields that x solves GGV I(F,G, ϕ,K). Since
GGV I(F,G, ϕ,K) has a unique solution x∗, we have x = x∗. Thus xn ⇀ x∗, a
contradiction. So GGV I(F,G, ϕ,K) is weakly LP well-posed. The proof is com-
plete. □

Now, for any δ0 ≥ 0, we denote M(δ0) = {x ∈ X : d(x,K) ≤ δ0}. We have the
following result.

Theorem 4.2. Let K be a nonempty, closed and convex subset of X. Let F ,
G : X → 2X

∗
be nonempty upper semicontinuous and compact-valued mappings,

respectively. Let ϕ : X → R
∪
{+∞} be a proper, convex and lower semicon-

tinuous function. If there exists some δ0 > 0 such that M(δ0) is compact, then
GGV I(F,G, ϕ,K) is strongly LP α-well-posed in the generalized sense.

Proof. Let {xn} be an LP approximating sequence for GGV I(F,Gϕ,K). Then

there exist 0 < ϵ
′
n → 0 and wn ∈ X with wn → 0 such that

xn + wn ∈ K,

and there exist un ∈ F (xn), vn ∈ G(xn) satisfying

⟨un, xn − y⟩ ≤ α

2
∥xn − y∥2 + ϵ

′
n, ∀y ∈ Ω, n ∈ N,(4.12)

and

⟨vn, xn − z⟩+ ϕ(xn)− ϕ(z) ≤ α

2
∥xn − z∥2 + ϵ

′
n, ∀z ∈ K, n ∈ N.(4.13)

Since xn + wn ∈ K, there exists xn ∈ K such that xn + wn = xn. Thus,

d(xn,K) ≤ ∥xn − xn∥ = ∥wn∥ → 0 as n → ∞.

Set ϵn = max{ϵ′n, ∥wn∥}, we can get d(xn,K) ≤ ϵn. Since ϵn → 0 as n → ∞,
without loss of generality, we can assume that {xn} ⊂ M(δ0) for n sufficiently
large. By the compactness of M(δ0), there exists a subsequence {xnk

} of {xn} and
x ∈ M(δ0) such that xnk

→ x. It is easy to see x ∈ K. First, by the u.s.c. of G
at x and compactness of G(x), there exist a subsequence {vnk

} of {vn} and some
v ∈ G(x) such that vnk

→ v. Since ϕ is lower semicontinuous, it follows from (4.13)
that

⟨v, x− z⟩+ ϕ(x)− ϕ(z) ≤ α

2
∥x− z∥2, ∀z ∈ K.(4.14)

Similarly, by (4.12), we can deduce that there exists some ū ∈ F (x̄) such that

(4.15) ⟨ū, x̄− y⟩ ≤ α

2
∥x̄− y∥2, ∀y ∈ Ω.

It follows from (4.14), (4.15) and Proposition 2.8 that x solves GGV I(F,G, ϕ,K).
Thus GGV I(F,G, ϕ,K) is strongly LP α-well-posed in the generalized sense. The
proof is complete. □



2100 F. Q. XIA AND C. F. WEN

References

[1] L. Q. Anh, P. Q. Khanh, D. T. M. Van and J. C. Yao, Well-posedness for vector quasi-equilibria,
Taiwanese J. Math.13 (2009), 713–737.

[2] E. M. Bednarczuk, Well-posedness of Optimization Problem, in Recent Advances and Historical
Development of Vector Optimization Problems, Jahn, J., Krabs, W.(ends.), Lecture Notes in
Economics and Mathematical Systems, vol. 294, Springer, Berlin, 1987, pp. 51–61.

[3] L. C. Ceng and J. C. Yao, Well-posed of generalized mixed variational inequalities, inclusion
problems and fixed-point problems, Nonlinear Anal. TMA, 69 (2008), 4585–4603.

[4] L. C. Ceng, N. Hadjisavvas, S. Schaible and J. C. Yao, Well-posedness for mixed
quasivariational-like inequalities, J. Optim. Theory Appl. 139 (2008), 109–125.

[5] Y. P. Fang, N. J. Huang and J. C. Yao, Well-posed of mixed variational inequalities, inclusion
problems and fixed-point problems, J. Glob Optim. 41 (2008), 117–133.

[6] Y. P. Fang, N. J. Huang and J. C. Yao, Well-posed by perturbations of mixed variational
inequalities in Banach spaces, European J. Oper. Res. 201 (2010), 682–692.

[7] Y. Han and X. H. Gong, Levitin-Polyak well-posedness of symmetric vector quasi-equilibrium
problems, Optim., DOI:10.1080/02331934.2014.886037.

[8] R. Hu and Y. P. Fang, Levitin-Polyak well- posedness of variational inequalities, Nonlinear
Anal. TMA 72 (2010), 373–381.

[9] R. Hu and Y. P. Fang, Levitin-Polyak well-posedness by perturbations of inverse variational
inequalities, Optim. Lett. 7 (2013), 343–359.

[10] A. F. Izmaelov and M. V. Solodov, An active set Newton method for mathematical program
with complementary constraints, SIAM J. Optim. 19 (2008)1003–1027.

[11] K. Kuratowski, Topology, vols, 1 and 2, Academic, New York, NY, 1966.
[12] B. Lemaire, Well-posedness, conditions, and regularization of minimization, inclusion,and

fixed-point problems, Pliska Studia Mathematic Bulgaria 12 (1998), 71–84.
[13] E. S. Levitin and B. T. Polyak, Convergence of minimizing sequences in conditional extremum

problem, Soveit Math. Dokl. 7 (1996), 764–767.
[14] X. B. Li and F. Q. Xia, Levitin-Polyak well-posedness of a generalized mixed variational in-

equality in Banach spaces, Nonlinear Anal. TMA 75 (2012), 2139–2153.
[15] R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimum

problems with applications to variational inequalities, Numer, Funct. Anal. Optim. 3 (1981),
461–476.

[16] R. Lucchetti and F. Patrone, Hadamard and Tykhonov well-posedness of certain class of convex
functions, J. Math. Anal. Appl. 88 (1982), 204–215.
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