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ABSTRACT. We consider nondifferentiable multiobjective fractional programming
problem involving cone constraints, where every denominator and numerator of
the objective function contains a term involving the support function of a com-
pact convex set. Necessary and sufficient optimality conditions are established
for weakly efficient solutions under higher-order type I assumptions. We formu-
late duality theorems for multiobjective fractional programming problem under
higher-order type I functions. Some special cases of our duality results are pre-
sented.

1. INTRODUCTION

Multiobjective fractional programming refers to a multiobjective problem where
the objective functions are quotients, f;(x)/gi(z). The fractional optimization prob-
lem with multiple objective functions have been the subject of intense investigations
in the past few years, which have produced a number of optimality and duality for
these problems.

Recently, optimality conditions and the duality for multiobjective programming
have been studied under kinds of generalized convexity and some results for that had
been obtained. Especially, necessary optimality conditions for vector minimization
problem involving cones were formulated by Suneja et al. [14]. Furthermore, Fritz
John and Karush-Kuhn-Tucker necessary optimality conditions for multiobjective
fractional programming problems with support functions were established by Kim
et al. [5]. Invexity is a generalization of the convexity property that extends the
sufficiency of Fritz John conditions and duality theorem of convex programs to a
more general class of optimization problems.

Second and higher-order duality provides tighter bounds for the value of the ob-
jective function of the primal problem when approximations are used because there
are more parameters involved. Mangasarian [10] formulated a group of second and
higher-order dual problems for a nonlinear programming problem involving twice
differentiable functions. Higher-order generalized invexity and duality in nondiffer-
entiable mathematical programming problem were studied by Mishra and Rueda
[11]. Higher-order duality for a class of higher-order (F, p, o)-type I functions in
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multiobjective fractional programming with support functions was introduced in
the Paretian cone setting by Suneja et al. [15]. Higher-order duality in multiobjec-
tive programming involving cones under various higher-order type I functions was
established by Kim and Lee [6].

Ratio invexity was formulated by Khan and Hanson [4] for optimality and du-
ality in fractional programming. This concept seems to be new and it introduces
a kind of modified characterization in sufficient optimality conditions. Recently,
duality for multiobjective fractional programming problems with support functions
was established under (V,p)-invexity by Kim et al. [5], in which, they used the
generalized ratio invexity concept. Until then, many papers had shown the various
ratio invexity concept such as [3, 4, 8] and [13]. Later, nondifferentiable multiobjec-
tive fractional programming problems with cone constraints over arbitrary closed
convex cones were introduced and duality theorems for a weakly efficient solution
were formulated by Kim et al. [7]. Subsequently, sufficient optimality conditions
and duality for a class of multiobjective fractional programming problems under
higher-order (F, a, p, d)-convexity assumptions were given by Chen [1].

In this paper, we consider nondifferentiable multiobjective fractional program-
ming problem whose objective functions contain support functions of compact con-
vex sets in R™ and whose constraints contain closed convex cones. We first show
that the ratio of higher-order type I functions is still higher-order type I functions.
In addition, necessary conditions for our primal problem with cone constraints and
the sufficient optimality conditions under suitable higher-order type I assumptions
are proposed. Higher-order Wolfe, Mond-Weir and Schaible type duals are formu-
lated for the nondifferentiable multiobjective fractional program and various duality
results for the weakly efficient solution are established. Moreover, some special cases
of our duality results are given.

2. PRELIMINARIES

Let R™ be the n-dimensional Euclidean space and let R’} be its non-negative
orthant. The following convention for inequalities will be used in the paper:
xSu < x;jwu;foralli=1,2,...,n;
r<u < x; Swu;foralli=1,2,...,n, but x # u ;
x £ u is the negation of x < u .
For z,u € R, z £ u and z < u have the usual meaning.
Consider the following nondifferentiable multiobjective fractional programming
problem: (MCFP)

Minimize

subject to  h(x) € C5,x € C4,

where f : R® = R!, g: R” = R!, and h : R — R™ are continuously differentiable
over C1. C7 and (' are closed convex cones with nonempty interiors in R™ and R™,
respectively. X := {z € R"|h(x) € C5,x € C} is the feasible set. C3 is a polar cone
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of Cy. Foreachi=1,...,l, D; and E; are compact convex sets of R”. The support
function of D; and E; at € R” is defined by s(x|D;) := maz{z"w; : w; € D;} and
s(z|E;) := max{zT 2 : z; € E;}, respectively.

In addition, we use the usual definition of cone. A nonempty set C in R™ is said
to be a cone with vertex zero, if x € C implies that Az € C for all A =2 0. Moreover,
if C' is convex, then C' is called a convex cone. Also, the polar cone C* of C is
defined by

C*:={zcR" | 272 <0 forall z € C}.

Throughout this paper, suppose that for all z € C1, f(z) 4+ 27w = 0 and g(x) —
2Tz > 0.

We recall some known facts about support functions [12].

Every sublinear function defined on R™ may be written as a support function
and further any compact set D can be uniquely determined by its support function.
The support function s(x|D) of a compact convex set D C R™, being convex and
everywhere finite, has a subgradient [2] at every z, that is, there exists z € D such
that s(y|D) > s(z|D) + 2T (y — x) for all y € D, as the subdifferential of s(z|D) is
given by

ds(z|D) :={z € D : 212 = s(z|D)}.
For any set S C R™, the normal cone to S at any point € S is defined by
Ng(z) :={y e R":yT(z —z) <0 for all z € S}.
T

If D is a compact convex set, then z € Np(z) if and only if s(z|D) = z' 2, or
equivalently z € ds(z|D).

Definition 2.1. A feasible point T is said to be a weakly efficient solution of

(MCFP), if there exists no other € X such that zg;gfzgﬂg; < gégtig‘lgg

The following definition is about higher-order type I functions.

Definition 2.2. (f(:) + (-\)"w, h(")) is said to be higher-order type I at u with
respect to a function 7, if for all x, the following inequalities hold:

fi(@) + 2T w; — fi(uw) — vl 'w; = mi (2, )V Fi(u, p) + Fi(u,p) — p' VpFi(u,p),

and
—hj(u) = mo(x, )" VpH,(u,p) + Hj(u,p) — p" VpHj(u,p), j=1,2,...,m,

where F : R* x R — Rl and H : R® x R” — R™ are differentiable functions;
VpFi(u,p),i=1,...,l and V,H;(u,p), j = 1,...,m denote the n x 1 gradient for
F; and H; with respect to p, respectively.

In order to establish sufficient optimality conditions for our model, we develop
the following ratio concept for generalized higher-order type I.

Lemma 2.3. Assume that f and g are vector-valued differentiable functions on
R"™. Let (f(-) + ()Tw, h()) and (—g(-) + ()72, h(:)) be higher-order type I at T

with respect to n. If Vgi(Z) — z; = 0 and VQ?LM is negative semidefinite(or

(z)—zT2;
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positive semidefinite), then <W, h()) is higher-order type I at T with respect

to n, where ny(x,T) = %m(m z). Further, F,G,K : R" x R — R! and H :
R™ x R™ — R™ are differentiable functions. Furthermore, V,F;(u,p),V,Gi(u,p),
and V,Ki(u,p), i =1,...,1 and V,y* H(u,p) denote the nx 1 gradient of F;, G;, K;
and yT H with respect to p, respectively.

Proof. By the higher-order type I assumptions for (f() + () Tw, h()) and
(—g(') + ()2, h(-)), we have
() +2"wi  fi(®) + T w;
gi(x) — 2Tz gi(x) — 2Tz
 file) + 2T w; — fi(T)
gi(z) — 2T

_fTwz 7 —Tw gi( )—:C Zi gz(f) +fTZi
= (@) + 20 S ) — 7T

[771 (1’, E)Tvai(jvp) + Fi(f’p> - pTvai(.f',p)]

1
gi(z) — xTzl
_ [771( ) 7+ VpFi(Z,p) (gz(i) — Q?Tzi) — (fl(i“) + :ETwi) V,Gi(Z,p)
gi(w) — 2Tz {9:(z) — 272}

N Fi(Z,p) (9i() — 27 2) — (fi(Z) + 7w;) Gi(z, p)
{9i(z) — T2}
7 VoFi(,p) (9:(7) — 7" 2) — (fi(®) + 7" w;) V,Gi(z, p)}
{gi(@) — 272}

1V

9i(Z) — Lz,

—-Pp

Using the assumption Vg;(Z) — z; = 0 and
o [ i@ +7Twi | V2fi(2)(9:(2) — 77 2) — (fi(2) + 7T wi) V2gi(7)
v {9%( ) -2tz } - {gi(@) - 27z}
fi@) + 7w | V(@) — 2
- { 9 }

i(7) — 212 gi(z) —xT2

Denoting

K7 ):Fz‘(’ p)(9i(z) — 27 2) — (fi(T) + " w;)Gy(, p)
A {oi(®) — 2Tz}’
VK7, p) = V,Fi(z,p)(g:i(z )—{mg‘(zz)) _;fT(Z }) + 2" wi) VyGi(7,p)

Therefore, we get

filz) +2Tw;  fi(@) + 27w,
gi(z) — 2Tz - 9i(z) — 2Tz
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-\ _ =T -\ _ =T
9i(T) — Tt 2 _ _ 9i(T) — Tt 2 _ _
I R )T K ) + S T (K () — TV ()
; ; gi(x) — 'tz
=no(x, )TV, K;(Z,p) + Ki(Z,p) — p’ V,Ki(Z,p) (by the second assumption).
This completes the proof. O

3. OPTIMALITY CONDITIONS

Now, we establish necessary and sufficient conditions for a weakly efficient solu-
tion of (MCFP).

Theorem 3.1 (Necessary Optimality Condition). Let T be a weakly efficient so-

lution of (MCFP) then there exist A =2 0, § € Ca, (A, §) # 0), w; € D; and
zi€ Ei(i=1,...,1) such that
—zTz

)
)\TV{ )2 “’} +VQTh(;f)}T(x — )20 forallz € O,
r)

h(z) =0, s(:E|D)—:L' w; and s(T|E;) =27 %, i=1,...,l

Proof. Let kz(a:) = s(z|D;) and m;(x) = s(z|E;), i = 1,...,1. Since D; and E; are
convex and compact, then k; and m; : R™ — R are convex functions.

Hence, for all d € R", kl(z;d) = limy .4 w and mj(z;d) =
lim)y o+ w are finite, then (’:ﬁk ) (z;d) = m {gi(z) —
mi () H(V fi(2), d) + {gi(2) — mi(2)}ki(%; d) — {fi(Z) + ki (2) }(Vi(Z), d) — {fi(Z) +

ki(2) ymi(z; d)].
Since 7 is a weakly efficient solution of (MCFP), then there exists no solution
x € C such that the system

i+ ki
(;j) (Z32—2) <0, foralli=1,...,1

Vh(z)T(z — %) + h(z) € int C}

(3.1)

holds.
Ab absurdo, suppose that there is a solution z* € C4.
Now, using the first inequality of the system, we have

(fi +TI:;>’(@$* _7)

9i —

1 [ filz+a(@ —2)+ k(@ +alz"—2) [fi(2)+ k(@) }
a—=0t a Lgi(Z + afz* — 7)) —mi(T + a(a* —T))  gi(T) — mi(T)
<0, for0<a<1

and so there exists § > 0 such that for all « € (0, )
1 { fil@ +a(e* —2) + k(@ +al@ —2)  fi(@)+ k()
alg(z +a(z* = 7)) —mi(z + a(z* = 7)) ¢:(T) —mi(2)
Hence we get
fi(Z+a(z* —2)+ k(T +alx*—2)  fil®) + ki(Z)
9i(T + a(z* = 7)) = mi(Z + a(e* = 1)) gi(T) — mi(z)
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Also, using the second statement of the system for 0 < a < 1, we have
h(z + a(z* — 7)) =h(z) + Vh(2) a(z* — &) + o(a)
=a(h(z) + Vh(z)T (z* — 7)) + (1 — @)h(z) + o(a) € C3,

where lim o(a) = 0.
z—07F

Since h(z) € C5, we obtain h(Z + a(z* — 7)) € C5, i.e. T+ a(z* — ) is feasible
of (MCFP), which contradicts that z is a weakly efficient solution.

Thus for the system (3.1), Vo € C}, there exist no solution (A 2 0,7 € Cb,
((\,g) # 0)) such that

AT(;jZ>(x v — )+ 5 (V@) (@ - 7) + h(z)} < 0

holds, that is, Vo € Cj, there exist the solution (A = 0,7 € Ca, ((\, %) # 0)) such
that

AT(;_*T’:L)(;E v~ )+ {VAE) (& — 7) + h(#)} 2 0

l

. i _ _ _
i.e. Z e <(9i(x) —my(2))(V fi(Z) + w;)

— {9:(7) —mi(2)}?
=1
= (fi(@) + ki(2)(Vgi(T) + 2), @ — f> + 7 {Vh(z)" (z — 7) + h(z)}

=0

for all w; € Bkz(:ﬁ), Zi € 8mz(§:)(z =1,.. .,l) and z € C].

Taking = = 7, the above relation gives g7 h(Z) = 0. Since h(z) € C4 and 7 € Co,
we get y7h(Z) < 0. Thus gL h(z) = 0.

Hence, there exist A > 0 and j € Ca, ((\,9) # 0), w; € D; and 2; € E;, i =
1,...,1 such that the desired results hold.

This completes the proof. Il

Theorem 3.2 (Sufficient Optimality Conditions). Let T be a feasible solution of
(MCFP). Suppose that there exist A > 0, §y € Cy, w; € Dy, and z; € E;j(i =1,...,1)
such that
1o [ f(@) + 37w N
2 Tyl — — )
(3.2) [/\ v{g(a‘c)—a‘:TZ +Vy h(x)} (x—x) 20 for all x € Cy,
7 h(z) =0, 5(Z|D;) = 7w, and 5(Z|E;) =31 % fori=1,...,1

Assume that

K(2,0)=0, H(z,0)=0, V,K(z,0) =V

V,H(z,0) = Vh(Z).
Let (f(-) + ()Tw, yTh(-)e) and (—g(-) + ()T z, yTh(-)e) be higher-order type I at T

_ gi(@-z"%

with respect to a function n, where ny(x, T) (@) —aTz M (x,Z). Then T is a weakly

efficient solution of (MCFP).
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Proof. Since y € Cs, for any feasible solution x of (MCFP), we obtain

(3.3) 7 h(z) L0.
We now suppose that Z is not a weakly efficient solution of (MCFP). Then there
exists a feasible solution x € Cq such that
flo) +s@D) _ f(@) + s(z|D)
g9(x) —s(x|E) ~ g(z) — s(Z|E)
z

we have
\T f(@)+ 27w T (@) + .’Z‘Tﬁf_J .
g(x) —axTz z
From the higher-order type I hypotheses of (f(-)+(-)Tw, yTh(-)e) and (—g(-)+ ()T z,
yTh(-)e), by Lemma 2.3, we get
n2(z, )TV AT K (2, p) + XK (2,p) — pT VAT K (Z,p) < 0.

Using the assumptions for p = 0, we can consider above inequality as following:

mle) Vo (LD <o

g(z) —zTz
Since x € C1, € Cq, and Cy is a closed convex cone, we have x + T € C7 and
thus the inequality (3.2) implies

_ 7) + 77w T
[ATV {W} + VgTh(:z)} 220, forall zeC, ie,

Then we obtain 7z (z, 2)T VT h(
Using the assumption, we can consider above inequality as

ne(z, )" V,y" H(Z,0) > 0.
By the type I hypotheses and 7 h(Z) = 0, we get
0 <y h(z) -5 h(z) - g H(Z0) =g h(z),
which contradicts to (3.3).
Therefore, T is a weakly efficient solution of (M CFP). O

4. DuALITY

In this section, we would like to formulate Wolfe, Mond-Weir and Schaible type
dual problems.

First, we propose Wolfe dual problem (MCFD)w to (MCFP):
(MCFD)w

fw) +u'w
g(u) —uTz
+y" h(u)e + (y" H(u,p))e = p" Vy(y" H(u,p))e

Maximize + (AT K (u,p))e — p" V(AT K (u, p))e
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subject to
(4.1) VAN K (u,p) + Vpy' H(u,p) =0,
w; €Dy, zze By, 1=1,...,1,
ye Oy, A>0 e=1e=(1,....,1)T eR.

Now we establish weak and strong duality theorems between (MCFP) and
(MCFD)w.

Theorem 4.1 (Weak Duality). Let z and (u,y, \,w, z,p) be feasible solutions of
(MCFP) and (MCFD)w, respectively. Assume that (f(-) + (-)Tw, yTh(-)e) and
(—g(-)+ (T2, yTh(-)e) are higher-order type I at u € R™ with respect to a function
n, where no(x,u) = %m(aj,u), then
f(x) + s(z| D)
g9(x) — s(z|E)

fu) +u"w
g(u) —uTz
+y h(w)e + (y" H(u,p))e — p" Vp(y" H(u, p))e.

% + (AT K (u,p))e — p" V(A K (u, p))e

Proof. Assume to the contrary that
f(@) +s(@D) _ f(u)+ulw
g(x) = s(z|E) ~ g(u) —ulz
+y" h(w)e + (y" H(u,p))e — p" Vp(y" H(u,p))e.
Since A > 0, s(z|D) = xTw, and s(z|E) = 27 2,

f(x) +zTw 7 [flu) +ulTw
gu»—ﬂé]<A [am—u%

+ (ATK (u,p))e = p" Vp(ATK (u,p))e

(4.2) AT [ } + AT K (u,p) — p? VAT K (u, p)

+y h(w) +y" H(u,p) = p" Vyy" H(u,p).
Now, since (f(-)+(-)Tw, yTh(-)e) and (—g(-)+(-)* 2z, yTh(-)e) are higher-order type
I at u with respect to a function 7 and by Lemma 2.3, we have, for A > 0,
SR IS FOE
g(x) — 2Tz gu) —ulz
Z1a (2, u) VAT K (u, p) + XK (u, p) = p" VAT K (u, p)
and
—y"h(u) Z ma(x,u)" Vpy" H(u,p) +y" H(u,p) — p" Vpy" H(u,p).
By (4.1), we obtain
v [t s
g(x) —aTz gu) —ulz
21z (2, u)" (=Vpy" H(u, p)) + A K (u,p) — p" VuA" K (u, p)
2y"h(u) +y" H(u,p) = p" Vyy" H(u,p) + XK (u,p) = p" VA K (u, p),
which contradicts (4.2). O
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Theorem 4.2 (Strong Duality). If T is a weakly efficient solution of (MCFP) at
which constraint qualification [9] is satisfied. Let

and

K(z,0) =0, H(z,0) =0, V,K(z,0) =

(4.3) V,H(%,0) = Vh(z).

Then there exist A > 0, 5 € Cy, w; € Dy, and z; € E;j(i = 1,...,1) such that
(Z,7,\, 0, 2,p = 0) is feasible for (MCFD)w and the objective values of (MCFP)
and (MCFD)w are equal. If in addition the type I assumptions of Theorem 4.1
are satisfied, then (Z,7, \,w,Z,p = 0) is a weakly efficient solution of (MCFD)w

Proof. Since 7 is a weakly efficient solution of (MCFP), by Theorem 3.1, there
exist A\ >0,y € Cy, w; € Dy, and z; € E;(i =1,...,1) such that

(4.4) [Vv{éﬁyj;f}+vf%@ﬂﬂx@;OJmanxea,
(4.5) g h(z) =
(4.6) s(x \D)—x W, s(Z|E) =31 %, i=1,...,1.

Since x € C1, x € C1, and (] is a closed convex cone, we have z +Z € C7 and thus
the inequality (4.4) implies

T
[ATV {W} + VgTh(:z)] £20, forall zeC,

ie., PXAY, {W} + Vil h(z) =

And (4.5) implies y7 h(Z) = 0, then
—h(z) € C3.

feasible for (MCFD)w and correspondlng values of (MCFP) and (MCFD)w are
equal. If the assumptions of Theorem 4.1 are satisfied, then (z,y, A, w,z,p = 0) is
a weakly efficient solution of (MCFD)w. O

Now, we propose Mond-Weir dual problem (MCFD)y to (MCFP):
(MCFD)n

L +u’
Maximize W + (\T'K (u, p))e — p" V(N K (u, p))e
subject to
(4.7) VAT K (u,p) + Vpy" H(u,p) = 0,

—[h(u) + H(u,p) = p" VpH (u,p)| € C3,
w; €Dy, zze By, 1=1,...,1,
ye Oy A>0 M e=1e=(1,....,1)T eR.
We establish weak and strong duality theorems between (MCFP) and (MCFD)m
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Theorem 4.3 (Weak Duality). Let z and (u,y, \,w, z,p) be feasible solutions of
(MCFP) and (MCFD)yy, respectively. Assume that (f(-) + () Tw, y"h(-)e) and
(—g(-)+ )Tz, yTh(-)e) are higher-order type I at u € R™ with respect to a function

n, where no(x,u) = %m(x,u), then

f(x)+s(z|D) , f(u)+u"w
9(x) = s(z[E) © g(u) —uz
Proof. The proof is similar to the one in Theorem 4.1. O

Theorem 4.4 (Strong Duality). If T is a weakly efficient solution of (MCFP) at
which constraint qualification [9] is satisfied. Let

+ (\'K (u,p))e — p" V(AT K (u, p))e.

K(z,0) =0, H(z,0) =0, V,K(z,0) =V

and V,H(Z,0) = Vh(Z).
Then there eist A>0,7€Cy, w; €Dy, and z; € E;(i = 1,...,1) such that
(Z,y,\,w,Zz,p = 0) is feasible for MCFD)nm and the objective values of (MCFP)
and (MCFD)n are equal. If the assumptions of Theorem 4.3 are satisfied, then
(Z,9,\,w,z,p =0) is a weakly efficient solution of (MCFD)p;.
Proof. The proof is similar to the one in Theorem 4.3. O

We propose Schaible dual problem (MCFD)g to (MCFP):
(MCFD)s

Maximize 7 = (71,...,7)

subject to
!

(4.8) S AV ((Fi(w.p) = 7Gilw,p) ) + Vpy" H(u,p) =0,
i=1

(4.9) fi(u) + v w; + Fi(u,p) — p" V, Fi(u, p)
—T; (gl(u) —ulz + Gi(u,p) —pTVpGi(u,p)> >20,i=1,...,1

(4.10) —[h(u) + H(u,p) —pTVpH(u,p)} € Cy,
w; €D, zz € B, 1=1,...,1,
720, yeCoy,A>0, e=1e=(1,...,1)T eRL

Now we establish weak and strong duality theorems between (MCFP) and
(MCFD)s.

Theorem 4.5 (Weak Duality). Let x and (u,y, \, 7, w, z,p) be feasible solutions of
(MCFP) and (MCFD)g, respectively. Assume that (f(-) + (-)Tw, yTh(-)e) and
(—g(-)+ (T2, yTh(-)e) are higher-order type I at u € R™ with respect to a function
n, where 77(%“) =m (I‘,U) = 772($,U), then
f(x) + s(z| D)

o(z) —s(@lB) © T
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Proof. Assume to the contrary that

f(@) +s(21D) _
g(z) —s(z[E) ~
ie.,
fi(z) + s(z|D;) < 7 (gi(x) — s(z|E;)), foralli=1,...,1.
Since s(z|D) = 27w and s(x|E) 2 27z, for all i = 1,...,1, we get
(4.11) fi(x) + 2 w; < 7 (gi(z) — a:Tzi) .
Since (f(-) + (-)zTw, yTh(-)e) and (—g(-) + (-)7z, y*h(-)e) are higher-order type
I at u with respect to a function n, for all ¢ = 1,...,[, we obtain

(4.12)  fi(x) + 2w — 7 (gi(z) — 27 2)
2 fi(u) +ulwi + (e, w)"V Fy(u,p) + Fy(u,p) = p" V, Fi(u, p)
=73 [gi(u) — u"zi + (2, )TV, Gi(u, p) + Gi(u, p) — p" VyGi(u, p)]
and
(413) gy h(u) 2 9z, ) Vyy" H(u,p) +y" H(u,p) — p" Vpy" H(u,p).
By (4.9), (4.11) and (4.12), we have
0 > filz)+ zTw; — 7 (gz(aj) — xTzi)
2 n(z,w)"'V, [Fi(u,p) — 7iGi(u, p)]
As A > 0 and by (4.8), we get

l
0 >nz,u)" Y AV, [Fi(u,p) — Gi(u, p)]
=1

(4.14) = —n(z,u)" Vyy" H(u,p).
Now, by (4.10), y € C5, and (4.13), we obtain
n(a, )" Vyy" H(u,p) <0,
which contradicts (4.14). O
Theorem 4.6 (Strong Duality). If T is a weakly efficient solution of (MCFP) at

which constraint qualification (9] is satisfied. Let

V,G(z,0) = Vyg(z) — Z,
(4.15) V,H(Z,0) = Vh(Z).
Then there exist A>0,7¢€Cy, w; €Dy, and z; € E;(i = 1,...,1) such that
(Z,9,\, T, w,z,p = 0) is feasible for ((MCFD)g and the objective values of (MCFP)
and (MCFD)s are equal. If the assumptions of Theorem 4.5 are satisfied, then
(Z,9,\, T, w,z,p = 0) is a weakly efficient solution of (MCFD)g.
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Proof. Since 7 is a weakly efficient solution of (MCFP), by Theorem 3.1, there
exist A\ >0,y € Cy, w; € Dy, and z; € E;(i =1,...,1) such that

_ _T _ T
(4.16) [/\*TV {W} + Vy*Th(a_c)] (x —z) 20, for all x € C1,

(z) -z
y* T h(z) =0,

(4.17)  s(@|D;) =z w;, s(Z|E;) =3z, i=1,...,1
Denote

() 1 7T
(4.18) s @ FTE

gi(z) —z7z

l
_ A\ ¥

4.1 )\izil/ %M i=1,....0:and
(4.19) e Sy D Dew o el a
(4.20) yj_yj/z —:UTzz j=1,...,m

Since x € C1, x € (1, and (] is a closed convex cone, we have z +Z € C and thus
the inequality (4.16) implies

T
[)\*TV {W} + Vy*Th(j)} x>0, forall ze(Cy,

i.e., Z)\ V{fz - tZTZ]Z} Zy*Vh

y (4.18), we get

{f<>+xw} (@) — TR (VAE) + @) — ((5) + 370 (Vo) — 7)
gz( )_xTZz (gl( )_xT )2
= %(Vfi(j)“‘u_]i ( ( ) ))

gi(z) — 1%
Using above two equalities, we have

*

MN

o —xTz Vfi(i)JriDi—ﬂ(VQi(i“)—ii))Jrzy;th(i’) =0.
i=1 7* v Jj=1

Taking 7, A;, gj for alli =1,...,l and j = 1,...,m as (4.18), (4.19) and (4.20),
we obtain

l m
> X (V@) + i — 7(Vgi(@) — 2) + Y5 Vhy(2) =

i=1 j=1

(z) =0, s(z|D;) = 27wy, s(z|E;) =3"%, i=1,...,1,
fi(i)—l—o_cTwi— Z(gz( )—J}TZ»L') =0, )\Z()Wlth )\T€:1,
720, and € Cs.
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By the hypothesis (4.15) and —h(z) € C5, we can derive the following:
l - m

> AV (Fi(#,p) - 7Gil,p) + Y 5;V,H,(@,p) = 0,
; —

J
fi@) +z"w; — 7 (gi(2) —277) 2 0,
[

Hence, we get (Z,7,\, 7,w,%,p = 0) is feasible for (MCFD)g and using the
condition (4.17), corresponding values of (MCFP) and (MCFD)g are equal. If
the type I assumptions of Theorem 4.5 are satisfied, then (Z, 7, A\, 7, w, Z,p = 0) is
a weakly efficient solution of (MCFD)g. O

5. SPECIAL CASES

We give some special cases for our nondifferentiable multiobjective fractional
programs.

(i) If E; ={0},i=1,...,[, then our primal and Wolfe dual model reduce to the
corresponding ones in [7].
(ii) If B; = {0},i=1,...,l and C) is an open set of R", Cy = R'}’, then our primal
and Wolfe and Mond-Weir dual models reduce to the corresponding ones in
[5].
(iii) If D; = {0}, E; = {0},i =1,...,l and C} is an open set of R", Cy = R, then
our primal and Mond-Weir dual model reduce to the corresponding ones in

1.
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