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multiobjective fractional programming with support functions was introduced in
the Paretian cone setting by Suneja et al. [15]. Higher-order duality in multiobjec-
tive programming involving cones under various higher-order type I functions was
established by Kim and Lee [6].

Ratio invexity was formulated by Khan and Hanson [4] for optimality and du-
ality in fractional programming. This concept seems to be new and it introduces
a kind of modified characterization in sufficient optimality conditions. Recently,
duality for multiobjective fractional programming problems with support functions
was established under (V,ρ)-invexity by Kim et al. [5], in which, they used the
generalized ratio invexity concept. Until then, many papers had shown the various
ratio invexity concept such as [3, 4, 8] and [13]. Later, nondifferentiable multiobjec-
tive fractional programming problems with cone constraints over arbitrary closed
convex cones were introduced and duality theorems for a weakly efficient solution
were formulated by Kim et al. [7]. Subsequently, sufficient optimality conditions
and duality for a class of multiobjective fractional programming problems under
higher-order (F, α, ρ, d)-convexity assumptions were given by Chen [1].

In this paper, we consider nondifferentiable multiobjective fractional program-
ming problem whose objective functions contain support functions of compact con-
vex sets in Rn and whose constraints contain closed convex cones. We first show
that the ratio of higher-order type I functions is still higher-order type I functions.
In addition, necessary conditions for our primal problem with cone constraints and
the sufficient optimality conditions under suitable higher-order type I assumptions
are proposed. Higher-order Wolfe, Mond-Weir and Schaible type duals are formu-
lated for the nondifferentiable multiobjective fractional program and various duality
results for the weakly efficient solution are established. Moreover, some special cases
of our duality results are given.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and let Rn
+ be its non-negative

orthant. The following convention for inequalities will be used in the paper:
x ≦ u ⇐⇒ xi ≦ ui for all i = 1, 2, . . . , n ;
x ≤ u ⇐⇒ xi ≦ ui for all i = 1, 2, . . . , n, but x ̸= u ;
x ≮ u is the negation of x < u .

For x,u ∈ R, x ≦ u and x < u have the usual meaning.
Consider the following nondifferentiable multiobjective fractional programming

problem: (MCFP)

Minimize
f(x) + s(x|D)

g(x)− s(x|E)

=

(
f1(x) + s(x|D1)

g1(x)− s(x|E1)
,
f2(x) + s(x|D2)

g2(x)− s(x|E2)
, . . . ,

fl(x) + s(x|Dl)

gl(x)− s(x|El)

)
subject to h(x) ∈ C∗

2 , x ∈ C1,

where f : Rn → Rl, g : Rn → Rl, and h : Rn → Rm are continuously differentiable
over C1. C1 and C2 are closed convex cones with nonempty interiors in Rn and Rm,
respectively. X := {x ∈ Rn|h(x) ∈ C∗

2 , x ∈ C1} is the feasible set. C∗
2 is a polar cone
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of C2. For each i = 1, . . . , l, Di and Ei are compact convex sets of Rn. The support
function of Di and Ei at x ∈ Rn is defined by s(x|Di) := max{xTwi : wi ∈ Di} and
s(x|Ei) := max{xT zi : zi ∈ Ei}, respectively.

In addition, we use the usual definition of cone. A nonempty set C in Rn is said
to be a cone with vertex zero, if x ∈ C implies that λx ∈ C for all λ ≧ 0. Moreover,
if C is convex, then C is called a convex cone. Also, the polar cone C∗ of C is
defined by

C∗ := {z ∈ Rn | xT z ≦ 0 for all x ∈ C}.
Throughout this paper, suppose that for all x ∈ C1, f(x) + xTw ≧ 0 and g(x)−

xT z > 0.
We recall some known facts about support functions [12].
Every sublinear function defined on Rn may be written as a support function

and further any compact set D can be uniquely determined by its support function.
The support function s(x|D) of a compact convex set D ⊆ Rn, being convex and
everywhere finite, has a subgradient [2] at every x, that is, there exists z ∈ D such
that s(y|D) ≥ s(x|D) + zT (y − x) for all y ∈ D, as the subdifferential of s(x|D) is
given by

∂s(x|D) := {z ∈ D : xT z = s(x|D)}.
For any set S ⊂ Rn, the normal cone to S at any point x ∈ S is defined by

NS(x) := {y ∈ Rn : yT (z − x) ≦ 0 for all z ∈ S}.

If D is a compact convex set, then x ∈ ND(z) if and only if s(x|D) = xT z, or
equivalently z ∈ ∂s(x|D).

Definition 2.1. A feasible point x̄ is said to be a weakly efficient solution of

(MCFP), if there exists no other x ∈ X such that f(x)+s(x|D)
g(x)−s(x|E) < f(x̄)+s(x̄|D)

g(x̄)−s(x̄|E) .

The following definition is about higher-order type I functions.

Definition 2.2.
(
f(·) + (·)Tw, h(·)

)
is said to be higher-order type I at u with

respect to a function η, if for all x, the following inequalities hold:

fi(x) + xTwi − fi(u)− uTwi ≧ η1(x, u)
T∇pFi(u, p) + Fi(u, p)− pT∇pFi(u, p),

i = 1, 2, . . . , l,

and

−hj(u) ≧ η2(x, u)
T∇pHj(u, p) +Hj(u, p)− pT∇pHj(u, p), j = 1, 2, . . . ,m,

where F : Rn × Rn → Rl and H : Rn × Rn → Rm are differentiable functions;
∇pFi(u, p), i = 1, . . . , l and ∇pHj(u, p), j = 1, . . . ,m denote the n× 1 gradient for
Fi and Hj with respect to p, respectively.

In order to establish sufficient optimality conditions for our model, we develop
the following ratio concept for generalized higher-order type I.

Lemma 2.3. Assume that f and g are vector-valued differentiable functions on
Rn. Let

(
f(·) + (·)Tw, h(·)

)
and

(
−g(·) + (·)T z, h(·)

)
be higher-order type I at x̄

with respect to η. If ∇gi(x̄) − zi = 0 and ∇2 fi(x̄)+x̄Twi

gi(x̄)−x̄T zi
is negative semidefinite(or
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positive semidefinite), then
(
f(·)+(·)Tw
g(·)−(·)T z

, h(·)
)
is higher-order type I at x̄ with respect

to η, where η2(x, x̄) =
gi(x̄)−x̄T zi
gi(x)−xT zi

η1(x, x̄). Further, F,G,K : Rn × Rn → Rl and H :

Rn × Rn → Rm are differentiable functions. Furthermore, ∇pFi(u, p),∇pGi(u, p),
and ∇pKi(u, p), i = 1, . . . , l and ∇py

TH(u, p) denote the n×1 gradient of Fi, Gi,Ki

and yTH with respect to p, respectively.

Proof. By the higher-order type I assumptions for
(
f(·) + (·)Tw, h(·)

)
and(

−g(·) + (·)T z, h(·)
)
, we have

fi(x) + xTwi

gi(x)− xT zi
− fi(x̄) + x̄Twi

gi(x̄)− x̄T zi

=
fi(x) + xTwi − fi(x̄)− x̄Twi

gi(x)− xT zi
− (fi(x̄) + x̄Twi)

gi(x)− xT zi − gi(x̄) + x̄T zi
(gi(x)− xT zi) (gi(x̄)− x̄T zi)

≧ 1

gi(x)− xT zi

[
η1(x, x̄)

T∇pFi(x̄, p) + Fi(x̄, p)− pT∇pFi(x̄, p)
]

− fi(x̄) + x̄Twi

(gi(x)− xT zi) (gi(x̄)− x̄T zi)

[
η1(x, x̄)

T∇pGi(x̄, p) +Gi(x̄, p)− pT∇pGi(x̄, p)
]

=
gi(x̄)− x̄T zi
gi(x)− xT zi

[
η1(x, x̄)

T ∇pFi(x̄, p)
(
gi(x̄)− x̄T zi

)
−
(
fi(x̄) + x̄Twi

)
∇pGi(x̄, p)

{gi(x̄)− x̄T zi}2

+
Fi(x̄, p)

(
gi(x̄)− x̄T zi

)
−

(
fi(x̄) + x̄Twi

)
Gi(x̄, p)

{gi(x̄)− x̄T zi}2

− pT
∇pFi(x̄, p)

(
gi(x̄)− x̄T zi

)
−

(
fi(x̄) + x̄Twi

)
∇pGi(x̄, p)

{gi(x̄)− x̄T zi}2
]
.

Using the assumption ∇gi(x̄)− zi = 0 and

∇2

{
fi(x̄) + x̄Twi

gi(x̄)− x̄T zi

}
=
∇2fi(x̄)(gi(x̄)− x̄T zi)− (fi(x̄) + x̄Twi)∇2gi(x̄)

{gi(x̄)− x̄T zi}2

− 2∇
{
fi(x̄) + x̄Twi

gi(x̄)− x̄T zi

}
· ∇gi(x̄)− zi
gi(x̄)− x̄T zi

.

Denoting

Ki(x̄, p) =
Fi(x̄, p)(gi(x̄)− x̄T zi)− (fi(x̄) + x̄Twi)Gi(x̄, p)

{gi(x̄)− x̄T zi}2

∇pKi(x̄, p) =
∇pFi(x̄, p)(gi(x̄)− x̄T zi)− (fi(x̄) + x̄Twi)∇pGi(x̄, p)

{gi(x̄)− x̄T zi}2
.

Therefore, we get

fi(x) + xTwi

gi(x)− xT zi
− fi(x̄) + x̄Twi

gi(x̄)− x̄T zi
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≧gi(x̄)− x̄T zi
gi(x)− xT zi

η1(x, x̄)
T∇pKi(x̄, p) +

gi(x̄)− x̄T zi
gi(x)− xT zi

(
Ki(x̄, p)− pT∇pKi(x̄, p)

)
=η2(x, x̄)

T∇pKi(x̄, p) +Ki(x̄, p)− pT∇pKi(x̄, p) (by the second assumption).

This completes the proof. □

3. Optimality conditions

Now, we establish necessary and sufficient conditions for a weakly efficient solu-
tion of (MCFP).

Theorem 3.1 (Necessary Optimality Condition). Let x̄ be a weakly efficient so-
lution of (MCFP), then there exist λ̄ ≧ 0, ȳ ∈ C2, ((λ̄, ȳ) ̸= 0), w̄i ∈ Di and
z̄i ∈ Ei(i = 1, . . . , l) such that[

λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇ȳTh(x̄)

]T
(x− x̄) ≧ 0 for all x ∈ C1,

ȳTh(x̄) = 0, s(x̄|Di) = x̄T w̄i and s(x̄|Ei) = x̄T z̄i, i = 1, . . . , l.

Proof. Let ki(x) = s(x|Di) and mi(x) = s(x|Ei), i = 1, . . . , l. Since Di and Ei are
convex and compact, then ki and mi : Rn → R are convex functions.

Hence, for all d ∈ Rn, k′i(x̄; d) = limλ→0+
ki(x̄+λd)−ki(x̄)

λ and m′
i(x̄; d) =

limλ→0+
mi(x̄+λd)−mi(x̄)

λ are finite, then
( fi+ki
gi−mi

)′
(x̄; d) = 1

{gi(x̄)−mi(x̄)}2
[
{gi(x̄) −

mi(x̄)}⟨∇fi(x̄), d⟩+ {gi(x̄)−mi(x̄)}k′i(x̄; d)− {fi(x̄) + ki(x̄)}⟨∇gi(x̄), d⟩ − {fi(x̄) +
ki(x̄)}m′

i(x̄; d)
]
.

Since x̄ is a weakly efficient solution of (MCFP), then there exists no solution
x ∈ C1 such that the system

(3.1)


( fi + ki
gi −mi

)′
(x̄;x− x̄) < 0, for all i = 1, . . . , l

∇h(x̄)T (x− x̄) + h(x̄) ∈ int C∗
2

holds.
Ab absurdo, suppose that there is a solution x∗ ∈ C1.
Now, using the first inequality of the system, we have( fi + ki

gi −mi

)′
(x̄;x∗ − x̄)

= lim
α→0+

1

α

[ fi(x̄+ α(x∗ − x̄)) + ki(x̄+ α(x∗ − x̄))

gi(x̄+ α(x∗ − x̄))−mi(x̄+ α(x∗ − x̄))
− fi(x̄) + ki(x̄)

gi(x̄)−mi(x̄)

]
<0, for 0 < α < 1

and so there exists δ > 0 such that for all α ∈ (0, δ)

1

α

[ fi(x̄+ α(x∗ − x̄)) + ki(x̄+ α(x∗ − x̄))

gi(x̄+ α(x∗ − x̄))−mi(x̄+ α(x∗ − x̄))
− fi(x̄) + ki(x̄)

gi(x̄)−mi(x̄)

]
< 0.

Hence we get

fi(x̄+ α(x∗ − x̄)) + ki(x̄+ α(x∗ − x̄))

gi(x̄+ α(x∗ − x̄))−mi(x̄+ α(x∗ − x̄))
− fi(x̄) + ki(x̄)

gi(x̄)−mi(x̄)
< 0.
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Also, using the second statement of the system for 0 < α < 1, we have

h(x̄+ α(x∗ − x̄)) =h(x̄) +∇h(x̄)Tα(x∗ − x̄) + o(α)

=α(h(x̄) +∇h(x̄)T (x∗ − x̄)) + (1− α)h(x̄) + o(α) ∈ C∗
2 ,

where lim
x→0+

o(α) = 0.

Since h(x̄) ∈ C∗
2 , we obtain h(x̄+ α(x∗ − x̄)) ∈ C∗

2 , i.e. x̄+ α(x∗ − x̄) is feasible
of (MCFP), which contradicts that x̄ is a weakly efficient solution.

Thus for the system (3.1), ∀x ∈ C1, there exist no solution (λ̄ ≧ 0, ȳ ∈ C2,
((λ̄, ȳ) ̸= 0)) such that

λ̄T
i

( fi + ki
gi −mi

)′
(x̄;x− x̄) + ȳT {∇h(x̄)T (x− x̄) + h(x̄)} < 0

holds, that is, ∀x ∈ C1, there exist the solution (λ̄ ≧ 0, ȳ ∈ C2, ((λ̄, ȳ) ̸= 0)) such
that

λ̄T
i

( fi + ki
gi −mi

)′
(x̄;x− x̄) + ȳT {∇h(x̄)T (x− x̄) + h(x̄)} ≧ 0

holds,

i.e.

l∑
i=1

λ̄i

{gi(x̄)−mi(x̄)}2
⟨
(gi(x̄)−mi(x̄))(∇fi(x̄) + wi)

− (fi(x̄) + ki(x̄)(∇gi(x̄) + zi), x− x̄
⟩
+ ȳT {∇h(x̄)T (x− x̄) + h(x̄)}

≧ 0

for all w̄i ∈ ∂ki(x̄), z̄i ∈ ∂mi(x̄)(i = 1, . . . , l) and x ∈ C1.
Taking x = x̄, the above relation gives ȳTh(x̄) ≧ 0. Since h(x̄) ∈ C∗

2 and ȳ ∈ C2,
we get ȳTh(x̄) ≦ 0. Thus ȳTh(x̄) = 0.

Hence, there exist λ̄ ≧ 0 and ȳ ∈ C2, ((λ̄, ȳ) ̸= 0), w̄i ∈ Di and z̄i ∈ Ei, i =
1, . . . , l such that the desired results hold.

This completes the proof. □
Theorem 3.2 (Sufficient Optimality Conditions). Let x̄ be a feasible solution of
(MCFP). Suppose that there exist λ̄ ≥ 0, ȳ ∈ C2, w̄i ∈ Di, and z̄i ∈ Ei(i = 1, . . . , l)
such that [

λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇ȳTh(x̄)

]T
(x− x̄) ≧ 0 for all x ∈ C1,(3.2)

ȳTh(x̄) = 0, s(x̄|Di) = x̄T w̄i, and s(x̄|Ei) = x̄T z̄i for i = 1, . . . , l.

Assume that

K(x̄, 0) = 0, H(x̄, 0) = 0, ∇pK(x̄, 0) = ∇f(x̄) + x̄T w̄

g(x̄)− x̄T z̄
, and

∇pH(x̄, 0) = ∇h(x̄).

Let (f(·) + (·)Tw, yTh(·)e) and (−g(·) + (·)T z, yTh(·)e) be higher-order type I at x̄

with respect to a function η, where η2(x, x̄) =
gi(x̄)−x̄T z̄i
gi(x)−xT zi

η1(x, x̄). Then x̄ is a weakly

efficient solution of (MCFP).
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Proof. Since ȳ ∈ C2, for any feasible solution x of (MCFP), we obtain

(3.3) ȳTh(x) ≦ 0.

We now suppose that x̄ is not a weakly efficient solution of (MCFP). Then there
exists a feasible solution x ∈ C1 such that

f(x) + s(x|D)

g(x)− s(x|E)
<

f(x̄) + s(x̄|D)

g(x̄)− s(x̄|E)
.

Since λ ≥ 0, s(x|D) ≧ xTw, s(x|E) ≧ xT z, s(x̄|Di) = x̄T w̄i, and s(x̄|Ei) = x̄T z̄i,
we have

λT

[
f(x) + xTw

g(x)− xT z

]
< λT

[
f(x̄) + x̄T w̄

g(x̄)− xT z̄

]
.

From the higher-order type I hypotheses of (f(·)+(·)Tw, yTh(·)e) and (−g(·)+(·)T z,
yTh(·)e), by Lemma 2.3, we get

η2(x, x̄)
T∇pλ

TK(x̄, p) + λTK(x̄, p)− pT∇pλ
TK(x̄, p) < 0.

Using the assumptions for p = 0, we can consider above inequality as following:

η2(x, x̄)
T
[
λ̄T∇

{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}]
< 0.

Since x ∈ C1, x̄ ∈ C1, and C1 is a closed convex cone, we have x + x̄ ∈ C1 and
thus the inequality (3.2) implies[

λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇ȳTh(x̄)

]T
x ≧ 0, for all x ∈ C1, i.e.,

λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+ ȳT∇h(x̄) = 0.

Then we obtain η2(x, x̄)
T∇ȳTh(x̄) > 0.

Using the assumption, we can consider above inequality as

η2(x, x̄)
T∇pȳ

TH(x̄, 0) > 0.

By the type I hypotheses and ȳTh(x̄) = 0, we get

0 < ȳTh(x)− ȳTh(x̄)− ȳTH(x̄, 0) = ȳTh(x),

which contradicts to (3.3).
Therefore, x̄ is a weakly efficient solution of (MCFP). □

4. Duality

In this section, we would like to formulate Wolfe, Mond-Weir and Schaible type
dual problems.

First, we propose Wolfe dual problem (MCFD)W to (MCFP):
(MCFD)W

Maximize
f(u) + uTw

g(u)− uT z
+ (λTK(u, p))e− pT∇p(λ

TK(u, p))e

+yTh(u)e+ (yTH(u, p))e− pT∇p(y
TH(u, p))e
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subject to

∇pλ
TK(u, p) +∇py

TH(u, p) = 0,(4.1)

wi ∈ Di, zi ∈ Ei, i = 1, . . . , l,

y ∈ C2, λ ≥ 0, λT e = 1, e = (1, . . . , 1)T ∈ Rl.

Now we establish weak and strong duality theorems between (MCFP) and
(MCFD)W.

Theorem 4.1 (Weak Duality). Let x and (u, y, λ, w, z, p) be feasible solutions of
(MCFP) and (MCFD)W, respectively. Assume that (f(·) + (·)Tw, yTh(·)e) and
(−g(·)+ (·)T z, yTh(·)e) are higher-order type I at u ∈ Rn with respect to a function

η, where η2(x, u) =
gi(u)−uT z̄i
gi(x)−xT zi

η1(x, u), then

f(x) + s(x|D)

g(x)− s(x|E)
≮

f(u) + uTw

g(u)− uT z
+ (λTK(u, p))e− pT∇p(λ

TK(u, p))e

+yTh(u)e+ (yTH(u, p))e− pT∇p(y
TH(u, p))e.

Proof. Assume to the contrary that

f(x) + s(x|D)

g(x)− s(x|E)
<

f(u) + uTw

g(u)− uT z
+ (λTK(u, p))e− pT∇p(λ

TK(u, p))e

+yTh(u)e+ (yTH(u, p))e− pT∇p(y
TH(u, p))e.

Since λ ≥ 0, s(x|D) ≧ xTw, and s(x|E) ≧ xT z,

λT

[
f(x) + xTw

g(x)− xT z

]
< λT

[
f(u) + uTw

g(u)− uT z

]
+ λTK(u, p)− pT∇pλ

TK(u, p)(4.2)

+yTh(u) + yTH(u, p)− pT∇py
TH(u, p).

Now, since (f(·)+(·)Tw, yTh(·)e) and (−g(·)+(·)T z, yTh(·)e) are higher-order type
I at u with respect to a function η and by Lemma 2.3, we have, for λ ≥ 0,

λT

[
f(x) + xTw

g(x)− xT z

]
− λT

[
f(u) + uTw

g(u)− uT z

]
≧η2(x, u)

T∇pλ
TK(u, p) + λTK(u, p)− pT∇pλ

TK(u, p)

and

−yTh(u) ≧ η2(x, u)
T∇py

TH(u, p) + yTH(u, p)− pT∇py
TH(u, p).

By (4.1), we obtain

λT

[
f(x) + xTw

g(x)− xT z

]
− λT

[
f(u) + uTw

g(u)− uT z

]
≧η2(x, u)

T (−∇py
TH(u, p)) + λTK(u, p)− pT∇pλ

TK(u, p)

≧yTh(u) + yTH(u, p)− pT∇py
TH(u, p) + λTK(u, p)− pT∇pλ

TK(u, p),

which contradicts (4.2). □
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Theorem 4.2 (Strong Duality). If x̄ is a weakly efficient solution of (MCFP) at
which constraint qualification [9] is satisfied. Let

K(x̄, 0) = 0, H(x̄, 0) = 0, ∇pK(x̄, 0) = ∇f(x̄) + x̄T w̄

g(x̄)− x̄T z̄
and

∇pH(x̄, 0) = ∇h(x̄).(4.3)

Then there exist λ̄ ≥ 0, ȳ ∈ C2, w̄i ∈ Di, and z̄i ∈ Ei(i = 1, . . . , l) such that
(x̄, ȳ, λ̄, w̄, z̄, p̄ = 0) is feasible for (MCFD)W and the objective values of (MCFP)
and (MCFD)W are equal. If in addition the type I assumptions of Theorem 4.1
are satisfied, then (x̄, ȳ, λ̄, w̄, z̄, p̄ = 0) is a weakly efficient solution of (MCFD)W.

Proof. Since x̄ is a weakly efficient solution of (MCFP), by Theorem 3.1, there
exist λ̄ ≥ 0, ȳ ∈ C2, w̄i ∈ Di, and z̄i ∈ Ei(i = 1, . . . , l) such that[

λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇ȳTh(x̄)

]T
(x− x̄) ≧ 0, for all x ∈ C1,(4.4)

ȳTh(x̄) = 0,(4.5)

s(x̄|Di) = x̄T w̄i, s(x̄|Ei) = x̄T z̄i, i = 1, . . . , l.(4.6)

Since x ∈ C1, x̄ ∈ C1, and C1 is a closed convex cone, we have x+ x̄ ∈ C1 and thus
the inequality (4.4) implies[

λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇ȳTh(x̄)

]T
x ≧ 0, for all x ∈ C1,

i.e., λ̄T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇ȳTh(x̄) = 0.

And (4.5) implies ȳTh(x̄) ≧ 0, then

−h(x̄) ∈ C∗
2 .

Therefore, using the hypotheses (4.3) and (4.6), we obtain (x̄, ȳ, λ̄, w̄, z̄, p̄ = 0) is
feasible for (MCFD)W and corresponding values of (MCFP) and (MCFD)W are
equal. If the assumptions of Theorem 4.1 are satisfied, then (x̄, ȳ, λ̄, w̄, z̄, p̄ = 0) is
a weakly efficient solution of (MCFD)W. □

Now, we propose Mond-Weir dual problem (MCFD)M to (MCFP):
(MCFD)M

Maximize
f(u) + uTw

g(u)− uT z
+ (λTK(u, p))e− pT∇p(λ

TK(u, p))e

subject to

∇pλ
TK(u, p) +∇py

TH(u, p) = 0,(4.7)

−
[
h(u) +H(u, p)− pT∇pH(u, p)

]
∈ C∗

2 ,

wi ∈ Di, zi ∈ Ei, i = 1, . . . , l,

y ∈ C2, λ ≥ 0, λT e = 1, e = (1, . . . , 1)T ∈ Rl.

We establish weak and strong duality theorems between (MCFP) and (MCFD)M.
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Theorem 4.3 (Weak Duality). Let x and (u, y, λ, w, z, p) be feasible solutions of
(MCFP) and (MCFD)M, respectively. Assume that (f(·) + (·)Tw, yTh(·)e) and
(−g(·)+ (·)T z, yTh(·)e) are higher-order type I at u ∈ Rn with respect to a function

η, where η2(x, u) =
gi(u)−uT z̄i
gi(x)−xT zi

η1(x, u), then

f(x) + s(x|D)

g(x)− s(x|E)
≮

f(u) + uTw

g(u)− uT z
+ (λTK(u, p))e− pT∇p(λ

TK(u, p))e.

Proof. The proof is similar to the one in Theorem 4.1. □
Theorem 4.4 (Strong Duality). If x̄ is a weakly efficient solution of (MCFP) at
which constraint qualification [9] is satisfied. Let

K(x̄, 0) = 0, H(x̄, 0) = 0, ∇pK(x̄, 0) = ∇f(x̄) + x̄T w̄

g(x̄)− x̄T z̄
,

and ∇pH(x̄, 0) = ∇h(x̄).

Then there exist λ̄ ≥ 0, ȳ ∈ C2, w̄i ∈ Di, and z̄i ∈ Ei(i = 1, . . . , l) such that
(x̄, ȳ, λ̄, w̄, z̄, p̄ = 0) is feasible for (MCFD)M and the objective values of (MCFP)
and (MCFD)M are equal. If the assumptions of Theorem 4.3 are satisfied, then
(x̄, ȳ, λ̄, w̄, z̄, p̄ = 0) is a weakly efficient solution of (MCFD)M.

Proof. The proof is similar to the one in Theorem 4.3. □
We propose Schaible dual problem (MCFD)S to (MCFP):

(MCFD)S

Maximize τ = (τ1, . . . , τl)

subject to
l∑

i=1

λi∇p

(
(Fi(u, p)− τiGi(u, p)

)
+∇py

TH(u, p) = 0,(4.8)

fi(u) + uTwi + Fi(u, p)− pT∇pFi(u, p)(4.9)

−τi

(
gi(u)− uT zi +Gi(u, p)− pT∇pGi(u, p)

)
≧ 0, i = 1, . . . , l

−
[
h(u) +H(u, p)− pT∇pH(u, p)

]
∈ C∗

2 ,(4.10)

wi ∈ Di, zi ∈ Ei, i = 1, . . . , l,

τ ≧ 0, y ∈ C2, λ ≥ 0, λT e = 1, e = (1, . . . , 1)T ∈ Rl.

Now we establish weak and strong duality theorems between (MCFP) and
(MCFD)S.

Theorem 4.5 (Weak Duality). Let x and (u, y, λ, τ, w, z, p) be feasible solutions of
(MCFP) and (MCFD)S, respectively. Assume that (f(·) + (·)Tw, yTh(·)e) and
(−g(·)+(·)T z, yTh(·)e) are higher-order type I at u ∈ Rn with respect to a function
η, where η(x, u) = η1(x, u) = η2(x, u), then

f(x) + s(x|D)

g(x)− s(x|E)
≮ τ.
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Proof. Assume to the contrary that

f(x) + s(x|D)

g(x)− s(x|E)
< τ,

i.e.,

fi(x) + s(x|Di) < τi (gi(x)− s(x|Ei)) , for all i = 1, . . . , l.

Since s(x|D) ≧ xTw and s(x|E) ≧ xT z, for all i = 1, . . . , l, we get

fi(x) + xTwi < τi
(
gi(x)− xT zi

)
.(4.11)

Since
(
f(·) + (·)xTw, yTh(·)e

)
and

(
−g(·) + (·)T z, yTh(·)e

)
are higher-order type

I at u with respect to a function η, for all i = 1, . . . , l, we obtain

fi(x) + xTwi − τi
(
gi(x)− xT zi

)
(4.12)

≧ fi(u) + uTwi + η(x, u)T∇pFi(u, p) + Fi(u, p)− pT∇pFi(u, p)

−τi
[
gi(u)− uT zi + η(x, u)T∇pGi(u, p) +Gi(u, p)− pT∇pGi(u, p)

]
and

(4.13) −yTh(u) ≧ η(x, u)T∇py
TH(u, p) + yTH(u, p)− pT∇py

TH(u, p).

By (4.9), (4.11) and (4.12), we have

0 > fi(x) + xTwi − τi
(
gi(x)− xT zi

)
≧ η(x, u)T∇p [Fi(u, p)− τiGi(u, p)] .

As λ ≥ 0 and by (4.8), we get

0 > η(x, u)T
l∑

i=1

λi∇p [Fi(u, p)− τiGi(u, p)]

= −η(x, u)T∇py
TH(u, p).(4.14)

Now, by (4.10), y ∈ C2, and (4.13), we obtain

η(x, u)T∇py
TH(u, p) ≦ 0,

which contradicts (4.14). □

Theorem 4.6 (Strong Duality). If x̄ is a weakly efficient solution of (MCFP) at
which constraint qualification [9] is satisfied. Let

K(x̄, 0) = 0, H(x̄, 0) = 0, ∇pF (x̄, 0) = ∇f(x̄) + w̄,

∇pG(x̄, 0) = ∇g(x̄)− z̄,

∇pH(x̄, 0) = ∇h(x̄).(4.15)

Then there exist λ̄ ≥ 0, ȳ ∈ C2, w̄i ∈ Di, and z̄i ∈ Ei(i = 1, . . . , l) such that
(x̄, ȳ, λ̄, τ̄ , w̄, z̄, p̄ = 0) is feasible for (MCFD)S and the objective values of (MCFP)
and (MCFD)S are equal. If the assumptions of Theorem 4.5 are satisfied, then
(x̄, ȳ, λ̄, τ̄ , w̄, z̄, p̄ = 0) is a weakly efficient solution of (MCFD)S.



2114 H. J. LEE, L. G. JIAO, AND D. S. KIM

Proof. Since x̄ is a weakly efficient solution of (MCFP), by Theorem 3.1, there
exist λ̄ ≥ 0, ȳ ∈ C2, w̄i ∈ Di, and z̄i ∈ Ei(i = 1, . . . , l) such that[

λ∗T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇y∗Th(x̄)

]T
(x− x̄) ≧ 0, for all x ∈ C1,(4.16)

y∗Th(x̄) = 0,

s(x̄|Di) = x̄T w̄i, s(x̄|Ei) = x̄T z̄i, i = 1, . . . , l.(4.17)

Denote

τ̄i =
fi(x̄) + x̄T w̄i

gi(x̄)− x̄T z̄
, i = 1, . . . , l ;(4.18)

λ̄i =
λ∗
i

gi(x̄)− x̄T z̄i

/ l∑
i=1

λ∗
i

gi(x̄)− x̄T z̄i
, i = 1, . . . , l ; and(4.19)

ȳj = y∗j

/ l∑
i=1

λ∗
i

gi(x̄)− x̄T z̄i
, j = 1, . . . ,m.(4.20)

Since x ∈ C1, x̄ ∈ C1, and C1 is a closed convex cone, we have x+ x̄ ∈ C1 and thus
the inequality (4.16) implies[

λ∗T∇
{
f(x̄) + x̄T w̄

g(x̄)− x̄T z̄

}
+∇y∗Th(x̄)

]T
x ≧ 0, for all x ∈ C1,

i.e.,
l∑

i=1

λ∗
i∇

{
fi(x̄) + x̄T w̄i

gi(x̄)− x̄T z̄i

}
+

m∑
j=1

y∗j∇hj(x̄) = 0.

By (4.18), we get

∇
{
fi(x̄) + x̄T w̄i

gi(x̄)− x̄T z̄i

}
=

(gi(x̄)− x̄T z̄i)(∇fi(x̄) + w̄i)− (fi(x̄) + x̄T w̄i)(∇gi(x̄)− z̄i)

(gi(x̄)− x̄T z̄i)2

=
1

gi(x̄)− x̄T z̄i
(∇fi(x̄) + w̄i − τ̄i(∇gi(x̄)− z̄i)).

Using above two equalities, we have

l∑
i=1

λ∗
i

gi(x̄)− x̄T z̄i
(∇fi(x̄) + w̄i − τ̄i(∇gi(x̄)− z̄i)) +

m∑
j=1

y∗j∇hj(x̄) = 0.

Taking τ̄i, λ̄i, ȳj for all i = 1, . . . , l and j = 1, . . . ,m as (4.18), (4.19) and (4.20),
we obtain

l∑
i=1

λ̄i (∇fi(x̄) + w̄i − τ̄i(∇gi(x̄)− z̄i)) +

m∑
j=1

ȳj∇hj(x̄) = 0,

ȳTh(x̄) = 0, s(x̄|Di) = x̄T w̄i, s(x̄|Ei) = x̄T z̄i, i = 1, . . . , l,

fi(x̄) + x̄T w̄i − τ̄i
(
gi(x̄)− x̄T z̄i

)
= 0, λ̄ ≥ 0 with λ̄T e = 1,

τ̄ ≧ 0, and ȳ ∈ C2.
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By the hypothesis (4.15) and −h(x̄) ∈ C∗
2 , we can derive the following:

l∑
i=1

λ̄i∇p (Fi(x̄, p)− τ̄iGi(x̄, p)) +
m∑
j=1

ȳj∇pHj(x̄, p) = 0,

fi(x̄) + x̄T w̄i − τ̄i
(
gi(x̄)− x̄T z̄i

)
≧ 0,

− [h(x̄) +H(x̄, p)] ∈ C∗
2 .

Hence, we get (x̄, ȳ, λ̄, τ̄ , w̄, z̄, p̄ = 0) is feasible for (MCFD)S and using the
condition (4.17), corresponding values of (MCFP) and (MCFD)S are equal. If
the type I assumptions of Theorem 4.5 are satisfied, then (x̄, ȳ, λ̄, τ̄ , w̄, z̄, p̄ = 0) is
a weakly efficient solution of (MCFD)S. □

5. Special cases

We give some special cases for our nondifferentiable multiobjective fractional
programs.

(i) If Ei = {0}, i = 1, . . . , l, then our primal and Wolfe dual model reduce to the
corresponding ones in [7].

(ii) If Ei = {0}, i = 1, . . . , l and C1 is an open set of Rn, C2 = Rm
+ , then our primal

and Wolfe and Mond-Weir dual models reduce to the corresponding ones in
[5].

(iii) If Di = {0}, Ei = {0}, i = 1, . . . , l and C1 is an open set of Rn, C2 = Rm
+ , then

our primal and Mond-Weir dual model reduce to the corresponding ones in
[1].
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