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metric versions of some results previously published in [10, 16, 22, 23, 30]. We shall
prove Perov type generalizations of these theorems in solid cone metric spaces, and,
also, in the case when the cone is normal with appropriate assumptions. We study
fixed point results for new extensions of Banach’s contraction principle to cone met-
ric spaces, and give some generalize versions of the fixed point theorem of Perov. As
corollaries we generalize some results of Zima [33] and Borkowski, Bugajewski and
Zima [8] for a Banach space with a non-normal cone. The theory is illustrated with
some examples.It is worth mentioning that the main result of this paper cannot be
derived from Park’s result by the scalarization method, and hence, indeed, improves
many recent results in cone metric spaces.

Consistent with [15] (see, e.g., [1–3,5,11,17,19,28,30] for more details and recent
results), the following definitions and results will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if:

(i) P is closed, nonempty and P ̸= {0} ;
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;
(iii) P ∩ (−P ) = {0}.

Given a cone P ⊆ E, we define the partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x ̸= y,
while x ≪ y will stand for y − x ∈ intP (interior of P ).

There exist two kinds of cones: normal and non-normal ones.
A cone P in a real Banach space E is called normal if

(1.1) inf{∥x+ y∥ : x, y ∈ P and ∥x∥ = ∥y∥ = 1} > 0,

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

(1.2) 0 ≤ x ≤ y implies ∥x∥ ≤ K ∥y∥ .

The least positive number satisfying (1.2) is called the normal constant of P . It is
clear that K ≥ 1. A cone P is called solid if intP ̸= ∅.

Definition 1.1 ([15]). Let X be a nonempty set, and let P be a cone on a real
ordered Banach space E. Suppose that the mapping d : X ×X 7→ E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y ;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is known that the class of cone metric spaces is larger than the class of metric
spaces.

Example 1.2. Let X = R, E = Rn and P = {(x1, . . . , xn) ∈ Rn : xi ≥ 0} . it is easy
to see that d : X ×X 7→ E defined by d(x, y) = (|x− y|, k1|x− y|, . . . , kn−1|x− y|)
generates a cone metric on X, where ki ≥ 0 for all i ∈ {1, . . . , n− 1}.

Example 1.3 ([11]). Let E = C1[0, 1] with ∥x∥ = ∥x∥∞ + ∥x′∥∞ on P = {x ∈ E :
x(t) ≥ 0 on [0, 1]}. This is not a normal cone. For example

xn(t) =
1− sinnt

n+ 2
and yn(t) =

1 + sinnt

n+ 2
.
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Since, ∥xn∥ = ∥yn∥ = 1 and ∥xn + yn∥ = 2
n+2 → 0, it follows by (1.1) that P is

non-normal.

Let X be a nonempty set and n ∈ N.

Definition 1.4. A mapping d : X ×X 7→ Rn is called a vector-valued metric on X
if the following statements are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0n if and only if x = y where 0n = (0, . . . , 0) ∈ Rn;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, z) + d(z, y).

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then X ≤ Y means that Xi ≤ Yi, i =
1, . . . , n. This partial order determines a normal cone P = {x = (x1, . . . , xn) ∈ Rn :
xi ≥ 0, i = 1, 2, . . . , n} on Rn, with normal constant K = 1. A nonempty set X
with a vector-valued metric d is called a generalized metric space.

Throughout this paper we denote by Mn,n the set of all n× n matrices, and by
Mn,n(R+) the set of all n×n matrices with nonnegative elements. It is well known
that if A ∈ Mn,n, then A(P ) ⊂ P if and only if A ∈ Mn,n(R+). We write Θ for the
zero n × n matrix and In for the identity n × n matrix. For the sake of simplicity
we will identify row and column vectors in Rn.

A matrix A ∈ Mn,n(R+) is said to be convergent to zero if An → Θ as n → ∞.

Theorem 1.5 (Perov [24, 25]). Let (X, d) be a complete generalized metric space,
f : X 7→ X and A ∈ Mn,n(R+) a matrix convergent to zero, such that

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.

Then:

(i) f has a unique fixed point x∗ ∈ X;
(ii) the sequence of successive approximations xn = f(xn−1), n ∈ N converges to

x∗ for all x0 ∈ X;
(iii) d(xn, x

∗) ≤ An(In −A)−1(d(x0, x1)), n ∈ N;
(iv) if g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X and

some c ∈ Rn, then, by considering the sequence yn = gn(x0), n ∈ N, one has

d(yn, x
∗) ≤ (In −A)−1(c) +An(In −A)−1(d(x0, x1)), n ∈ N.

For completeness of the paper and convenience of the reader, in the Preliminaries
section we collect some basic definitions and facts needed in subsequent sections.

2. Preliminaries

In the following we shall assume that E is a Banach space, P is a cone in E with
intP ̸= ∅ whenever P is a non-normal cone and ≤ is the partial order on E with
respect to P.

Let (xn) be a sequence in X, and x ∈ X. If for every c in E with 0 ≪ c, there is
an n0 such that, for all n > n0, d(xn, x) ≪ c, then it is said that {Xn} converges to
x, and we denote this by limn→∞ xn = x, or xn → x, n → ∞. If, for every c in E
with 0 ≪ c, there is an n0 such that for all n,m > n0, d(xn, xm) ≪ c, then {Xn} is
called a Cauchy sequence in X. If every Cauchy sequence is convergent in X, then
X is called a complete cone metric space.
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We us recall [15] that, if P is a normal cone, even in the case that intP = ∅,
then {xn} ⊆ X converges to x ∈ X if and only if d(xn, x) → 0, n → ∞. Further,
{Xn} ⊆ X is a Cauchy sequence if and only if d(xn, xm) → 0, n,m → ∞.

Let (X, d) be a cone metric space. Then the following properties are often used
(particulary when dealing with cone metric spaces in which the cone need not to be
normal):

(p1) If u ≤ v and v ≪ w then u ≪ w.
(p2) If 0 ≤ u ≪ c for each c ∈ intP then u = 0.
(p3) If a ≤ b+ c for each c ∈ intP then a ≤ b.
(p4) If 0 ≤ x ≤ y, and a ≥ 0, then 0 ≤ ax ≤ ay.
(p5) If 0 ≤ xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then

0 ≤ x ≤ y.
(p6) If 0 ≤ d(xn, x) ≤ bn and bn → 0, then xn → x.
(p7) If E is a real Banach space with a cone P , and if a ≤ λa, where a ∈ P and

0 < λ < 1, then a = 0.
(p8) If c ∈ intP , 0 ≤ an and an → 0, then there exists an n0 such that, for all

n > n0 we have an ≪ c.

From (p8) it follows that the sequence {xn} converges to x ∈ X if d(xn, x) → 0
as n → ∞, and {xn} is a Cauchy sequence if d(xn, xm) → 0 as n,m → ∞. For a
non-normal cone we have only one part of Lemmas 1 and 4 from [15]. Also, in this
case, the fact that d(xn, yn) → d(x, y) if xn → x and yn → y is not applicable.

We write B(E) for the set of all bounded linear operators on E and L (E) for
the set of all linear operators on E. B(E) is a Banach algebra and, if A ∈ B(E),
define

r(A) = lim
n→∞

∥An∥1/n = inf
n

∥An∥1/n

be the spectral radius of A. We remark that, if r(A) < 1, then the series
∞∑
i=0

An is

absolutely convergent, I −A is invertible in B(E) and

∞∑
i=0

An = (I −A)−1.

Also, r((I −A)−1) ≤ 1
1−r(A) .

If A,B ∈ B(E) and AB = BA, then r(AB) ≤ r(A)r(B). Furthermore, if
∥A∥ < 1, then I −A is invertible and

∥(I −A)−1∥ ≤ 1

1− ∥A∥
.

If T : X 7→ X, z ∈ X and X is a cone metric space, the orbit of z is defined by
O(z) = {z, Tz, T 2z, . . .}. The closure of the orbit will be denoted by O(z).
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3. Main results

In this section we prove our main results. We start with some auxiliary results.

Lemma 3.1. Let (X, d) be a cone metric space. Suppose that {xn} is a sequence
in X and that {bn} is a sequence in E with bn → 0 as n → ∞. If there exists an
n0 ∈ N such that 0 ≤ d(xn, xm) ≤ bn for each n ≥ n0 and each m ≥ n0, then {xn}
is a Cauchy sequence.

Proof. For each c ≫ 0 there exists an n1 ∈ N such that bn ≪ c, n > n1. It
follows that 0 ≤ d(xn, xm) ≪ c for m > n > max{n0, n1}; i.e., {xn} is a Cauchy
sequence. □

Lemma 3.2. Let E be Banach space, P ⊆ E a cone in E and A : E 7→ E a linear
operator. The following conditions are equivalent:

i) A is increasing; i.e., x ≤ y implies that A(x) ≤ A(y).
ii) A is positive; i.e., A(P ) ⊆ P .

Proof. If A is monotonically increasing and p ∈ P , then it follows that p ≥ 0 and
A(p) ≥ A(0) = 0. Thus A(p) ∈ P , and A(P ) ⊆ P .
To prove the other implication, let us assume that A(P ) ⊆ P and x, y ∈ E are such
that x ≤ y. Now y − x ∈ P , and so A(y − x) ∈ P . Thus A(x) ≤ A(y). □

The following two theorems generalize Theorem 1 of [4] and, consequently, The-
orem 2 of [23].

Theorem 3.3. Let (X, d) be a cone metric space, P ⊆ E a cone and T : X 7→ X. If

there exists a point z ∈ X such that O(z) is complete, A ∈ B(E) a positive operator
with r(A) < 1, and

(3.1) d(Tx, Ty) ≤ A(d(x, y)), holds for any x, y = Tx ∈ O(z),

then {Tnz} converges to some u ∈ O(z) and

(3.2) d(Tnz, u) ≤ An(I −A)−1(d(z, Tz)), n ∈ N.

If (3.1) holds for any x, y ∈ O(z), then u is a fixed point of T .

Proof. First, we will show that {Tnz} is a Cauchy sequence.
Since d(Tnz, Tn+1z) ≤ A(d(Tn−1z, Tnz)), and A is a positive operator, by Lemma
3.2, it follows that

d(Tnz, Tn+1z) ≤ An(d(z, Tz)).

Hence, for n,m ∈ N, m > n,

d(Tnz, Tmz) ≤
m−1∑
i=n

d(T iz, T i+1z) ≤
m−1∑
i=n

Ai(d(z, Tz)),

and, since r(A) < 1 and Lemma 3.1 holds, {Tnz} is a Cauchy sequence. Because

O(z) is complete, there exists a u ∈ O(z) such that lim
n→∞

Tnz = u.

Let n ∈ N be arbitrary and m > n. Then,

d(Tnz, u) ≤ d(Tnz, Tmz) + d(Tmz, u)
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≤
m−1∑
i=n

Ai(d(z, Tz)) + d(Tmz, u)

≤ An
∞∑
i=0

Ai(d(z, Tz)) + d(Tmz, u)

= An(I −A)−1(d(z, Tz)) + d(Tmz, u).

Taking the limit as n → ∞ of the above inequality yields to (3.2).

If (3.1) is true for x, y ∈ O(z), then

d(Tn+1z, Tu) ≤ A(d(Tnz, u)),

and A(d(Tnz, u)) → 0, n → ∞, thus (p6) implies lim
n→∞

Tnz = Tu. But lim
n→∞

Tnz = u

gives us that u is a fixed point of T . □
Remark 1. Du [12] has investigated the equivalence of vectorial versions of fixed
point theorems in generalized cone metric spaces and scalar versions of fixed point
theorems in (general) metric spaces (in the usual sense). He has shown that the
Banach contra-ction principles in general metric spaces and in TVS-cone metric
spaces are equivalent. His theorems also extend some results of Huang and Zhang
[15], Rezapour and Hamlbarani [30] and others.

Du [12] has used the nonlinear scalarization function ξe and the function dξ as
follows: Let dξ = ξe ◦ d, where (X, d) is a cone metric space, and ξe is defined by

ξe(u) = inf{r ∈ R : u ∈ re− P},
for each u ∈ E, and some e ∈ intP . Then dξ is a metric on X by Theorem 2.1

of [12]. Let T : X 7→ X be such that there exists a point z ∈ X for which O(z) is a
complete, and a λ ∈ (0, 1) such that

(3.3) d(Tx, Ty) ≤ λ · d(x, y) holds for any x, y = Tx ∈ O(z).

Then, applying Lemma 1.1 of [12], we have

(3.4) dξ(Tx, Ty) ≤ λ · dξ(x, y), holds for any x, y = Tx ∈ O(z).

Therefore, Theorem 1 of [4] directly follows from Park’s result by Theorem 2 of [23].
However, if T satisfies (3.1), restricted with a linear bounded mapping, we cannot
conclude that there exists some λ ∈ (0, 1) such that (3.4) is satisfied, and so Theorem
3.3 cannot be derived from Park’s result. Therefore Theorem 3.3 indeed improves
the corresponding result of [23]. Similar observations are valid for the Ćirić’s quasi-
contraction ( [10,29]) of Perov type and for Banach’s contraction of Perov type [9].
For some more recent results see [18,20,21].

Now we list several corollaries of our main result.

Corollary 3.4 (Theorem 2.2 of [9]). Let (X, d) be a complete cone metric space,
d : X ×X 7→ E, f : X 7→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , such that

(3.5) d(fx, fy) ≤ Ad(x, y), x, y ∈ X.

Then:

(i) f has a unique fixed point z ∈ X;
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(ii) For any x0 ∈ X the sequence xn = fxn−1, n ∈ N, converges to z and

d(xn, z) ≤ An(I −A)−1(d(x0, x1)), n ∈ N.

Let us remark that the initial assumption A ∈ Mn,n(R+), in Perov theorem,
is unnecessary (Example 2.5 of [9]) . If P is a normal cone, we can modify the
conditions of Theorem 3.3.

Theorem 3.5. Let (X, d) be a cone metric space, P ⊆ E a normal cone with a

normal constant K and T : X 7→ X. If there exists a point z ∈ X such that O(z)
is a complete and A ∈ B(E) bounded linear operator, K∥A∥ < 1, such that (3.1)

holds, then {Tnz} converges to some u ∈ O(z) and

(3.6) ∥d(Tnz, u)∥ ≤ (K∥A∥)n

1−K∥A∥
∥d(z, Tz)∥, n ∈ N.

If (3.1) holds for every x, y ∈ O(z), then u is a fixed point of T .

Proof. Observe that (3.1) and the fact that P is a normal cone imply that

∥d(Tnz, Tn+1z)∥ ≤ K∥A∥∥d(Tn−1z, Tnz)∥,
and, inductively, ∥d(Tnz, Tn+1z)∥ ≤ (K∥A∥)n∥d(z, Tz)∥ for every n ∈ N. If n,m ∈
N and m > n, we have

∥d(Tnz, Tmz)∥ ≤ K∥
m−2∑
i=n−1

A(d(T iz, T i+1z))∥

≤ K∥A∥
m−2∑
i=n−1

∥d(T iz, T i+1z)∥

≤ K∥A∥
m−2∑
i=n−1

(K∥A∥)i∥d(z, Tz)∥

≤
∞∑
i=n

(K∥A∥)i∥d(z, Tz)∥

≤ (K∥A∥)n

1−K∥A∥
∥d(z, Tz)∥.(3.7)

Because K∥A∥ < 1, {Tnz} is a Cauchy sequence and lim
n→∞

Tnz = u for some

u ∈ O(z).
Notice that, for any n ∈ N,

∥d(Tnz, u)∥ ≤ K∥A(d(Tn−1z, Tm−1z))∥+K∥d(Tmz, u)∥

≤ (K∥A∥)n

1−K∥A∥
∥d(z, Tz)∥+K∥d(Tmz, u)∥.

Last inequality is obtained from (3.7) for any m ∈ N and, because K∥d(Tmz, u)∥ →
0, m → ∞, (3.6) holds.

If we include x, y ∈ O(z) in the condition (3.1), then

d(Tnz, Tu) ≤ A(d(Tn−1z, u)), n ∈ N
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and d(Tn−1z, u) → 0, n → ∞, so Tnz → Tu, n → ∞. However, limit of convergent
sequence is unique, thus Tu = u □

Corollary 3.6 ([Theorem 2.4 of [9]). Let (X, d) be a complete cone metric space,
d : X×X 7→ E, P a normal cone with normal constant K, A ∈ B(E) and K∥A∥ < 1.
If condition (3.5) holds for a mapping f : X 7→ X, then f has a unique fixed point
z ∈ X and the sequence xn = f(xn−1), n ∈ N, converges to z for any x0 ∈ X.

Following the work of Berinde ( [6,7]), in the next result we investigate the weak
contraction of Perov type.

Corollary 3.7 (Theorem 2.5 of [9]). Let (X, d) be a complete cone metric space,
d : X ×X 7→ E, f : X 7→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , B ∈ L(E)
with B(P ) ⊆ P , such that

(3.8) d(f(x), f(y)) ≤ A(d(x, y)) +B(d(x, f(y))), x, y ∈ X.

Then f : X 7→ X has a fixed point in X and, for any x0 ∈ X, the sequence
xn = fxn−1, n ∈ N converges to a fixed point of f .

Corollary 3.8. Let (X, d) be a complete cone metric space and T : X 7→ X a
mapping satisfying

(3.9) d(Tx, Ty) ≤ A(d(Tx, x) + d(Ty, y)), x, y ∈ X

for some positive operator A ∈ B(E) with r(A) < 1
2 . Then T has a unique fixed

point u ∈ X and {Tnx} converges to u for any x ∈ X.

Proof. Since,

d(Tx, T 2x) ≤ A(I −A)−1(d(Tx, x))

and A(I −A)−1 is a positive operator,

r(A(I −A)−1) ≤ r(A)r((I −A)−1) ≤ r(A)

1− r(A)
< 1,

condition (3.1) of the Theorem 3.3 holds. Hence, T has a fixed point u ∈ X.
Uniqueness of the fixed point follows from (3.9). If v ∈ X and T (v) = v, then
d(u, v) = d(Tu, Tv) ≤ A(d(Tu, u) + d(Tv, v)) = A(0) = 0. □

Corollary 3.9. Let (X, d) be a complete cone metric space, P a normal cone with
a normal constant K and T : X 7→ X a mapping satisfying (3.9) for some operator
A ∈ B(E) with K∥A∥ < 1

2 . Then T has a unique fixed point u ∈ X and {Tnx}
converges to u for any x ∈ X.

Proof. Obviously

∥d(Tx, T 2x)∥ ≤ K∥A∥
1−K∥A∥

∥d(x, Tx)∥,

and K∥A∥/(1 −K∥A∥) < 1. Therefore, analogously to the proof of Theorem 3.5,
it is easy to show that T has a fixed point and (3.9) implies uniqueness. □
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Corollary 3.10. Let (X, d) be a complete cone metric space and T : X 7→ X a
mapping satisfying

d(Tx, Ty) ≤ A(d(x, Tmz) + d(y, Tmz))(3.10)

for some m ∈ N, A ∈ B(E) positive operator, r(A) < 1 and for all x, y, z ∈ X.
Then the iterative sequence {Tnx} converges to a unique fixed point of T for any
x ∈ X.

Proof. If, for any z ∈ X and m ∈ N, set x = Tm−1z and y = Tmz in (3.10)

d(Tmz, Tm+1z) ≤ A(d(Tm−1z, Tmz)),

then

d(Tnz, Tn+1z) ≤ A(d(Tn−1z, Tnz)), n ≥ m,

so, as in the proof of Corollary 3.8, T has a fixed point. Condition (3.10) gives
uniqueness. □
Corollary 3.11. Let (X, d) be a complete cone metric space, P ⊆ E a normal cone
with a normal constant K and T : X 7→ X a mapping satisfying (3.10) for some
m ∈ N, A ∈ B(E) such that K∥A∥ < 1 and for all x, y, z ∈ X. Then the iterative
sequence {Tnx} converges to a unique fixed point of T for any x ∈ X.

Proof. For any z ∈ X and m ∈ N, setting x = Tm−1z and y = Tmz in (3.10) gives

∥d(Tmz, Tm+1z)∥ ≤ K∥A∥∥d(Tm−1z, Tmz)∥,
and, by similar observations as in the proofs of Corollary 3.10 and Corollary 3.8, T
has a unique fixed point in X. □
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