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ABSTRACT. [Perov, A. 1., On Cauchy problem for a system of ordinary diferential
equations, (in Russian), Priblizhen. Metody Reshen. Difer. Uravn., 2 (1964),
115-134] used the concept of a vector valued metric space and obtained a Banach
type fixed point theorem on such a complete generalized metric space. In this
article we study fixed point results for new extensions of Park’s contraction con-
dition [S. Park,A unified approach to fixed points of contractive maps, J. Korean
Math. Soc., 16 (1980), 95-106] to a cone metric space, and give some general-
ized versions of the fixed point theorem of Perov. As corollaries we generalized
some results of [Zima, M., A certain fized point theorem and its applications to
integral-functional equations, Bull. Austral. Math. Soc. 46 (1992), 179-186]
and [Borkowski, M., Bugajewski, D. and Zima, M.,On some fized-point theorems
for generalized contractions and their perturbations, J. Math. Anal. Appl. 367
(2010), 464-475] for a Banach space with a non-normal cone.

1. INTRODUCTION

There exist many generalizations of the concept of metric spaces in the literature.
Perov [24] used the concept of a vector valued metric space, and obtained a Banach
type fixed point theorem on such a complete generalized metric space. After that,
fixed point results of Perov type in vector valued metric spaces were studied by
many other authors (see e.g., [13,14,26,27] for some works in this line of research).
We remark that the Perov theorem and related results have many applications
in coincidence problems, coupled fixed point problems and systems of semilinear
differential inclusions.

L.G. Huang and X. Zhang [15] (see also [32]) used the concept of cone metric
spaces as a generalization of metric spaces. They replaced the real numbers (as
the co-domain of a “metric”) by an ordered Banach space. The authors described
convergence in cone metric spaces and introduced their completeness. Then they
proved some fixed point theorems for contractive mappings on cone metric spaces.
In [1,16] and [30] some common fixed point theorems were proved for maps on cone
metric spaces. However, in [1,15,16] and [31] the authors usually used the normality
property of cones in their results.

In [4] some fixed point theorems where proved which involve fairly general con-
ditions in the setting of a cone metric space. In this article the authors give cone
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metric versions of some results previously published in [10, 16,22, 23,30]. We shall
prove Perov type generalizations of these theorems in solid cone metric spaces, and,
also, in the case when the cone is normal with appropriate assumptions. We study
fixed point results for new extensions of Banach’s contraction principle to cone met-
ric spaces, and give some generalize versions of the fixed point theorem of Perov. As
corollaries we generalize some results of Zima [33] and Borkowski, Bugajewski and
Zima [8] for a Banach space with a non-normal cone. The theory is illustrated with
some examples.It is worth mentioning that the main result of this paper cannot be
derived from Park’s result by the scalarization method, and hence, indeed, improves
many recent results in cone metric spaces.

Consistent with [15] (see, e.g., [1-3,5,11,17,19,28,30] for more details and recent
results), the following definitions and results will be needed in the sequel.

Let E be a real Banach space. A subset P of F is called a cone if:

(i) P is closed, nonempty and P # {0};

(ii) a,b € R, a,b >0, and z,y € P imply ax + by € P;

(iii) PN (=P) = {0}.
Given a cone P C FE, we define the partial ordering < with respect to P by = <y
if and only if y — x € P. We shall write < y to indicate that x < y but = # y,
while z < y will stand for y — z € int P (interior of P).

There exist two kinds of cones: normal and non-normal ones.

A cone P in a real Banach space F is called normal if

(1.1) inf{[lz +y| : z,y € P and |[lzf| = [ly|| = 1} >0,
or, equivalently, if there is a number K > 0 such that for all z,y € P,
(1.2) 0 <z <y implies [[z] < K [|y] .

The least positive number satisfying (1.2) is called the normal constant of P. It is
clear that K > 1. A cone P is called solid if int P # (.

Definition 1.1 ([15]). Let X be a nonempty set, and let P be a cone on a real
ordered Banach space E. Suppose that the mapping d : X x X +— E satisfies:

(d1) 0 < d(z,y) for all z,y € X and d(z,y) =0 if and only if x = y;

(d2) d(z,y) = d(y,z) for all z,y € X ;

(d3) d(z,y) < d(z,z) +d(z,y) for all z,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is known that the class of cone metric spaces is larger than the class of metric
spaces.

Example 1.2. Let X =R, F =R" and P = {(x1,...,2,) € R" : z; > 0} . it is easy
to see that d : X x X — FE defined by d(z,y) = (|lx — y|, ki|lx — yl|, - .., kn—1]|z — y|)
generates a cone metric on X, where k; > 0 for all i € {1,...,n — 1}.

Example 1.3 ([11]). Let E = C[0,1] with ||z| = ||z|| + ||2/||,, on P={z € E :
x(t) > 0 on [0,1]}. This is not a normal cone. For example

_ 1 + sinnt

1 —sinnt
= ———— and t) =
nd - ya(t) n+ 2

za(t) = n+ 2
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Since, ||zn|| = Jynll = 1 and ||z, + yu| = %H — 0, it follows by (1.1) that P is
non-normal.

Let X be a nonempty set and n € N.

Definition 1.4. A mapping d : X x X — R" is called a vector-valued metric on X
if the following statements are satisfied for all x,y,z € X.

(d1) d(z,y) > 0, and d(x,y) = 0, if and only if x = y where 0,, = (0,...,0) € R";
(d2) d(z,y) = d(y, );
(d3) d(z,y) < d(z,z) + d(z,y).

Ifr=(x1,...,20),y = (Y1,-.-,Yn) € R”, then X <Y means that X; <Y, i =
1,...,n. This partial order determines a normal cone P = {z = (z1,...,2,) € R":
x; > 0,0 =1,2,...,n} on R”, with normal constant K = 1. A nonempty set X
with a vector-valued metric d is called a generalized metric space.

Throughout this paper we denote by M, ,, the set of all n x n matrices, and by
Mn,n(R+) the set of all n x n matrices with nonnegative elements. It is well known
that if A € M,, ,,, then A(P) C P if and only if A € M,, ,(RT). We write © for the
zero n X n matrix and I, for the identity n x n matrix. For the sake of simplicity
we will identify row and column vectors in R™.

A matrix A € M,, ,(R") is said to be convergent to zero if A" — © as n — .

Theorem 1.5 (Perov [24,25]). Let (X,d) be a complete generalized metric space,
f:X— X and A € M, ,(RT) a matriz convergent to zero, such that

d(f(z), f(y) < Ald(z,y)), =yeX.
Then:

(i) f has a unique fixed point x* € X;

(ii) the sequence of successive approximations x, = f(xn—1),n € N converges to
z* for all xg € X;

(iii) d(xp,z*) < A*(I, — A)~Y(d(wo,21)), n € N;

(iv) if g + X — X satisfies the condition d(f(z),g(x)) < ¢ for all z € X and
some ¢ € R", then, by considering the sequence y, = g"(xo),n € N, one has

d(yn, ") < (I — A) "} (e) + A (I, — A) ! (d(wo, 21)), n € N.

For completeness of the paper and convenience of the reader, in the Preliminaries
section we collect some basic definitions and facts needed in subsequent sections.

2. PRELIMINARIES

In the following we shall assume that F is a Banach space, P is a cone in E with
intP # () whenever P is a non-normal cone and < is the partial order on E with
respect to P.

Let (z,) be a sequence in X, and x € X. If for every ¢ in E with 0 < ¢, there is
an ng such that, for all n > ng, d(z,,x) < ¢, then it is said that {X,,} converges to
x, and we denote this by lim, . x, = z, or , — x, n — oco. If, for every cin F
with 0 < ¢, there is an ng such that for all n,m > ng, d(zn,zm) < ¢, then {X,,} is
called a Cauchy sequence in X. If every Cauchy sequence is convergent in X, then
X is called a complete cone metric space.
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We us recall [15] that, if P is a normal cone, even in the case that intP = ),
then {x,} C X converges to x € X if and only if d(z,,x) — 0, n — oo. Further,
{X,,} € X is a Cauchy sequence if and only if d(zy, zm) — 0, n,m — co.

Let (X,d) be a cone metric space. Then the following properties are often used
(particulary when dealing with cone metric spaces in which the cone need not to be
normal):

(p1) If u < v and v < w then © < w.

(p2) If 0 < w < ¢ for each ¢ € int P then u = 0.

(p3) If a < b+ ¢ for each ¢ € int P then a < b.

(pa) f0 <z <y,and a >0, then 0 < ax < ay.

(ps) If 0 < x,, < yp for each n € N, and lim,, o0 z,, = x, limy, 00 Y, = y, then
0<z<y.

(pe) If 0 < d(zp,z) < by, and b, — 0, then z,, — x.

(p7) If E is a real Banach space with a cone P, and if a < Aa, where a € P and
0< A<, then a=0.

(pg) If ¢ € int P, 0 < a, and a, — 0, then there exists an ng such that, for all
n > ng we have a,, < c.

From (pg) it follows that the sequence {z,} converges to = € X if d(x,,x) — 0
as n — 0o, and {z,} is a Cauchy sequence if d(zy,z,) — 0 as n,m — oo. For a
non-normal cone we have only one part of Lemmas 1 and 4 from [15]. Also, in this
case, the fact that d(z,,y,) — d(z,y) if 2, — = and y,, — y is not applicable.

We write #(FE) for the set of all bounded linear operators on E and .Z(F) for
the set of all linear operators on E. Z(F) is a Banach algebra and, if A € #A(F),
define

r(A) = lim [JA"||V" = inf ||t/

oo
be the spectral radius of A. We remark that, if 7(A) < 1, then the series > A" is
=0
absolutely convergent, I — A is invertible in #(F) and

f:A" =(I-A)""L
=0

Also, 7((I — A)71) < ﬁ(A).
If AAB € #A(E) and AB = BA, then r(AB) < r(A)r(B). Furthermore, if
|Al| < 1, then I — A is invertible and

1

I—A) < — .
II¢ ) H_l—HAII

IfT: X — X, ze X and X is a cone metric space, the orbit of z is defined by

O(2) = {2,T%,T?z,...}. The closure of the orbit will be denoted by O(z).
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3. MAIN RESULTS
In this section we prove our main results. We start with some auxiliary results.

Lemma 3.1. Let (X,d) be a cone metric space. Suppose that {x,} is a sequence
in X and that {by} is a sequence in E with b, — 0 as n — oo. If there exists an
ng € N such that 0 < d(xp, xm) < by for each n > ng and each m > ng, then {x,}
is a Cauchy sequence.

Proof. For each ¢ > 0 there exists an ny € N such that b, < ¢,n > ni. It
follows that 0 < d(xy,zm) < ¢ for m > n > max{ng,n1}; i.e., {z,} is a Cauchy
sequence. Il

Lemma 3.2. Let E be Banach space, P C E a cone in B and A: E— E a linear
operator. The following conditions are equivalent:

i) A is increasing; i.e., x <y implies that A(z) < A(y).

i) A is positive; i.e., A(P) C P.
Proof. If A is monotonically increasing and p € P, then it follows that p > 0 and
A(p) > A(0) = 0. Thus A(p) € P, and A(P) C P.
To prove the other implication, let us assume that A(P) C P and z,y € E are such
that x < y. Now y — 2z € P, and so A(y —x) € P. Thus A(xz) < A(y). O

The following two theorems generalize Theorem 1 of [4] and, consequently, The-
orem 2 of [23].

Theorem 3.3. Let (X,d) be a cone metric space, P C E a cone andT : X — X. If

there exists a point z € X such that O(z) is complete, A € B(E) a positive operator
with r(A) < 1, and

(3.1) d(Txz,Ty) < A(d(z,y)), holds for any z,y=Tx € O(z),

then {T"z} converges to some u € O(z) and
(3.2) d(T"z,u) < A™(I — A)"Y(d(z,Tz)), n €N.
If (3.1) holds for any x,y € O(z), then u is a fized point of T.
Proof. First, we will show that {T™z} is a Cauchy sequence.
Since d(T"z, T"'2) < A(d(T" '2,T"%)), and A is a positive operator, by Lemma
3.2, it follows that
d(T™z, T 2) < A™(d(2,T%)).

Hence, for n,m € N, m > n,
m—1
ATz, T"z) < Y d(T°2, T 2) Z Al(d(z,Tz))
i=n
and, since 7(A) < 1 and Lemma 3.1 holds, {T "z} is a Cauchy sequence. Because
O(z) is complete, there exists a u € O(z) such that lim 7"z = u.

n—oo
Let n € N be arbitrary and m > n. Then,
d(T"z,u) < d(T"z,T"z)+d(T™"z,u)
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< Z ANd(2,T2)) + d(T™z, u)

< A"Z:A2 (2, T2)) +d(T"z,u)

= A”(I —A)7Nd(z,T2)) +d(T"z,u).
Taking the limit as n — oo of the above inequality yields to (3.2).
If (3.1) is true for x,y € O(z), then

d(T" 2, Tu) < A(d(T"z,u)),
and A(d(T"z,u)) — 0,n — oo, thus (pg) implies hm Tz =Tu. But lim T"z =u

n—oo

gives us that u is a fixed point of T. O

Remark 1. Du [12] has investigated the equivalence of vectorial versions of fixed
point theorems in generalized cone metric spaces and scalar versions of fixed point
theorems in (general) metric spaces (in the usual sense). He has shown that the
Banach contra-ction principles in general metric spaces and in TVS-cone metric
spaces are equivalent. His theorems also extend some results of Huang and Zhang
[15], Rezapour and Hamlbarani [30] and others.

Du [12] has used the nonlinear scalarization function & and the function dg¢ as
follows: Let d¢ = & o d, where (X, d) is a cone metric space, and &, is defined by

€e(u) =inf{r e R: u € re — P},
for each v € E, and some e € intP. Then d¢ is a metric on X by Theorem 2.1

of [12]. Let T': X — X be such that there exists a point z € X for which O(z) is a
complete, and a A € (0,1) such that

(3.3) d(Tz, Ty) < X-d(x,y) holds for any z,y =Tz € O(z).
Then, applying Lemma 1.1 of [12], we have
(3.4) de(Tz, Ty) < X-de(x,y), holds for any x,y =Tz € O(z).

Therefore, Theorem 1 of [4] directly follows from Park’s result by Theorem 2 of [23].
However, if T satisfies (3.1), restricted with a linear bounded mapping, we cannot
conclude that there exists some A € (0, 1) such that (3.4) is satisfied, and so Theorem
3.3 cannot be derived from Park’s result. Therefore Theorem 3.3 indeed improves
the corresponding result of [23]. Similar observations are valid for the Cirié’s quasi-
contraction ([10,29]) of Perov type and for Banach’s contraction of Perov type [9].
For some more recent results see [18,20,21].
Now we list several corollaries of our main result.

Corollary 3.4 (Theorem 2.2 of [9]). Let (X,d) be a complete cone metric space,
d: XxXw—E f: X— X, AcB(E), withr(A) <1 and A(P) C P, such that

(3.5) d(fz, fy) < Ad(z,y), x,yeX.
Then:
(i) f has a unique fixed point z € X ;
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(ii) For any xg € X the sequence x, = fry,—1, n € N, converges to z and
d(x,,z) < AM(I — A)~Yd(xg, 1)), n €N.

Let us remark that the initial assumption A € M, ,(R;), in Perov theorem,
is unnecessary (Example 2.5 of [9]) . If P is a normal cone, we can modify the
conditions of Theorem 3.3.

Theorem 3.5. Let (X,d) be a cone metric space, P C E a normal cone with a

normal constant K and T : X — X. If there exists a point z € X such that O(z)
is a complete and A € B(E) bounded linear operator, K||A|| < 1, such that (3.1)
holds, then {T™z} converges to some u € O(z) and

n (K|AlH"
(3.6) [d(T" 2, u)|| < 1= K|A]

If (3.1) holds for every x,y € O(z), then u is a fized point of T
Proof. Observe that (3.1) and the fact that P is a normal cone imply that
ld(T"2, T 2) || < K[ A|ld(T" "2, T 2),

and, inductively, ||d(T"z, T"*12)|| < (K||A|)"||d(z, Tz)| for every n € N. If n,m €
N and m > n, we have

ld(z, TZ)]|, n eN.

m—2
K|| Y ATz T )

1d(T"2,T"2)|| <
i=n—1
m—2 . .
< KJA| ) d(Tz, TH )|
i=n—1
m—2 .
< K[A] Y (KA (=, T2)]
i=n—1
< D (KA d(z T2)|
(K|l A[)™
(3.7) < S ld(2, T2
1 - K[|A]
Because K||A|| < 1, {T"z} is a Cauchy sequence and le T"z = u for some
u € 0(z).

Notice that, for any n € N,
d(T"2,u)| < K[AT" 2,7 2) || + K| d(T™ 2, u)|
(&fAp™
1 - K|A]
Last inequality is obtained from (3.7) for any m € N and, because K ||d(T™z,u)| —
0, m — o0, (3.6) holds.
If we include x,y € O(z) in the condition (3.1), then

d(T"z,Tu) < A(d(T" 'z,u)), neN

IN

ld(z, T2)[| + K[| d(T™ 2z, u)].
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and d(T"'z,u) — 0, n — oo, so T"z — Tu, n — co. However, limit of convergent
sequence is unique, thus Tu = u Il

Corollary 3.6 ([Theorem 2.4 of [9]). Let (X,d) be a complete cone metric space,
d: XxX — E, P anormal cone with normal constant K, A € B(E) and K||A|| < 1.
If condition (3.5) holds for a mapping f : X — X, then f has a unique fized point
z € X and the sequence x, = f(rp—1), n € N, converges to z for any xy € X.

Following the work of Berinde ([6,7]), in the next result we investigate the weak
contraction of Perov type.

Corollary 3.7 (Theorem 2.5 of [9]). Let (X,d) be a complete cone metric space,
d: XxX—E, f: X~ X, AcB(FE), withr(A) <1 and A(P) C P, B € L(E)
with B(P) C P, such that

(3.8) d(f(x), f(y)) < Ad(x,y)) + B(d(z, f(y)), x,y€X.

Then f : X — X has a fized point in X and, for any g € X, the sequence
Ty = fxp—1, n € N converges to a fized point of f.

Corollary 3.8. Let (X,d) be a complete cone metric space and T : X — X a
mapping satisfying

(3.9) d(Tz, Ty) < A(d(Tz,z) +d(Ty,y)), v,y € X

for some positive operator A € B(FE) with r(A) < % Then T has a unique fixed

point u € X and {T"x} converges to u for any v € X.

Proof. Since,
d(Tz, T?z) < A(I — A)~Yd(Tz,z))
and A(I — A)~!is a positive operator,
A
A= A7) < (- ) < TR

condition (3.1) of the Theorem 3.3 holds. Hence, T has a fixed point u € X.
Uniqueness of the fixed point follows from (3.9). If v € X and T(v) = v, then
d(u,v) = d(Tu,Tv) < A(d(Tu,u) + d(Tv,v)) = A(0) = 0. O

<1,

Corollary 3.9. Let (X,d) be a complete cone metric space, P a normal cone with
a normal constant K and T : X — X a mapping satisfying (3.9) for some operator
A € B(E) with K||A|| < 3. Then T has a unique fized point u € X and {T"z}
converges to u for any x € X.

Proof. Obviously
KAl

1 — KAl

and K| Al|/(1 — K||A]|) < 1. Therefore, analogously to the proof of Theorem 3.5,
it is easy to show that 7" has a fixed point and (3.9) implies uniqueness. O

(T, T?2)|| < ld(z, Tz),
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Corollary 3.10. Let (X,d) be a complete cone metric space and T : X — X a
mapping satisfying

(3.10) d(Tz, Ty) < A(d(z, T™z) + d(y, T™z))

for some m € N, A € B(F) positive operator, r(A) < 1 and for all z,y,z € X.

Then the iterative sequence {T™x} converges to a unique fixed point of T for any
rzeX.

Proof. If, for any z € X and m € N, set x = T™ 'z and y = T™2 in (3.10)
d(T™z, T™M2) < A(d(T™ 12, T™2)),
then
d(T"z, T 2) < A(d(T" 12, T"2)), n>m,
so, as in the proof of Corollary 3.8, T has a fixed point. Condition (3.10) gives
uniqueness. O

Corollary 3.11. Let (X, d) be a complete cone metric space, P C E a normal cone
with a normal constant K and T : X — X a mapping satisfying (3.10) for some
m €N, A€ B(E) such that K||A|| <1 and for all z,y,z € X. Then the iterative
sequence {T"x} converges to a unique fized point of T for any x € X.

Proof. For any z € X and m € N, setting z = 7™ 'z and y = T™z in (3.10) gives
d(T™ 2, T 2) || < K[| Al d(T™ 2, T™2)]),

and, by similar observations as in the proofs of Corollary 3.10 and Corollary 3.8, T
has a unique fixed point in X. O
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