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TOPOLOGICAL METHOD FOR A CLASS OF THE SEMILINEAR
ELLIPTIC SYSTEMS
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Dedicated to Prof. Wataru Takahashi on his 70th birthday

ABSTRACT. We get a theorem which shows the existence of at least two nontrivial
weak solutions for a class of the systems of the elliptic equations with some
nonlinearity and boundary condition. We obtain this result by approaching the
variational method, the critical point theory and the topological method. Among
the topological methods we use the relative category theory on the manifold.

1. INTRODUCTION

Let © be a bounded subset of R™ with smooth boundary 92, n > 3. Let A\ <
Ao < --- < A < ... be the eigenvalues of the eigenvalue problem —Awu = Au in §2,
u = 0 on 0f), and ¢ be the eigenfunction belonging to the eigenvalue A, k > 1.
Let H : R* x R"® — R be a C? function such that H(x,0) =0, § = (0,...,0). In
this paper we consider the number of the weak solutions for a class of the systems
of the elliptic equations with Dirichlet boundary condition

(1.1) —Auy = Hy, (z,u1, ..., up) in Q,

—Aug = Hy, (z,u1, ..., up) in €,

—Au, = Hy, (z,u1, ..., up) in €,
u;(x) =0, i=1,...,n, on 0f),

where u;(z) € Wy 2(Q) and Hy, (z,u1, ..., up) = %&;'”’u"), i=1,...,n. Let
U = (ui,...,uy) and || - ||[gn denote the Euclidean norm in R". Let us denote
Hy(z,U) = gradyH(z,U) = (Hy, (z,u1, ..., Un), ..., Hy, (z,u1,...,uy)). Let E be
a cartesian product of the Sobolev spaces Wol’Q(Q, R),i. e, E = Wol’Q(Q, R)x---x

I/VO1 (€, R). We endow the Hilbert space E with the norm

n
U = M,
1=1

where [[u]|? = [, |Vui(z)|*dz.
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We assume that H satisfies the following conditions:
(H1) H € C?>(R" x R",R), H(x,0) =0, 0 = (0,...,0), Hy(z,0) =0,
(H2) There exist constants « and 8 («, 8 are not eigenvalues of the elliptic eigen-
value problem) such that oo < § and

ol <d4H(z,U)<pBI  Y(x,U)€ R" x R"

and there exists £ € N* such that o < A\l < dQUF(a:, U) < Mgy1I < BI for every
U, where U = (uq,...,uy),
(H3) There exist eigenvalues Apy1, ..., Ayt such that

A <a < Apy1 <o < Apgm < B < Apgmsts

where h > 1, m > 1.
(H4) There exist v and C such that A4, < < and

1
H(z,U) > §7HU\|2 ~C,  V(x,U) € R"x R"

Some papers of Lee [7, 8, 9] concerning the semilinear elliptic system and some
papers of the other several authors [4, 6] have treated the system of this like nonlin-
ear elliptic equations. Some papers of Chang [1] and Choi and Jung [2] considered
the existence and the multiplicity of the weak solutions for the nonlinear boundary
value problems with asymptotically linear term. The authors obtained some results
for those problems by approaching the variational method, the critical point theory
and the topological method.

The system (1.1) can be rewritten by

—AU = grady H(z,U) in Q,

U=6 on 99,

where U = (uq,...,u,) and = (0,...,0).
In this paper we are looking for the weak solutions of system (1.1) in F, that is,
U= (ui,...,up) € E such that

/[—AU-V]d:J;—/HU(a:,U)-V:O, forall V e E.
Q Q

Our main result is the following:

Theorem 1.1. Assume that H satisfies the conditions (H1)-(H4). Then system
(1.1) has at least two nontrivial weak solutions.

The proof of Theorem 1.1 is organized as follows: We approach the variational
method, the critical point theory and the topological method. In section 2, we recall
the relative category theory on the manifold as the topological method which is a
crucial role for the proof of the main theorem. In section 3, we prove that the cor-
responding functional of (1.1) satisfies the geometric conditions of the multiplicity
theorem, and prove Theorem 1.1.
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2. VARIATIONAL AND TOPOLOGICAL APPROACH

Lemma 2.1. Let grady H(z,U) € L?(2). Then all the solutions of

—AU = gradyH(z,U)
belong to E.
Proof. Let grad; H(z,U) € L*(Q). We note that {\, : |A\n| < |c|} is finite. Then
grad, H(z,u1,...,uy) € L?(Q),i=1,...,n, can be expressed by

(o9} o

grad, H(x,u,...,u,) = th¢k, Zh% < oo, foreach i =1,...,n.
k=1 k=1

Then )
(—A)'grad,, H(z,u, ..., un) = » )\—khkm.

Hence we have the inequality

_ 1
||(_A) lgraduiH($7u17 s 7un)||2 = Z )\%gh% < Z h2a
which means that
H(—A)_lgraduiH(x, ut, .- up)|| < lgrad,, H(z, ut, - . ., un) || L2 (0)-
O

By the following Lemma 2.2, the weak solutions of system (1.1) coincide with the
critical points of the associated functional I

IcCYY(E,R),
(2.1) (V) = /Q [%\VUF —H(x,U)}d:c,

where U = (u1, ... ,up) and [, [|[VU|%ndz = 30 [o [Vu|?dz, n > 1.

Lemma 2.2. Assume that H satisfies the conditions (H1)-(H4). Then the func-
tional I1(U) is continuous, Fréchet differentiable with Fréchet derivative

DI(U)-V = / (—AU) -V = Hy(x,U) - V]da.
Q
Moreover DI € C. That is I € C*.
Proof. First we shall prove that I(U) is continuous. For U,V € E,
[I(U+V)-I(U)| = ‘;/(—AU—AV) . (U+V)dx—/H(x,U+V)dx
Q Q
1
—/(—AU)-Ud:U+/ H(a:,U)dx‘
2 Jo Q
1
- ‘2/[(AU-VAV-UAV-V)dx
Q

—/(H(a;,U+V) —H(a:,U))da:‘.
Q
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We have
‘/[H(:p,U+V)—H(:n,U)]dm) < ‘/[HU(QJ,U)-V~|—O(||V||Rn)]d:v|
Q Q
(2.2) = O(IVIg~)-
Thus we have
(2.3) [IU+V) = 1) = O(VIgn)-
(2.4) [I(U+V) = 1(U) = DI(U)-V] = O(|VI[n).

Next we shall prove that [(U) is Fréchet differentiable. For U,V € E,
[ I(U+V)—-I(U)—-DIU)-V|
1
_ ‘2/(—AU—AV) U+ V)de — / H(z,U + V)da
Q Q
1
_2/(_AU).de+/H(x,U)dx—/(—AU_HU($aU))'de‘
Q Q Q

1
_ ‘2/[_AU.V—AV~U—AV-V]dx
Q

—/Q[H(a:,U—i—V)—H(x,U)]dm—/

| (=AU — Hy(@, 1)) V]dx].

By (2.2),
[I(U +V) = I(U) = DI(U) - V|| = O(||V |[)-
Thus I € C1. O

Lemma 2.3. Let H : R x R® — R be a C? function satisfying the condition that
there exists k € N* such that A\ I < d;H(x,U) < A1l for every U. Then there
exist M > 0, M such that

1 _ 1
GHU(@,U)-U =M < H(x,U) < SHy(e,U) - U + M.

Proof. We define a Borel function

7’%}””’33” if U+#(0,...,0),
o(U) = N
A + DA if U=1(0,...,0),

Then ¢(U) is a C* function from E\{0,...,0} to R and
Hy(z,U)-U = ¢(U)U.

Thus we have . )
H0) = 3o, 0) U~ 5 [ 0atew)),
Q

ag(U)dun. Since c¢(U) € C!, there exist M > 0

Un

where d(c(U)) = %{g)dul 4t

and M > 0 such that
M < / U?%d(c(U)) < M,
Q

so we prove the lemma. O
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Now, we recall the critical point theory on the manifold with boundary. Let E
be a Hilbert space and M be the closure of an open subset of E such that M can
be endowed with the structure of C? manifold with boundary. Let f : W — R be
a Cb! functional, where W is an open set containing M. For applying the usual
topological methods of critical points theory we need a suitable notion of critical
point for f on M. We recall the following notions: lower gradient of f on M, (P.S.),
condition and the relative category (see [5]).

Definition 2.4. If u € M, the lower gradient of f on M at u is defined by

Vf(u) if u € int(M), (2.5)

el = {Vf(u) +[< VI () >] v(w) i ue oM.

where we denote by v(u) the unit normal vector to OM at the point u, pointing
outwards.
We say that u is a lower critical for f on M, if grad;; f(u).

Definition 2.5. Let ¢ € R. We say that f satisfies the (P.S.). condition on M if
for any sequence (uy,)y, in M such that f(u,) — ¢ and grady; f(u,) — 0 there exists
a subsequence (uy, ) which converges to a point w in M such that grady; f(u) = 0.

Let Y be a closed subspace of M.

Definition 2.6. Let B be a closed subset of M with Y C B. We define the relative
category catysy (B) of B in (M,Y), as the least integer h such that there exist h+1
closed subsets Uy, Uy, ..., Uy with the following properties:

BcUyUJU U---UUy;

Ui,...,U are contractible in M;

Y C Up and there exists a continuous map F : Uy x [0,1] — M such that

F(z,0) = =z vz € U,
F(x,t) € Y Vx € Y,Vt € [0,1],
F(z,1) € Y Va € Up.

If such an h does not exist, we say that catysy (B) = +o0.

Now we recall a theorem which gives an estimate of the number of critical points
of a functional, in terms of the relative category of its sublevels (see [10]).

Theorem 2.7. Let Y be a closed subset of M. For any integer i we set
¢; = inf{sup f(B)| B is closed, Y C B, catpy(B) > i}.
Assume that (P.S.). holds for ¢ = ¢; and that sup f(Y) < ¢; < +oo. Then ¢; is
a lower critical level for f, that is, there exists u in M such that f(u) = ¢; and
grady; f(u) = 0. Moreover, if
Ci = Ci+1 = " = Ciqk—1 = C,
then
catyr({u € M| f(u) = ¢, grady; f(u) =0}) > k.

We recall the “nonsmooth” version of the classical Deformation Lemma in [3].
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Lemma 2.8 (Deformation Lemma). Let h : H — R U {+00} be a lower semi-
continuous function and assume h to be p-conver of order 2. Letc € R, § > 0 and
D be a closed set in H such that

inf{||grad;h(z)||| c — 6 < h(z) < c+ 4, dist(z,D) < 0} > 0.
Then there exists € > 0 and a continuous deformationn : h“ ¢ NDx[0,1] — h°T¢NDs
(Ds is the §-neighborhood of D and h® = {z|h(z) < ¢}) such that

(i) n(z,0) ==z Vo e h“ten D,
(ii) n(z,t) == Vo € h°" <N D,Vt € [0,1],
(iil) n(z,1) € ¢ Ve N D,V e [0, 1].

We recall the following multiplicity result which can be obtain from Theorem 2.5
in [10], which will be used in the proofs of our main theorems.

Theorem 2.9. Let E be a Hilbert space and let E = X1 & Xo & X3, where X1,
Xo, X3 are three closed subspaces of E with X of finite dimension. Moreover for
a given subspace X of E, let Px be the orthogonal projection from E onto X. Set

C={r e X| ||Pxyx| > 1}

and let f : W — R be a CY' function defined on a neighborhood W of C. Let
1< p<R, p>0 be asmall number and Ry > 0 and we define

Sa(r) ={U € Xy 2] =r},
Bia(r) ={U € X1 & Xy ||z| <1},
Si2(r) ={U € X1 ® Xo| [|lz|| =1},
Ag3(S2(p), X3) ={U =Us+Us € Xo® X32| Uz € Sa(p), Us € X3,||U1+Us| < R},
Y23(82(p), X3) ={U = U2+ Us € Xo® X3| U € S2(p), Us € X3, |U2+Us| = R||}.
Let
a = inf f(¥23(52(p), X3)), b =sup f(Bia(r)).

Assume that

sup f(S12(r)) <inf f(Z23(S2(p), X3)).

Assume that the (P.S.). condition holds for f on C, Ve € [a,b]. Assume that
flxiexs has no critical points with a < f(u) < b. Moreover we assume b <
+00. Then there exist two lower critical points uy, us for f on Int C such that

inf f(X23(S2(p), X3)) < f(us) < sup f(Bia(r)), i = 1,2.
3. PROOF OF THEOREM 1.1

Assume that H satisfies the conditions (H1) — (H4) hold. Let us consider the
eigenvalue problem on E

(3.1) —AU(z) = \U(z) in Q,

U=46 on 012,
where U = (u1,...,u,), 8 =(0,...,0), \€ Rand U € E.
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Let us set
X1 = span{eigenvectors belonging to the eigenvalue A of (3.1) , A < Ap},
X9 = span{eigenvectors belonging to the eigenvalue A of (3.1) ; Ap11 < A < Mo}
X3 = span{eigenvectors belonging to the eigenvalue A of (3.1) , A > Apipma1}-

Then X;, i = 1,2,3, are subspaces of F and E = X; & Xo & X3, where X» is
m—dimensional subspace.

Lemma 3.1. Let o and 8 be any number with \j, < oo < Apy1 < -+ < Ajpm < B <
Njtma1. If U is a critical point for I|x,¢x,, then I(U) = 0.

Proof. We notice that from Lemma 3.1, for fixed U; € X, the functional Ug —
I(Uy + Us) is weakly convex in X3, while, for fixed Us € X3, the functional U;
I(Uy + Us) is strictly concave in X;. Moreover 6 is the critical point in X @ X3
with I(#) = 0. So if U = Uy + Us is another critical point for I|x gx,), then we
have

So we have I(U) = I(6) = 0. O

Let Px, be the orthogonal projection from E onto X2 and
C={Z < E| |Px,Z| = 1}

Then C' is the smooth manifold with boundary. Let us define a functional ¥ :
E\({Xl@Xg) —)Eby

Px, 7 1
(3.2) V() =7 - 222 _ p. XZ+<1—7)PX Z.
| Px, Z|| 1 | Px,Z||/~ —*

We have

1 Px.,Z Px.,Z
3.3 V\IIZ-W:W—7<PXW—< 2 ,W> 2 )
33 V@) IR R T R oo
Let us define the functional I : C' — R by

I=TIo0W0.
Then I € Cllo’cl. We note that if Z is the critical point of I and lies in the interior of

C, then Z = ¥(Z) is the critical point of I. We also note that

(3.4) lgrad;1(Z)|| > || Px,ex, DI(¥(2))|  VYZ € dC.
Let us set ~
Sa(r) = W (Sa(r)),
Sa(r) = U (Bia(r)),
Si2(r) = U (S1a(r)),
Ags(S2(p), X3) = U1 (An3(S2(p), X3)),
D3(S2(p), X3) = T~ (Da3(S2(p), X3)).

3) and Egg(Sg(p),Xg) have
the same topological structure as Sa(r), Bia(r), Sia(r), As(Sa(p), X3) and

Y93(S2(p), X3) respectively.
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Lemma 3.2. Assume that H satisfies the conditions (H1) — (H4) hold. Then the
functional I satisfies (P.S.). condition for every c € R.

Proof. Let (U,), be a sequence in E such that I(U,,) — cand DI(U,,) — 0. We shall
show that (Up,), has a convergent subsequence. We claim that (U,,), is bounded.
By contradiction, we suppose that ||U,| — 400 and set W,, = Hg—z” Up to a

subsequence W,, — Wy weakly for some Wy € E. By the asymptotically linearity
of DI(U,) we have

< \U [ >
/ [2 n HUnl(van)+"'+(HUnla"'aHUnn)'Un]
HU H HU [ 1Tl
where U, = (Up,,...,Uy,). Passing to the limit we get
2H(z,H,) (Hu,, --»Hu,,) Un
lim [ —
n—oo Jo L ||Usll 1Tl

Since H, Hy, are bounded and [|Uy|| — oo in ©, Wy = 0. Moreover we have

dx,

}dsz.

DI(U,) B —AU, (Hy,, ..., Hy,, ) Wy
STARLOES /[wnn T Ja
(Hy, ... . Hy, ) W
= /Q{—AWTL-Wn— Uy HUnJJ ]da:.

Since Wy, converges to 0 weakly and —A and Hy, are compact, Jo =AW, - Wydz =
[W,||? = 0. Thus W,, converges to 0 strongly, which is a contradiction. Thus (U,)
is bounded. Up to a subsequence, U, converges to U for some U € E. We claim
that U,, converges to U strongly. We have

(DI(U,), Un) = / (AU, U, — (Hy, ... Hy,, ) Uyldz — 0.
By the compactness of —Aﬂand Hy,.,
/Q—AUH~Und:c: Ak —>/Q—AU-Udac U
Thus we have that U,, converges to U strongly. Thus we have
DI(U) = nl;n;o DI(U,) = 0.
Thus we prove the lemma. O

Lemma 3.3. Assume that H satisfies the conditions (H1)—(H4). Then there exist
r >0, p>0 asmall number and R > 0 such that r < R, and for any o and 8 with
A << Apg1 <0 < N < B < Njpmat,

sup [(U) <0< inf I(U),
UeS12(r) U€X23(S2(p),X3)
inf I(U) > —oo, sup I(U) < .

UeAa3(S2(p),X3) UeBia(r)
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Proof. Since

sup I[(U)= sup I(U), inf I(U) = inf I(U)
UeS1a(r) UeSia(r) U€S23(S2(p),X3) U€Xa3(S2(p),X3)
and
inf I(U) = inf I(U), sup I(U)= sup I(U),
UeNa3(S2(p), X3) U€A23(S2(p),X3) U€eBia(r) U€Bia(r)

it suffices to show that

sup I(U) <0< inf I(U),
UeSia(r) U€X23(52(p),X3)
inf I(U) > —oo, sup I(U) < oo.
U€eA23(S2(p),X3) UeBia(r)

Let U =U; + Uy € X1 @ Xo. By (H4) and Lemma 2.3, there exists a constant M
such that
1

I(U) = 2/9[—AU'U]da:—/QH(a:,U($))d$

1 _
< 51U+ Ua|? = JJU0 + Ual32 + A1)

1
5(
Since Ap4m — 7 < 0, there exists r > 0 such that if Uy + Uz € Sia(r), then I(z) < 0.
Thus supyeg,, -y 1(U) < 0. Moreover, if U € Bia(r), then I(U) < M|Q| < oo, so we
have supyep,,(r) I(U) < oo. Next we will show that there exist > 0, p > 0 a small
number and R > 0 such that if A\, < o < Apa1 < - < Apam < B < Aprma1, then
infU6223(52(p)7X3) I(U) > 0. Let U =U; + Uz € Xo® X3 with Uy € X5, Us € X3.
Let o and § be any number such that A\, < o < App1 < -+ < Apam < 8 < Aptmat,
a > 0. By (H2) and Lemma 2.3, there exist M > 0, M such that

< Z(Mngm — VUL + Ua|72 + M|Q).

1 _ 1
GHU(@.U) U =M < H(x,U) < JHy(2,U) - U + M

Thus we have

Hm-—;A}MWWM—AHmUme
> ;A}M%WM—;AHMLW@me—MM

1 1 1
= IO+ Sl = 5 [ Hule U@) - Uads
Q
1
—Q/Hm@w@y%m—Mmy
Q
By (H2), we have

1 1
I(U) > Q(Ahﬂ - B)U2|l72 + 5()\h+m+1 — B)|IUs]|7> — d.

Since Ap41 — B < 0 and Ap4q1 — B < 0, there exists a small number p > 0 and R > 0
such that if U € $93(52(p), X3), I(U) = 5(Aug1 — B)p* + 5 (Angmer — B)|Us| 22 — d.
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Thus we have inf I(U) > 0. Moreover if U € Ag3(S2(p), X3), then I(U) > 2 (Apq1 —
B)p? —d > —oo. Thus we prove the lemma. O

Lemma 3.4. Assume that H satisfies the conditions (H1) — (H4) hold. Then the
functional I satisfies (P.S.). condition with respect to C for any ¢ such that

0<  inf I(Z)<ec< sup I(D),
Z€%93(52(p),X3) UeBia(r)

where r >0, p >0 and R > 0 are introduced in Lemma 3.3.

Proof. Let (Z,), be a sequence in C such that I(Z,) — ¢ and gradaf(jn) — 0.
Set Z, = V(Z,) (and hence Z, € E) and I(z,) — c¢. We first consider the case in
which Z,, ¢ X; @ X3. We have

DI(Zy) = V'(Z,)(DI(Zy)) = V' (Z,)(DI(z,) — 0.
By (3.3) and (3.4),
DI(Z,) — 0 or
(3.5) PX1@X3DI(ZTL) — 0 and PXQZn — 0.

In the first case the claim follows from the Palais-Smale condition for I. In the sec-
ond case Py, gx,)DI(Z,) — 0. We claim that (Z,), is bounded. By contradiction,

we suppose that ||Z,|| = +oco and set W,, = ”g—z” Up to a subsequence W,, — W
weakly for some Wy € X1 @ X3. By the asymptotically linearity of DI(Z,,) we have

DI(Zy) DI(Zy) DI(Zy)
n)— ) n 7P Zn :
Tzl ") = {Prex Tz W) + (g Pron) — 0
We have
DI(Z,) 21(Z,) / 2H(t,Z,) Hz(xz,Zy,) W,
; n,/) — - + d.ﬁU,
< 1 Zn|| > 1Z |2 Q[ 122 1 Zn|| }
where Z,, = ((Zn)1,- .-, (Zn)2n). Passing to the limit we get
2H Zn Hz aZn ) n
(1, 7)  Holw, Z0) Wal o

lim [
n—oo Jo L[| Zy]? 1Zy||

Since H and Hy(z, Z,) - Z, are bounded and ||Z,| — oo in 2, Wy = 0. On the
other hand we have

< DI(Zy)

Hy(x, Z,
PX1@X377WN> = [_AWan_PX1®X3M
12 0

) - Wy |dz.
12l ]

Moreover we have

DI(Z Hy(z, Z
<PX1€BX3M7WH> = ||PX1@X3WH||2 _/ PX1€BX3M - Whdzx.
1 Zn|| Q 1 Zn||

Since W, converges to 0 weakly and Hz(x, Z,)-W,, is bounded, || Py, ax;Wa|* — 0.
Since ||Px,ax;Wal|?* — 0, W, converges to 0 strongly, which is a contradiction.
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Hence (Z,), is bounded. Up to a subsequence, we can suppose that Z, converges
to Zy for some Zy € X1 @ X3. We claim that Z,, converges to Z; strongly. We have

(Pxi0x5DI(Zn), Zn)

= | Px,0x:Znl® = Px,0x, /QHZ(J% Zn) - Zn.-
By (H1) and the boundedness of Hz(x, Z,)(Z,),

|1 Py xs Zn|* — PXl@Xg/QHZ(x,Z) - Z.

That is, ||Px,ex;2Znl|? converges. Since ||Px,Zn|> — 0, ||Z,||* converges, so Z,
converges to z strongly. Therefore we have
grad I(Z) = grad I1(Z) = nh_)néo grad-I(Zy,)
= nl;rgo grad-1(Z,) = 0.

So we proved the first case. We consider the case Px,Z, =0, Le., Z, € X1 ® X3.
Then Z,, € 0C, Vn. In this case Z, = V(Z,) € X1 & X3 and Px,ex,DI(Z,) — 0.
Thus by the same argument as the first case we obtain the conclusion. So we prove
the lemma. O

Proof of Theorem 1.1. By Lemma 2.1, the functional 1:(2) is continuous, Fréchet
differentiable and I € C?. By Lemma 3.3, there exist » > 0, p > 0 a small number
and R > 0 such that » < R, and for any o and 8 with A\, < o < Ap1 < -+ <
Ajtm < B < Njgm+1,

(3.1) sup [(U) <0< inf I(U),
UeSia(r) U€Xa3(S2(p),X3)
i inf I(U) > —oo0, sup I(U) < .
U€a3(S2(p),X3) UeBa(r)

By Lemma 3.4, I satisfies (P.S.). condition with respect to C for any ¢ such that

0<  inf [(Z)<ec< sup I(D).
Z€%93(52(p),X3) UeBia(r)

By Theorem 2.9, there exist two critical points Z1, Zs for the functional I such that

0<  inf [(Z2)<1(Z;)< sup 1(2).
2€%23(52(p),X3) Z€B1a(r)

Setting Z; = W(Z;), i = 1,2, we have
0< inf I1(Z)<I(Z;) < sup I(2).
Z€%23(52(p),X3) 2 (Z) ZeBia(r) (@)

We claim that Z; ¢ dC, that is Z; ¢ X1 @ X3, which implies that z; are the critical
points for I in X5. For this we assume by contradiction that Z; € X; & X3. From
(3.5), Px,ex,DI(Z;) = 0, namely, Z;, ¢ = 1,2, are the critical points for I|x,qx,.
By Lemma 3.1, I(Z;) = 0, which is a contradiction for the fact that

0< inf 1(Z)<I(Z;) £ sup I(Z).
Z€X93(52(p),Xs) 2) (Z) ZEB12(r) )
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Lemma 3.1 implies that there is no critical point z € X; & X3 such that

0< inf I1(Z)<I1I(Z)< sup I(Z).
Z€%23(52(p),X3) ) (2 ZEB12(r) (2)
Hence Z; ¢ X1 @ X3, i = 1,2. Thus we prove Theorem 1.1. U
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