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some point in the closed subset C, Jeyakumar and Li in [17] presented some con-
straint qualifications which completely characterize the Lagrange duality in Banach
spaces; and they established necessary and sufficient conditions for stable Lagrange
duality in [18] under the assumptions that C = X and g is continuous.

Recently, mathematical programming problems under uncertainty have received
much attention (cf. [4–7,19,21,24] and the references therein). As mentioned in [19],
the study of convex programming problems that are affected by data uncertainty is
becoming increasingly important in optimization due to the reality of uncertainty
in many real-world optimization problems and the importance of identifying and
locating solutions that are immunized against data uncertainty. In particular, many
authors considered the following uncertain convex programming problem (cf. [4,19,
21,24] and the references therein),

(1.1)
inf f(x),
s.t. gi(x, vi) ≤ 0,∀vi ∈ Vi, i = 1, . . . ,m,

x ∈ C,

and its dual problems

(1.2) sup
λi≥0,vi∈Vi

inf
x∈C

{
f(x) +

m∑
i=1

λigi(x, vi)
}
,

and

(1.3) sup
λi≥0

inf
x∈C

sup
vi∈Vi

{
f(x) +

m∑
i=1

λigi(x, vi)
}
,

where f : Rn → R is convex, gi : Rn ×Rq → R, gi(·, vi) is convex and vi ∈ Rq is the
uncertain parameter which belongs to the uncertainty set Vi ⊆ Rq, i = 1, . . . ,m.
Under some additional assumptions, they established the Lagrange duality and the
strong Lagrange duality between (1.1) and (1.2) and, between (1.1) and (1.3).

Inspired by the works mentioned above, we continue to study the conical op-
timization problem (P) but with data uncertainty in the constraints, that is, the
problem defined by

(UP )
inf f(x),
s.t. x ∈ C, gu(x) ∈ −S,

where u is the uncertain parameter which belongs to the set U and, for each u ∈ U ,
gu : X → Y is a proper S-convex mapping with respect to the cone S. The Lagrange
dual problem of (UP ) is given by

(UD) sup
λ∈S⊕

inf
x∈C

{f(x) + λgu(x)}.

Following [24], we study the Lagrange duality for the uncertain conical program-
ming problem (UP ) by examining its robust counterpart, where the constraints are
enforced for every parameter u in the prescribed set U ,

(1.4) (RP )
inf f(x),
s.t. x ∈ C, gu(x) ∈ −S, ∀u ∈ U , .
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the optimistic counterpart of the uncertain Lagrange dual problem (UD)

(1.5) (OLD) sup
λ∈S⊕

sup
u∈U

inf
x∈C

{f(x) + (λgu)(x)},

and the (standard) Lagrangian dual of the robust counterpart

(1.6) (RLD) sup
λ∈S⊕

inf
x∈C

sup
u∈U

{f(x) + (λgu)(x)}.

In particular, in the case when U is a singleton, problem (RP ) is reduced to problem
(P) and problems (OLD) and (RLD) are coincided with problem (D). Moreover,
in the case when S = Rm

+ := {(x1, . . . , xm) ∈ Rm : xi ≥ 0}, U =
∏m

i=1 Vi and, for
each u = (u1, . . . , um) ∈ U , define the function gu : Rn → Rm by

gu(x) := (g1(x, u1), . . . , gm(x, um)) for each x ∈ Rn,

then problem (1.1) can be viewed as an example of (RP ).
Clearly, the optimal values of these problems, v(RP ), v(OLD) and v(RLD), re-

spectively, satisfy the so-called weak Lagrange duality, that is, v(RP ) ≥ v(RLD) ≥
v(OLD). The Lagrange duality between primal problem and dual problem, that
is, v(RP ) = v(OLD) ( or v(RP ) = v(RLD)), is a key ingredient of duality the-
ory, which often reveals deep information that is not explicit in the original prob-
lem. Recently, the strong Lagrange duality between (RP ) and (OLD), that is,
v(RP ) = v(OLD) and problem (OLD) has an optimal solution, was established
in [24] in the case when X = C, f is lsc and gu is continuous for each u ∈ U .
Obviously, the strong Lagrange duality ensures the Lagrange duality. However, the
converse is often not true. In this paper, we focus our interest on the stable La-
grange duality between (RP ) and (OLD) and, between (RP ) and (RLD), that is,
the situation when for each p ∈ X∗,

(1.7) inf
x∈A

{f(x)− ⟨p, x⟩} = sup
λ∈S⊕,u∈U

inf
x∈C

{f(x) + λgu(x)− ⟨p, x⟩},

and

(1.8) inf
x∈A

{f(x)− ⟨p, x⟩} = sup
λ∈S⊕

inf
x∈C

sup
u∈U

{f(x) + λgu(x)− ⟨p, x⟩}.

Our main aim in the present paper is to give some new regularity conditions
which completely characterize the stable Lagrange dualities. In general, we do
not impose any topological assumption on C, U or on f and gu, u ∈ U , that is,
C is not necessarily closed, U is not necessarily compact and f, gu(u ∈ U) are
not necessarily lsc. Most results obtained in this paper seem new and are proper
extensions of the known results in [17,18,21], in particular, even in the special case
when U is a singleton, our Corollary 4.4 and Theorem 4.5 improve the corresponding
results in [18, Theorem 3.1] and [17, Theorem 4.1], respectively; and our Theorem
4.5 extends and improves the result in [21, Theorem 3.1] for the uncertain convex
programming problem (1.1).

This paper is organized as follows. The next section contains some necessary no-
tations and preliminary results. In Section 3, a new regularity condition is provided
and several properties of this condition are given. The stable Lagrange dualities be-
tween (RP ) and (OLD) and, between (RP ) and (RLD), are obtained in Section 4.
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2. Notations and preliminary results

The notation used in the present paper is standard (cf. [28]). In particular, we
assume throughout the whole paper that X and Y are real locally convex Hausdorff
topological vector spaces, and let X∗ denote the dual space, endowed with the
weak∗-topology w∗(X∗, X). By ⟨x∗, x⟩ we denote the value of the functional x∗ ∈ X∗

at x ∈ X, i.e. ⟨x∗, x⟩ = x∗(x). Let Z be a set in X. The interior (resp. closure,
convex hull) of Z is denoted by intZ (resp. clZ, coZ). If W ⊆ X∗, then clW
denotes the weak∗-closure of W . For the whole paper, we endow X∗ × R with the
product topology of w∗(X∗, X) and the usual Euclidean topology.

The indicator function δZ of the nonempty set Z is defined by

δZ(x) :=
{

0 x ∈ Z,
+∞ otherwise.

Let f : X → R be a proper function. The effective domain and the epigraph of f
are respectively defined by dom f := {x ∈ X : f(x) < +∞} and epi f := {(x, r) ∈
X × R : f(x) ≤ r}. As usual, the conjugate function f∗ : X∗ → R of f is defined
by

f∗(x∗) := sup{⟨x∗, x⟩ − f(x) : x ∈ X} for each x∗ ∈ X∗.

Clearly, f∗ is a proper convex lsc function and epi f∗ is weak∗-closed. Moreover,
epi(αf)∗ = αepi f∗ for any α > 0. The lsc hull, the lsc convex hull of f , denoted
respectively by clf and cl(cof), are defined by

epi (clf) = cl(epi f),

and
epi (cl(cof)) = cl(co(epi f)).

Then (cf. [28, Theorems 2.3.1(iv)]),

(2.1) f∗ = (cl f)∗ = (cl(co f))∗ and f∗∗ ≤ cl(co f) ≤ clf ≤ f.

By definition, the Young-Fenchel inequality below holds:

(2.2) f(x) + f∗(x∗) ≥ ⟨x, x∗⟩ for each pair (x, x∗) ∈ X ×X∗.

If g, h are proper functions, then

(2.3) epi g∗ + epih∗ ⊆ epi (g + h)∗,

and

(2.4) g ≤ h ⇒ g∗ ≥ h∗ ⇔ epi g∗ ⊆ epih∗.

Furthermore, the infimal convolution of g and h as the function g□h : X → R ∪
{±∞} is defined by

(g□h)(x) := inf
z∈X

{g(z) + h(x− z)}.

If g and h are proper and domg ∩ domh ̸= ∅, then by [28, Theorem 2.3.1(ix)], we
have that

(2.5) (g□h)∗ = g∗ + h∗.

Moreover, by definition,

(2.6) epig + epih ⊆ epi(g□h).
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Note that an element p ∈ X∗ can be naturally regarded as a function on X in such
a way that

(2.7) p(x) := ⟨p, x⟩ for each x ∈ X.

Thus the following facts are clear for any a ∈ R and any function h : X → R:
(2.8) (h+ p+ a)∗(x∗) = h∗(x∗ − p)− a for each x∗ ∈ X∗;

(2.9) epi(h+ p+ a)∗ = epih∗ + (p,−a).

Let {ft : t ∈ T} be a family of proper lsc convex functions on X, where T is an
arbitrary index set. The infimum and supremum function of the family {ft : t ∈ T}
are denoted by inft∈T ft and supt∈T ft and are defined by

(inf
t∈T

ft)(x) := inf
t∈T

ft(x) and (sup
t∈T

ft)(x) := sup
t∈T

ft(x) for each x ∈ X,

respectively. The following lemma will be useful in the sequel. In particular, state-
ment (i) is well known in [16,23] and statements (ii) and (iii) were used in [28, The-
orem 2.13(i)] and [23, (2.5)], respectively.

Lemma 2.1. Let T be an index set and let {ft : t ∈ T} be a family of functions.
Suppose that the supremum function supt∈T ft is proper. Then the following state-
ments hold.

(i) epi(sup
t∈T

ft)
∗ = cl

(
co

∪
t∈T

epif∗
t

)
.

(ii) epi (sup
t∈T

ft) =
∩
t∈T

epi ft.

(iii) (inf
t∈T

ft)
∗ = sup

t∈T
f∗
t ; consequently, epi (inf

t∈T
ft)

∗ =
∩
t∈T

epi f∗
t .

The following lemma is known in [28].

Lemma 2.2. Let g, h : X → R be proper convex functions satisfying dom g ∩
domh ̸= ∅.

(i) If g, h are lsc, then

(2.10) epi (g + h)∗ = cl (epi g∗ + epi h∗).

(ii) If either g or h is continuous at some point of dom g ∩ domh, then

(2.11) epi(g∗□h∗) = epi (g + h)∗ = epi g∗ + epi h∗.

3. Regular condition for robust conical programming

Throughout this paper, let X, Y, Z be real locally convex Hausdorff topological
vector spaces, C ⊆ X be a nonempty convex set and U be a convex subset of Z.
Let S ⊆ Y be a convex cone. Its dual cone S⊕ is defined by

S⊕ := {y∗ ∈ Y ∗ : ⟨y∗, y⟩ ≥ 0 for each y ∈ S}.
Define an order on Y by saying that y ≤S x if y−x ∈ −S. We attach a greatest ele-
ment ∞ with respect to ≤S and denote Y • := Y ∪{+∞}. The following operations
are defined on Y •: for any y ∈ Y , y+∞ = ∞+ y = ∞ and t∞ = ∞ for any t ≥ 0.
Let f : X → R be a proper convex function, and for each u ∈ U , gu : X → Y •
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be S-convex in the sense that for every x, y ∈ domgu := {x ∈ X : gu(x) ∈ Y } and
every t ∈ [0, 1],

gu(tx+ (1− t)y) ≤S tgu(x) + (1− t)gu(y)

(see [16]). Also, we always assume that gu is proper for each u ∈ U . Following
[12,23], we define for each λ ∈ S⊕,

(λgu)(x) :=

{
⟨λ, gu(x)⟩ if x ∈ dom gu,

+∞ otherwise.

It is easy to see that gu is S-convex if and only if (λgu)(·) : X → R is a convex
function for each λ ∈ S⊕. For each u ∈ U , denote g−1

u (−S) := {x ∈ domgu : gu(x) ∈
−S} and set

D :=
∩
u∈U

g−1
u (−S) = {x ∈ X : gu(x) ∈ −S for each u ∈ U}.

Let A denote the solution set of the system {x ∈ C : gu(x) ∈ −S, u ∈ U}, that is
A := C ∩D = {x ∈ C : gu(x) ∈ −S for each u ∈ U}.

To avoid trivially, we always assume that A ∩ domf ̸= ∅. Let λ ∈ S⊕. Recall that
the supremum function of the family {λgu : u ∈ U} is denoted by supu∈U λgu, that
is

(sup
u∈U

λgu)(x) := sup
u∈U

(λgu(x)) for each x ∈ X.

Motivated by [17,21], we define the characteristic function g♢ : X∗ → R by

g♢(x∗) = inf
λ∈S⊕,u∈U

(λgu)
∗(x∗) for each x∗ ∈ X∗.

Then, by definition, (λgu)
∗ ≥ g♢ for each λ ∈ S⊕ and u ∈ U . This together with

(2.4) implies that

(3.1)
∪

λ∈S⊕,u∈U

epi(λgu)
∗ ⊆ epig♢.

Recall from [23,25] that a function h : X → Y • is said to S-epi-closed if

epiS(h) := {(x, y) ∈ X × Y : y ∈ g(x) + S}
is closed. The following proposition, which will be useful in our study, gives some
properties of the function g♢.

Proposition 3.1. (i) g♢ is a proper function on X∗.
(ii) epig♢ is a cone.
(iii) If C is closed and gu is S-epi-closed for each u ∈ U , then

(3.2) epiδ∗D = cl(co(epig♢)) = cl
(
co
( ∪

λ∈S⊕,u∈U

epi (λgu)
∗
))

and

(3.3) epiδ∗A = cl(co(epiδ∗C + epig♢)) = cl
(
co
(
epiδ∗C +

∪
λ∈S⊕,u∈U

epi (λgu)
∗
))

.
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Proof. (i) Since for each u ∈ U and λ ∈ S⊕, λgu ≤ δD, it follows form (2.4) that

(3.4) (λgu)
∗ ≥ δ∗D for each λ ∈ S⊕ and u ∈ U ,

this implies that g♢ ≥ δ∗D > −∞. Moreover,

(3.5) g♢(0) = − sup
λ∈S⊕,u∈U

inf
x∈X

(λgu)(x) ≤ − inf
x∈X

(0 · gu0)(x) = 0,

where u0 ∈ U . This implies that 0 ∈ domg♢. Hence, g♢ is proper.
(ii) Note by (3.5) that (0, 0) ∈ epig♢. Let (x∗, r) ∈ epig♢ and let α > 0. Then

g♢(αx∗) = inf
λ∈S⊕,u∈U

(λgu)
∗(αx∗) = α inf

λ∈S⊕,u∈U

(λ
α
gu

)∗
(x∗) = αg♢(x∗).

Thus, α(x∗, r) ∈ epig♢. This implies that epig♢ is a cone.
(iii) Suppose that C is closed and gu is S-epi-closed for each u ∈ U . Let u ∈ U

and let Du := {x ∈ C : gu(x) ∈ −S}. Then Du is closed and convex and epiδ∗Du
=

cl(∪λ∈S⊕epi(λgu)
∗) (cf. [12, Proposition 6.4]). Note that δD = supu∈U δDu . It follows

from Lemma 2.1(i) that

(3.6) epiδ∗D = cl
(
co
( ∪

u∈U
epiδ∗Du

))
= cl

(
co
( ∪

λ∈S⊕,u∈U

epi (λgu)
∗
))

.

This together with (3.1) implies epiδ∗D ⊆ cl(co(epig♢)); while, by (2.4) and (3.4),

epig♢ ⊆ epiδ∗D and hence cl(co(epig♢)) ⊆ epiδ∗D as epiδ∗D is weak∗-closed and convex.
Thus,

(3.7) epiδ∗D = cl(co(epig♢)).

Combing this with (3.6), we see that (3.2) holds. Moreover, note that D and C are
closed and so δ∗D and δ∗C are lsc. Then by Lemma 2.2(i), we have

epiδ∗A = cl(epiδ∗C + epiδ∗D) = cl(epiδ∗C + cl(co(epig♢))) = cl(co(epiδ∗C + epig♢))

= cl
(
co
(
epiδ∗C +

∪
λ∈S⊕,u∈U

epi (λgu)
∗
))

.

Hence, (3.3) holds and the proof is complete. □
To study the Lagrange dualities, we introduce the following new constraint qual-

ification.

Definition 3.2. It is said that the family {f, δC ; gu : u ∈ U} satisfies the constraint
qualification (CQ) if

(3.8) epi(f + δA)
∗ = epi((f + δC)

∗□g♢).

The following proposition presents some equivalent conditions to ensure the (CQ)
to hold.

Proposition 3.3. (i) The following inclusion holds:

(3.9) epi((f + δC)
∗□g♢) ⊆ epi(f + δA)

∗.

Consequently, the family {f, δC ; gu : u ∈ U} satisfies the (CQ) if and only if

(3.10) epi(f + δA)
∗ ⊆ epi((f + δC)

∗□g♢).
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(ii) Suppose that

(3.11) f is lsc, C is closed and gu is S-epi-closed for each u ∈ U .

Then the family {f, δC ; gu : u ∈ U} satisfies the (CQ) if and only if epi((f+δC)
∗□g♢)

is weak∗-closed and convex.

Proof. (i) Let

E := {x ∈ X : cl(λgu)(x) ≤ 0 for each u ∈ U and λ ∈ S⊕}.

Then, D ⊆ E and

(g♢)∗ = ( inf
λ∈S⊕,u∈U

(λgu)
∗)∗ = sup

λ∈S⊕,u∈U
(cl(λgu)) = δE ,

where the second equality holds by Lemma 2.1(iii). Thus, by (2.5), we have

(3.12) ((f + δC)
∗□(g♢)∗∗)∗∗ = (cl(f + δC) + (g♢)∗)∗ = (cl(f + δC) + δE)

∗.

While, by definitions,

(3.13) cl(f + δC) + δE ≤ f + δC + δD ≤ f + δA,

and

(3.14) ((f + δC)
∗□(g♢)∗∗)∗∗ = cl((f + δC)

∗□(g♢)∗∗) ≤ (f + δC)
∗□g♢.

Hence, by (2.4) and (3.12)-(3.14), we have that

epi((f + δC)
∗□g♢) ⊆ epi(cl(f + δC) + δE)

∗ ⊆ epi(f + δA)
∗.

(ii) To show the equivalence of (CQ) and the closedness and convexity of epi((f+
δC)

∗□g♢), we only need to show that

(3.15) epi(f + δA)
∗ = cl(co(epi((f + δC)

∗□g♢))).

To do this, by (3.9) and the convexity and closedness of epi(f + δA)
∗, one has that

(3.16) cl(co(epi((f + δC)
∗□g♢))) ⊆ epi(f + δA)

∗.

Conversely, since f and δA are lsc by (3.11), it follows from Lemma 2.2(i) that

(3.17) epi(f + δA)
∗ = cl(epif∗ + epiδ∗A) = cl(co(epif∗ + epiδ∗C + epig♢)),

where the last equality holds by Proposition 3.1(iii). Moreover, by (2.3),

epif∗ + epiδ∗C ⊆ epi(f + δC)
∗.

This together with (3.17) and (2.6) implies that

epi(f + δA)
∗ ⊆ cl(co(epi((f + δC)

∗□g♢))).

Combining this with (3.16), we see that (3.15) holds, which completes the proof. □

To study the strong Lagrange duality of problems (RP ) and (OLD), the authors
in [24] introduced the following condition:

(3.18) epi f∗ + epi δ∗C +
∪

λ∈S⊕,u∈U

epi (λgu)
∗ is weak∗-closed and convex.
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Under the assumptions that C = X, f is lsc and gu is continuous for each u ∈ U ,
they proved that the strong Lagrange duality holds between (RP ) and (OLD). Note
that under the above assumptions, (3.18) is equivalent to the following condition:

(3.19)
∪

λ∈S⊕,u∈U

epi(f + δC + λgu)
∗ is weak∗-closed and convex.

The following proposition shows that the condition (3.18) is stronger than the (CQ).

Proposition 3.4. Suppose that (3.11) holds. Then

(3.20) (3.18) =⇒ (CQ).

Proof. Suppose that (3.18) holds. By Lemma 2.2(i) and proposition 3.1(iii), we see
that

epi(f + δA)
∗ = cl(epif∗ + epiδ∗A) = cl(co(epi f∗ + epiδ∗C +

∪
λ∈S⊕,u∈U

epi (λgu)
∗)).

This together with (3.18) implies that

(3.21) epi(f + δA)
∗ = epi f∗ + epiδ∗C +

∪
λ∈S⊕,u∈U

epi (λgu)
∗;

while, by (2.3), (3.1) and (2.6),

epif∗ + epiδ∗C +
∪

λ∈S⊕,u∈U

epi(λgu)
∗ ⊆ epi(f + δC)

∗ + epig♢ ⊆ epi((f + δC)
∗□g♢).

Hence, (3.10) holds. Therefore, by Proposition 3.3(i), the (CQ) holds and the proof
is complete. □

The following example shows that the converse of Proposition 3.4 does not nec-
essarily hold in general.

Example 3.5. Let X = Y = C := R, S := [0,+∞) and U := [−1, 0]. Let
f, gu : R → R be defined by f := δ[0,+∞) and gu(x) := x2 + u for each x ∈
R and u ∈ U . Then epif∗ = (−∞, 0] × [0,+∞) and A := {x ∈ C : gu(x) ∈
−S for each u ∈ [−1, 0]} = {0}. Thus, epi(f + δA)

∗ = R × [0,+∞). Moreover,
since for each λ ≥ 0 and u ∈ [−1, 0],

(λgu)
∗(x∗) =

{ (x∗)2

4λ − λu, λ > 0,
δ{0}(x

∗), λ = 0,

it follows that g♢ = 0. Hence,

epi((f + δC)
∗□g♢) = R× [0,+∞) = epi(f + δA)

∗,

that is, the (CQ) holds. However, note that∪
λ≥0,u∈[−1,0]

epi(λgu)
∗ = R× (0,+∞) ∪ {(0, 0)}.

Then
epif∗ + epiδ∗C +

∪
λ≥0,u∈[−1,0]

epi(λgu)
∗ = R× (0,+∞) ∪ {(0, 0)}

and so (3.18) does not hold.
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4. Stable Lagrange duality for robust conical programming

Let p ∈ X∗. Consider the primal problem

(4.1) (RP )p
inf f(x)− ⟨p, x⟩,
s.t. x ∈ C, gu(x) ∈ −S for each u ∈ U ,

and its Lagrange dual problems defined respectively by

(4.2) (OLD)p sup
λ∈S⊕

sup
u∈U

inf
x∈C

{f(x)− ⟨p, x⟩+ (λgu)(x)}

and

(4.3) (RLD)p sup
λ∈S⊕

inf
x∈C

sup
u∈U

{f(x)− ⟨p, x⟩+ (λgu)(x)}.

In the case when p = 0, problem (RP )p and its dual problem (OLD)p (resp.
(RLD)p) are reduced to problem (RP ) and its dual problem (OLD) (resp. (RLD))
defined in (1.4) and (1.5) (resp. (1.6)), respectively. Let v((RP )p), v((OLD)p) and
v((RLD)p) denote the optimal values of (RP )p, (OLD)p and (RLD)p, respectively.
Then,

(4.4) v((OLD)p) ≤ v((RLD)p) ≤ v((RP )p) for each p ∈ X∗.

This implies that the stable weak Lagrange duality holds between (RP ) and (OLD)
and, between (RP ) and (RLD). This section is devoted to the study of the stable
Lagrange duality between (RP ) and (OLD) and, between (RP ) and (RLD), which
are defined as follows.

Definition 4.1. We say that
(a) the Lagrange duality holds between (RP ) and (OLD) (resp. (RLD)) if

v(RP ) = v(OLD) (resp. v(RP ) = v(RLD));
(b) the stable Lagrange duality holds between (RP ) and (OLD) (resp. (RLD))

if for each p ∈ X∗, the Lagrange duality holds between (RP )p and (OLD)p (resp.
(RLD)p) for each p ∈ X∗.

Note by the definition of conjugate function that

inf
x∈A

{f(x)− ⟨p, x⟩} = −(f + δA)
∗(p) for each p ∈ X∗.

Then for each r ∈ R and p ∈ X∗, the following equivalence holds:

(4.5) (p, r) ∈ epi(f + δA)
∗ ⇐⇒ v((RP )p) ≥ −r.

The following theorem characterizes completely the stable Lagrange dualities in
terms of the condition (CQ).

Theorem 4.2. Consider the following statements.
(i) The family {f, δC ; gu : u ∈ U} satisfies the (CQ).
(ii) The stable Lagrange duality holds between (RP ) and (OLD).
(iii) The stable Lagrange duality holds between (RP ) and (RLD).

Then (i)⇒(ii)⇒(iii). If for each λ ∈ S⊕ and u ∈ U ,

(4.6) epi(f + δC + λgu)
∗ ⊆ epi(f + δC)

∗ + epi(λgu)
∗,
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then (i)⇔(ii). If for each λ ∈ S⊕,

(4.7) cl
(
co
( ∪

u∈U
epi(λgu)

∗
))

⊆ epig♢

and

(4.8) epi(f + δC + sup
u∈U

λgu)
∗ ⊆ epi(f + δC)

∗ + epi(sup
u∈U

λgu)
∗,

then (i)⇔(iii).

Proof. (i)⇒(ii) Suppose that (i) holds. Let p ∈ X∗. If v((RP )p) = −∞, then
v((RP )p) = v((OLD)p) holds trivially by (4.4). Below we assume that −r :=
v((RP )p) ∈ R. Then, by (4.5),

(4.9) (p, r) ∈ epi(f + δA)
∗ = epi((f + δC)

∗□g♢),

where the last equality holds by the assumed (CQ). Thus,

(4.10) ((f + δC)
∗□g♢)(p) ≤ r.

While, by definition,

(4.11)

((f + δC)
∗□g♢)(p)

= infx∗∈X∗{(f + δC)
∗(p+ x∗) + g♢(−x∗)}

= infx∗∈X∗ infλ∈S⊕,u∈U{(f + δC)
∗(p+ x∗) + (λgu)

∗(−x∗)}
= − supx∗∈X∗ supλ∈S⊕,u∈U{−(f + δC)

∗(p+ x∗)− (λgu)
∗(−x∗)}.

Moreover, by the Young-Fenchel inequality (2.2), we see that for each λ ∈ S⊕, u ∈ U
and x∗ ∈ X∗,

(4.12) − (f + δC)
∗(p+ x∗)− (λgu)

∗(−x∗) ≤ f(x)− ⟨p, x⟩+ (λgu)(x)

for each x ∈ C.

This implies that

v((OLD)p) ≥ sup
x∗∈X∗

sup
λ∈S⊕,u∈U

{−(f + δC)
∗(p+ x∗)− (λgu)

∗(−x∗)}.

Combing this with (4.10) and (4.11), we obtain that v((OLD)p) ≥ −r = v((RP )p).
This together with (4.4) implies that v((OLD)p) = v((RP )p). Hence, by the arbi-
traryness of p∗ ∈ X∗, we see that (ii) holds.

(ii)⇒(iii) Suppose that (ii) holds. Then for each p ∈ X∗, v((RP )p) = v((OLD)p)
and hence v((RP )p) = v((RLD)p), thanks to (4.4). Thus, (iii) holds.

Assume that for each λ ∈ S⊕ and u ∈ U , (4.6) holds. Below we show that
(ii)⇒(i). Suppose that (ii) holds. To show (i), by Proposition 3.3(i), it suffices
to show that (3.10) holds. To do this, let (p, r) ∈ epi(f + δA)

∗. Then, by (4.5),
v((RP )p) ≥ −r and hence v((OLD)p) ≥ −r by (ii). Let ϵ > 0, then there exist
λϵ ∈ S⊕ and uϵ ∈ U such that for each x ∈ X,

f(x)− ⟨p, x⟩+ δC(x) + λϵguϵ(x) ≥ −r − ϵ.

This implies that (f + δC + λϵguϵ)
∗(p) ≤ r + ϵ. Thus,

(p, r + ϵ) ∈ epi(f + δC + λϵguϵ)
∗ ⊆

∪
λ∈S⊕,u∈U

(f + δC + λgu)
∗
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and hence, by (4.6),

(p, r + ϵ) ∈ epi(f + δC)
∗ +

∪
λ∈S⊕,u∈U

epi(λgu)
∗.

This together with (3.1) and (2.6) implies that

(4.13) (p, r + ϵ) ∈ epi(f + δC)
∗ + epig♢ ⊆ epi((f + δC)

∗□g♢).

Thus,

(4.14) ((f + δC)
∗□g♢)(p) ≤ r + ϵ.

Letting ϵ → 0 in (4.14), we get ((f + δC)
∗□g♢)(p) ≤ r and so (p, r) ∈ epi((f +

δC)
∗□g♢). This implies that (3.10) holds and hence the implication (ii)⇒(i) is

proved.
Finally, assume that for each λ ∈ S⊕, (4.7) and (4.8) hold. Suppose that (iii)

holds. Let (p, r) ∈ epi(f + δA)
∗. Then, by (4.5), v((RP )p) ≥ −r and hence

v((RLD)p) ≥ −r by (iii). Let ϵ > 0, then there exists λϵ ∈ S⊕ such that

f(x)− ⟨p, x⟩+ δC(x) + sup
u∈U

λϵgu(x) ≥ −r − ϵ for each x ∈ X.

This implies that (f + δC + supu∈U λϵgu)
∗(p) ≤ r + ϵ, that is,

(p, r + ϵ) ∈ epi(f + δC + sup
u∈U

λϵgu)
∗.

Thus,

(p, r + ϵ) ∈
∪

λ∈S⊕

epi(f + δC + sup
u∈U

λgu)
∗ ⊆ epi(f + δC)

∗ +
∪

λ∈S⊕

(
epi(sup

u∈U
λgu)

∗),
where the last inclusion holds by (4.8); while, by Lemma 2.1(i) and (4.7),∪

λ∈S⊕

(
epi(sup

u∈U
λgu)

∗) = ∪
λ∈S⊕

cl
(
co
( ∪

u∈U
epi(λgu)

∗
))

⊆ epig♢.

Hence, (4.13) holds and so does (4.14). Letting ϵ → 0 in (4.14), we see ((f +
δC)

∗□g♢)(p) ≤ r and so (p, r) ∈ epi((f + δC)
∗□g♢). This implies that (3.10) holds

and hence the (CQ) is proved by Proposition 3.3(i). Thus, the implication (iii)⇒(i)
holds and the proof is complete. □
Remark 4.3. Let conth denote the set of all points at which h is continuous, that
is,

conth = {x ∈ X : h is continuous at x}.
If cont(f + δC) ∩ A ̸= ∅, then for each λ ∈ S⊕ and each u ∈ U , cont(f + δC) ∩
dom(λgu) ̸= ∅. Thus, by Lemma 2.2(ii), we see that (4.6) and (4.8) hold.

By Theorem 4.2 and Proposition 3.3(ii), we get the following corollary straight-
forwardly, which was established in [18, Theorem 3.1] for the case when C = X,
U is a singleton, f is lsc and g is continuous. Thus, our Theorem 4.2 extends and
improves the corresponding result in [18, Theorem 3.1].

Corollary 4.4. Suppose that (3.11) and (4.6) hold. Then the stable Lagrange duality
holds between (RP ) and (OLD) if and only if epi((f+δC)

∗□g♢) is weak∗-closed and
convex.
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Theorem 4.5. Suppose that for each λ ∈ S⊕ and u ∈ U ,
(4.15) epi(δC + λgu)

∗ ⊆ epi(δ∗C□g♢).

Then the following assertions are equivalent.
(i) The following condition holds:

(4.16) epiδ∗A = epi(δ∗C□g♢).

(ii) If the proper lsc convex function φ is such that

(4.17) epi (φ+ δA)
∗ = epiφ∗ + epi δ∗A,

then

(4.18) inf
x∈A

φ(x) = sup
λ∈S⊕

sup
u∈U

inf
x∈C

{φ(x) + (λgu)(x)}.

(iii) If the proper convex function φ is continuous at some point in A, then (4.18)
holds.

(iv) If p ∈ X∗, then

(4.19) inf
x∈A

p(x) = sup
λ∈S⊕

sup
u∈U

inf
x∈C

{p(x) + (λgu)(x)}.

Proof. (i)⇒(ii). Suppose that (i) holds and let φ be such that (4.17) is satisfied.
Then, by (4.16),

(4.20) epi (φ+ δA)
∗ = epiφ∗ + epi(δ∗C□g♢) ⊆ epi(φ∗□δ∗C□g♢),

where the last inclusion holds by (2.6). Note by (2.1) and (2.5) that

φ∗□δ∗C ≥ (φ∗□δ∗C)
∗∗ = (φ∗∗ + δ∗∗C )∗ ≥ (φ+ δC)

∗.

Then

φ∗□δ∗C□g♢ ≥ (φ+ δC)
∗□g♢

and so

epi(φ∗□δ∗C□g♢) ⊆ epi((φ+ δC)
∗□g♢)

by (2.4). This together with (4.20) implies that

epi (φ+ δA)
∗ ⊆ epi((φ+ δC)

∗□g♢)

and

epi (φ+ δA)
∗ = epi((φ+ δC)

∗□g♢)

by Proposition 3.3(i). Hence, applying the implication (i)⇒(ii) of Theorem 4.2 to
φ in place of f , we see that (4.18) holds.

(ii)⇒(iii). Note that (4.17) is satisfied if φ is continuous at some point in A (see
Lemma 2.2(ii)). Thus, it is immediate that (ii)⇒(iii).

(iii)⇒(iv). It is trivial.
(iv)⇒(i). To do this, suppose that (iv) holds. Then applying the implication

(ii)⇒(i) of Theorem 4.2 to f = 0, we have that (4.16) holds. The proof is complete.
□

The implication (i)⇒(ii) of the following theorem follows from Theorem 4.5 and
(4.4) (φ in place of f) directly and the proofs of the other implications are similar
to that of Theorem 4.5. So we omit the proof of Theorem 4.6 here.
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Theorem 4.6. Suppose that for each λ ∈ S⊕, (4.7) holds and

(4.21) epi(δC + sup
u∈U

λgu)
∗ ⊆ epiδ∗C + epi(sup

u∈U
λgu)

∗.

Then the following assertions are equivalent.
(i) The following condition (4.16) holds.
(ii) If the proper lsc convex function φ is such that (4.17) holds, then

(4.22) inf
x∈A

φ(x) = sup
λ∈S⊕

inf
x∈C

sup
u∈U

{φ(x) + (λgu)(x)}.

(iii) If the proper convex function φ is continuous at some point in A, then (4.22)
holds.

(iv) If p ∈ X∗, then

(4.23) inf
x∈A

p(x) = sup
λ∈S⊕

inf
x∈C

sup
u∈U

{p(x) + (λgu)(x)}.

Remark 4.7. (a) Applying Proposition 3.3 (to 0 in place of f), we have that (4.16)
holds if and only if

(4.24) epiδ∗A ⊆ epi(δ∗C□g♢).

(b) In the case where U is a singleton, the authors in [17] introduced the following
condition

(4.25) cl(epiδ∗C + epig♢) = epi(δ∗C□g♢)

to study the Lagrange duality between (P) and (D). Under the assumptions that C
is closed, f and λg, λ ∈ S⊕ are lsc and contg ∩C ̸= ∅, they proved in [17, Theorem
4.1] that (4.25), assertions (iii) and (iv) in Theorem 4.5 are equivalent to each
other. In this case, by Proposition 3.1(iii) and noting the fact that g is S-epi-closed
if λg is lsc for each λ ∈ S⊕, we see that (4.25) is equivalent to (4.16). Moreover,
the assumption contg ∩ C ̸= ∅ implies that (4.15) holds. Thus, our Theorem 4.5
extends and improves the corresponding result in [17, Theorem 4.1].

Remark 4.8. As mentioned in Section 1, let S = Rm
+ := {(x1, . . . , xm) ∈ Rm :

xi ≥ 0} and U =
∏m

i=1 Vi. For each u = (u1, . . . , um) ∈ U , define the function
gu : Rn → Rm by

gu(x) := (g1(x, u1), . . . , gm(x, um)) for each x ∈ Rn.

Then problem (1.1) introduced in Section 1 can be viewed as an example of (RP ).
Thus, all corresponding results for the Lagrange dualities between problem (1.1)
and its dual problems (1.2) and (1.3) can be established. In particular, in the case
when

(4.26) X = C = Rn and gi, i = 1, . . . ,m, are continuous,

the authors in [21] proved that epig♢ is convex and weak∗-closed if and only if for
each continuous function f on Rn,

inf{f(x) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}

= sup
λi≥0,vi∈Vi

inf
x∈Rn

{
f(x) +

m∑
i=1

λigi(x, vi)
}
.
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Note by Proposition 3.3(ii) that under the assumption (4.26),

epiδ∗A = epig♢ ⇐⇒ epig♢ is convex and weak∗-closed.

Then, our Theorem 4.5 improves the corresponding result in [21, Theorem 3.1].

We end this paper with an example. Consider the uncertainty sets Ui ⊆ L2[0, 1]×
R, i = 1, . . . ,m and the best approximation problem:

(4.27) inf
x∈L2[0,1]

{1

2

∫ 1

0
x2(t)dt :

∫ 1

0
αi(t)x(t)dt ≤ βi, i = 1, . . . ,m

}
,

where the date (αi, βi) ∈ Ui is uncertain for each i = 1, . . . ,m. Problem (4.27) has
been studied in [20] and also studied in [8, 9, 11] for the special case when the data
(αi, βi), i = 1, . . . ,m are fixed. Let ⟨·, ·⟩ and ∥ · ∥ denote the inner product and
the norm on L2[0, 1], respectively. Using the robust optimization approach in [5,7],
problem (4.27) can be recasted into the robust optimization problem as follows

(4.28) (RP ) inf
x∈L2[0,1]

{1

2
∥x2∥ : ⟨αi, x⟩ ≤ βi, ∀(αi, βi) ∈ Ui, i = 1, . . . ,m

}
.

Corresponding, the dual problems of (RP ) can be defined respectively by

(4.29) (OLD) sup
(αi,βi)∈Ui,λi≥0,i=1,...,m

inf
x∈L2[0,1]

{1

2
∥x2∥+

m∑
i=1

λi(⟨αi, x⟩ − βi)
}
,

and
(4.30)

(RLD) sup
λi≥0,i=1,...,m

inf
x∈L2[0,1]

sup
(αi,βi)∈Ui,i=1,...,m

{1

2
∥x2∥+

m∑
i=1

λi(⟨αi, x⟩ − βi)
}
.

As before, we use A to denote the feasible solution set of problem (RP ), that is,

A := {x ∈ L2[0, 1] : ⟨αi, x⟩ ≤ βi, ∀(αi, βi) ∈ Ui, i = 1, . . . ,m}.

Below we give a sufficient condition to ensure the Lagrange duality between (RP )
and (OLD) and, between (RP ) and (RLD).

Theorem 4.9. Suppose that the sets Ui, i = 1, . . . ,m, are convex and that

(4.31) epiδ∗A =
∪

(αi,βi)∈Ui,λi≥0,i=1,...,m

m∑
i=1

(
{λiαi} × [λiβi,+∞)

)
.

Then the Lagrange duality holds between (RP ) and (OLD) and, between (RP ) and
(RLD).

Proof. Let ui := (αi, βi) for each i = 1, . . . ,m. Define f : L2[0, 1] → R and gui :
L2[0, 1] → R respectively by

f(x) :=
1

2
∥x∥2 and gui(x) := ⟨αi, x⟩ − βi for each x ∈ L2[0, 1].
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Obviously, f and each gui are proper convex and continuous functions on L2[0, 1].
By definition,

g♢(x∗) = inf
λi≥0,ui∈Ui,i=1,...,m

( m∑
i=1

λigui

)∗
(x∗) for each x∗ ∈ L2[0, 1].

Note by (3.1) and Proposition 3.1(iii) that∪
λi≥0,ui∈Ui,i=1,...,m

epi
( m∑

i=1

λigui

)∗
⊆ epig♢ ⊆ epiδ∗A.

Then, by Theorem 4.5 and Theorem 4.6, to show the Lagrange duality between
(RP ) and (OLD) and, between (RP ) and (RLD), it suffices to show that

(4.32) epiδ∗A =
∪

λi≥0,ui∈Ui,i=1,...,m

epi
( m∑

i=1

λigui

)∗
.

To do this, note that each gui is continuous, it follows from Lemma 2.2(ii) that

(4.33)
∪

λi≥0,ui∈Ui,i=1,...,m

epi
( m∑

i=1

λigui

)∗
=

∪
λi≥0,ui∈Ui,i=1,...,m

m∑
i=1

epi(λigui)
∗.

While, for each i = 1, . . . ,m,

epig∗ui
= {αi} × [βi,+∞).

Thus, ∪
λi≥0,ui∈Ui,i=1,...,m

m∑
i=1

epi(λigui)
∗ =

∪
λi≥0,ui∈Ui,i=1,...,m

m∑
i=1

(
{λiαi} × [λiβi,+∞)

)
.

Combining this with (4.31) and (4.33), one sees that (4.32) holds. Thus, the proof
is complete. □
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