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these requirements are costly to peers. Therefore, the system is at risk of collapse
when peers do not offer enough storage capacity, i.e., when peers behave selfishly.

In this paper, we focus on incentives [21] to make peers contribute to P2P data
storage systems. There are many incentive schemes that are applicable to the
economics of P2P file sharing networks (e.g., wireless local area networks (WLANs)
[13]), and they can be generally categorized as symmetric or payment-based scheme
(see, e.g., [1, 13] and references therein). However, these schemes cannot be applied
to P2P data storage systems because their economic implications are essentially
incompatible.

To resolve this issue, reference [21] presented two incentive schemes to control P2P
data storage systems. One is a symmetric scheme [21, subsection II.C 1)] based on
the idea that every peer should contribute to the system in terms of service at least
as much as it benefits from others. The other is a profit-oriented pricing scheme [21,
subsection II.C 2)] based on monetary exchanges where peers can buy storage space
and sell some of their disk capacity. Reference [21] analyzed whether it is socially
better to impose the symmetric scheme or the profit-oriented pricing scheme. The
performance measure is social welfare, defined by the sum of the utility functions
of all peers and an operator, who manages the P2P data storage system.

The main objective of storage allocation in P2P systems is to find optimal storage
capacities of all peers which maximize the social welfare as much as possible. The
analyses in [21] assumed the existence of central authority to supervise the peers’
behavior; i.e., the central authority knows the private information of all peers, such
as the explicit forms of all peers’ utility functions and strategies. In contrast to such
a centralized system control, this paper discusses distributed system control for P2P
systems. Our distributed mechanisms can be applied to any P2P network without
a central authority (e.g., a pure P2P network such as Winny and Gnutella), and
they enable each peer to find a maximizer of the social welfare without using the
private information of other peers, such as their utility functions and strategy sets.

In this paper, we first show that the storage allocation problems (problems of
maximizing the social welfare) caused by the two incentive schemes can be formu-
lated as convex minimization problems over the fixed point sets of nonexpansive
mappings. We then propose two distributed convex optimization algorithms, based
on fixed point theory [2], [3, Chapter 4], [14, Chapter 3], [15, Chapter 1], for solving
them.

A number of distributed convex optimization algorithms have been presented
(see [7, Subchapter 8.2], [8, 9, 11, 12, 16, 18, 19, 20, 22, 23, 24, 25, 27, 30] and
reference therein). However, the literature does not seem to have any algorithm
for solving convex minimization problems over the fixed point sets. While the
previously reported results in [21] presented useful mathematical models of P2P data
storage systems, to our knowledge, there are no references on distributed control
algorithms for controlling these systems.

Our main contribution is to devise distributed convex optimization techniques
to solve storage allocation problems of P2P data storage systems through incentive
schemes. We believe that our distributed approach is good for optimal control
problems [10, 17, 26], network flow problems [5, 6, 20, 29], and resource allocation
problems [28, Chapters 4 and 5]. This is because it can be applied to the more
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general problem of minimizing the sum of strongly convex objective functions over
the intersection of fixed point sets of nonexpansive mappings. Therefore, we believe
that the results in this paper will provide a glimpse into the inherent connection
between distributed algorithms and control problems in networked systems.

This paper is organized as follows. Section 2 gives the mathematical preliminaries.
Section 3 shows that the storage allocation problems entailed by the two incentive
schemes (symmetric scheme and profit-oriented pricing scheme) can be formulated
as convex minimization problems over the fixed point sets of certain nonexpansive
mappings. Section 4 discusses the distributed control under the symmetric scheme.
Section 5 discusses the distributed control under the profit-oriented pricing scheme.
We show that the algorithms presented in sections 4 and 5 converge to the solutions
to the storage allocation problems under realistic assumptions. Section 6 applies the
algorithms to concrete storage allocation problems and provides numerical results
showing they converge to the solutions. Section 7 concludes the paper.

2. Preliminaries

This section describes the basic model of a P2P data storage system studied in
[21], which was the first study to propose incentive schemes for controlling P2P data
storage systems.

Consider a P2P data storage system network in which peer i (i ∈ I :=

{1, 2, . . . ,K}) offers a storage capacity c
(i)
o that is to be shared with other peers

and demands a storage capacity c
(i)
s that is to be used for storing its own data.

The supply and demand functions of peer i are defined as follows: there exist

a(i), b(i), p
(i)
max (> 0), and p

(i)
min (≥ 0) such that, for all p ≥ 0,

s(i)(p) := a(i)
[
p− p

(i)
min

]+
, d(i)(p) := b(i)

[
p(i)max − p

]+
,(2.1)

where x+ := max{0, x} (x ∈ R). Peer i is entirely described by four parameters,

a(i), b(i), p
(i)
max, and p

(i)
min. The two price parameters, p

(i)
min and p

(i)
max, respectively

represent the minimum value of the unit price po that peer i will sell some of its
own disk space and the maximum value of the unit price ps that it will pay for
storage space, and a(i) and b(i) correspond to the increase in sold capacity with the

unit price po (≥ p
(i)
min) and the decrease in bought storage space with the unit price

ps (≤ p
(i)
max). For a given p (≥ 0), s(i)(p) (resp. d(i)(p)) is the amount of storage

capacity that peer i would choose to sell (resp. buy) if peer i were paid (resp.
charged) a unit price p for it.

When the supply and demand functions are defined as in (2.1), the utility function

U (i) of peer i is of the following form (see [21, Section II] for the details),

V (i)
(
c(i)s

)
:=

1

b(i)

−
(
c
(i)
s ∧ b(i)p

(i)
max

)2

2
+ b(i)p(i)max

(
c(i)s ∧ b(i)p(i)max

) ,

O(i)
(
c(i)o

)
:=

1

a(i)

(
c
(i)
o

)2

2
, P (i)

(
c(i)o

)
:= O(i)

(
c(i)o

)
+ p

(i)
minc

(i)
o ,
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ε(i) := psc
(i)
s − poc

(i)
o ,(2.2)

U (i)
(
c(i)s , c(i)o , ε(i)

)
:= V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)
− ε(i),

where x ∧ y := min{x, y} (x, y ∈ R), V (i)(c
(i)
s ) is peer i’s valuation obtained when

it uses c
(i)
s (i.e., the price that it is willing to pay to store an amount of data c

(i)
s ),

O(i)(c
(i)
o ) is the opportunity cost of offering c

(i)
o for other peers without using c

(i)
o for

itself, p
(i)
minc

(i)
o is the data transfer cost, P (i)(c

(i)
o ) stands for the overall non-monetary

cost of peer i for offering c
(i)
o , and ε(i) is the monetary price paid by peer i.

On the other hand, the operator (denoted by peer 0), which manages the P2P
data storage system, tries to maximize its revenue, which is the total amount that

the peers are charged. Since the monetary price paid by peer i is ε(i) = psc
(i)
s −

poc
(i)
o , c

(i)
s = d(i)(ps), and c

(i)
o = s(i)(po), the utility function of the operator can be

represented by

U (0)(ps, po) :=
∑
i∈I

ε(i) = ps
∑
i∈I

d(i) (ps)− po
∑
i∈I

s(i) (po) .(2.3)

We define a performance measure, called social welfare, as the sum of the utility
functions of all peers and the operator. From (2.2) and (2.3), social welfare can be

expressed as, for all cs := (c
(1)
s , c

(2)
s , . . . , c

(K)
s )T , co := (c

(1)
o , c

(2)
o , . . . , c

(K)
o )T ∈ RK ,

W (cs, co) :=
∑
i∈I

U (i)
(
c(i)s , c(i)o , ε(i)

)
+ U (0)(ps, po)

=
∑
i∈I

[
V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)]
,

(2.4)

where xT denotes the transpose of the vector x. It is desirable to maximize W
defined by (2.4) because it makes the whole system stable and reliable. We call

W (i) : R× R → R defined for all (c
(i)
s , c

(i)
o ) ∈ R× R by

W (i)
(
c(i)s , c(i)o

)
:= V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)
the welfare of peer i.

3. Main problems

Here, we describe the two incentive schemes [21, Sections II and III], a symmetric
scheme and a profit-oriented pricing scheme, for controlling the P2P data storage
system and point out their storage allocation problems.

3.1. Symmetric scheme. The symmetric management scheme is based on the
idea that every peer should contribute to the system in terms of service at least as
much as it benefits from others. It imposes a rule that the contribution of each peer
(the storage space offered by each peer) should be equal to its use of the system
(the storage space it uses to store its own data). This scheme can work without
an operator, and hence, does not use monetary transactions. Here, peer i tries to

choose c
(i)
s and c

(i)
o so as to maximize its welfare W (i) subject to c

(i)
o ≥ c

(i)
s (≥ 0).
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Therefore, the constrained set, denoted by C(i) (⊂ RK × RK), and the objective

function, denoted by f (i) : RK × RK → R, of peer i (i ∈ I) can be expressed as,

C(i) := RK
+ × RK

+ ∩
{
(cs, co) ∈ RK × RK : c(i)o ≥ c(i)s

}
,(3.1)

f (i) (cs, co) := −W (i)
(
c(i)s , c(i)o

)
= −

[
V (i)

(
c(i)s

)
− P (i)

(
c(i)o

)]
(3.2)

for all cs := (c
(1)
s , c

(2)
s , . . . , c

(K)
s )T , co := (c

(1)
o , c

(2)
o , . . . , c

(K)
o )T ∈ RK , where V (i) and

P (i) are defined as in (2.2) and RK
+ := {(x(1), x(2), . . . , x(K))T ∈ RK : x(i) ≥ 0 (i =

1, 2, . . . ,K)}. f (i) (i ∈ I) defined by (3.2) satisfies the strong convexity condition1

because V (i) and P (i) have quadratic forms.
Let T (i) : RK ×RK → RK ×RK (i ∈ I) be a mapping defined for all cs, co ∈ RK

by

T (i) (cs, co) :=
1

2

[
(cs, co) + PRK

+×RK
+

{
PĈ(i) (cs, co)

}]
,(3.3)

where Ĉ(i) := {(cs, co) ∈ RK × RK : c
(i)
o ≥ c

(i)
s } and PD stands for the metric

projection onto a closed convex set D (⊂ RK × RK).2 PRK
+×RK

+
and PĈ(i) can be

easily computed within a finite number of arithmetic operations because RK
+ ×RK

+

and Ĉ(i) are half-spaces of RK × RK [2, p. 406], [3, Subchapter 28.3]. T (i) (i ∈ I)
defined by (3.3) satisfies the firm nonexpansivity condition3 because PRK

+×RK
+

and

PĈ(i) are nonexpansive.4 Moreover, C(i) (i ∈ I) defined by (3.1) can be represented

as the fixed point set of T (i) defined by (3.3); i.e.,

Fix
(
T (i)

)
:=

{
(cs, co) ∈ RK × RK : T (i) (cs, co) = (cs, co)

}
= C(i).

This is because Fix(T (i)) = Fix(PRK
+×RK

+
PĈ(i)) = RK

+ × RK
+ ∩ Ĉ(i) =: C(i).

The constrained set and objective function of the operator (peer 0) can be ex-
pressed as,

C(0) := RK × RK = Fix (Id) =: Fix
(
T (0)

)
, f (0)(cs, co) := 0

for all (cs, co) ∈ RK×RK , because the operator does not directly control the system.
This means that control algorithms of the symmetric scheme must be implemented
without the operator so as to maximize the social welfare.

Therefore, we can describe the storage allocation problem of the symmetric
scheme as follows.

1f : Rm → R is called a strongly convex function with α (α-strongly convex function) if α > 0
exists such that, for all x,y ∈ Rm and for all λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)−
(1/2)αλ(1− λ)∥x− y∥2, where ∥ · ∥ stands for the norm of Rm.

2The metric projection onto a closed convex set D (⊂ Rm) is defined as follows: PD(x) ∈ D and
∥x−PD(x)∥ = infy∈D ∥x−y∥ (x ∈ Rm). PD satisfies the nonexpansivity condition [2, Proposition

2.10]; i.e., ∥PD(x)− PD(y)∥ ≤ ∥x− y∥ for all x,y ∈ Rm.
3T : Rm → Rm is called a firmly nonexpansive mapping if, for all x,y ∈ Rm, ∥T (x)− T (y)∥2 ≤

⟨x−y, T (x)−T (y)⟩, where ⟨·, ·⟩ stands for the inner product of Rm. Fix(T ) := {x ∈ Rm : T (x) = x}
is closed and convex when T is nonexpansive [15, Proposition 5.3].

4T := (1/2)(Id + S) satisfies the firm nonexpansivity condition when S is nonexpansive [3,
Definition 4.1, Proposition 4.2], where Id stands for the identity mapping.
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Problem 3.1 (storage allocation problem under symmetric scheme).

Maximize W (cs, co) = −
∑
i∈I

f (i) (cs, co)

subject to (cs, co) ∈
∩
i∈I

{
(cs, co) ∈ RK

+ × RK
+ : c(i)o ≥ c(i)s

}
=

∩
i∈I

Fix
(
T (i)

)
,

where f (i) : RK × RK → R and T (i) : RK × RK → RK × RK (i ∈ I) are defined as
in (3.2) and (3.3), respectively.

Problem 3.1 is one of maximizing the social welfare W defined in (2.4) under the
condition that each peer offers a storage capacity larger than the capacity used for
storing its own data.

Under the symmetric scheme, each peer can communicate with a neighbor peer
via the network. Hence, Problem 3.1 can be solved by incremental optimization
algorithms (see, e.g., [7, Subchapter 8.2], [8, 18, 19, 22]) that allow each peer to use
only its own private information5 and the transmitted information from the neighbor
peer. Moreover, peer i (i ∈ I) tries to minimize only f (i) (i.e., maximize only its own

welfare W (i)) over its own constraint Fix(T (i)) = C(i). Accordingly, each peer never
uses information including other peers’ objective functions and constrained sets.
Therefore, none of the peers can use the metric projection PC onto the polytope
C :=

∩
i∈I Fix(T

(i)). In this paper, we present an algorithm for solving Problem 3.1
that is different from the conventional incremental optimization algorithms which
use PC . We will show that the algorithm converges to the solution to Problem 3.1
under certain assumptions (Section 4).

3.2. Profit-oriented pricing scheme. A payment-based management scheme is
based on monetary exchanges where peers can buy storage space in the system for
a unit price ps and sell some of their disk capacity for a unit price po. Assuming
that the operator knows that peer i (i ∈ I) will sell s(i)(po) and buy d(i)(ps), it

tries to choose ps and po so as to maximize its profit U (0)(ps, po). Accordingly,
the constrained set and objective function of the operator (peer 0) are defined as
follows.

C(0) := R+ × R+ ∩

{
(ps, po) ∈ R× R :

∑
i∈I

s(i) (po) ≥
∑
i∈I

d(i) (ps)

}
,(3.4)

f (0) (ps, po) := −U (0) (ps, po) = −

[
ps

∑
i∈I

d(i) (ps)− po
∑
i∈I

s(i) (po)

]
(3.5)

for all (ps, po) ∈ R× R.
C(0) defined in (3.4) is an absolute set in which conditions are needed to control

the system. This is because
∑

i∈I c
(i)
s =

∑
i∈I d

(i)(ps), which is used for storing

data, must not exceed the sum offered by peers, i.e.,
∑

i∈I c
(i)
o =

∑
i∈I s

(i)(po).

5Peer i in Problem 3.1 has its own private f (i) defined by (3.2) because the four parameters,

a(i), b(i), p
(i)
max, and p

(i)
min, are its own private information.
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Here, let us define a mapping T (0) : R× R → R× R for all (ps, po) ∈ R× R by

T (0) (ps, po) :=
1

2

[
(ps, po) + PR+×R+

{
PĈ(0) (ps, po)

}]
,(3.6)

where Ĉ(0) := {(ps, po) ∈ R× R :
∑

i∈I s
(i)(po) ≥

∑
i∈I d

(i)(ps)}. Since s(i) and d(i)

defined as in (2.1) are affine, Ĉ(0) is a half-space, which means that PĈ(0) can be

easily computed within a finite number of arithmetic operations. T (0) defined in
(3.6) satisfies the firm nonexpansivity condition (see Footnotes 3 and 4), and

Fix
(
T (0)

)
:=

{
(ps, po) ∈ R× R : T (0)(ps, po) = (ps, po)

}
= C(0)

because Fix(T (0)) = Fix(PR+×R+PĈ(0)) = R+ × R+ ∩ Ĉ(0) =: C(0) (see also the

discussion in (3.3)). Moreover, since s(i) and d(i) in (2.1) are affine, f (0) in (3.5)
satisfies the strong convexity condition.

Meanwhile, peer i (i ∈ I) selfishly chooses strategies that maximize its welfare

W (i). Accordingly, the constrained set and objective function of peer i (i ∈ I) can
be expressed as

C(i) :=
[
p
(i)
min, p

(i)
max

]
×

[
p
(i)
min, p

(i)
max

]
= Fix (PC(i)) =: Fix

(
T (i)

)
,(3.7)

f (i) (ps, po) := −
[
V (i)

(
d(i) (ps)

)
− P (i)

(
s(i) (po)

)]
(3.8)

for all (ps, po) ∈ R × R. Since s(i) and d(i) in (2.1) are affine, and V (i) and P (i)

have quadratic forms, f (i) (i ∈ I) in (3.8) satisfies the strong convexity condition.

T (i) := PC(i) (i ∈ I) in (3.7) is firmly nonexpansive [2, Facts 1.5].
The main objective of the profit-oriented pricing scheme is to determine optimal

prices ps and po so as to maximize the operator’s profit U (0). Meanwhile, it is
desirable to maximize the social welfare W to make the whole system stable and
reliable. As such, we can pose the storage allocation problem under the profit-
oriented pricing scheme as one of maximizing the weighted mean of the operator’s
profit and social welfare, λU (0)+(1−λ)W , for some weight parameter λ (∈ (0, 1)).

Problem 3.2 (storage allocation problem under profit-oriented pricing scheme).

Maximize λU (0) (ps, po) + (1− λ)W (ps, po) = −

[
λf (0) + (1− λ)

∑
i∈I

f (i)

]
(ps, po)

subject to (ps, po) ∈

{
(ps, po) ∈ R+ × R+ :

∑
i∈I

s(i) (po) ≥
∑
i∈I

d(i) (ps)

}
∩
∩
i∈I

[
p
(i)
min, p

(i)
max

]
×

[
p
(i)
min, p

(i)
max

]
=

∩
i∈{0}∪I

Fix
(
T (i)

)
,

where λ ∈ (0, 1) is a parameter chosen in advance, and f (i) : R × R → R and

T (i) : R× R → R× R (i ∈ {0} ∪ I) are defined as in (3.5), (3.6), (3.7), and (3.8).

Problem 3.2 can be solved if one assumes the operator can communicate with
all peers and has access to a point computed by f (i) and T (i) of peer i (i ∈ I).
This implies that the operator can use broadcast optimization algorithms (see, e.g.,
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[11, 12]). In this paper, we will present a broadcast optimization algorithm for
solving Problem 3.2 that is different from the conventional broadcast optimization
algorithms [11, 12] which use the proximity operator of f (i), and show that the pro-
posed algorithm converges to the solution to Problem 3.2 under certain assumptions
(Section 5).

The following propositions will be used to prove the main theorems.

Proposition 3.3. [31, Lemma 3.1] Suppose that f : Rm → R is α-strongly convex
and differentiable, ∇f : Rm → Rm is L-Lipschitz continuous,6 µ ∈ (0, 2α/L2), and
S := Id − µλ∇f , where λ ∈ [0, 1]. Then, for all x,y ∈ Rm, ∥S(x) − S(y)∥ ≤
(1− τλ)∥x− y∥, where τ := 1−

√
1− µ(2α− µL2) ∈ (0, 1].

Proposition 3.4. [4, Lemma 1.2] Assume that (an)n∈N ⊂ R+ satisfies an+1 ≤ (1−
αn)an+αnβn (n ∈ N), where (αn)n∈N ⊂ (0, 1] and (βn)n∈N ⊂ R with

∑∞
n=1 αn = ∞

and lim supn→∞ βn ≤ 0. Then, limn→∞ an = 0.

Suppose that T : Rm → Rm is firmly nonexpansive; i.e., ∥T (x)− T (y)∥2 ≤ ⟨x−
y, T (x) − T (y)⟩ (x,y ∈ Rm). From ⟨x,y⟩ = (1/2){∥x∥2 + ∥y∥2 − ∥x − y∥2}, we
have ∥T (x)−T (y)∥2 ≤ ⟨x−y, T (x)−T (y)⟩ = (1/2){∥x−y∥2+ ∥T (x)−T (y)∥2−
∥(x− y)− (T (x)− T (y))∥2} (x,y ∈ Rm). This leads us to the following.

Proposition 3.5. Suppose that T : Rm → Rm is firmly nonexpansive. Then, for
all x,y ∈ Rm, ∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(x− y)− (T (x)− T (y))∥2.

4. Distributed control under the symmetric scheme

This section considers the following problem.

Minimize
∑
i∈I

f (i) (c) subject to c ∈
∩
i∈I

Fix
(
T (i)

)
,(4.1)

where f (i) : Rm → R (i ∈ I := {1, 2, . . . ,K}) is α(i)-strongly convex and differen-

tiable, ∇f (i) : Rm → Rm is L(i)-Lipschitz continuous, and T (i) : Rm → Rm (i ∈ I) is
firmly nonexpansive with

∩
i∈I Fix(T

(i)) ̸= ∅. Subsection 3.1 tells us that Problem

3.1 coincides with problem (4.1) when m := 2K and f (i) and T (i) are defined by

(3.2) and (3.3). Moreover, since
∑

i∈I f
(i) is strongly convex and Lipschitz contin-

uous, and
∩

i∈I Fix(T
(i)) is closed and convex, problem (4.1) has a unique solution

[31, Proposition 2.7].
Here, we assume the following.

Assumption 4.1. Peer i (i ∈ I) uses µ ∈ (0,mini∈I 2α
(i)/L(i)2) and the sequence

(λn)n∈N ⊂ (0, 1) satisfying7

(C1) lim
n→∞

λn = 0, (C2)

∞∑
n=0

λn = ∞, (C3) lim
n→∞

1

λn+1

∣∣∣∣ 1

λn+1
− 1

λn

∣∣∣∣ = 0.

The following algorithm can be used to solve problem (4.1).

6A : Rm → Rm is said to be L-Lipschitz continuous if ∥A(x)−A(y)∥ ≤ L∥x− y∥ (x,y ∈ Rm).
7Example of (λn)n∈N satisfying (C1)–(C3) is λn := 1/(n+ 1)a (a ∈ (0, 1/2)).
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Algorithm 4.2 (incremental gradient algorithm).

Step 0. Peer K sets c0 ∈ Rm arbitrarily and transmits c
(0)
0 := c0 to peer 1.

Step 1. Given cn := c
(0)
n ∈ Rm, peer i computes c

(i)
n ∈ Rm cyclically by

c(i)n := T (i)
(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
(i = 1, 2, . . . ,K).

Step 2. Peer K sets cn+1 ∈ Rm by cn+1 := c
(K)
n and transmits c

(0)
n+1 := cn+1 to

peer 1. Put n := n+ 1, and go to Step 1.

We are in the position to perform the convergence analysis on Algorithm 4.2.

Theorem 4.3. Under Assumption 4.1, the sequence (c
(i)
n )n∈N (i ∈ I) generated by

Algorithm 4.2 converges to the solution to problem (4.1).

Theorem 4.3 means that each peer that uses Algorithm 4.2 with f (i)(c) :=

f (i)(cs, co) and T (i)(c) := T (i)(cs, co) defined by (3.2) and (3.3) can solve the stor-
age allocation problem 3.1 under the symmetric scheme. It would be difficult for all

peers to set µ ∈ (0,mini∈I 2α
(i)/L(i)2) in advance because µ depends on all α(i)s and

L(i)s. Even if µ ≥ mini∈I 2α
(i)/L(i)2 , (C1) guarantees that n0 ∈ N exists such that

µλn < mini∈I 2α
(i)/L(i)2 for all n ≥ n0. Hence, Theorem 4.3 ensures that (c

(i)
n )n≥n0

(i ∈ I) in Algorithm 4.2 converges to the unique solution to problem (4.1). This
implies that Algorithm 4.2 can solve problem (4.1) without depending on the choice
of µ. See Section 6 for the behaviors of Algorithm 4.2 with different values of µ.

Proof. We first show that (c
(i)
n )n∈N and (∇f (i)(c

(i−1)
n ))n∈N (i ∈ I) are bounded.

Choose c ∈
∩

i∈I Fix(T
(i)) arbitrarily, and put τ (i) := 1 −

√
1− µ(2α(i) − µL(i)2),

τ := mini∈I τ
(i), and M1 := maxi∈I ∥∇f (i)(c)∥. The nonexpansivity of T (i) guar-

antees that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c
∥∥∥ =

∥∥∥T (i)
(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− T (i) (c)

∥∥∥
≤

∥∥∥(c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− c

∥∥∥
=

∥∥∥(c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
−

(
c− µλn∇f (i) (c)

)
− µλn∇f (i) (c)

∥∥∥
≤

∥∥∥(c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
−

(
c− µλn∇f (i) (c)

)∥∥∥+ µM1λn,

which from µ < 2L(i)/α(i)2 , τ ≤ τ (i), and Proposition 3.3 implies that, for all i ∈ I
and for all n ∈ N,∥∥∥c(i)n − c

∥∥∥ ≤
(
1− τ (i)λn

)∥∥∥c(i−1)
n − c

∥∥∥+ µM1λn

≤ (1− τλn)
∥∥∥c(i−1)

n − c
∥∥∥+ µM1λn.

(4.2)

Therefore, for all n ∈ N,

∥cn+1 − c∥ =
∥∥∥c(K)

n − c
∥∥∥

≤ (1− τλn)
∥∥∥c(K−1)

n − c
∥∥∥+ µM1λn
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≤ (1− τλn)
{
(1− τλn)

∥∥∥c(K−2)
n − c

∥∥∥+ µM1λn

}
+ µM1λn

≤ (1− τλn)
2
∥∥∥c(K−2)

n − c
∥∥∥+ 2µM1λn

≤ (1− τλn)
K
∥∥∥c(0)n − c

∥∥∥+KµM1λn

≤ (1− τλn) ∥cn − c∥+
(
KµM1

τ

)
τλn.

Induction shows that, for all n ∈ N,

∥cn − c∥ ≤ max

{
∥c0 − c∥ , KµM1

τ

}
.

This means (cn)n∈N (= (c
(0)
n )n∈N) is bounded. Hence, from (4.2) when i = 1,

(c
(1)
n ) is also bounded. Accordingly, induction shows that (c

(i)
n ) (i ∈ I) is bounded.

Moreover, from ∥∇f (i)(c
(i−1)
n )−∇f (i)(c)∥ ≤ L(i)∥c(i−1)

n − c∥ (i ∈ I, n ∈ N) and the

boundedness of (c
(i)
n ) (i ∈ I), (∇f (i)(c

(i−1)
n ))n∈N (i ∈ I) is bounded.

The nonexpansivity of T (i) guarantees that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n+1 − c(i)n

∥∥∥
=
∥∥∥T (i)

(
c
(i−1)
n+1 − µλn+1∇f (i)

(
c
(i−1)
n+1

))
− T (i)

(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))∥∥∥
≤
∥∥∥(c(i−1)

n+1 − µλn+1∇f (i)
(
c
(i−1)
n+1

))
−

(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))∥∥∥
≤
∥∥∥(c(i−1)

n+1 − µλn+1∇f (i)
(
c
(i−1)
n+1

))
−

(
c(i−1)
n − µλn+1∇f (i)

(
c(i−1)
n

))∥∥∥
+ µ |λn − λn+1|

∥∥∥∇f (i)
(
c(i−1)
n

)∥∥∥ ,
which from Proposition 3.3 means that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n+1 − c(i)n

∥∥∥ ≤ (1− τλn+1)
∥∥∥c(i−1)

n+1 − c(i−1)
n

∥∥∥+M2 |λn − λn+1| ,

where M2 := maxi∈I(supn∈N µ∥∇f (i)(c
(i−1)
n )∥) < ∞. Therefore, we find that, for

all n ∈ N,

∥cn+1 − cn∥ =
∥∥∥c(K)

n − c
(K)
n−1

∥∥∥
≤ (1− τλn)

∥∥∥c(K−1)
n − c

(K−1)
n−1

∥∥∥+M2 |λn − λn−1|

≤ (1− τλn)
K
∥∥∥c(0)n − c

(0)
n−1

∥∥∥+KM2 |λn − λn−1|

≤ (1− τλn) ∥cn − cn−1∥+KM2 |λn − λn−1| ,

which from M3 := supn∈N ∥cn − cn−1∥ < ∞ and 1 ≤ 1/λn−1 implies

∥cn+1 − cn∥
λn

≤ (1− τλn)
∥cn − cn−1∥

λn
+KM2

|λn − λn−1|
λn

= (1− τλn)
∥cn − cn−1∥

λn−1
+ (1− τλn)

{
∥cn − cn−1∥

λn
− ∥cn − cn−1∥

λn−1

}
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+KM2
|λn − λn−1|

λn

≤ (1− τλn)
∥cn − cn−1∥

λn−1
+M3

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+KM2
|λn − λn−1|

λn

≤ (1− τλn)
∥cn − cn−1∥

λn−1
+M3

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣+KM2
|λn − λn−1|
λnλn−1

= (1− τλn)
∥cn − cn−1∥

λn−1
+ (M3 +KM2)

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣
= (1− τλn)

∥cn − cn−1∥
λn−1

+
M3 +KM2

τ
τλn

1

λn

∣∣∣∣ 1λn
− 1

λn−1

∣∣∣∣ .
Hence, from (C2), (C3), and Proposition 3.4, we have

lim
n→∞

∥cn+1 − cn∥
λn

= 0.(4.3)

Accordingly, (C1) guarantees that

lim
n→∞

∥cn+1 − cn∥ = 0.(4.4)

Choose c ∈
∩

i∈I Fix(T
(i)) arbitrarily; i.e., c = T (i)(c) (i ∈ I). From c

(i)
n :=

T (i)(c
(i−1)
n − µλn∇f (i)(c

(i−1)
n )) and the firm nonexpansivity of T (i), Proposition 3.5

ensures that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c
∥∥∥2

≤
∥∥∥(c(i−1)

n − µλn∇f (i)
(
c(i−1)
n

))
− c

∥∥∥2
−

∥∥∥((c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− c

)
−

(
c(i)n − c

)∥∥∥2
=

∥∥∥(c(i−1)
n − c

)
− µλn∇f (i)

(
c(i−1)
n

)∥∥∥2 − ∥∥∥(c(i−1)
n − c(i)n

)
− µλn∇f (i)

(
c(i−1)
n

)∥∥∥2 ,
which from ∥x− y∥2 = ∥x∥2 − 2⟨x,y⟩+ ∥y∥2 (x,y ∈ Rm) implies∥∥∥c(i)n − c

∥∥∥2 ≤ ∥∥∥c(i−1)
n − c

∥∥∥2 − 2µλn

⟨
c(i−1)
n − c,∇f (i)

(
c(i−1)
n

)⟩
−
∥∥∥c(i−1)

n − c(i)n

∥∥∥2
+ 2µλn

⟨
c(i−1)
n − c(i)n ,∇f (i)

(
c(i−1)
n

)⟩
≤

∥∥∥c(i−1)
n − c

∥∥∥2 − ∥∥∥c(i−1)
n − c(i)n

∥∥∥2 +M4λn,

where M4 := maxi∈I(supn∈N 2µ|⟨c−c
(i)
n ,∇f (i)(c

(i−1)
n )⟩|) < ∞. Accordingly, we find

that, for all n ∈ N,

∥cn+1 − c∥2 =
∥∥∥c(K)

n − c
∥∥∥2

≤
∥∥∥c(K−1)

n − c
∥∥∥2 − ∥∥∥c(K−1)

n − c(K)
n

∥∥∥2 +M4λn

≤
∥∥∥c(0)n − c

∥∥∥2 −∑
i∈I

∥∥∥c(i−1)
n − c(i)n

∥∥∥2 +KM4λn
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= ∥cn − c∥2 −
∑
i∈I

∥∥∥c(i−1)
n − c(i)n

∥∥∥2 +KM4λn,

which means∑
i∈I

∥∥∥c(i−1)
n − c(i)n

∥∥∥2 ≤ ∥cn − c∥2 − ∥cn+1 − c∥2 +KM4λn

= (∥cn − c∥+ ∥cn+1 − c∥) (∥cn − c∥ − ∥cn+1 − c∥) +KM4λn

≤ M5 ∥cn − cn+1∥+KM4λn,

where M5 := supn∈N(∥cn − c∥+∥cn+1 − c∥) < ∞. Equation (4.4) and (C1) lead us

to that limn→∞
∑

i∈I ∥c
(i−1)
n − c

(i)
n ∥2 = 0; i.e., limn→∞ ∥c(i)n − c

(i−1)
n ∥ = 0 (i ∈ I).

Since ∥cn − c
(i−1)
n ∥ = ∥c(0)n − c

(i−1)
n ∥ ≤

∑i−1
j=1 ∥c

(j−1)
n − c

(j)
n ∥ (i ∈ I, n ∈ N), we have

lim
n→∞

∥∥∥cn − c(i−1)
n

∥∥∥ = 0 (i ∈ I) .(4.5)

Moreover, since ∥cn − c
(i)
n ∥ ≤ ∥cn − c

(i−1)
n ∥+ ∥c(i−1)

n − c
(i)
n ∥ (i ∈ I, n ∈ N), we also

find that limn→∞ ∥cn − c
(i)
n ∥ = 0 (i ∈ I). The nonexpansivity of T (i) ensures that,

for all i ∈ I and for all n ∈ N, ∥c(i)n −T (i)(cn)∥ = ∥T (i)(c
(i−1)
n −µλn∇f (i)(c

(i−1)
n ))−

T (i)(cn)∥ ≤ ∥(c(i−1)
n −µλn∇f (i)(c

(i−1)
n ))−cn∥ ≤ ∥c(i−1)

n −cn∥+µλn∥∇f (i)(c
(i−1)
n )∥.

Equation (4.5), the boundedness of (∇f (i)(c
(i−1)
n ))n∈N, and (C1) guarantee that

limn→∞ ∥c(i)n − T (i)(cn)∥ = 0 (i ∈ I). From ∥cn − T (i)(cn)∥ ≤ ∥cn − c
(i)
n ∥+ ∥c(i)n −

T (i)(cn)∥ (i ∈ I, n ∈ N), and limn→∞ ∥cn − c
(i)
n ∥ = limn→∞ ∥c(i)n − T (i)(cn)∥ = 0

(i ∈ I), we get

lim
n→∞

∥∥∥cn − T (i) (cn)
∥∥∥ = 0 (i ∈ I) .(4.6)

The boundedness of (cn)n∈N guarantees the existence of an accumulation point of
(cn)n∈N. Let c

∗ ∈ Rm be an arbitrary accumulation point of (cn)n∈N. Accordingly,
a subsequence (cnk

)k∈N of (cn)n∈N exists such that (cnk
)k∈N converges to c∗. Hence,

the continuity of T (i) and (4.6) imply that

0 = lim
k→∞

∥∥∥cnk
− T (i) (cnk

)
∥∥∥ =

∥∥∥c∗ − T (i) (c∗)
∥∥∥ (i ∈ I) ;

i.e., c∗ ∈
∩

i∈I Fix(T
(i)).

The nonexpansivity of T (i) guarantees that, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c
∥∥∥2

=
∥∥∥T (i)

(
c(i−1)
n − µλn∇f (i)

(
c(i−1)
n

))
− T (i) (c)

∥∥∥2
≤
∥∥∥(c(i−1)

n − c
)
− µλn∇f (i)

(
c(i−1)
n

)∥∥∥2
=
∥∥∥c(i−1)

n − c
∥∥∥2 + 2µλn

⟨
c− c(i−1)

n ,∇f (i)
(
c(i−1)
n

)⟩
+ µ2λ2

n

∥∥∥∇f (i)
(
c(i−1)
n

)∥∥∥2 .
Since the gradient of f (i) (i ∈ I) at x ∈ Rm satisfies f (i)(y) ≥ f (i)(x) + ⟨y −
x,∇f (i)(x)⟩ (y ∈ Rm), we have ⟨c − c

(i−1)
n ,∇f (i)(c

(i−1)
n )⟩ ≤ f (i)(c) − f (i)(c

(i−1)
n )
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(i ∈ I, n ∈ N). Thus, for all i ∈ I and for all n ∈ N,∥∥∥c(i)n − c
∥∥∥2 ≤ ∥∥∥c(i−1)

n − c
∥∥∥2 + 2µλn

[
f (i) (c)− f (i)

(
c(i−1)
n

)]
+M2

2λ
2
n.

Hence, for all n ∈ N,

∥cn+1 − c∥2 ≤
∥∥∥c(K−1)

n − c
∥∥∥2 + 2µλn

[
f (K) (c)− f (K)

(
c(K−1)
n

)]
+M2

2λ
2
n

≤ ∥cn − c∥2 + 2µλn

∑
i∈I

[
f (i) (c)− f (i)

(
c(i−1)
n

)]
+KM2

2λ
2
n

= ∥cn − c∥2 + 2µλn

[∑
i∈I

f (i) (c)−
∑
i∈I

f (i) (cn)

]
+ 2µλn

∑
i∈I

[
f (i) (cn)− f (i)

(
c(i−1)
n

)]
+KM2

2λ
2
n.

Therefore, for all n ∈ N,

2µ

[∑
i∈I

f (i) (cn)−
∑
i∈I

f (i) (c)

]
≤ ∥cn − c∥2 − ∥cn+1 − c∥2

λn
+KM2

2λn

+ 2µ
∑
i∈I

[
f (i) (cn)− f (i)

(
c(i−1)
n

)]
.

(4.7)

Since (1/λn)(∥cn − c∥2 − ∥cn+1 − c∥2) ≤ (M5/λn)∥cn − cn+1∥ (n ∈ N) and (4.3),
we have lim supn→∞(1/λn)(∥cn − c∥2 − ∥cn+1 − c∥2) ≤ 0. Moreover, from

f (i)(cn) − f (i)(c
(i−1)
n ) ≤ ⟨cn − c

(i−1)
n ,∇f (i)(cn)⟩ (i ∈ I, n ∈ N), we have f (i)(cn) −

f (i)(c
(i−1)
n ) ≤ ∥cn − c

(i−1)
n ∥∥∇f (i)(cn)∥ (i ∈ I, n ∈ N), which from (4.5) means that

lim supn→∞
∑

i∈I [f
(i)(cn)−f (i)(c

(i−1)
n )] ≤ 0. Accordingly, (4.7) and (C1) guarantee

that, for all c ∈
∩

i∈I Fix(T
(i)),

lim sup
n→∞

[∑
i∈I

f (i) (cn)−
∑
i∈I

f (i) (c)

]
≤ 0; i.e., lim sup

n→∞

∑
i∈I

f (i) (cn) ≤
∑
i∈I

f (i) (c) .

Therefore, the convergence of (cnk
)k∈N to c∗ ∈

∩
i∈I Fix(T

(i)) and the continuity of∑
i∈I f

(i) ensure that, for all c ∈
∩

i∈I Fix(T
(i)),∑

i∈I
f (i) (c∗) = lim

k→∞

∑
i∈I

f (i) (cnk
) = lim sup

k→∞

∑
i∈I

f (i) (cnk
) ≤

∑
i∈I

f (i) (c) .

This implies that c∗ ∈
∩

i∈I Fix(T
(i)) is the solution to problem (4.1). Since problem

(4.1) has a unique solution, denoted by c⋆, (cnk
)k∈N converges to the unique solution

c⋆. Let c∗ ∈ Rm be an accumulation point of (cn)n∈N. Then, there exists (cnl
)l∈N

(⊂ (cn)n∈N) converging to c∗. A discussion similar to the one above leads us to
conclude that c∗ is the solution to problem (4.1). Accordingly, since any subsequence

of (cn)n∈N converges to c⋆, we can conclude that (cn)n∈N = (c
(K)
n−1)n∈N converges to

c⋆. This implies from (4.5) that (c
(i−1)
n )n∈N (i ∈ I) also converges to c⋆. Therefore,

(c
(i)
n )n∈N (i ∈ I) generated by Algorithm 4.2 converges to the solution to problem

(4.1). □
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5. Distributed control under the profit-oriented pricing scheme

This section presents a broadcast optimization algorithm for solving the following
problem that includes Problem 3.2.

Minimize
∑

i∈{0}∪I

f (i) (p) subject to p ∈
∩

i∈{0}∪I

Fix
(
T (i)

)
,(5.1)

where f (i) : Rm → R (i ∈ {0} ∪ I, I := {1, 2, . . . ,K}) is α(i)-strongly convex and

differentiable, ∇f (i) : Rm → Rm is L(i)-Lipschitz continuous, and T (i) : Rm → Rm

(i ∈ {0} ∪ I) is firmly nonexpansive with
∩

i∈{0}∪I Fix(T
(i)) ̸= ∅.

Algorithm 5.1 (broadcast optimization algorithm).
Step 0. The operator (peer 0) sets p0 ∈ Rm arbitrarily and transmits p0 to all

peers.

Step 1. Given pn ∈ Rm, peer i (i ∈ {0} ∪ I) computes p
(i)
n+1 ∈ Rm by

p
(i)
n+1 := T (i)

(
pn − µλn∇f (i) (pn)

)
and transmits p

(i)
n+1 to the operator.

Step 2. The operator computes pn+1 ∈ Rm by

pn+1 :=
1

K + 1

∑
i∈{0}∪I

p
(i)
n+1

and transmits pn+1 to all peers. Put n := n+ 1, and go to Step 1.

Now let us conduct a convergence analysis on Algorithm 5.1.

Theorem 5.2. Under Assumption 4.1, the sequence (pn)n∈N generated by Algo-
rithm 5.1 converges to the solution to problem (5.1).

From Theorem 5.2, Algorithm 5.1 enables the operator to solve Problem 3.2,
i.e., problem (5.1) when f (0) := −λU (0), f (i) := −(1 − λ)W (i) (i ∈ I, λ ∈ (0, 1)),

T (0) is defined as in (3.6), and T (i) (i ∈ I) is defined as in (3.7). Hence, all peers
can get the pair of optimal prices (p⋆s, p

⋆
o) in the sense of maximizing the weighted

mean of the operator’s profit and the social welfare by way of the operator. As a

result, peer i (i ∈ I) can find the pair of optimal storage capacities (c
(i)⋆
s , c

(i)⋆
o ) :=

(d(i)(p⋆s), s
(i)(p⋆o)) by using its own supply and demand functions.

Proof. We shall prove that (pn)n∈N is bounded. Choose p ∈
∩

i∈{0}∪I Fix(T
(i))

arbitrarily. The nonexpansivity of T (i) and Proposition 3.3 ensure that, for all
i ∈ {0} ∪ I and for all n ∈ N,∥∥∥p(i)

n+1 − p
∥∥∥ =

∥∥∥T (i)
(
pn − µλn∇f (i) (pn)

)
− T (i) (p)

∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
− p

∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
−

(
p− µλn∇f (i) (p)

)∥∥∥+ µλn

∥∥∥∇f (i) (p)
∥∥∥

≤
(
1− τ (i)λn

)
∥pn − p∥+ µλn

∥∥∥∇f (i) (p)
∥∥∥
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≤ (1− τλn) ∥pn − p∥+ µN1λn,

where τ ≤ τ (i) := 1 −
√

1− µ(2α(i) − µL(i)2) (i ∈ {0} ∪ I) and N1 :=

maxi∈{0}∪I ∥∇f (i)(p)∥. The definition of pn means that, for all n ∈ N,

∥∥pn+1 − p
∥∥ =

∥∥∥∥∥∥ 1

K + 1

∑
i∈{0}∪I

(
p
(i)
n+1 − p

)∥∥∥∥∥∥ ≤ 1

K + 1

∑
i∈{0}∪I

∥∥∥p(i)
n+1 − p

∥∥∥ .(5.2)

Hence, for all n ∈ N,∥∥pn+1 − p
∥∥ ≤ (1− τλn) ∥pn − p∥+ µN1λn.

A similar argument as in the proof of the boundedness of (cn)n∈N in Algorithm 4.2
leads us to conclude that, for all n ∈ N,

∥pn − p∥ ≤ max

{
∥p0 − p∥ , µN1

τ

}
,

and hence, (pn)n∈N is bounded. Moreover, (p
(i)
n )n∈N (i ∈ {0} ∪ I) is also bounded

from the definition of pn. The Lipschitz continuity of∇f (i) implies that ∥∇f (i)(pn)−
∇f (i)(p)∥ ≤ L(i)∥pn − p∥ (i ∈ {0} ∪ I, n ∈ N), which, from the boundedness of

(pn)n∈N, implies that (∇f (i)(pn))n∈N (i ∈ {0} ∪ I) is bounded.
The nonexpansivity of T (i) (i ∈ {0} ∪ I) and Proposition 3.3 guarantee that, for

all i ∈ {0} ∪ I and for all n ∈ N,∥∥∥p(i)
n+1 − p(i)

n

∥∥∥ =
∥∥∥T (i)

(
pn − µλn∇f (i) (pn)

)
− T (i)

(
pn−1 − µλn−1∇f (i)

(
pn−1

))∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
−

(
pn−1 − µλn−1∇f (i)

(
pn−1

))∥∥∥
≤

∥∥∥(pn − µλn∇f (i) (pn)
)
−

(
pn−1 − µλn∇f (i)

(
pn−1

))∥∥∥
+ µ |λn−1 − λn|

∥∥∥∇f (i)
(
pn−1

)∥∥∥
≤ (1− τλn)

∥∥pn − pn−1

∥∥+ µN2 |λn − λn−1| ,

where N2 := maxi∈{0}∪I(supn∈N ∥∇f (i)(pn)∥) < ∞. Summing up the above in-
equality over all i and going through a similar argument as in (5.2) we find that,
for all n ∈ N,∥∥pn+1 − pn

∥∥ ≤ (1− τλn)
∥∥pn − pn−1

∥∥+ µN2 |λn − λn−1| .

Therefore, in the same manner as in the proof of limn→∞ ∥cn+1 − cn∥/λn = 0 (see
(4.3)), we find that

lim
n→∞

∥∥pn+1 − pn

∥∥
λn

= 0, lim
n→∞

∥∥pn+1 − pn

∥∥ = 0.(5.3)

Choose p ∈
∩

i∈{0}∪I Fix(T
(i)) arbitrarily; i.e., p = T (i)(p) (i ∈ {0} ∪ I). From

p
(i)
n+1 := T (i)(pn − µλn∇f (i)(pn)), the firm nonexpansivity of T (i), and Proposition

3.5, we have that, for all i ∈ {0} ∪ I and for all n ∈ N,∥∥∥p(i)
n+1 − p

∥∥∥2
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≤
∥∥∥(pn − µλn∇f (i) (pn)

)
− p

∥∥∥2 − ∥∥∥((pn − µλn∇f (i) (pn)
)
− p

)
−
(
p
(i)
n+1 − p

)∥∥∥2
=

∥∥∥(pn − p)− µλn∇f (i) (pn)
∥∥∥2 − ∥∥∥(pn − p

(i)
n+1

)
− µλn∇f (i) (pn)

∥∥∥2 .
From ∥x− y∥2 = ∥x∥2 − 2⟨x,y⟩+ ∥y∥2 (x,y ∈ Rm), we find that∥∥∥p(i)

n+1 − p
∥∥∥2 ≤ ∥pn − p∥2 − 2µλn

⟨
pn − p,∇f (i) (pn)

⟩
−

∥∥∥pn − p
(i)
n+1

∥∥∥2
+ 2µλn

⟨
pn − p

(i)
n+1,∇f (i) (pn)

⟩
≤ ∥pn − p∥2 −

∥∥∥pn − p
(i)
n+1

∥∥∥2 +N3λn,

(5.4)

where N3 := maxi∈{0}∪I(supn∈N 2µ|⟨p−p
(i)
n+1,∇f (i)(pn)⟩|) < ∞. Since the convex-

ity of ∥ · ∥2 ensures that, for all n ∈ N,

∥∥pn+1 − p
∥∥2 =

∥∥∥∥∥∥ 1

K + 1

∑
i∈{0}∪I

(
p
(i)
n+1 − p

)∥∥∥∥∥∥
2

≤ 1

K + 1

∑
i∈{0}∪I

∥∥∥p(i)
n+1 − p

∥∥∥2 ,(5.5)

summing up (5.4) over all i implies that, for all n ∈ N,∥∥pn+1 − p
∥∥2 ≤ ∥pn − p∥2 − 1

K + 1

∑
i∈{0}∪I

∥∥∥pn − p
(i)
n+1

∥∥∥2 +N3λn.

Hence, for all n ∈ N,
1

K + 1

∑
i∈{0}∪I

∥∥∥pn − p
(i)
n+1

∥∥∥2 ≤ ∥pn − p∥2 −
∥∥pn+1 − p

∥∥2 +N3λn

=
(
∥pn − p∥+

∥∥pn+1 − p
∥∥) (∥pn − p∥ −

∥∥pn+1 − p
∥∥)

+N3λn

≤ N4

∥∥pn − pn+1

∥∥+N3λn,

where N4 := supn∈N(∥pn − p∥ + ∥pn+1 − p∥) < ∞. From (C1) and (5.3), we find

that limn→∞ ∥pn−p
(i)
n+1∥ = 0 (i ∈ {0}∪I). The nonexpansivity of T (i) (i ∈ {0}∪I)

implies that, for all i ∈ {0} ∪ I and for all n ∈ N, ∥p(i)
n+1 − T (i)(pn)∥ ≤ ∥T (i)(pn −

µλn∇f (i)(pn)) − T (i)(pn)∥ ≤ µλn∥∇f (i)(pn)∥ ≤ µN2λn. Accordingly, (C1) means

that limn→∞ ∥p(i)
n+1 − T (i)(pn)∥ = 0 (i ∈ {0} ∪ I). Hence, from ∥pn − T (i)(pn)∥ ≤

∥pn − p
(i)
n+1∥+ ∥p(i)

n+1 − T (i)(pn)∥ (i ∈ {0} ∪ I, n ∈ N), we have

lim
n→∞

∥∥∥pn − T (i)(pn)
∥∥∥ = 0 (i ∈ {0} ∪ I) .(5.6)

The boundedness of (pn)n∈N guarantees the existence of an accumulation point of
(pn)n∈N. Let p

∗ ∈ Rm be an arbitrary accumulation point of (pn)n∈N. Accordingly,
a subsequence (pnk

)k∈N of (pn)n∈N exists such that (pnk
)k∈N converges to p∗. In

the same manner as in the proof of c∗ ∈
∩

i∈I Fix(T
(i)) in Section 4, the continuity

of T (i) (i ∈ {0} ∪ I) and (5.6) guarantee that p∗ ∈
∩

i∈{0}∪I Fix(T
(i)).
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From the nonexpansivity of T (i) (i ∈ {0} ∪ I), we find that, for all i ∈ {0} ∪ I
and for all n ∈ N,∥∥∥p(i)

n+1 − p
∥∥∥2 = ∥∥∥T (i)

(
pn − µλn∇f (i) (pn)

)
− T (i) (p)

∥∥∥2
≤

∥∥∥(pn − p)− µλn∇f (i) (pn)
∥∥∥2

= ∥pn − p∥2 − 2µλn

⟨
pn − p,∇f (i) (pn)

⟩
+ µ2λ2

n

∥∥∥∇f (i) (pn)
∥∥∥2 ,

which from the differentiability of f (i) (i ∈ {0} ∪ I) implies that∥∥∥p(i)
n+1 − p

∥∥∥2 ≤ ∥pn − p∥2 + 2µλn

[
f (i) (p)− f (i) (pn)

]
+ µ2N2

2λ
2
n.

Summing up the above inequality over all i and (5.5) lead to∥∥pn+1 − p
∥∥2 ≤ ∥pn − p∥2 + 2µλn

K + 1

∑
i∈{0}∪I

[
f (i) (p)− f (i) (pn)

]
+ µ2N2

2λ
2
n

for all n ∈ N, which means

2µ

K + 1

∑
i∈{0}∪I

[
f (i) (pn)− f (i) (p)

]
≤

∥pn − p∥2 −
∥∥pn+1 − p

∥∥2
λn

+ µ2N2
2λn

≤
N4

∥∥pn+1 − pn

∥∥
λn

+ µ2N2
2λn

for all n ∈ N. Therefore, (C1) and (5.3) guarantee that, for all p ∈
∩

i∈{0}∪I Fix(T
(i)),

lim sup
n→∞

∑
i∈{0}∪I

[
f (i) (pn)− f (i) (p)

]
≤ 0.(5.7)

In the same manner as in the proof of Theorem 4.3 and (5.7), we find that (pn)n∈N
generated by Algorithm 5.1 converges to the solution to problem (5.1). □

6. Numerical examples

We conducted numerical experiments comparing the capabilities of the proposed
algorithms with different parameters for solving Problem 3.1 and 3.2 when K = 100.
We used µ = 10−1, 10−3 and λn := 1/(n + 1)0.45. We randomly chose a(i), b(i) ∈
(0, 5], p

(i)
min ∈ [0, 10], p

(i)
max ∈ [90, 100] (i = 1, 2, . . . , 100). The computer used in

the experiment had an Intel Boxed Core i7 i7-870 2.93 GHz 8M CPU and 8 GB of
memory. The language was MATLAB 7.13.

In the experiment, we set c := c0 = c(i) (i ∈ I) in Algorithm 4.2, selected one
hundred random points c = c(k) (k = 1, 2, . . . , 100), and executed the algorithm on
these points. Let c(k) (∈ R100×R100) be one of the randomly selected points and let
(cn(k))n∈N (⊂ R100 × R100) be the sequence generated by c(k) and Algorithm 4.2.

We employed Dn(k) := ∥cn(k) − T (100)T (99) · · ·T (1)(cn(k))∥ (k = 1, 2, . . . , 100, n ∈
N) and their mean value, Dn := (1/100)

∑100
k=1Dn(k) (n ∈ N), where T (i) (i ∈ I) is

defined as in (3.3). If (Dn)n∈N converges to 0, Algorithm 4.2 converges to a point

in
∩

i∈I Fix(T
(i)).
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Figure 1 describes the behaviors of Dn for Algorithm 4.2 when µ = 10−1 and
10−3. Here, (Dn)n∈N converges to 0; i.e., Algorithm 4.2 converges to a point in the
constraint set in Problem 3.1. In particular, it converges quickly when µ = 10−3.

This is because µλn ∈ (0,mini∈I 2L
(i)/α(i)2), which is the convergence condition of

the algorithm, is satisfied in the early stages (see Assumption 4.1). Let us define

c
(i)
n,s := (1/100)

∑100
k=1 c

(i)
n,s(k) and c

(i)
n,o := (1/100)

∑100
k=1 c

(i)
n,o(k) (i ∈ I, n ∈ N), where

cn(k) := (cn,s(k), cn,o(k)) ∈ R100×R100, cn,s(k) := (c
(1)
n,s(k), c

(2)
n,s(k), . . . , c

(100)
n,s (k))T ∈

R100, cn,o(k) := (c
(1)
n,o(k), c

(2)
n,o(k), . . . , c

(100)
n,o (k))T ∈ R100 (k = 1, 2, . . . , 100, n ∈ N).

Figures 2–4 show the behaviors of c
(i)
n,s and c

(i)
n,o (i = 20, 40, 60) generated by Algo-

rithm 4.2 with µ = 10−3. We can see from these figures that the convergent point

c⋆ := (c⋆s, c
⋆
o) satisfies c

(i)⋆

o = c
(i)⋆

s (i = 20, 40, 60); i.e., in the symmetric scheme,

peer i offers c
(i)⋆

o equivalent to its own used amount c
(i)⋆

s .
Next, we solved Problem 3.2 with λ := 1/2 by using Algorithm 5.1. We selected

one hundred random points p0 = p(k) (k = 1, 2, . . . , 100) and executed the algo-
rithm on these points. Let p(k) (∈ R× R) be one of the randomly selected points,
and let (pn(k))n∈N := (pn,s(k), pn,o(k)) (⊂ R×R) be the sequence generated by p(k)

and Algorithm 5.1. We employed dn(k) := ∥pn(k) − T (100)T (99) · · ·T (0)(pn(k))∥
(k = 1, 2, . . . , 100, n ∈ N) and dn := (1/100)

∑100
k=1 dn(k) (n ∈ N), where T (0)

and T (i) (i ∈ I) are defined as in (3.6) and (3.7). We also employed pn,s :=

(1/100)
∑100

k=1 pn,s(k) and pn,o := (1/100)
∑100

k=1 pn,o(k) (n ∈ N).
Figure 5 indicates the behavior of dn for Algorithm 5.1 when µ = 10−1 and 10−3.

Since (dn)n∈N converges to 0, we find that Algorithm 5.1 converges to a point in the
constrained set in Problem 3.2. As we pointed out in the above paragraph (Figure
1), Algorithm 5.1 with µ = 10−3 converges faster than it does with µ = 10−1. Figure
6 shows the behavior of pn,s and pn,o for Algorithm 5.1 when µ = 10−3, and the
(pn,s)n∈N and (pn,o)n∈N converge to the same point. This implies that the optimal
prices, p⋆s and p⋆o, for maximizing the mean of the operator’s profit and social welfare
are approximately the same.

7. Conclusion

We discussed the storage allocation problems caused by incentive schemes (the
symmetric scheme and the profit-oriented pricing scheme) for controlling P2P data
storage systems. We presented two distributed optimization algorithms, called the
incremental gradient algorithm and the broadcast optimization algorithm, for solv-
ing them and performed convergence analyses. The incremental gradient algorithm
can be applied to the symmetric scheme, while the broadcast optimization algo-
rithm is for the profit-oriented pricing scheme. We gave numerical results showing
that the algorithms converge to solutions to the storage allocation problems.
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