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ABSTRACT. In this paper we show the hereditary nature of the structural char-
acteristics between the Choquet functionals and their representing measures. In
fact we prove that, if a Choquet functional is weakly asymptotic null-additive
(asymptotic null-additive, autocontinuous from above, uniformly autocontinuous
from above, pseudometric generating, submodular, supermodular), then there is
a representing measure having the same property, and vice versa. We also give a
partial result for the hereditary nature of the (weak) null-additivity.

1. INTRODUCTION

In 1982, Greco [7] gave a most general type of the Choquet integral representation
theorem as a successful nonadditive analogue of the famous Daniell-Stone integral
representation theorem [15]. It gives a correspondence between a Choquet functional
I on an appropriate family F of functions on a non-empty set X and a nonadditive
measure 4 on the power set 2% through the Choquet integral

I:fEFHI(f):(C)/de,u.

The purpose of the paper is to show the hereditary nature of the structural char-
acteristics between the Choquet functionals and their representing measures. More
precisely, we prove that, if a Choquet functional I is weakly asymptotic null-additive
(asymptotic null-additive, autocontinuous from above, uniformly autocontinuous
from above, pseudometric generating, submodular, supermodular), then there is a
representing measure p having the same property, and vice versa.

As a matter of fact, some of the forward direction to the hereditary nature of
those characteristics were already studied by Denneberg [4] for the submodularity
and the supermodularity and by Pap [14] for the uniform autocontinuity from above;
see also Bassanezi and Greco [1]. They proved those characteristics by a method
based on subgraphs of functions, a method applied by Kindler [11] for his simple
proof of the Daniell-Stone representation theorem. All other cases will be shown by
the same method. So, our main contribution in this paper is the reverse direction
to the hereditary nature.

The paper is organized as follows. In Section 2 we recall some structural char-
acteristics of nonadditive measures and define the corresponding characteristics of
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functionals. In Section 3 we show the hereditary nature of some structural char-
acteristics between the Choquet functionals and their representing measures. In
Section 4, after indicating that the method based on subgraphs of functions does
not work for the (weak) null-additivity case, we shall give a partial result for the
hereditary nature of the (weak) null-additivity using an alternative approach.

2. NOTATION AND PRELIMINARIES

Let X be a non-empty set and 2% denote the family of all subsets of X. For
each A C X, let 14 denote the characteristic function of A. Let [0,00] be the
set of all non-negative extended real numbers with usual total order. For any
a,b € [0,00], let a Vb := max(a,b) and a A b := min(a,b). As usual, we assume
the standard convention co -0 = 0-0co = 0 and inf() = oo. For any functions
fig: X — [0,00], f < g denotes the partial order, called the pointwise order,
defined by f(z) < g(x) for every z € X. Let fV g and f A g be lattice operations
defined by (f V¢)(z) := max(f(x),g(x)) and (f Ag)(z) := min(f(x), g(z)) for every
reX.

Let £ be a lattice of subsets of X, that is, if A,B € £, then AUB,ANB € L.
Assume that £ contains the empty set (). A set function p: £ — [0, 00] is called a
nonadditive measure on L if u(@) = 0 and p(A) < u(B) whenever A, B € £ and
A C B. A function f: X — [0,00] is called L-measurable if {f > t},{f >t} € L
for every t € (0,00]. Then the distribution functions ¢ € (0,00) — p({f > t}) and
t € (0,00) — p({f > t}) are decreasing, so that they are Lebesgue measurable.
Thus the following formalization is well-defined; see Choquet [2].

Definition 2.1. Let p: £ — [0, 00] be a nonadditive measure. Let f: X — [0, o0]
be an L-measurable function. The Choquet integral of f with respect to u is defined
by

© [ fau= [ uts >
where the integral on the right-hand side is the usual Lebesgue integral.

Remark 2.2. The function p({f > t}) in the above definition may be replaced
with the function u({f > t}), since u({f > t}) > u({f > t}) > u({f >t +¢}) for
every € > 0 and t € (0,00). This fact will be used in this paper without mentioning
it explicitly.

In this paper we treat the following structural characteristics of nonadditive mea-
sures and monotone functionals.

Definition 2.3. Let pu: £ — [0, 00| be a nonadditive measure.

(1) p is called weakly asymptotic null-additive if p(A, U B,) | 0 whenever
{An}neny C L and {By}nen C L are decreasing sequences with p(A,) 0
and ju(By) L 0 [8].

(2) p is called asymptotic null-additive if p(A U By,) | p(A) whenever A € L
and {By }nen C L is a decreasing sequence with pu(B;,) | 0 [8].

(3) w is called autocontinuous from above if, for every € > 0 and A € L, there
is 9 > 0 such that (AU B) < u(A) + ¢ whenever B € £ and p(B) < 0 [16].
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(4) w is called uniformly autocontinuous from above if, for every € > 0, there is
0 > 0 such that u(AUB) < pu(A)+e whenever A, B € £ and u(B) < § [16].

(5) w is called pseudometric generating if, for every € > 0, there is § > 0 such
that u(AU B) < € whenever A, B € £ and p(A) V u(B) <4 [5].

(6) p is called weakly null-additive if u(A U B) = 0 whenever A, B € £ and
u(4) = u(B) = 0 [17).

(7) p is called null-additive if (AU B) = u(A) whenever A, B € £ and u(B) =
0 [16].

(8) p is called submodular if (AU B) + u(AN B) < u(A) + u(B) for every
A, BelL.

(9) p is called supermodular if u(AU B) + u(AN B) > u(A) + p(B) for every
A, BelL.

Let F be a lattice of functions f: X — [0, 00] with pointwise order, that is, if
f,g€ F,then fVg,fAge F. Assumethat 0 € F. Let /1 :={f e F: 0< f <1}
A functional I: F — [0,00] is called monotone if I(f) < I(g) whenever f,g € F
and f <g.

Definition 2.4. Let I: F — [0,00] be a monotone functional.

(1) I is called weakly asymptotic null-additive if I(f,Vgy) | 0 whenever { f,, }nen €
F1 and {gn nen C Fi1 are decreasing sequences with I(f,,) J 0 and I(g,) | 0.

(2) I is called asymptotic null-additive if I(fV gn) | I(f) whenever f € F; and
{gn}nen C Fi is a decreasing sequence with I(gy,) | 0.

(3) I is called autocontinuous from above if, for every € > 0 and every f € Fi,
there is § > 0 such that I(f V g) < I(f) 4+ € whenever g € F; and I(g) < 0.

(4) I is called uniformly autocontinuous from above if, for every € > 0, there is
9 > 0 such that I(f V g) < I(f)+ e whenever f,g € F; and I(g) < ¢ [14].

(5) I is called pseudometric generating if, for every ¢ > 0, there is 6 > 0 such
that I(f V g) < e whenever f,g € F; and I(f)V I(g) < 0.

(6) I is called weakly null-additive if I(f V g) = 0 whenever f,g € F; and

I(f) = I(g) = 0.
(7) I is called null-additive if I(f V g) = I(f) whenever f,g € F1 and I(g) =
0 [14].

(8) Iis called submodularif I(fVg)+I1(fAg) < I(f)+I1(g) for every f,g € Fi [4].
(9) I is called supermodular if I(f Vv g) + I(f Ag) > I(f) + I(g) for every
fvg € F [4]

The following assertions hold for both a nonadditive measure p: £ — [0, 00] and
a monotone functional I: F — [0, co]:

e submodular = uniformly autocontinuous from above =- autocontinuous
from above = asymptotic null-additive = null-additive.

e uniformly autocontinuous from above = pseudometric generating = weakly
asymptotic null-additive = weakly null-additive.

e asymptotic null-additive = weakly asymptotic null-additive.

Furthermore the following properties hold:

e If L is closed for countable intersections and g is continuous from above,
that is, pu(A4,) 4 w(A) whenever A € £ and {4, }neny C L is a decreasing
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sequence with A, | A, then p is (weakly) asymptotic null-additive < p is
(weakly) null-additive.

e If F is closed for countable infimum and if I is continuous from above, that
is, I(fn)  I(f) whenever f € F and {f,}nen C F is a decreasing sequence
with f, | f, then I is (weakly) asymptotic null-additive < I is (weakly)
null-additive.

e 4 is autocontinuous from above if and only if (AU B,) — u(A) whenever
A € L and {By}nen C L is a sequence with u(By) — 0.

e [ is autocontinuous from above if and only if I(f V g,) — I(f) whenever
f € Fi and {gn}neny C F1 is a sequence with I(gy,) — 0.

e 4 is pseudometric generating if and only if u(A, U B,) — 0 whenever
{Aptneny € L and {Bplpen C L are sequences with u(A,) — 0 and
wu(Bp) — 0.

e [ is pseudometric generating if and only if I(f,,Vg,) — 0 whenever { f,, }nen C
F1 and {gn fnen C Fi are sequences with I(f,) — 0 and I(g,) — 0.

Every nonadditive measure p: £ — [0, 00] has its nonadditive extensions defined
on 2%: The largest and the smallest ones are given by

p(A) :==inf{u(L): ACL,LeL}
px(A) :=sup{u(L): L C A, L € L}.

for every A € 2X. The measures p* and pu, are called the outer extension and the
inner extension of u, respectively.

3. STRUCTURAL CHARACTERISTICS OF CHOQUET FUNCTIONALS

Let X be a non-empty set. Recall that two functions f,g: X — [0,00] are
comonotonic and they are written by f ~ g if, for every z,2' € X, f(x) < f(a')
implies g(z) < g(z'); see Dellacherie [3].

Throughout this paper, we assume that F is a non-empty family of functions
f: X —[0,00] with pointwise order and satisfies

(F1) if f € F and ¢ € [0,00), then ¢f, f Ac, f — f Ac € F (Stone condition) and
thus 0 € F, and
(F2) if f,g € F, then f Vg, fANge F (lattice condition).

For instance, the positive cones of the space B(X) of all bounded real functions
on X and the space C(X) of all continuous real functions on a Hausdorff space X
satisfy these conditions.
We also assume that I: F — [0, 00] is a Choquet functional, that is, it satisfies
(I1) 1(0) =0,
(12) if f,g € F and f < g, then I(f) < I(g) (monotonicity),
(13) if f,ge F,f+ge€ Fand f ~g,then I(f+¢g) =I(f)+1(9) (comonotonic
additivity),
(I4) supgso I(f — f Na) = I(f) for every f € F (lower marginal continuity),
and
(I5) supyso I(f AD) = I(f) for every f € F (upper marginal continuity).
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Every functional I: F — [0, 00| given by the Choquet integral
15)=(© fin fe7,

with respect to a nonadditive measure p on 2% (or a lattice £ such that every f € F
is L-measurable), is a Choquet functional.
For each A C X, define the set functions a, 3: 2% — [0, 0o] by

a(A) :==sup{I(f): f e F, f<x,}
B(A) = mt{I(f): | € Fox, < I}

Then « and 8 are nonadditive measures on 2% with o < 3. By the Greco represen-
tation theorem [7], for any nonadditive measure u: 2% — [0, 00|, the following two
conditions are equivalent:

(a) a<p<p.
(b) I(f) = (C) /X Fdy for every f € F.

In this case u is called a representing measure of the functional I.

Remark 3.1. (1) Every functional I: F — [0, oo] satisfying (I1)—(I3) is positively
homogeneous, that is, I(cf) = cI(f) for every f € F and ¢ € [0,00); see, for
instance, [4, p. 159] and [13, Proposition 4.2].

(2) (I4) is satisfied if, for every f € F, there is g € F such that 150y < g and
I(g) < oo (in particular, 1 € F and I(1) < o0). (I5) is also satisfied if every f € F
is bounded; see [9, Lemma 1] and [10].

The method based on subgraphs of functions: The above measures a and 3
may be constructed by the following steps:

Firstly, for any function f: X — [0,00], let Gy denote the subgraph of f, that
is, Gy := {(x,t) € X x [0,00): f(x) > t}. Then the family G := {G: f € F1} is a
lattice of subsets of X x [0,00) containing (.

Secondly, let w(Gy) = I(f) for every f € Fi. This w: G — [0,00] is a well-
defined nonadditive measure and has the outer and the inner extensions w* and w,
on 2%,

Finally, let (A) := w*(G1,) and ¥(A) := w«(G1,) for every A C X. Then ¢ = 8
and ¥ = a.

This construction is owing to Kindler [11] and was applied for his efficient ap-
proach to the Daniell-Stone representation theorem.

When the domain F of a functional [ is rather large and thus it contains all
characteristic functions of subsets of X, the nonadditive measure p(A) := I(14),
A C X, is a representing measure of I and satisfies each of the structural character-
istics in Definition 2.3 if and only if I has the same property in Definition 2.4. In
practical applications we often have only restricted information, that is, the domain
F is as small as it does not necessarily contain all characteristic functions. The
following theorem covers those cases.
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Theorem 3.2. If I is weakly asymptotic null-additive (asymptotic null-additive, au-
tocontinuous from above, uniformly autocontinuous from above, pseudometric gen-
erating, submodular, supermodular), then there is a representing measure ji on 2%
of I having the same property.

Conversely, if i is any representing measure on 2% of I such that

Q = sup pu({h > 0}) < oo,
heF1

in particular, u(X) < oo, and it is weakly asymptotic null-additive (asymptotic null-
additive, autocontinuous from above, uniformly autocontinuous from above, pseudo-
metric generating), then I has the same property.

Furthermore, if ju is any submodular (supermodular) representing measure on 2%
of 1, then I has the same property.

The forward direction of the above theorem will be proved by the method based on
subgraphs of functions. As a matter of fact, it was already proved by Denneberg [4,
Corollary 13.4] for the submodularity and the supermodularity cases and by Pap [14,
Theorem 10.8] for the uniform autocontinuity from above case; see also Bassanezi
and Greco [1]. To prove all other cases, we prepare the following proposition.

Proposition 3.3. Let X be a non-empty set. Let L be a lattice of subsets of X
containing 0. Let p: L — [0,00] be a nonadditive measure. If p is weakly asymp-
totic null-additive (asymptotic null-additive, autocontinuous from above, uniformly
autocontinuous from above, pseudometric generating, submodular), then so is its
outer extension u*. By contrast, if u is supermodular, then so is its inner extension

Hox -

Proof. To begin with, we show that u* is weakly asymptotic null-additive. Let
{Ap, }nen and { B, }nen be decreasing sequences of subsets of X such that u*(A,) J 0
and p*(By) | 0. Then, there are subsequences { Ay, }ren, {Bn,, }ken, and decreasing
sequences {Lg}reny C L, {My}tren C L such that A,, C Ly, B,, C My for every
ke N and u(Lg) | 0, u(Mg) |} 0. Since p is weakly asymptotic null-additive,
(L U My) | 0 and thus
inf 7 (An U Bn) < Inf 4" (An, U B,) < inf u(Ly, U M) =0,

which implies the weak asymptotic null-additivity of p*.

Next we show that u* is asymptotic null-additive. Let A C X. Let {Bj}nen
be a decreasing sequence of subsets of X such that p*(B,) { 0. If p*(A) = oo,
then the statement is true. Assume that pu*(A) < co. Let ¢ > 0 and find Ly € £
such that A C Lo and p(Lg) < p*(A) + €. Then there are a subsequence { By, }ren
and a decreasing sequence { My }reny C £ such that B, C My, for every k € N and
w(My) | 0. Since p is asymptotic null-additive, pu(Lo U M) | pu(Lo), so that

inf p* (AU By,) < inf pu(LoU M) = u(Lo) < p*(A) + ¢
neN keN
and the asymptotic null-additivity of u* follows.

The autocontinuity of x* from above was already proved in [14, Proposition 10.4]

and its uniform version can be proved in a similar way.
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The proof of the pseudometric generating property is as follows. Let € > 0 and
find § > 0 satisfying the following property (1): u(L U M) < & whenever L, M € L
and p(L) V u(M) < §. Let A, B C X and assume that p*(A) VvV p*(B) < §. Then
there are Lo, My € L such that A C Lo, B C My and p(Lo)V pu(Mp) < 6, and hence,
by (1), we have p*(AU B) < u(Lo U Mp) < e. Thus p* is pseudometric generating.

The submodularity of u* and the supermodularity of p, are easy to prove; see [4,
Proposition 2.4]. O

On the other hand, to prove the reverse direction, we need the following elemen-
tary result that is presented only for the completeness of the paper.

Lemma 3.4. Let {¢n}lnen be a sequence of decreasing functions p,: [0,00) —
[0,00]. If [7° @n(t)dt — 0, then pn(t) = 0 for every t € (0,00).

Proof. Assume that there is tg € (0,00) such that ¢,(tg) # 0. Then there are
g0 > 0 and a subsequence {yy, }ien such that o, (t9) > &¢ for every ¢ € N. Since
each ¢y, is decreasing, ¢, (t) > g for every t € [0,to] and every i € N and thus

[e%s) to to
/ o (£)E > / o (1) dt > / codt =t - 2o > 0,
0 0 0

which is a contradiction. O

The proof of Theorem 3.2: The forward direction can be proved by the same
method used in Denneberg [4, Corollary 13.4] and Pap [14, Theorem 10.8] together
with Proposition 3.3. So we only show the case of the autocontinuity from above
for the reader’s convenience.

Let Gf, G, w, and ¢ be given in the method based on subgraphs of functions.
Assume that [ is autocontinuous from above. To begin with, we show that w has
the same property. Let F € G and let {F), },,eny C G be a sequence with w(F,,) — 0.
Since E' = Gy and F,, = Gy, for some f,g, € F1, we have I(f) = w(Gy) = w(E)
and I(f V gn) = w(Gpvg,) = w(GfUGy,) = w(E U F,) for every n € N, so that
WEUF,) =I(fVgn) = I(f) = w(E). Thus w is autocontinuous from above and
so is its outer extension w* by Proposition 3.3. In the same way as the case of w, we
can show the autocontinuity of ¢ from above. Since ¢ = 3, this ¢ is a representing
measure what we seek.

Our main contribution to Theorem 3.2 is the reverse direction. Let u be a repre-
senting measure on 2% of I such that Q := sup,cz, u({h > 0}) < co.

In the first place we show the weak asymptotic null-additivity of I. Let {f,}nen,
{gn}nen C Fi1 be decreasing sequences with I(f,) | 0 and I(gy) J 0. By Lemma 3.4,
for every t > 0, we have u({f, > t}) } 0 and p({gn > t}) | 0, so that u({fn V gn >
t}) = u({fn >t} U{gn > t}) | 0 since p is weakly asymptotic null-additive. Noting
that 0 < pu({fn V gn > t}) < Q for every t > 0 and every n € N, by the bounded
convergence theorem,

1
I(fuV gn) = (C) /X (Fa ¥/ gn)edit = /0 WV g > 1)t — 0

and the weak asymptotic null-additivity of I follows.
The asymptotic null-additivity and the autocontinuity from above can be proved
in the same way.
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Next we show the uniform autocontinuity of I from above. Let € > 0 and find
no € N such that @Q/ng < €/2. Since p is uniformly autocontinuous from above,
there is § > 0 satisfying the following property (f): u(AUB) < u(A)+e/2 whenever
A,B C X and p(B) < nod. Let f,g € Fi and assume that I(g) < J. Since
Lgsey < g/t for every t > 0, we have

1 1
p({g >t}) = /0 p({g > t})ds < /0 n({g/t > s})ds

S(C)/Xiduzi-(C)/ngu:I(t‘C])<j

Therefore, for every ¢ > 1/ng, we have u({g > t}) < nod, so that () yields

W{F Vg >t = n{f >t U{g > 1) < p({f > 1) + 5

Consequently,

1
I(fVg) = /0 W({(f Vg > t))dt

1/no 1
:/O w({fVyg >t})dt+/ p({fVvg>thadt

1/no

IN

i*/;no s>+ <Y a

1
§;+/0 u{f > )t + =

=1I(f) +e,

which implies the uniform autocontinuity of I from above.

The pseudometric generating property can be proved along the same lines as the
uniform autocontinuity from above. The submodularity and the supermodularity
are easy to prove.

4. NULL-ADDITIVITY OF CHOQUET FUNCTIONALS

In this section we consider the (weakly) null-additive case. To obtain a similar
hereditary nature to Theorem 3.2 for the (weak) null-additivity by the method
based on subgraphs of functions, for a given (weakly) null-additive measure p, at
least one of the outer extension p* and the inner extension p, needs to have the
same property. But this is not the case as the following example indicates:

Example 4.1 (Murofushi [12]). Let J := {(a,b]: — o0 < a < b < oo} of all
bounded left half-open intervals. Let R be the ring generated by J. Let A\ be the
Lebesgue measure on the real line R. Define the nonadditive measure p: R — [0, o0]

by

0o if{0,1} C A,
b(A) = 0.1}
A(A) otherwise
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for every A € R.

(1) p is null-additive and thus weakly null-additive.

(2) p*({0}) = p*({1}) = 0, but p*({0,1}) = oo, so that u* is neither weakly
null-additive nor null-additive.

(3) 1(Q) = ps(R\ Q) = 0, but us(R) = o0, so that p, is neither weakly
null-additive nor null-additive, where Q is the set of all rational numbers.

Nevertheless, we can obtain the (weak) null-additivity on the restricted family of
subsets, that is, the family of all open subsets of a Hausdorff space.

In what follows, X is a Hausdorff space, U is the family of all open subsets of X,
and K is the family of all compact subsets of X.

Lemma 4.2. Let K € K and U,V € U. Assume that K C UUYV. Then there are
LM e K suchthat K=LUM, LCU and M CV.

Proof. Since K \ U and K \ V are disjoint compact sets, by [6, Theorem 3.1.6],
there are disjoint open sets G and H satisfying K\ V C G and K\ U C H. Let
L:=K\Hand M := K\G. Then L,M are compact and K = L U M. Since
K\UC H,wehave LNU®= (KNH)NU*=(KNU)NH = (K\U)NH®=10
and thus L C U. Similarly we have M C V. O

Proposition 4.3. Let pi: K — [0,00] be a nonadditive measure. If p is (weakly)
null-additive, then its inner extension . is (weakly) null-additive on U.

Proof. Let U,V € U and assume u,(V) = 0. Let K € K with K C UUV. By
Lemma 4.2, there are L, M € K satisfying K = LUM, L C U, and M C V.
Since p (V) = 0, we have u(M) = 0. By the null-additivity of u, we have u(K) =
(LU M) = pu(L) < pse(U) and thus p. (U U V) < p,(U). The reverse inequality is
obvious.

The weak null-additivity of u. can be proved in a similar way. U

From this point forwards, we assume that F is a non-empty family of functions
f: X — [0,00] with pointwise order, which satisfies, in addition to (F1) and (F2)
in Section 3,

(F3) {f >t} € U for every t > 0,

(F4) {f >t} € K for every t > 0, and

(F5) if K € K, U € 4 and K C U, then there is f € F such that 1x < f < 1p.

When X is locally compact, typical examples of such an F is the positive cones
of the space C(X) of all continuous real functions on X with compact support and
the space Cy(X) of all continuous real functions on X vanishing at infinity.

We also assume that I: F — [0, 00] is a Choquet functional, that is, it satisfies
(I1)—(I5) in Section 3.

Now we have a similar result to Theorem 3.2 except that the representing measure
is not necessarily (weakly) null-additive on the power set 2.

Theorem 4.4. If I is (weakly) null-additive, then there is a representing measure
won 2% of I that is (weakly) null-additive on U.

Conversely, if ju is a representing measure on 2% of I that is (weakly) null-additive
onU, then I is (weakly) null-additive.
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Proof. Let a: 2% — [0,00] be the smallest representing measure of I, that is,
a(A) == sup{I(f): f € F,f < 14} for every A C X. Let U,V be open and
assume that «(V) = 0. Let h € F and assume that h < lyyy. Fix n € N.
Then the set {h > 1/n} is compact by (F4) and is contained in U U V. There-
fore by Lemma 4.2, there are compact sets L,, M, such that L, Cc U M, C V
and {h > 1/n} = L, U M,. By (F5), there are functions f,,¢g, € F such that
1Ln < fn <luy and ]-Mn < gn < Iy.

To begin with, we show that a({h > 1/n}) < a(U). Since {h > 1/n} C {fnVgn >
t} for every t € [0, 1],

1
o({h > 1/n}) = /0 o({h > 1/n}dt
1
< /0 a({fnV gn >t})dt

~ () /X (fa V gu)da = I(fu V gn).

Since a(V') = 0 and ¢,, < 1y, we have I(g,) = 0 and thus I(f, V gn) = I(fyn) by the
null-additivity of I. Since f, < 1y, we have I(f,) < a(U). Thus, a({h > 1/n}) <

I(fnV gn) = I(fn) < a(U). Consequently,

1 1
I(h) = / a({h >t})dt < Sup/ a({h > 1/n})dt < a(U),
0 neNJ1/n
so that I(h) < a(U) for every h € F with h < x,;;,- Thus a(UUV) < a(U). The
reverse inequality is obvious and hence « is null-additive.
We show the reverse direction. Let f,g € F; and assume that I(g) = 0. Since u
is a representing measure of I,

1
/ u({g > t))dt = (O) / gdu = I(g) =0,
0 X

so that u({g > t}) = 0 for almost all ¢ € [0,1]. Since y is null-additive on open

sets, noting (F3), we have p({f Vg >t}) = p{f >t} U{g > t}) = u({f > t}) for
almost all t € [0,1], so that

1 1
I(fVg) = /0 W({(f Vg > t})dt = /0 w({f > t))dt = I(f).

This implies the null-additivity of I.
The proof of the weak null-additivity can be done in a similar way. O

Remark 4.5. We may replace K with the family IC, of all compact Gs-subsets of
X in Lemma 4.2 and Proposition 4.3. Therefore, Theorem 4.4 remains valid in the
case that K is replaced with Ky in (F4) and (F5).

We end the paper with suggestive examples illustrating the correspondence be-
tween the Choquet functionals and their representing measures. Let C]0, 1] denote
the space of all continuous real-valued functions on [0,1] and CT[0,1] := {f €
C[0,1]: f > 0}. Let £ be the o-field of all Borel subsets of [0,1] and A the Lebesgue
measure on R.
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Example 4.6. Let 0 < p < co. Define the nonadditive measure y,: £ — [0, 1] by
pip(A) = A(A)P
for every A € £ and the functional I,,: CT[0,1] — [0, c0) by

for every f € CT[0,1].

(1) pp is submodular if p < 1 and supermodular if p > 1.

(2) The outer extension (y,)* is submodular if p < 1 and the inner extension
(fp)« is supermodular if p > 1. Both of them are representing measures of
L.

(3) I, is submodular if p <1 and supermodular if p > 1.

(4) I, satisfies the moment condition

I'm+1)I'(p+1)
Fm+p+1) 7’

where I' is the Gamma function.

(1) =1, L") =

=1,2,...,

Example 4.7. Define the nonadditive measure p: £ — [0, 3] by

. Jo if A=0,
A= A2 £ A +1 A £0

for every A € £ and the functional I: CT[0,1] — [0,00) by

M
I(f)::/ f{)\({f>t})2+ AT > 1)} dt + My + 2my

my
for every f € C*[0,1], where My := max,¢(o 1) f(z) and my := mingco 1) f(2).

(1) The outer extension p* is a representing measure of I.
(2) p* and I are uniformly autocontinuous.

REFERENCES

[1] R. C. Bassanezi and G. H. Greco, Sull’additivita dell’integrale, Rend. Sem. Mat. Univ. Padova
72 (1984), 249-275.

[2] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-54), 131-295.

[3] C. Dellacherie, Quelques commentaires sur les prolongements de capacités, In: Séminaire de
Probabilités, Strasbourg, 1969/1970, Lecture Notes in Math. 191, Springer, Heidelberg, 1971,
pp. 77-81.

[4] D. Denneberg, Non-Additive Measure and Integral, second edition, Kluwer Academic Publish-
ers, Dordrecht, 1997.

[5] I. Dobrakov and J. Farkova, On submeasures II, Math. Slovaca 30 (1980), 65-81.

[6] R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin,
1989.

[7] G. H. Greco, Sulla rappresentazione di funzionali mediante integrali, Rend. Sem. Mat. Univ.
Padova 66 (1982), 21-42.

[8] J. Kawabe, Continuity and compactness of the indirect product of two non-additive measures,
Fuzzy Sets Systems 160 (2009), 1327-1333.



2192 JUN KAWABE

[9] J. Kawabe, Riesz type integral representations for comonotonically additive functionals, in:
L. Shoumei, X. Wang, Y. Okazaki, J. Kawabe, T. Murofushi and L. Guan (eds.), Nonlinear
Mathematics for Uncertainty and its Applications, Springer, Berlin Heidelberg, 2011, pp. 35—
42.

[10] J. Kawabe, The Choquet integral representability of comonotonically additive functionals in
locally compact spaces, Internat. J. Approx. Reason. 54 (2013), 418-426.

[11] J. Kindler, A simple proof of the Daniell-Stone representation theorem, Amer. Math. Monthly
90 (1983), 396-397.

[12] T. Murofushi, Eztensions of (weakly) null-additive, monotone set functions from rings of sub-
sets to generated algebras, Fuzzy Sets and Systems 158 (2007), 2422-2428.

[13] Y. Narukawa, T. Murofushi and M. Sugeno, Regular fuzzy measure and representation of
comonotonically additive functional, Fuzzy Sets Systems 112 (2000), 177-186.

[14] E. Pap, Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht, 1995.

[15] M. H. Stone, Notes on integration, II, Proc. Natl. Acad. Sci. USA 34 (1948), 447-455.

[16] Z. Wang, The autocontinuity of set-function and the fuzzy integral, J. Math. Anal. Appl. 99
(1984), 195-218.

[17] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.

Manuscript received May 24, 2014
revised September 28, 2015

JUN KAWABE
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 3808553, Japan
FE-mail address: jkawabe@shinshu-u.ac. jp



