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functionals. In Section 3 we show the hereditary nature of some structural char-
acteristics between the Choquet functionals and their representing measures. In
Section 4, after indicating that the method based on subgraphs of functions does
not work for the (weak) null-additivity case, we shall give a partial result for the
hereditary nature of the (weak) null-additivity using an alternative approach.

2. Notation and preliminaries

Let X be a non-empty set and 2X denote the family of all subsets of X. For
each A ⊂ X, let 1A denote the characteristic function of A. Let [0,∞] be the
set of all non-negative extended real numbers with usual total order. For any
a, b ∈ [0,∞], let a ∨ b := max(a, b) and a ∧ b := min(a, b). As usual, we assume
the standard convention ∞ · 0 = 0 · ∞ = 0 and inf ∅ = ∞. For any functions
f, g : X → [0,∞], f ≤ g denotes the partial order, called the pointwise order,
defined by f(x) ≤ g(x) for every x ∈ X. Let f ∨ g and f ∧ g be lattice operations
defined by (f ∨g)(x) := max(f(x), g(x)) and (f ∧g)(x) := min(f(x), g(x)) for every
x ∈ X.

Let L be a lattice of subsets of X, that is, if A,B ∈ L, then A ∪ B,A ∩ B ∈ L.
Assume that L contains the empty set ∅. A set function µ : L → [0,∞] is called a
nonadditive measure on L if µ(∅) = 0 and µ(A) ≤ µ(B) whenever A,B ∈ L and
A ⊂ B. A function f : X → [0,∞] is called L-measurable if {f > t}, {f ≥ t} ∈ L
for every t ∈ (0,∞]. Then the distribution functions t ∈ (0,∞) → µ({f > t}) and
t ∈ (0,∞) → µ({f ≥ t}) are decreasing, so that they are Lebesgue measurable.
Thus the following formalization is well-defined; see Choquet [2].

Definition 2.1. Let µ : L → [0,∞] be a nonadditive measure. Let f : X → [0,∞]
be an L-measurable function. The Choquet integral of f with respect to µ is defined
by

(C)

∫
X
fdµ :=

∫ ∞

0
µ({f > t})dt,

where the integral on the right-hand side is the usual Lebesgue integral.

Remark 2.2. The function µ({f > t}) in the above definition may be replaced
with the function µ({f ≥ t}), since µ({f ≥ t}) ≥ µ({f > t}) ≥ µ({f ≥ t + ε}) for
every ε > 0 and t ∈ (0,∞). This fact will be used in this paper without mentioning
it explicitly.

In this paper we treat the following structural characteristics of nonadditive mea-
sures and monotone functionals.

Definition 2.3. Let µ : L → [0,∞] be a nonadditive measure.

(1) µ is called weakly asymptotic null-additive if µ(An ∪ Bn) ↓ 0 whenever
{An}n∈N ⊂ L and {Bn}n∈N ⊂ L are decreasing sequences with µ(An) ↓ 0
and µ(Bn) ↓ 0 [8].

(2) µ is called asymptotic null-additive if µ(A ∪ Bn) ↓ µ(A) whenever A ∈ L
and {Bn}n∈N ⊂ L is a decreasing sequence with µ(Bn) ↓ 0 [8].

(3) µ is called autocontinuous from above if, for every ε > 0 and A ∈ L, there
is δ > 0 such that µ(A∪B) ≤ µ(A) + ε whenever B ∈ L and µ(B) < δ [16].
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(4) µ is called uniformly autocontinuous from above if, for every ε > 0, there is
δ > 0 such that µ(A∪B) ≤ µ(A)+ ε whenever A,B ∈ L and µ(B) < δ [16].

(5) µ is called pseudometric generating if, for every ε > 0, there is δ > 0 such
that µ(A ∪B) < ε whenever A,B ∈ L and µ(A) ∨ µ(B) < δ [5].

(6) µ is called weakly null-additive if µ(A ∪ B) = 0 whenever A,B ∈ L and
µ(A) = µ(B) = 0 [17].

(7) µ is called null-additive if µ(A∪B) = µ(A) whenever A,B ∈ L and µ(B) =
0 [16].

(8) µ is called submodular if µ(A ∪ B) + µ(A ∩ B) ≤ µ(A) + µ(B) for every
A,B ∈ L.

(9) µ is called supermodular if µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B) for every
A,B ∈ L.

Let F be a lattice of functions f : X → [0,∞] with pointwise order, that is, if
f, g ∈ F , then f ∨ g, f ∧ g ∈ F . Assume that 0 ∈ F . Let F1 := {f ∈ F : 0 ≤ f ≤ 1}.
A functional I : F → [0,∞] is called monotone if I(f) ≤ I(g) whenever f, g ∈ F
and f ≤ g.

Definition 2.4. Let I : F → [0,∞] be a monotone functional.

(1) I is called weakly asymptotic null-additive if I(fn∨gn) ↓ 0 whenever {fn}n∈N ∈
F1 and {gn}n∈N ⊂ F1 are decreasing sequences with I(fn) ↓ 0 and I(gn) ↓ 0.

(2) I is called asymptotic null-additive if I(f ∨ gn) ↓ I(f) whenever f ∈ F1 and
{gn}n∈N ⊂ F1 is a decreasing sequence with I(gn) ↓ 0.

(3) I is called autocontinuous from above if, for every ε > 0 and every f ∈ F1,
there is δ > 0 such that I(f ∨ g) ≤ I(f) + ε whenever g ∈ F1 and I(g) < δ.

(4) I is called uniformly autocontinuous from above if, for every ε > 0, there is
δ > 0 such that I(f ∨ g) ≤ I(f) + ε whenever f, g ∈ F1 and I(g) < δ [14].

(5) I is called pseudometric generating if, for every ε > 0, there is δ > 0 such
that I(f ∨ g) < ε whenever f, g ∈ F1 and I(f) ∨ I(g) < δ.

(6) I is called weakly null-additive if I(f ∨ g) = 0 whenever f, g ∈ F1 and
I(f) = I(g) = 0.

(7) I is called null-additive if I(f ∨ g) = I(f) whenever f, g ∈ F1 and I(g) =
0 [14].

(8) I is called submodular if I(f∨g)+I(f∧g) ≤ I(f)+I(g) for every f, g ∈ F1 [4].
(9) I is called supermodular if I(f ∨ g) + I(f ∧ g) ≥ I(f) + I(g) for every

f, g ∈ F1 [4].

The following assertions hold for both a nonadditive measure µ : L → [0,∞] and
a monotone functional I : F → [0,∞]:

• submodular ⇒ uniformly autocontinuous from above ⇒ autocontinuous
from above ⇒ asymptotic null-additive ⇒ null-additive.

• uniformly autocontinuous from above ⇒ pseudometric generating ⇒ weakly
asymptotic null-additive ⇒ weakly null-additive.

• asymptotic null-additive ⇒ weakly asymptotic null-additive.

Furthermore the following properties hold:

• If L is closed for countable intersections and µ is continuous from above,
that is, µ(An) ↓ µ(A) whenever A ∈ L and {An}n∈N ⊂ L is a decreasing
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sequence with An ↓ A, then µ is (weakly) asymptotic null-additive ⇔ µ is
(weakly) null-additive.

• If F is closed for countable infimum and if I is continuous from above, that
is, I(fn) ↓ I(f) whenever f ∈ F and {fn}n∈N ⊂ F is a decreasing sequence
with fn ↓ f , then I is (weakly) asymptotic null-additive ⇔ I is (weakly)
null-additive.

• µ is autocontinuous from above if and only if µ(A ∪ Bn) → µ(A) whenever
A ∈ L and {Bn}n∈N ⊂ L is a sequence with µ(Bn) → 0.

• I is autocontinuous from above if and only if I(f ∨ gn) → I(f) whenever
f ∈ F1 and {gn}n∈N ⊂ F1 is a sequence with I(gn) → 0.

• µ is pseudometric generating if and only if µ(An ∪ Bn) → 0 whenever
{An}n∈N ⊂ L and {Bn}n∈N ⊂ L are sequences with µ(An) → 0 and
µ(Bn) → 0.

• I is pseudometric generating if and only if I(fn∨gn) → 0 whenever {fn}n∈N ⊂
F1 and {gn}n∈N ⊂ F1 are sequences with I(fn) → 0 and I(gn) → 0.

Every nonadditive measure µ : L → [0,∞] has its nonadditive extensions defined
on 2X : The largest and the smallest ones are given by

µ∗(A) := inf{µ(L) : A ⊂ L,L ∈ L}
µ∗(A) := sup{µ(L) : L ⊂ A,L ∈ L}.

for every A ∈ 2X . The measures µ∗ and µ∗ are called the outer extension and the
inner extension of µ, respectively.

3. Structural characteristics of Choquet functionals

Let X be a non-empty set. Recall that two functions f, g : X → [0,∞] are
comonotonic and they are written by f ∼ g if, for every x, x′ ∈ X, f(x) < f(x′)
implies g(x) ≤ g(x′); see Dellacherie [3].

Throughout this paper, we assume that F is a non-empty family of functions
f : X → [0,∞] with pointwise order and satisfies

(F1) if f ∈ F and c ∈ [0,∞), then cf, f ∧ c, f − f ∧ c ∈ F (Stone condition) and
thus 0 ∈ F , and

(F2) if f, g ∈ F , then f ∨ g, f ∧ g ∈ F (lattice condition).

For instance, the positive cones of the space B(X) of all bounded real functions
on X and the space C(X) of all continuous real functions on a Hausdorff space X
satisfy these conditions.

We also assume that I : F → [0,∞] is a Choquet functional, that is, it satisfies

(I1) I(0) = 0,
(I2) if f, g ∈ F and f ≤ g, then I(f) ≤ I(g) (monotonicity),
(I3) if f, g ∈ F , f + g ∈ F and f ∼ g, then I(f + g) = I(f)+ I(g) (comonotonic

additivity),
(I4) supa>0 I(f − f ∧ a) = I(f) for every f ∈ F (lower marginal continuity),

and
(I5) supb>0 I(f ∧ b) = I(f) for every f ∈ F (upper marginal continuity).
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Every functional I : F → [0,∞] given by the Choquet integral

I(f) := (C)

∫
X
fdµ, f ∈ F ,

with respect to a nonadditive measure µ on 2X (or a lattice L such that every f ∈ F
is L-measurable), is a Choquet functional.

For each A ⊂ X, define the set functions α, β : 2X → [0,∞] by

α(A) := sup{I(f) : f ∈ F , f ≤ χ
A
},

β(A) := inf{I(f) : f ∈ F , χ
A
≤ f}.

Then α and β are nonadditive measures on 2X with α ≤ β. By the Greco represen-
tation theorem [7], for any nonadditive measure µ : 2X → [0,∞], the following two
conditions are equivalent:

(a) α ≤ µ ≤ β.

(b) I(f) = (C)

∫
X
fdµ for every f ∈ F .

In this case µ is called a representing measure of the functional I.

Remark 3.1. (1) Every functional I : F → [0,∞] satisfying (I1)–(I3) is positively
homogeneous, that is, I(cf) = cI(f) for every f ∈ F and c ∈ [0,∞); see, for
instance, [4, p. 159] and [13, Proposition 4.2].

(2) (I4) is satisfied if, for every f ∈ F , there is g ∈ F such that 1{f>0} ≤ g and
I(g) <∞ (in particular, 1 ∈ F and I(1) <∞). (I5) is also satisfied if every f ∈ F
is bounded; see [9, Lemma 1] and [10].

The method based on subgraphs of functions: The above measures α and β
may be constructed by the following steps:

Firstly, for any function f : X → [0,∞], let Gf denote the subgraph of f , that
is, Gf := {(x, t) ∈ X × [0,∞) : f(x) > t}. Then the family G := {Gf : f ∈ F1} is a
lattice of subsets of X × [0,∞) containing ∅.

Secondly, let ω(Gf ) := I(f) for every f ∈ F1. This ω : G → [0,∞] is a well-
defined nonadditive measure and has the outer and the inner extensions ω∗ and ω∗
on 2X .

Finally, let φ(A) := ω∗(G1A) and ψ(A) := ω∗(G1A) for every A ⊂ X. Then φ = β
and ψ = α.

This construction is owing to Kindler [11] and was applied for his efficient ap-
proach to the Daniell-Stone representation theorem.

When the domain F of a functional I is rather large and thus it contains all
characteristic functions of subsets of X, the nonadditive measure µ(A) := I(1A),
A ⊂ X, is a representing measure of I and satisfies each of the structural character-
istics in Definition 2.3 if and only if I has the same property in Definition 2.4. In
practical applications we often have only restricted information, that is, the domain
F is as small as it does not necessarily contain all characteristic functions. The
following theorem covers those cases.
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Theorem 3.2. If I is weakly asymptotic null-additive (asymptotic null-additive, au-
tocontinuous from above, uniformly autocontinuous from above, pseudometric gen-
erating, submodular, supermodular), then there is a representing measure µ on 2X

of I having the same property.
Conversely, if µ is any representing measure on 2X of I such that

Q := sup
h∈F1

µ({h > 0}) <∞,

in particular, µ(X) <∞, and it is weakly asymptotic null-additive (asymptotic null-
additive, autocontinuous from above, uniformly autocontinuous from above, pseudo-
metric generating), then I has the same property.

Furthermore, if µ is any submodular (supermodular) representing measure on 2X

of I, then I has the same property.

The forward direction of the above theorem will be proved by the method based on
subgraphs of functions. As a matter of fact, it was already proved by Denneberg [4,
Corollary 13.4] for the submodularity and the supermodularity cases and by Pap [14,
Theorem 10.8] for the uniform autocontinuity from above case; see also Bassanezi
and Greco [1]. To prove all other cases, we prepare the following proposition.

Proposition 3.3. Let X be a non-empty set. Let L be a lattice of subsets of X
containing ∅. Let µ : L → [0,∞] be a nonadditive measure. If µ is weakly asymp-
totic null-additive (asymptotic null-additive, autocontinuous from above, uniformly
autocontinuous from above, pseudometric generating, submodular), then so is its
outer extension µ∗. By contrast, if µ is supermodular, then so is its inner extension
µ∗.

Proof. To begin with, we show that µ∗ is weakly asymptotic null-additive. Let
{An}n∈N and {Bn}n∈N be decreasing sequences of subsets of X such that µ∗(An) ↓ 0
and µ∗(Bn) ↓ 0. Then, there are subsequences {Ank

}k∈N, {Bnk
}k∈N, and decreasing

sequences {Lk}k∈N ⊂ L, {Mk}k∈N ⊂ L such that Ank
⊂ Lk, Bnk

⊂ Mk for every
k ∈ N and µ(Lk) ↓ 0, µ(Mk) ↓ 0. Since µ is weakly asymptotic null-additive,
µ(Lk ∪Mk) ↓ 0 and thus

inf
n∈N

µ∗(An ∪Bn) ≤ inf
k∈N

µ∗(Ank
∪Bnk

) ≤ inf
k∈N

µ(Lk ∪Mk) = 0,

which implies the weak asymptotic null-additivity of µ∗.
Next we show that µ∗ is asymptotic null-additive. Let A ⊂ X. Let {Bn}n∈N

be a decreasing sequence of subsets of X such that µ∗(Bn) ↓ 0. If µ∗(A) = ∞,
then the statement is true. Assume that µ∗(A) < ∞. Let ε > 0 and find L0 ∈ L
such that A ⊂ L0 and µ(L0) < µ∗(A) + ε. Then there are a subsequence {Bnk

}k∈N
and a decreasing sequence {Mk}k∈N ⊂ L such that Bnk

⊂ Mk for every k ∈ N and
µ(Mk) ↓ 0. Since µ is asymptotic null-additive, µ(L0 ∪Mk) ↓ µ(L0), so that

inf
n∈N

µ∗(A ∪Bn) ≤ inf
k∈N

µ(L0 ∪Mk) = µ(L0) < µ∗(A) + ε

and the asymptotic null-additivity of µ∗ follows.
The autocontinuity of µ∗ from above was already proved in [14, Proposition 10.4]

and its uniform version can be proved in a similar way.
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The proof of the pseudometric generating property is as follows. Let ε > 0 and
find δ > 0 satisfying the following property (†): µ(L ∪M) < ε whenever L,M ∈ L
and µ(L) ∨ µ(M) < δ. Let A,B ⊂ X and assume that µ∗(A) ∨ µ∗(B) < δ. Then
there are L0,M0 ∈ L such that A ⊂ L0, B ⊂M0 and µ(L0)∨µ(M0) < δ, and hence,
by (†), we have µ∗(A ∪B) ≤ µ(L0 ∪M0) < ε. Thus µ∗ is pseudometric generating.

The submodularity of µ∗ and the supermodularity of µ∗ are easy to prove; see [4,
Proposition 2.4]. □

On the other hand, to prove the reverse direction, we need the following elemen-
tary result that is presented only for the completeness of the paper.

Lemma 3.4. Let {φn}n∈N be a sequence of decreasing functions φn : [0,∞) →
[0,∞]. If

∫∞
0 φn(t)dt→ 0, then φn(t) → 0 for every t ∈ (0,∞).

Proof. Assume that there is t0 ∈ (0,∞) such that φn(t0) ̸→ 0. Then there are
ε0 > 0 and a subsequence {φni}i∈N such that φni(t0) > ε0 for every i ∈ N. Since
each φni is decreasing, φni(t) > ε0 for every t ∈ [0, t0] and every i ∈ N and thus∫ ∞

0
φni(t)dt ≥

∫ t0

0
φni(t)dt ≥

∫ t0

0
ε0dt = t0 · ε0 > 0,

which is a contradiction. □
The proof of Theorem 3.2: The forward direction can be proved by the same
method used in Denneberg [4, Corollary 13.4] and Pap [14, Theorem 10.8] together
with Proposition 3.3. So we only show the case of the autocontinuity from above
for the reader’s convenience.

Let Gf , G, ω, and φ be given in the method based on subgraphs of functions.
Assume that I is autocontinuous from above. To begin with, we show that ω has
the same property. Let E ∈ G and let {Fn}n∈N ⊂ G be a sequence with ω(Fn) → 0.
Since E = Gf and Fn = Ggn for some f, gn ∈ F1, we have I(f) = ω(Gf ) = ω(E)
and I(f ∨ gn) = ω(Gf∨gn) = ω(Gf ∪ Ggn) = ω(E ∪ Fn) for every n ∈ N, so that
ω(E ∪ Fn) = I(f ∨ gn) → I(f) = ω(E). Thus ω is autocontinuous from above and
so is its outer extension ω∗ by Proposition 3.3. In the same way as the case of ω, we
can show the autocontinuity of φ from above. Since φ = β, this φ is a representing
measure what we seek.

Our main contribution to Theorem 3.2 is the reverse direction. Let µ be a repre-
senting measure on 2X of I such that Q := suph∈F1

µ({h > 0}) <∞.
In the first place we show the weak asymptotic null-additivity of I. Let {fn}n∈N,

{gn}n∈N ⊂ F1 be decreasing sequences with I(fn) ↓ 0 and I(gn) ↓ 0. By Lemma 3.4,
for every t > 0, we have µ({fn > t}) ↓ 0 and µ({gn > t}) ↓ 0, so that µ({fn ∨ gn >
t}) = µ({fn > t} ∪ {gn > t}) ↓ 0 since µ is weakly asymptotic null-additive. Noting
that 0 ≤ µ({fn ∨ gn > t}) ≤ Q for every t ≥ 0 and every n ∈ N, by the bounded
convergence theorem,

I(fn ∨ gn) = (C)

∫
X
(fn ∨ gn)dµ =

∫ 1

0
µ({fn ∨ gn > t})dt→ 0

and the weak asymptotic null-additivity of I follows.
The asymptotic null-additivity and the autocontinuity from above can be proved

in the same way.
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Next we show the uniform autocontinuity of I from above. Let ε > 0 and find
n0 ∈ N such that Q/n0 < ε/2. Since µ is uniformly autocontinuous from above,
there is δ > 0 satisfying the following property (†): µ(A∪B) ≤ µ(A)+ε/2 whenever
A,B ⊂ X and µ(B) < n0δ. Let f, g ∈ F1 and assume that I(g) < δ. Since
1{g>t} ≤ g/t for every t > 0, we have

µ({g > t}) =
∫ 1

0
µ({g > t})ds ≤

∫ 1

0
µ({g/t > s})ds

≤ (C)

∫
X

g

t
dµ =

1

t
· (C)

∫
X
gdµ =

I(g)

t
<

δ

t
.

Therefore, for every t ≥ 1/n0, we have µ({g > t}) < n0δ, so that (†) yields

µ({f ∨ g > t}) = µ({f > t} ∪ {g > t}) ≤ µ({f > t}) + ε

2
.

Consequently,

I(f ∨ g) =
∫ 1

0
µ({f ∨ g > t})dt

=

∫ 1/n0

0
µ({f ∨ g > t})dt+

∫ 1

1/n0

µ({f ∨ g > t})dt

≤ Q

n0
+

∫ 1

1/n0

{
µ({f > t}) + ε

2

}
dt

≤ ε

2
+

∫ 1

0
µ({f > t})dt+ ε

2

= I(f) + ε,

which implies the uniform autocontinuity of I from above.
The pseudometric generating property can be proved along the same lines as the

uniform autocontinuity from above. The submodularity and the supermodularity
are easy to prove.

4. Null-additivity of Choquet functionals

In this section we consider the (weakly) null-additive case. To obtain a similar
hereditary nature to Theorem 3.2 for the (weak) null-additivity by the method
based on subgraphs of functions, for a given (weakly) null-additive measure µ, at
least one of the outer extension µ∗ and the inner extension µ∗ needs to have the
same property. But this is not the case as the following example indicates:

Example 4.1 (Murofushi [12]). Let J := {(a, b] : − ∞ < a < b < ∞} of all
bounded left half-open intervals. Let R be the ring generated by J . Let λ be the
Lebesgue measure on the real line R. Define the nonadditive measure µ : R → [0,∞]
by

µ(A) :=

{
∞ if {0, 1} ⊂ A,

λ(A) otherwise
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for every A ∈ R.

(1) µ is null-additive and thus weakly null-additive.
(2) µ∗({0}) = µ∗({1}) = 0, but µ∗({0, 1}) = ∞, so that µ∗ is neither weakly

null-additive nor null-additive.
(3) µ∗(Q) = µ∗(R \ Q) = 0, but µ∗(R) = ∞, so that µ∗ is neither weakly

null-additive nor null-additive, where Q is the set of all rational numbers.

Nevertheless, we can obtain the (weak) null-additivity on the restricted family of
subsets, that is, the family of all open subsets of a Hausdorff space.

In what follows, X is a Hausdorff space, U is the family of all open subsets of X,
and K is the family of all compact subsets of X.

Lemma 4.2. Let K ∈ K and U, V ∈ U . Assume that K ⊂ U ∪ V . Then there are
L,M ∈ K such that K = L ∪M , L ⊂ U and M ⊂ V .

Proof. Since K \ U and K \ V are disjoint compact sets, by [6, Theorem 3.1.6],
there are disjoint open sets G and H satisfying K \ V ⊂ G and K \ U ⊂ H. Let
L := K \ H and M := K \ G. Then L,M are compact and K = L ∪M . Since
K \U ⊂ H, we have L∩U c = (K ∩Hc)∩U c = (K ∩U c)∩Hc = (K \U)∩Hc = ∅
and thus L ⊂ U . Similarly we have M ⊂ V . □
Proposition 4.3. Let µ : K → [0,∞] be a nonadditive measure. If µ is (weakly)
null-additive, then its inner extension µ∗ is (weakly) null-additive on U .

Proof. Let U, V ∈ U and assume µ∗(V ) = 0. Let K ∈ K with K ⊂ U ∪ V . By
Lemma 4.2, there are L,M ∈ K satisfying K = L ∪ M , L ⊂ U , and M ⊂ V .
Since µ∗(V ) = 0, we have µ(M) = 0. By the null-additivity of µ, we have µ(K) =
µ(L ∪M) = µ(L) ≤ µ∗(U) and thus µ∗(U ∪ V ) ≤ µ∗(U). The reverse inequality is
obvious.

The weak null-additivity of µ∗ can be proved in a similar way. □
From this point forwards, we assume that F is a non-empty family of functions

f : X → [0,∞] with pointwise order, which satisfies, in addition to (F1) and (F2)
in Section 3,

(F3) {f > t} ∈ U for every t ≥ 0,
(F4) {f ≥ t} ∈ K for every t > 0, and
(F5) if K ∈ K, U ∈ U and K ⊂ U , then there is f ∈ F such that 1K ≤ f ≤ 1U .

When X is locally compact, typical examples of such an F is the positive cones
of the space Cc(X) of all continuous real functions on X with compact support and
the space C0(X) of all continuous real functions on X vanishing at infinity.

We also assume that I : F → [0,∞] is a Choquet functional, that is, it satisfies
(I1)–(I5) in Section 3.

Now we have a similar result to Theorem 3.2 except that the representing measure
is not necessarily (weakly) null-additive on the power set 2X .

Theorem 4.4. If I is (weakly) null-additive, then there is a representing measure
µ on 2X of I that is (weakly) null-additive on U .

Conversely, if µ is a representing measure on 2X of I that is (weakly) null-additive
on U , then I is (weakly) null-additive.
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Proof. Let α : 2X → [0,∞] be the smallest representing measure of I, that is,
α(A) := sup{I(f) : f ∈ F , f ≤ 1A} for every A ⊂ X. Let U, V be open and
assume that α(V ) = 0. Let h ∈ F and assume that h ≤ 1U∪V . Fix n ∈ N.
Then the set {h ≥ 1/n} is compact by (F4) and is contained in U ∪ V . There-
fore by Lemma 4.2, there are compact sets Ln,Mn such that Ln ⊂ U,Mn ⊂ V
and {h ≥ 1/n} = Ln ∪ Mn. By (F5), there are functions fn, gn ∈ F such that
1Ln ≤ fn ≤ 1U and 1Mn ≤ gn ≤ 1V .

To begin with, we show that α({h ≥ 1/n}) ≤ α(U). Since {h ≥ 1/n} ⊂ {fn∨gn ≥
t} for every t ∈ [0, 1],

α({h ≥ 1/n}) =
∫ 1

0
α({h ≥ 1/n}dt

≤
∫ 1

0
α({fn ∨ gn ≥ t})dt

= (C)

∫
X
(fn ∨ gn)dα = I(fn ∨ gn).

Since α(V ) = 0 and gn ≤ 1V , we have I(gn) = 0 and thus I(fn ∨ gn) = I(fn) by the
null-additivity of I. Since fn ≤ 1U , we have I(fn) ≤ α(U). Thus, α({h ≥ 1/n}) ≤
I(fn ∨ gn) = I(fn) ≤ α(U). Consequently,

I(h) =

∫ 1

0
α({h ≥ t})dt ≤ sup

n∈N

∫ 1

1/n
α({h ≥ 1/n})dt ≤ α(U),

so that I(h) ≤ α(U) for every h ∈ F with h ≤ χ
U∪V . Thus α(U ∪ V ) ≤ α(U). The

reverse inequality is obvious and hence α is null-additive.
We show the reverse direction. Let f, g ∈ F1 and assume that I(g) = 0. Since µ

is a representing measure of I,∫ 1

0
µ({g > t})dt = (C)

∫
X
gdµ = I(g) = 0,

so that µ({g > t}) = 0 for almost all t ∈ [0, 1]. Since µ is null-additive on open
sets, noting (F3), we have µ({f ∨ g > t}) = µ({f > t} ∪ {g > t}) = µ({f > t}) for
almost all t ∈ [0, 1], so that

I(f ∨ g) =
∫ 1

0
µ({f ∨ g > t})dt =

∫ 1

0
µ({f > t})dt = I(f).

This implies the null-additivity of I.
The proof of the weak null-additivity can be done in a similar way. □

Remark 4.5. We may replace K with the family Kσ of all compact Gδ-subsets of
X in Lemma 4.2 and Proposition 4.3. Therefore, Theorem 4.4 remains valid in the
case that K is replaced with Kσ in (F4) and (F5).

We end the paper with suggestive examples illustrating the correspondence be-
tween the Choquet functionals and their representing measures. Let C[0, 1] denote
the space of all continuous real-valued functions on [0, 1] and C+[0, 1] := {f ∈
C[0, 1] : f ≥ 0}. Let L be the σ-field of all Borel subsets of [0, 1] and λ the Lebesgue
measure on R.
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Example 4.6. Let 0 < p <∞. Define the nonadditive measure µp : L → [0, 1] by

µp(A) := λ(A)p

for every A ∈ L and the functional Ip : C
+[0, 1] → [0,∞) by

Ip(f) := (C)

∫
[0,1]

fdµp

for every f ∈ C+[0, 1].

(1) µp is submodular if p ≤ 1 and supermodular if p ≥ 1.
(2) The outer extension (µp)

∗ is submodular if p ≤ 1 and the inner extension
(µp)∗ is supermodular if p ≥ 1. Both of them are representing measures of
Ip.

(3) Ip is submodular if p ≤ 1 and supermodular if p ≥ 1.
(4) Ip satisfies the moment condition

Ip(1) = 1, Ip(x
m) =

Γ(m+ 1)Γ(p+ 1)

Γ(m+ p+ 1)
, m = 1, 2, . . . ,

where Γ is the Gamma function.

Example 4.7. Define the nonadditive measure µ : L → [0, 3] by

µ(A) :=

{
0 if A = ∅,
λ(A)2 +

√
λ(A) + 1 if A ̸= ∅

for every A ∈ L and the functional I : C+[0, 1] → [0,∞) by

I(f) :=

∫ Mf

mf

{
λ({f > t})2 +

√
λ({f > t})

}
dt+Mf + 2mf

for every f ∈ C+[0, 1], where Mf := maxx∈[0,1] f(x) and mf := minx∈[0,1] f(x).

(1) The outer extension µ∗ is a representing measure of I.
(2) µ∗ and I are uniformly autocontinuous.
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