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Dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday.

ABSTRACT. We study the problem of finding a common fixed point of two com-
mutative hybrid mappings in Hilbert spaces. Among other things, we obtain
a common fixed point theorem for such mappings and a uniform convergence
theorem for the average of such mappings.

1. INTRODUCTION

The aim of the present paper is to study the existence and approximation of
common fixed points of two commutative hybrid mappings in Hilbert spaces. We
formally state the problem considered as follows: Find a point u € C such that

(1.1) Su=Tu=u,

where C' is a nonempty closed convex subset of a real Hilbert space H, S: C — C
is a A-hybrid mapping for some A € R, T: C' — C' is a p-hybrid mapping for some
uweR, and ST =1TS.

The notion of A-hybrid mapping first introduced by Aoyama, lemoto, Kohsaka,
and Takahashi [2] is a generalization of the notions of nonexpansive mappings,
nonspreading mappings in the sense of Kohsaka and Takahashi [19], and hybrid
mappings in the sense of Takahashi [24]. It is known that every firmly nonexpansive
mapping is A-hybrid for each A € [0, 1]. Several existence and convergence theorems
for such a mapping were obtained in [1, 2, 3, 5, 18]. See also Kocourek, Takahashi,
and Yao [17] and Djafari Rouhani [12] for related results on generalized hybrid
mappings and hybrid sequences in Hilbert spaces, respectively.

On the other hand, applying nonlinear ergodic theory for nonexpansive mappings,
Shimizu and Takahashi [22] obtained strong convergence theorems for commutative
families of nonexpansive mappings in Hilbert spaces. Later, Atsushiba and Taka-
hashi [6] also showed weak convergence theorems for two commutative nonexpansive
mappings in Banach spaces.
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The convergence analysis given in [6, 22] motivates us to discuss the asymptotic
behavior of a sequence {V;,} of mappings of C' into itself defined by

(1.2) Vn_MZZSsz (n=0,1,...).

k=0 1=0
If T is particularly the identity mapping on C, then (1.2) is reduced to

n

1
1. T = k =0,1,...).
(1.3) v nHkZ:OS (n=0,1,...)

According to Baillon’s nonlinear ergodic theorem [7, Théoréme|, the sequence

(1.4) {nilkzos%}

converges weakly to a fixed point of S for all x € C' whenever S is nonexpansive
and C is bounded; see also Takahashi [23, Theorem 3.2.3].

This paper is organized as follows. In Section 2, we recall some definitions and
results needed in this paper. In Section 3, we obtain a common fixed point theorem
for S and T and a uniform convergence theorem for the sequences {V;, — SV,,} and
{V, = TV,}. We also show that the sequence {V,,} satisfies the condition (S) with
respect to the common fixed point set of S and T in the sense of Aoyama [1]. In
Section 4, combining the results obtained in this paper and convergence theorems
in [1, 18], we show three convergence theorems for S and T'. In Section 5, we show
some examples of two commutative hybrid mappings.

2. PRELIMINARIES

Throughout this paper, we denote by H a real Hilbert space, (-, -) an inner
product on H, |- || the induced norm on H, 6 By the closed ball with radius § > 0
centered at 0, C' a nonempty closed convex subset of H, I, S°, and T° the identity
mapping on C, N the set of all nonnegative integers, R the set of all real numbers,
xn — x the strong convergence of a sequence {x,} to x € H, and x,, — x the weak
convergence of a sequence {x,} to x € H, respectively.

Let T: C'— C be a mapping. The set of all fixed points of T" is denoted by F(T').
A point p € C is said to be an asymptotic fixed point [21] of T" if there exists a
sequence {z,} of C such that z, — p and z, — T'z, — 0. The set of all asymptotic
fixed points of T is denoted by F (T'). Let A € R be given. Following [2], we say
that a mapping 1': C' — C' is A-hybrid if
(2.1) 1T = Ty|* < |l = ylI* +2(1 = N) (z = T,y — Ty)
for all z,y € C. It is obvious that 7" is 1-hybrid if and only if T" is nonexpansive; T’
is 0-hybrid if and only if 7" is nonspreading in the sense of [19]; T" is 1/2-hybrid if
and only if 7" is hybrid in the sense of [24]; if A > 1, then T" is A\-hybrid if and only

if T'=1. Tt is known [4, Proposition 2.2] that if A < 2 and a = (1 — \)/(2 — \),
then T is A-hybrid if and only if it is a-nonexpansive in the sense of [4], that is,

(2.2) 1Tz = Ty||* < a(llz = Tyll* + | T2 — y|*) + (1 - 20) [|lz — y|*
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for all z,y € C. A mapping T: C' — C is said to be quasi-nonexpansive if F(T') is
nonempty and ||w — Tz| < ||w — || for all w € F(T') and x € C. By Dotson [13,
Theorem 1] and Itoh and Takahashi [16, Corollary 1], we know that F(T") is closed
and convex whenever T is quasi-nonexpansive. Every A-hybrid mapping with a
fixed point is clearly quasi-nonexpansive. Thus the fixed point set of each A-hybrid
mapping is closed and convex. The mapping 7' is said to be firmly nonexpansive if

(2.3) Tz = Ty|* +I(I = T)e — (I = T)yl* < [l — y|*

forall x,y € C; see [10, 11, 14, 15] for more details on firmly nonexpansive mappings.
It is known [2, Lemma 3.1] that if 7" is firmly nonexpansive, then 7" is A-hybrid for
each A € [0,1]. We also know the following lemma:

Lemma 2.1 ([2, Lemma 3.2]). If T': C — C is a A-hybrid mapping for some X\ € R,
then F(T') = F(T).

Using some ideas in [9, Theorem 1] and [22, Lemma 1], we can show the following
lemma:

Lemma 2.2. Ifn €N, xg,21,...,2, € H, and 2 = (n+1)"' >°}_ x, then

>l = o = 21)
k=0

(2.4) Iz = ul® =
for allu e H.

Proof. Let u € H be given. Then we have

(2.5) e = ull® = lox — 201 + ||z = ull® + 2 (zx — 2,2 — u)

for all k € {0,1,...,n}. This gives us that

n n
DMk —ul® =) llax —2l* + (n+ 1) Iz — ul)®
k=0 k=0

+2<zn:xk—(n+1)z,z—u>.

k=0
Thus the result follows. O

(2.6)

Let F' be a nonempty closed convex subset of H. Then, for each x € H, there
exists a unique & € F such that |2 —z| < ||y — | for all y € F. The metric
projection Pr of H onto F' is defined by Prxz = & for all x € H. It is well known
that Pr is firmly nonexpansive and

(2.7) (y — Prz,x — Ppx) <0
forye Fand x € H.
Motivated by [25, Lemma 3.2], we show the following lemma:

Lemma 2.3. Let F' be a nonempty closed convex subset of H and {xq}aca a net
of H such that ||p — x| < ||p — xa|| whenever p € F, a,o’ € A, and a < /. Then
the following hold:

(i) ||Prre — zo|| < |Praa — zol| whenever a, o’ € A and o < o;
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(ii)) {Ppxataca converges strongly to an element of F.

Proof. We first show the part (i). By the definition of Pp and assumption, we know
that

(2.8) |Praar — 2o || < [|Prea — o] < [|Praa — 2ol

for all o, @’ € A with a < /.
We next show the part (ii). By (i), the net {||Przq — z4||>} is convergent and
hence it is a Cauchy net. Thus for each € > 0, we have ag € A such that

82

(2.9) 1Praa — xa||* = | Prog — zp)?| < T
whenever «, 8 € A, ag < «, and ag < 8. Thus, by the firm nonexpansiveness of Pr

and (2.9), we know that

| Prao — PF“”WH2 < ||Prro — vaZ — || Pray — xWHQ
(2.10) 2

€
< |Praa = wall” = | Pray — 25" <

whenever a,v € A, ap < «, and a < . If o, 8 € A, ag < a, and oy < 3, then
there exists 7 € A such that a < and 8 < ~. Thus it follows from (2.10) that

(2.11) ||pra — PFxﬁH < ”pra — PF-TfyH + ||PF$,y — PFLL“@H < E.

This implies that {Ppx,} is a Cauchy net. Since F' is closed in H, it converges
strongly to an element of F. O

Remark 2.4. In the proof of Theorem 4.1, we apply Lemma 2.3 to the case where A
is the directed set N2 with a binary relation < on N? given by (k,1) < (K, 1I") if k <k’
and [ < 1’. We also note that if S is a right reversible semitopological semigroup and
{Ts}ses is a continuous representation of S as nonexpansive mappings on C' such
that F' = (N,cq F (T S) is nonempty, then S is a directed set with a binary relation
< on S given by s < ¢ if

(2.12) {s}USsD{s'}USs
and it is obvious that
(2.13) lp — Tyz| < |lp — Ts||

whenever x € C, p € F, 5,5 € S, and s < §; see [20, 23| for more details. Thus
Lemma 2.3 implies that { PpTsz}secs converges strongly to an element of F' for each
xeC.

The following lemma ensures that every hybrid mapping is bounded on bounded
sets:

Lemma 2.5. Let T: C — C be a A\-hybrid mapping for some A € R. Then T(U)
is bounded for each nonempty bounded subset U of C.
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Proof. Suppose that the conclusion does not hold. Then there exists a bounded
sequence {z,} of C such that ||Tz,|| > 0 for all n € N and ||Tz,|| = co. Fix y € C.
Since T is A-hybrid, we have

120 = Tyl® < 2 = yl* +2(1 = X) (z0 — T,y — Ty)

(2.14) )
< lzn =yl +2[1 = Al lzn — Tzl ly — Tyl

and hence

Ty

T2l = 21Ty +

1T 2n |

(219 (lznll + llyl)? [[2nll
Znll + ||y Zn
< (el oy (e 1) by = 7o
|72l 1T 2|

for all n € N. This is a contradiction. O

Let {S,} be a sequence of mappings of C' into itself and F' a nonempty closed
convex subset of H. Following Aoyama [1], we say that {S,} satisfies the condi-
tion (S) with respect to F' if each weak subsequential limit of {S,,z,} belongs to F’
whenever {z,} is a bounded sequence of C.

We know the following strong and weak convergence theorems for a sequence of
quasinonexpansive type mappings in Hilbert spaces:

Theorem 2.6 ([1, Theorem 1]). Let H be a real Hilbert space, C and F' nonempty
closed convex subsets of H such that F' C C, and {S,} a sequence of mappings of
C into itself. Suppose that

o |[w— Szl < ||lw—=z| forallm e N, w e F, and x € C;
o {S,} satisfies the condition (S) with respect to F.

Let u be an element of C' and {x,} a sequence defined by xo € C and
(2.16) Tyl = apu+ (1 —ap)Spzy, (n=0,1,...),

where {on,} is a sequence of [0, 1] such that o, — 0 and Y .7 oy, = 00. Then {xy}
converges strongly to Pru.

Theorem 2.7 ([18, Theorem 3.1]). Let H, C, F, and {S,} be the same as in
Theorem 2.6 and {x,} a sequence defined by xo € C' and
(2.17) Tpt1 = nxn + (1 — ap)Spx, (n=0,1,...),

where {ay} is a sequence of [0,1] such that sup,, o < 1. Then {x,} converges
weakly to the strong limit of { Ppxy,}.

3. FUNDAMENTAL RESULTS FOR TWO COMMUTATIVE HYBRID MAPPINGS

In this section, among other things, we show a common fixed point theorem and
a uniform convergence theorem for two commutative hybrid mappings.
Throughout this section, we suppose the following;:
e (' is a nonempty closed convex subset of a real Hilbert space H;
e S:C — (Cis Ahybrid and T: C — C'is pu-hybrid for some A, u € R;
e {V,} is a sequence of mappings of C into itself defined by (1.2).

Motivated by [22, Lemma 1], we first show the following lemma:
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Lemma 3.1. Let D be a nonempty subset of C' such that
(3.1) {S*T'y:y e D, k,l € N}
is bounded. Then the following hold:

(i) lim, SUPyep [Vay — SVoay| =0
(ii) of ST =TS, then limy, sup,ep ||[Voy — TVyyl = 0.

Proof. We first show the part (i). By assumption, the set {V,y : y € D, n € N} is
bounded. Thus Lemma 2.5 implies that so is {SV,y : y € D, n € N}. Hence there
exists a positive real number M such that

(3.2) HSleyH <M and |SVpyl <M

for all k,l,n € N, and y € D. Note that ||[V,,y|| < M for all n € N and y € D.
Let y € D and n € N\ {0} be given. By Lemma 2.2, we have
)

any - Svny||2
2
= || s* Ty = iy
‘ + Z Z HSkHle SVny

(3.3) :(n+11)2<ZHle SV

Z HSley — Vay ‘ )
=0 =0
Since S is - hybrld, we have

1 n n
pEsy ZZ <HSley — SV,
k=0 1=0

3

n 1
Hsk-‘rlle SV,y ‘
0 —0
n—1 n 9
(34) < Z Z(HS""TZy —Vay ‘ +2(1 =) <Sley — Skl Yoy — SVny>>
k=0 1=0
n 1 n n
= HSley Vay ‘ +2(1-2X) <le — STy, Vyy — SVny> .
k: =0 =0
Using (3.3) and (3.4), we obtain
”Vny - SVnyH
(3.5)

‘2 1 2(1— A) <le — STy Vi — SVny>).

<G g (-5

Using (3.2) and (3.5), we obtain

n

1
2
_ < -
|Vay — SVoy||© < (’I’L—|—1)2 =
(3.6) i
4AM
= gy (2L,

((2M)% + 2|1 = A (2M)?)
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Thus we obtain

[1+2]1— A
(3.7) sup ||Vay — SVpyl| < 2M L2 =N
yeD n+ ].

Therefore, we obtain the conclusion.
We next show the part (ii). Suppose that ST = T'S. Then we have

(3.8) V, = (n+11)2 d> TSt

1=0 k=0
for all n € N. Thus, the part (i) implies the conclusion. O

Using Lemmas 2.1 and 3.1, we next show the following common fixed point
theorem:

Theorem 3.2. Suppose that ST =TS. Then F(S)NF(T) is nonempty if and only
if {Slex tk,l € N} is bounded for some x € C.

Proof. The only if part is obvious since
(3.9) {S*T'p : k,1 € N} = {p}

for all p € F(S) N F(T). We show the if part. Suppose that {S*T'x : k,1 € N} is
bounded for some = € C. Setting D = {x}, we know that

(3.10) {S*T'y :y € D, k,1 € N}

is bounded and hence Lemma 3.1 implies that

(3.11) lim ||V, — SVyz| = lim ||V — TVyx|| = 0.

n—oo n—oo

Since C' is weakly closed and {V,,x} is a bounded sequence of C, there exist u € C
and a subsequence {V,,,x} of {V,z} such that V,,z — u. Thus we know that w is

an element of F(S) N F(T). Consequently, by Lemma 2.1, we know that u is an
element of F(S5)NF(T). O

Letting T'= I in Theorem 3.2, we obtain the following corollary:

Corollary 3.3 ([2, Theorem 4.1]). If S: C — C is a A-hybrid mapping for some
A € R, then F(S) is nonempty if and only if {S™x} is bounded for some x € C.

Using Lemma 3.1, we next obtain the following uniform convergence theorem:
Theorem 3.4. Suppose that ST =TS and F(S)NF(T) is nonempty. Then
(3.12) A, sup IVay = SVayl| = lim. sup Vay = TVayll = 0
for each nonempty bounded subset D of C.

Proof. Let D be a nonempty bounded subset of C' and fix w € F. Since S and T
are quasi-nonexpansive, we know that

(3.13) o = 85 Ty|| < o — )
for all k,l € N and y € D. This implies that the set
(3.14) {S*T'y :y € D, k,1 € N}
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is bounded. Hence the result follows from Lemma 3.1. O

Remark 3.5. In the case where S and T are nonexpansive in Theorem 3.4, we
obtain a result which is similar to [22, Lemma 1].

Using Lemma 2.1 and Theorem 3.4, we also show the following corollary:
Corollary 3.6. Suppose that ST =TS and F = F(S)NF(T) is nonempty. Then
the following hold:

(1) |lw—=Vpz|| < |Jlw—z| for alln e N, w € F, and x € C;
(i1) {V,.} satisfies the condition (S) with respect to F.

Proof. Since S and T are quasi-nonexpansive, we know that
(3.15) lw — Voz| < szﬂlzguw—s TxH < |w—z|

for alln € N, w € F, and « € C. Thus the part (i) holds.

We next show the part (ii). Let {z,} be a bounded sequence of C' and u a weak
subsequential limit of {V},z,}. Then we have a subsequence {V,,,z,,, } of {V,,2,} such
that V,,, z,, — u. Since C is weakly closed, we have u € C. Let p be a positive real
number such that ||z,|| < p for all n € N. By Theorem 3.4, we obtain

(3.16) [Vaizn — SVaznl < sup  [[Vay — SVpyl — 0
yEC’ﬂpBH

and

(3.17) [Vazn = TVazal| < sup  |[Vay — TVayll — 0.
yeCNpBy

Hence u is an element of F(S)NF(T). Accordingly, Lemma 2.1 implies that u € F.
Therefore, {V,,} satisfies the condition (S) with respect to F'. O

4. THREE CONVERGENCE THEOREMS

In this section, applying the results obtained in Section 3, we show three conver-
gence theorems for two commutative hybrid mappings in Hilbert spaces.

We define a binary relation < on N2 by (k,1) < (k,I') if k <k and [ < !’. Then
(N2, <) is obviously a directed set.

Using some ideas in [2, Lemma 5.1] and [23, Theorem 3.2.3], we first obtain the
following mean convergence theorem:

Theorem 4.1. Let H be a real Hilbert space, C a nonempty closed convex subset
of H, S: C — C a A-hybrid mapping for some X\ € R, and T: C — C' a p-hybrid
mapping for some pu € R. Suppose that ST = TS and F = F(S) N F(T) is
nonempty. Let x be an element of C' and {x,} a sequence defined by

1 n n
(4.1) xn:mzzswx (n=0,1,...).

k=0 =0
Then the following hold:
(1) {PFSkTZJU}(k,l)eW converges strongly to an element of F;
(ii) {zn} converges weakly to the strong limit of {PpSlea:}(k,l)eNz.



COMMON FIXED POINTS OF TWO HYBRID MAPPINGS 2201

Proof. We denote Pp by P and let {V,,} be a sequence of mappings of C into itself
defined by (1.2). Note that z, = V,z for all n € N.

We first show the part (i). Since S and T are quasi-nonexpansive and ST = T'S,
we have
Jp=5°7"] < [}p - s*7"s|
(4.2) )
=[lp-1"5"] < Jp-7's"a]| = o - "7
whenever p € F and (k,l) < (k¥/,1"). Thus the part (i) of Lemma 2.3 implies that

(4.3) HPS'“'T”x - Sk/Tl/x‘

<

PSETly — Slea:H

whenever (k,l1) < (K,l'). By the part (ii) of Lemma 2.3, we also know that
{PSleﬂf}(k,l)eNZ converges strongly to an element u of F. Using this property,
we can see that

0< (n_i_llpzn:i:PSlex—u
(4.4) 1 h=0 120
CESNE Z;”Z; HPSlex - uH 0
as n — 0Q.

We next show the part (ii). Since S and T are quasi-nonexpansive and F' is
nonempty, we know that {S*¥T'z} is bounded and hence so is {V,x}. Thus we
have a subsequence {V,,,x} of {V,z} such that V,,,# — v € C. By the part (ii) of
Corollary 3.6, we know that {V},} satisfies the condition (S) with respect to F' and
hence v is an element of F. Then it follows from (2.7) that

(4.5) <v — PS*Tly, SFTly — PSlex> <0
for all (k,1) € N2. By (4.3) and (4.5), we have
<v —u, SFT e — PSlex> < <PSlea: —u, SFT e — PSlea;>
(4.6) < HPS’“T% - uH HSlea: - PS’“T%H
< HPSlex - uH |z — Px||

for all (k,l) € N2. Hence we have

Uz

<v —u, Vo, — (nl—lkl)z i: ZPSle:c>
k=0 1=0
1 n; n;
STES S

=0 [=0

(4.7)

‘PSlel‘ - uH |z — Pz

for all # € N. Since (4.4) holds and V,,,x — v, by letting i — oo in (4.7), we obtain
v —u)®* < 0 and hence v = u. Therefore, the sequence {z,} converges weakly to
the strong limit of {PSlex}(k,l)eNQ- O
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As a direct consequence of Theorem 4.1, we obtain the following corollary:

Corollary 4.2 ([2, Theorem 5.2]). Let H be a real Hilbert space, C a nonempty
closed convex subset of H, S: C — C' a A-hybrid mapping for some A € R such that
F(S) is nonempty, x an element of C, and {x,} a sequence defined by

1 -
(4.8) In:”“kzosx (n=0,1,...).

Then {xn} converges weakly to the strong limit of {Pr(s)S™x}.

Proof. Letting T' = I, we know that T" is 1-hybrid, ST = T'S, and F(S) N F(T) =
F(S) is nonempty. Further, it holds that

1 n n 1 n
4.9 —_— kpl — — Sk
(4.9) (n+1)2225 n-i—lz
k=0 1=0 k=0
for all n € N. Thus the result follows from Theorem 4.1. |

By Theorem 2.6 and Corollary 3.6, we obtain the following strong convergence
theorem and its corollary:

Theorem 4.3. Let H, C, S, T, and I be the same as in Theorem 4.1, u an element
of C, and {x,} a sequence defined by xo € C and

1 n n
(4.10) Tt :anu+(1_an)mzzsk:ﬂxn (n=0,1,...),
k=0 1=0

where {ay,} is a sequence of [0,1] such that o, — 0 and Y7 | a, = 00. Then {xy}
converges strongly to Pru.

Remark 4.4. In the case where S and T are nonexpansive in Theorem 4.3, we
obtain a result which is similar to [22, Theorem 1].

Corollary 4.5 ([1, Theorem 2|). Let H, C, and S be the same as in Corollary 4.2,
u an element of C, and {x,} a sequence defined by x¢ € C' and

n

1
(411) Tn+1 :anu+(1—an)n+1kz_()5kxn (n:0717"')7

where {ay,} is a sequence of [0,1] such that o, — 0 and Y7 | a, = 00. Then {xy}
converges strongly to Pr(gyu.

By Theorem 2.7 and Corollary 3.6, we obtain the following weak convergence
theorem and its corollary:

Theorem 4.6. Let H, C, S, T, and F be the same as in Theorem 4.1 and {x,} a
sequence defined by xo € C and

1 n n
(4.12) Tni1 = ntn + (1 — an)m Y S, (n=0,1,...),
k=0 [=0

where {ay} is a sequence of [0,1] such that sup,, o, < 1. Then {x,} converges
weakly to the strong limit of { Prxy}.
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Remark 4.7. In the case where S and T are nonexpansive in Theorem 4.6, we
obtain a corresponding result [6, Theorem 1] in the Hilbert space setting.

Corollary 4.8 ([18, Corollary 5.2]). Let H, C, and S be the same as in Corol-
lary 4.2 and {x,} a sequence defined by xo € C' and

1 n
o > SFz, (n=0,1,...),
k=0

(4.13) Tnt1 = nZpn + (1 — ay)

where {an} is a sequence of [0,1] such that sup,, o, < 1. Then {x,} converges
weakly to the strong limit of { Pr(s)Tn}-

5. APPENDIX

In this final section, we give some examples of two commutative hybrid mappings
in a real Hilbert space H.

Two commutative 1-hybrid mappings can be obtained by applying the nonex-
pansive semigroup {S(t)}¢~o on D(A) generated by —A, where A: H — 2% is a
maximal monotone operator and D(A) is the domain of A; see [8] for more details
on the generation of nonexpansive semigroups. In this case, we know that S(¢;)
and S(t2) are commutative 1-hybrid mappings of D(A) into itself for all positive
real numbers t; and ¢s.

We first show the following simple example:

Example 5.1. Let S: H — H be a linear operator such that ||Sz| = ||x|| for all
x € H, and T the metric projection of H onto rBy for some r > 0. Then S is
1-hybrid, T is firmly nonexpansive, and ST =T'S.

Proof. Since S is nonexpansive, it is 1-hybrid. Since 7' is the metric projection
onto rBy, it is firmly nonexpansive. If z € rBy, then ||Sz| = ||| < r and hence
STz = Sx=TSx. If v € H \ rBy, then we have ||Sz|| = ||z| > r and hence

r r r
(5.1) STx =S <x> = —Sx = Sz =TSx.
] [l 15|

Thus we obtain ST =T'S. O
Using some results in [3, 4], we show the following two examples:

Example 5.2. Let S: H — H be a linear operator such that ||Sz| = ||z|| for all

x € H, both U and V firmly nonexpansive mappings of H into itself such that
SU=US, SV =VS, and U H) UV (H) is contained in rBy for some r > 0, both
A and d real numbers such that 0 < X\ <1 and

2—-A
2 > 1424 ——
(5.2) (5_(+ 1_>\>r,

and T: H — H the mapping defined by

dBg);
(5.3) 7o = {UT (2 €0Bu);
Vz (otherwise).

Then S is 1-hybrid, T is A-hybrid, and ST =TS.
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Proof. Tt follows from [4, Proposition 2.2] and [4, Example 2.4] that T" is A-hybrid.
If © € By, then ||Sz| = ||z|| < § and hence

(5.4) STx =SUx =USx =TSx.

If x € H\ 0By, then ||Sxz| = ||z|| > § and hence

(5.5) STx =SVae=VSx=TSx.

Thus we obtain ST =T'S. O

Example 5.3. Let S: H — H be an affine and nonexpansive mapping, N: H - H
a nonspreading mapping such that SN = NS, 8 a real number such that 0 < g < 1,
and T the mapping defined by

(5.6) T =pBI+(1-B)N.
Then S is 1-hybrid, T is —f/(1 — B)-hybrid, and ST =TS.

Proof. 1t follows from [3, Lemma 2.2] that T"is —3/(1 — 8)-hybrid. Since S is affine
and SN = NS, we know that

(5.7) STz =pSx+ (1 —p)SNz =Sz + (1 - B)NSz =TSz
for all x € H. Thus we know that ST =T'S. O
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