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The convergence analysis given in [6, 22] motivates us to discuss the asymptotic
behavior of a sequence {Vn} of mappings of C into itself defined by

Vn =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT l (n = 0, 1, . . . ).(1.2)

If T is particularly the identity mapping on C, then (1.2) is reduced to

Vn =
1

n+ 1

n∑
k=0

Sk (n = 0, 1, . . . ).(1.3)

According to Baillon’s nonlinear ergodic theorem [7, Théorème], the sequence{
1

n+ 1

n∑
k=0

Skx

}
(1.4)

converges weakly to a fixed point of S for all x ∈ C whenever S is nonexpansive
and C is bounded; see also Takahashi [23, Theorem 3.2.3].

This paper is organized as follows. In Section 2, we recall some definitions and
results needed in this paper. In Section 3, we obtain a common fixed point theorem
for S and T and a uniform convergence theorem for the sequences {Vn − SVn} and
{Vn − TVn}. We also show that the sequence {Vn} satisfies the condition (S) with
respect to the common fixed point set of S and T in the sense of Aoyama [1]. In
Section 4, combining the results obtained in this paper and convergence theorems
in [1, 18], we show three convergence theorems for S and T . In Section 5, we show
some examples of two commutative hybrid mappings.

2. Preliminaries

Throughout this paper, we denote by H a real Hilbert space, ⟨ · , · ⟩ an inner
product on H, ∥ · ∥ the induced norm on H, δBH the closed ball with radius δ > 0
centered at 0, C a nonempty closed convex subset of H, I, S0, and T 0 the identity
mapping on C, N the set of all nonnegative integers, R the set of all real numbers,
xn → x the strong convergence of a sequence {xn} to x ∈ H, and xn ⇀ x the weak
convergence of a sequence {xn} to x ∈ H, respectively.

Let T : C → C be a mapping. The set of all fixed points of T is denoted by F(T ).
A point p ∈ C is said to be an asymptotic fixed point [21] of T if there exists a
sequence {zn} of C such that zn ⇀ p and zn − Tzn → 0. The set of all asymptotic

fixed points of T is denoted by F̂(T ). Let λ ∈ R be given. Following [2], we say
that a mapping T : C → C is λ-hybrid if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + 2(1− λ) ⟨x− Tx, y − Ty⟩(2.1)

for all x, y ∈ C. It is obvious that T is 1-hybrid if and only if T is nonexpansive; T
is 0-hybrid if and only if T is nonspreading in the sense of [19]; T is 1/2-hybrid if
and only if T is hybrid in the sense of [24]; if λ > 1, then T is λ-hybrid if and only
if T = I. It is known [4, Proposition 2.2] that if λ < 2 and α = (1 − λ)/(2 − λ),
then T is λ-hybrid if and only if it is α-nonexpansive in the sense of [4], that is,

∥Tx− Ty∥2 ≤ α
(
∥x− Ty∥2 + ∥Tx− y∥2

)
+ (1− 2α) ∥x− y∥2(2.2)
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for all x, y ∈ C. A mapping T : C → C is said to be quasi-nonexpansive if F(T ) is
nonempty and ∥w − Tx∥ ≤ ∥w − x∥ for all w ∈ F(T ) and x ∈ C. By Dotson [13,
Theorem 1] and Itoh and Takahashi [16, Corollary 1], we know that F(T ) is closed
and convex whenever T is quasi-nonexpansive. Every λ-hybrid mapping with a
fixed point is clearly quasi-nonexpansive. Thus the fixed point set of each λ-hybrid
mapping is closed and convex. The mapping T is said to be firmly nonexpansive if

∥Tx− Ty∥2 + ∥(I − T )x− (I − T )y∥2 ≤ ∥x− y∥2(2.3)

for all x, y ∈ C; see [10, 11, 14, 15] for more details on firmly nonexpansive mappings.
It is known [2, Lemma 3.1] that if T is firmly nonexpansive, then T is λ-hybrid for
each λ ∈ [0, 1]. We also know the following lemma:

Lemma 2.1 ([2, Lemma 3.2]). If T : C → C is a λ-hybrid mapping for some λ ∈ R,
then F̂(T ) = F(T ).

Using some ideas in [9, Theorem 1] and [22, Lemma 1], we can show the following
lemma:

Lemma 2.2. If n ∈ N, x0, x1, . . . , xn ∈ H, and z = (n+ 1)−1
∑n

k=0 xk, then

∥z − u∥2 = 1

n+ 1

n∑
k=0

(
∥xk − u∥2 − ∥xk − z∥2

)
(2.4)

for all u ∈ H.

Proof. Let u ∈ H be given. Then we have

∥xk − u∥2 = ∥xk − z∥2 + ∥z − u∥2 + 2 ⟨xk − z, z − u⟩(2.5)

for all k ∈ {0, 1, . . . , n}. This gives us that
n∑

k=0

∥xk − u∥2 =
n∑

k=0

∥xk − z∥2 + (n+ 1) ∥z − u∥2

+ 2

⟨
n∑

k=0

xk − (n+ 1)z, z − u

⟩
.

(2.6)

Thus the result follows. □
Let F be a nonempty closed convex subset of H. Then, for each x ∈ H, there

exists a unique x̂ ∈ F such that ∥x̂− x∥ ≤ ∥y − x∥ for all y ∈ F . The metric
projection PF of H onto F is defined by PFx = x̂ for all x ∈ H. It is well known
that PF is firmly nonexpansive and

⟨y − PFx, x− PFx⟩ ≤ 0(2.7)

for y ∈ F and x ∈ H.
Motivated by [25, Lemma 3.2], we show the following lemma:

Lemma 2.3. Let F be a nonempty closed convex subset of H and {xα}α∈A a net
of H such that ∥p− xα′∥ ≤ ∥p− xα∥ whenever p ∈ F , α, α′ ∈ A, and α ≤ α′. Then
the following hold:

(i) ∥PFxα′ − xα′∥ ≤ ∥PFxα − xα∥ whenever α, α′ ∈ A and α ≤ α′;
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(ii) {PFxα}α∈A converges strongly to an element of F .

Proof. We first show the part (i). By the definition of PF and assumption, we know
that

∥PFxα′ − xα′∥ ≤ ∥PFxα − xα′∥ ≤ ∥PFxα − xα∥(2.8)

for all α, α′ ∈ A with α ≤ α′.
We next show the part (ii). By (i), the net {∥PFxα − xα∥2} is convergent and

hence it is a Cauchy net. Thus for each ε > 0, we have α0 ∈ A such that∣∣∣∥PFxα − xα∥2 − ∥PFxβ − xβ∥2
∣∣∣ < ε2

4
(2.9)

whenever α, β ∈ A, α0 ≤ α, and α0 ≤ β. Thus, by the firm nonexpansiveness of PF

and (2.9), we know that

∥PFxα − PFxγ∥2 ≤ ∥PFxα − xγ∥2 − ∥PFxγ − xγ∥2

≤ ∥PFxα − xα∥2 − ∥PFxγ − xγ∥2 <
ε2

4

(2.10)

whenever α, γ ∈ A, α0 ≤ α, and α ≤ γ. If α, β ∈ A, α0 ≤ α, and α0 ≤ β, then
there exists γ ∈ A such that α ≤ γ and β ≤ γ. Thus it follows from (2.10) that

∥PFxα − PFxβ∥ ≤ ∥PFxα − PFxγ∥+ ∥PFxγ − PFxβ∥ < ε.(2.11)

This implies that {PFxα} is a Cauchy net. Since F is closed in H, it converges
strongly to an element of F . □

Remark 2.4. In the proof of Theorem 4.1, we apply Lemma 2.3 to the case where A
is the directed set N2 with a binary relation ≤ on N2 given by (k, l) ≤ (k′, l′) if k ≤ k′

and l ≤ l′. We also note that if S is a right reversible semitopological semigroup and
{Ts}s∈S is a continuous representation of S as nonexpansive mappings on C such
that F =

∩
s∈S F

(
Ts

)
is nonempty, then S is a directed set with a binary relation

≤ on S given by s ≤ s′ if

{s} ∪ Ss ⊃ {s′} ∪ Ss′(2.12)

and it is obvious that

∥p− Ts′x∥ ≤ ∥p− Tsx∥(2.13)

whenever x ∈ C, p ∈ F , s, s′ ∈ S, and s ≤ s′; see [20, 23] for more details. Thus
Lemma 2.3 implies that {PFTsx}s∈S converges strongly to an element of F for each
x ∈ C.

The following lemma ensures that every hybrid mapping is bounded on bounded
sets:

Lemma 2.5. Let T : C → C be a λ-hybrid mapping for some λ ∈ R. Then T (U)
is bounded for each nonempty bounded subset U of C.
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Proof. Suppose that the conclusion does not hold. Then there exists a bounded
sequence {zn} of C such that ∥Tzn∥ > 0 for all n ∈ N and ∥Tzn∥ → ∞. Fix y ∈ C.
Since T is λ-hybrid, we have

∥Tzn − Ty∥2 ≤ ∥zn − y∥2 + 2(1− λ) ⟨zn − Tzn, y − Ty⟩

≤ ∥zn − y∥2 + 2 |1− λ| ∥zn − Tzn∥ ∥y − Ty∥
(2.14)

and hence

∥Tzn∥ − 2 ∥Ty∥+ ∥Ty∥2

∥Tzn∥

≤ (∥zn∥+ ∥y∥)2

∥Tzn∥
+ 2 |1− λ|

(
∥zn∥
∥Tzn∥

+ 1

)
∥y − Ty∥

(2.15)

for all n ∈ N. This is a contradiction. □
Let {Sn} be a sequence of mappings of C into itself and F a nonempty closed

convex subset of H. Following Aoyama [1], we say that {Sn} satisfies the condi-
tion (S) with respect to F if each weak subsequential limit of {Snzn} belongs to F
whenever {zn} is a bounded sequence of C.

We know the following strong and weak convergence theorems for a sequence of
quasinonexpansive type mappings in Hilbert spaces:

Theorem 2.6 ([1, Theorem 1]). Let H be a real Hilbert space, C and F nonempty
closed convex subsets of H such that F ⊂ C, and {Sn} a sequence of mappings of
C into itself. Suppose that

• ∥w − Snx∥ ≤ ∥w − x∥ for all n ∈ N, w ∈ F , and x ∈ C;
• {Sn} satisfies the condition (S) with respect to F .

Let u be an element of C and {xn} a sequence defined by x0 ∈ C and

xn+1 = αnu+ (1− αn)Snxn (n = 0, 1, . . . ),(2.16)

where {αn} is a sequence of [0, 1] such that αn → 0 and
∑∞

n=0 αn = ∞. Then {xn}
converges strongly to PFu.

Theorem 2.7 ([18, Theorem 3.1]). Let H, C, F , and {Sn} be the same as in
Theorem 2.6 and {xn} a sequence defined by x0 ∈ C and

xn+1 = αnxn + (1− αn)Snxn (n = 0, 1, . . . ),(2.17)

where {αn} is a sequence of [0, 1] such that supn αn < 1. Then {xn} converges
weakly to the strong limit of {PFxn}.

3. Fundamental results for two commutative hybrid mappings

In this section, among other things, we show a common fixed point theorem and
a uniform convergence theorem for two commutative hybrid mappings.

Throughout this section, we suppose the following:

• C is a nonempty closed convex subset of a real Hilbert space H;
• S : C → C is λ-hybrid and T : C → C is µ-hybrid for some λ, µ ∈ R;
• {Vn} is a sequence of mappings of C into itself defined by (1.2).

Motivated by [22, Lemma 1], we first show the following lemma:
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Lemma 3.1. Let D be a nonempty subset of C such that{
SkT ly : y ∈ D, k, l ∈ N

}
(3.1)

is bounded. Then the following hold:

(i) limn supy∈D ∥Vny − SVny∥ = 0;
(ii) if ST = TS, then limn supy∈D ∥Vny − TVny∥ = 0.

Proof. We first show the part (i). By assumption, the set {Vny : y ∈ D, n ∈ N} is
bounded. Thus Lemma 2.5 implies that so is {SVny : y ∈ D, n ∈ N}. Hence there
exists a positive real number M such that∥∥∥SkT ly

∥∥∥ ≤ M and ∥SVny∥ ≤ M(3.2)

for all k, l, n ∈ N, and y ∈ D. Note that ∥Vny∥ ≤ M for all n ∈ N and y ∈ D.
Let y ∈ D and n ∈ N \ {0} be given. By Lemma 2.2, we have

∥Vny − SVny∥2

=
1

(n+ 1)2

n∑
k=0

n∑
l=0

(∥∥∥SkT ly − SVny
∥∥∥2 − ∥∥∥SkT ly − Vny

∥∥∥2)

=
1

(n+ 1)2

( n∑
l=0

∥∥∥T ly − SVny
∥∥∥2 + n−1∑

k=0

n∑
l=0

∥∥∥Sk+1T ly − SVny
∥∥∥2

−
n∑

k=0

n∑
l=0

∥∥∥SkT ly − Vny
∥∥∥2).

(3.3)

Since S is λ-hybrid, we have

n−1∑
k=0

n∑
l=0

∥∥∥Sk+1T ly − SVny
∥∥∥2

≤
n−1∑
k=0

n∑
l=0

(∥∥∥SkT ly − Vny
∥∥∥2 + 2(1− λ)

⟨
SkT ly − Sk+1T ly, Vny − SVny

⟩)
=

n−1∑
k=0

n∑
l=0

∥∥∥SkT ly − Vny
∥∥∥2 + 2(1− λ)

n∑
l=0

⟨
T ly − SnT ly, Vny − SVny

⟩
.

(3.4)

Using (3.3) and (3.4), we obtain

∥Vny − SVny∥2

≤ 1

(n+ 1)2

n∑
l=0

(∥∥∥T ly − SVny
∥∥∥2 + 2(1− λ)

⟨
T ly − SnT ly, Vny − SVny

⟩)
.

(3.5)

Using (3.2) and (3.5), we obtain

∥Vny − SVny∥2 ≤
1

(n+ 1)2

n∑
l=0

(
(2M)2 + 2 |1− λ| (2M)2

)
=

4M2

(n+ 1)
(1 + 2 |1− λ|) .

(3.6)
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Thus we obtain

sup
y∈D

∥Vny − SVny∥ ≤ 2M

√
1 + 2 |1− λ|

n+ 1
→ 0.(3.7)

Therefore, we obtain the conclusion.
We next show the part (ii). Suppose that ST = TS. Then we have

Vn =
1

(n+ 1)2

n∑
l=0

n∑
k=0

T lSk(3.8)

for all n ∈ N. Thus, the part (i) implies the conclusion. □
Using Lemmas 2.1 and 3.1, we next show the following common fixed point

theorem:

Theorem 3.2. Suppose that ST = TS. Then F(S)∩F(T ) is nonempty if and only
if
{
SkT lx : k, l ∈ N

}
is bounded for some x ∈ C.

Proof. The only if part is obvious since{
SkT lp : k, l ∈ N

}
= {p}(3.9)

for all p ∈ F(S) ∩ F(T ). We show the if part. Suppose that {SkT lx : k, l ∈ N} is
bounded for some x ∈ C. Setting D = {x}, we know that{

SkT ly : y ∈ D, k, l ∈ N
}

(3.10)

is bounded and hence Lemma 3.1 implies that

lim
n→∞

∥Vnx− SVnx∥ = lim
n→∞

∥Vnx− TVnx∥ = 0.(3.11)

Since C is weakly closed and {Vnx} is a bounded sequence of C, there exist u ∈ C
and a subsequence {Vnix} of {Vnx} such that Vnix ⇀ u. Thus we know that u is

an element of F̂(S) ∩ F̂(T ). Consequently, by Lemma 2.1, we know that u is an
element of F(S) ∩ F(T ). □

Letting T = I in Theorem 3.2, we obtain the following corollary:

Corollary 3.3 ([2, Theorem 4.1]). If S : C → C is a λ-hybrid mapping for some
λ ∈ R, then F(S) is nonempty if and only if {Snx} is bounded for some x ∈ C.

Using Lemma 3.1, we next obtain the following uniform convergence theorem:

Theorem 3.4. Suppose that ST = TS and F(S) ∩ F(T ) is nonempty. Then

lim
n→∞

sup
y∈D

∥Vny − SVny∥ = lim
n→∞

sup
y∈D

∥Vny − TVny∥ = 0(3.12)

for each nonempty bounded subset D of C.

Proof. Let D be a nonempty bounded subset of C and fix w ∈ F . Since S and T
are quasi-nonexpansive, we know that∥∥∥w − SkT ly

∥∥∥ ≤ ∥w − y∥(3.13)

for all k, l ∈ N and y ∈ D. This implies that the set{
SkT ly : y ∈ D, k, l ∈ N

}
(3.14)
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is bounded. Hence the result follows from Lemma 3.1. □
Remark 3.5. In the case where S and T are nonexpansive in Theorem 3.4, we
obtain a result which is similar to [22, Lemma 1].

Using Lemma 2.1 and Theorem 3.4, we also show the following corollary:

Corollary 3.6. Suppose that ST = TS and F = F(S) ∩ F(T ) is nonempty. Then
the following hold:

(i) ∥w − Vnx∥ ≤ ∥w − x∥ for all n ∈ N, w ∈ F , and x ∈ C;
(ii) {Vn} satisfies the condition (S) with respect to F .

Proof. Since S and T are quasi-nonexpansive, we know that

∥w − Vnx∥ ≤ 1

(n+ 1)2

n∑
k=0

n∑
l=0

∥∥∥w − SkT lx
∥∥∥ ≤ ∥w − x∥(3.15)

for all n ∈ N, w ∈ F , and x ∈ C. Thus the part (i) holds.
We next show the part (ii). Let {zn} be a bounded sequence of C and u a weak

subsequential limit of {Vnzn}. Then we have a subsequence {Vnizni} of {Vnzn} such
that Vnizni ⇀ u. Since C is weakly closed, we have u ∈ C. Let ρ be a positive real
number such that ∥zn∥ ≤ ρ for all n ∈ N. By Theorem 3.4, we obtain

∥Vnzn − SVnzn∥ ≤ sup
y∈C∩ρBH

∥Vny − SVny∥ → 0(3.16)

and

∥Vnzn − TVnzn∥ ≤ sup
y∈C∩ρBH

∥Vny − TVny∥ → 0.(3.17)

Hence u is an element of F̂(S)∩F̂(T ). Accordingly, Lemma 2.1 implies that u ∈ F .
Therefore, {Vn} satisfies the condition (S) with respect to F . □

4. Three convergence theorems

In this section, applying the results obtained in Section 3, we show three conver-
gence theorems for two commutative hybrid mappings in Hilbert spaces.

We define a binary relation ≤ on N2 by (k, l) ≤ (k′, l′) if k ≤ k′ and l ≤ l′. Then
(N2,≤) is obviously a directed set.

Using some ideas in [2, Lemma 5.1] and [23, Theorem 3.2.3], we first obtain the
following mean convergence theorem:

Theorem 4.1. Let H be a real Hilbert space, C a nonempty closed convex subset
of H, S : C → C a λ-hybrid mapping for some λ ∈ R, and T : C → C a µ-hybrid
mapping for some µ ∈ R. Suppose that ST = TS and F = F(S) ∩ F(T ) is
nonempty. Let x be an element of C and {xn} a sequence defined by

xn =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx (n = 0, 1, . . . ).(4.1)

Then the following hold:

(i) {PFS
kT lx}(k,l)∈N2 converges strongly to an element of F ;

(ii) {xn} converges weakly to the strong limit of {PFS
kT lx}(k,l)∈N2.
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Proof. We denote PF by P and let {Vn} be a sequence of mappings of C into itself
defined by (1.2). Note that xn = Vnx for all n ∈ N.

We first show the part (i). Since S and T are quasi-nonexpansive and ST = TS,
we have ∥∥∥p− Sk′T l′x

∥∥∥ ≤
∥∥∥p− SkT l′x

∥∥∥
=
∥∥∥p− T l′Skx

∥∥∥ ≤
∥∥∥p− T lSkx

∥∥∥ =
∥∥∥p− SkT lx

∥∥∥(4.2)

whenever p ∈ F and (k, l) ≤ (k′, l′). Thus the part (i) of Lemma 2.3 implies that∥∥∥PSk′T l′x− Sk′T l′x
∥∥∥ ≤

∥∥∥PSkT lx− SkT lx
∥∥∥(4.3)

whenever (k, l) ≤ (k′, l′). By the part (ii) of Lemma 2.3, we also know that
{PSkT lx}(k,l)∈N2 converges strongly to an element u of F . Using this property,
we can see that

0 ≤

∥∥∥∥∥ 1

(n+ 1)2

n∑
k=0

n∑
l=0

PSkT lx− u

∥∥∥∥∥
≤ 1

(n+ 1)2

n∑
k=0

n∑
l=0

∥∥∥PSkT lx− u
∥∥∥→ 0

(4.4)

as n → ∞.
We next show the part (ii). Since S and T are quasi-nonexpansive and F is

nonempty, we know that {SkT lx} is bounded and hence so is {Vnx}. Thus we
have a subsequence {Vnix} of {Vnx} such that Vnix ⇀ v ∈ C. By the part (ii) of
Corollary 3.6, we know that {Vn} satisfies the condition (S) with respect to F and
hence v is an element of F . Then it follows from (2.7) that⟨

v − PSkT lx, SkT lx− PSkT lx
⟩
≤ 0(4.5)

for all (k, l) ∈ N2. By (4.3) and (4.5), we have⟨
v − u, SkT lx− PSkT lx

⟩
≤
⟨
PSkT lx− u, SkT lx− PSkT lx

⟩
≤
∥∥∥PSkT lx− u

∥∥∥∥∥∥SkT lx− PSkT lx
∥∥∥

≤
∥∥∥PSkT lx− u

∥∥∥ ∥x− Px∥

(4.6)

for all (k, l) ∈ N2. Hence we have⟨
v − u, Vnix− 1

(ni + 1)2

ni∑
k=0

ni∑
l=0

PSkT lx

⟩

≤ 1

(ni + 1)2

ni∑
k=0

ni∑
l=0

∥∥∥PSkT lx− u
∥∥∥ ∥x− Px∥

(4.7)

for all i ∈ N. Since (4.4) holds and Vnix ⇀ v, by letting i → ∞ in (4.7), we obtain

∥v − u∥2 ≤ 0 and hence v = u. Therefore, the sequence {xn} converges weakly to
the strong limit of {PSkT lx}(k,l)∈N2 . □
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As a direct consequence of Theorem 4.1, we obtain the following corollary:

Corollary 4.2 ([2, Theorem 5.2]). Let H be a real Hilbert space, C a nonempty
closed convex subset of H, S : C → C a λ-hybrid mapping for some λ ∈ R such that
F(S) is nonempty, x an element of C, and {xn} a sequence defined by

xn =
1

n+ 1

n∑
k=0

Skx (n = 0, 1, . . . ).(4.8)

Then {xn} converges weakly to the strong limit of {PF(S)S
nx}.

Proof. Letting T = I, we know that T is 1-hybrid, ST = TS, and F(S) ∩ F(T ) =
F(S) is nonempty. Further, it holds that

1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT l =
1

n+ 1

n∑
k=0

Sk(4.9)

for all n ∈ N. Thus the result follows from Theorem 4.1. □
By Theorem 2.6 and Corollary 3.6, we obtain the following strong convergence

theorem and its corollary:

Theorem 4.3. Let H, C, S, T , and F be the same as in Theorem 4.1, u an element
of C, and {xn} a sequence defined by x0 ∈ C and

xn+1 = αnu+ (1− αn)
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lxn (n = 0, 1, . . . ),(4.10)

where {αn} is a sequence of [0, 1] such that αn → 0 and
∑∞

n=1 αn = ∞. Then {xn}
converges strongly to PFu.

Remark 4.4. In the case where S and T are nonexpansive in Theorem 4.3, we
obtain a result which is similar to [22, Theorem 1].

Corollary 4.5 ([1, Theorem 2]). Let H, C, and S be the same as in Corollary 4.2,
u an element of C, and {xn} a sequence defined by x0 ∈ C and

xn+1 = αnu+ (1− αn)
1

n+ 1

n∑
k=0

Skxn (n = 0, 1, . . . ),(4.11)

where {αn} is a sequence of [0, 1] such that αn → 0 and
∑∞

n=1 αn = ∞. Then {xn}
converges strongly to PF(S)u.

By Theorem 2.7 and Corollary 3.6, we obtain the following weak convergence
theorem and its corollary:

Theorem 4.6. Let H, C, S, T , and F be the same as in Theorem 4.1 and {xn} a
sequence defined by x0 ∈ C and

xn+1 = αnxn + (1− αn)
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lxn (n = 0, 1, . . . ),(4.12)

where {αn} is a sequence of [0, 1] such that supn αn < 1. Then {xn} converges
weakly to the strong limit of {PFxn}.
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Remark 4.7. In the case where S and T are nonexpansive in Theorem 4.6, we
obtain a corresponding result [6, Theorem 1] in the Hilbert space setting.

Corollary 4.8 ([18, Corollary 5.2]). Let H, C, and S be the same as in Corol-
lary 4.2 and {xn} a sequence defined by x0 ∈ C and

xn+1 = αnxn + (1− αn)
1

n+ 1

n∑
k=0

Skxn (n = 0, 1, . . . ),(4.13)

where {αn} is a sequence of [0, 1] such that supn αn < 1. Then {xn} converges
weakly to the strong limit of {PF(S)xn}.

5. Appendix

In this final section, we give some examples of two commutative hybrid mappings
in a real Hilbert space H.

Two commutative 1-hybrid mappings can be obtained by applying the nonex-
pansive semigroup {S(t)}t>0 on D(A) generated by −A, where A : H → 2H is a
maximal monotone operator and D(A) is the domain of A; see [8] for more details
on the generation of nonexpansive semigroups. In this case, we know that S(t1)

and S(t2) are commutative 1-hybrid mappings of D(A) into itself for all positive
real numbers t1 and t2.

We first show the following simple example:

Example 5.1. Let S : H → H be a linear operator such that ∥Sx∥ = ∥x∥ for all
x ∈ H, and T the metric projection of H onto rBH for some r > 0. Then S is
1-hybrid, T is firmly nonexpansive, and ST = TS.

Proof. Since S is nonexpansive, it is 1-hybrid. Since T is the metric projection
onto rBH , it is firmly nonexpansive. If x ∈ rBH , then ∥Sx∥ = ∥x∥ ≤ r and hence
STx = Sx = TSx. If x ∈ H \ rBH , then we have ∥Sx∥ = ∥x∥ > r and hence

STx = S

(
r

∥x∥
x

)
=

r

∥x∥
Sx =

r

∥Sx∥
Sx = TSx.(5.1)

Thus we obtain ST = TS. □
Using some results in [3, 4], we show the following two examples:

Example 5.2. Let S : H → H be a linear operator such that ∥Sx∥ = ∥x∥ for all
x ∈ H, both U and V firmly nonexpansive mappings of H into itself such that
SU = US, SV = V S, and U(H) ∪ V (H) is contained in rBH for some r > 0, both
λ and δ real numbers such that 0 ≤ λ < 1 and

δ ≥

(
1 + 2

√
2− λ

1− λ

)
r,(5.2)

and T : H → H the mapping defined by

Tx =

{
Ux (x ∈ δBH);

V x (otherwise).
(5.3)

Then S is 1-hybrid, T is λ-hybrid, and ST = TS.
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Proof. It follows from [4, Proposition 2.2] and [4, Example 2.4] that T is λ-hybrid.
If x ∈ δBH , then ∥Sx∥ = ∥x∥ ≤ δ and hence

STx = SUx = USx = TSx.(5.4)

If x ∈ H \ δBH , then ∥Sx∥ = ∥x∥ > δ and hence

STx = SV x = V Sx = TSx.(5.5)

Thus we obtain ST = TS. □
Example 5.3. Let S : H → H be an affine and nonexpansive mapping, N : H → H
a nonspreading mapping such that SN = NS, β a real number such that 0 ≤ β < 1,
and T the mapping defined by

T = βI + (1− β)N.(5.6)

Then S is 1-hybrid, T is −β/(1− β)-hybrid, and ST = TS.

Proof. It follows from [3, Lemma 2.2] that T is −β/(1−β)-hybrid. Since S is affine
and SN = NS, we know that

STx = βSx+ (1− β)SNx = βSx+ (1− β)NSx = TSx(5.7)

for all x ∈ H. Thus we know that ST = TS. □
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