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In this paper, we first study Bregman firmly generalized nonexpansive type map-
pings [17] in a reflexive Banach space. Next, we prove a weak convergence theorem
of Pazy’s type [11] for Bregman firmly generalized nonexpansive type mappings in a
reflexive Banach space. This result characterized the convergent point by using non-
linear projections. Finally, we also obtain weak convergence theorems of Baillon’s
type [7] in a reflexive Banach space.

2. Preliminaries

Let E be a real Banach space with its dual E∗. We denote the strong convergence
and the weak convergence of a sequence {xn} to x in E by xn → x and xn ⇀ x,
respectively. We also denote the weak∗ convergence of a sequence {x∗n} to x∗ in E∗

by x∗n
∗
⇀ x∗. For p ∈ (1,∞), the duality mapping Jp from E into E∗ corresponding

to the weight function ω(t) = tp−1 is defined by

Jpx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∗∥ = ω(∥x∥)}

for each x ∈ E. The mapping J2 is called the normalized duality mapping from E
into E∗ and it is denoted by J (see [5, 24] for details). A Banach space E is said
to be strictly convex if ∥(x+ y)/2∥ < 1 whenever x, y ∈ S := {z ∈ E : ∥z∥ = 1}
and x ̸= y. Also, E is said to be uniformly convex if for each ε ∈ (0, 2], there exists
δ > 0 such that x, y ∈ S and ∥x − y∥ ≥ ε imply ∥(x+ y)/2∥ < 1 − δ. A Banach
space E is said to be smooth if

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S. In this case, the norm of E is said to be Gâteaux differen-
tiable. The space E is said to have a uniformly Gâteaux differentiable norm if for
each y ∈ S, the limit (2.1) is attained uniformly for x ∈ S. The norm of E is said
to be Fréchet differentiable if for each x ∈ S, the limit (2.1) is attained uniformly
for y ∈ S. The norm of E is said to be uniformly Fréchet differentiable (and E is
said to be uniformly smooth) if the limit (2.1) is attained uniformly for x, y ∈ S.

An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax ̸= ∅} and range
R(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if ⟨x − y, x∗ − y∗⟩ ≥ 0 for any
(x, x∗), (y, y∗) ∈ A. An operator A is said to be strictly monotone if ⟨x − y, x∗ −
y∗⟩ > 0 for any (x, x∗), (y, y∗) ∈ A (x ̸= y). A monotone operator A is said to be
maximal if its graph G(A) = {(x, x∗) : x∗ ∈ Ax} is not properly contained in the
graph of any other monotone operator. If A is maximal monotone, then the set
A−10 = {u ∈ E : 0 ∈ Au} is closed and convex (see [5, 25] for more details). A
mapping A : E → E∗ is said to be weakly sequentially continuous if zn ⇀ z implies

Azn
∗
⇀ Az.

A function f : E → (−∞,∞] is said to be proper if the domain D(f) = {x ∈ E :
f(x) < ∞} is nonempty. It is also called lower semicontinuous if {x ∈ E : f(x) ≤ r}
is closed for all r ∈ R. The function f is also said to be convex if

(2.2) f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ E and α ∈ (0, 1). It is also said to be strictly convex if the strict
inequality holds in (2.2) for all x, y ∈ D(f) with x ̸= y and α ∈ (0, 1). For a proper
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lower semicontinuous convex function f : E → (−∞,∞], the subdifferential ∂f of
f is defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + ⟨y − x, x∗⟩ ≤ f(y), ∀y ∈ E}
for all x ∈ E. It is well known that ∂f ⊂ E × E∗ is maximal monotone (see
[21, 22] for more details). A mapping g : E → R is said to be strongly coercive if
g(zn)/∥zn∥ → ∞ whenever {zn} is a sequence of E such that ∥zn∥ → ∞. It is also
said to be bounded on bounded sets if g(U) is bounded for each bounded subset U
of E. If p ∈ (1,∞) and g is defined by g(x) = ∥x∥p/p for all x ∈ E, then ∂g = Jp.
For a proper lower semicontinuous convex function f : E → (−∞,∞], the conjugate
function f∗ of f is defined by

f∗(x∗) = sup
x∈E

{⟨x, x∗⟩ − f(x)}

for all x∗ ∈ E∗. It is well known that f(x)+f∗(x∗) ≥ ⟨x, x∗⟩ for all (x, x∗) ∈ E×E∗.
It is also known that (x, x∗) ∈ ∂f is equivalent to

f(x) + f∗(x∗) = ⟨x, x∗⟩.
We also know that if f : E → (−∞,∞] is a proper lower semicontinuous convex
function, then f∗ : E∗ → (−∞,∞] is a proper weak∗ lower semicontinuous convex
function (see [19,25] for more details on convex analysis).

3. Bregman distance

Let E be a Banach space and let g : E → R be a convex function. Then the
directional derivative d+g(x)(y) of g at x ∈ E with the direction y ∈ E is defined
by

d+g(x)(y) = lim
t↓0

g(x+ ty)− g(x)

t
.

The function g is said to be Gâteaux differentiable at x ∈ E if d+g(x) ∈ E∗. In
this case, we denote d+g(x) by ∇g(x). The function g is also said to be Fréchet
differentiable at x ∈ E if for ε > 0, there exists δ > 0 such that ∥x− y∥ ≤ δ implies
that

|g(y)− g(x)− ⟨y − x,∇g(x)⟩| ≤ ε∥y − x∥.
A function g : E → R is said to be Gâteaux differentiable (resp. Fréchet differen-
tiable) if it is Gâteaux differentiable at everywhere (resp. Fréchet differentiable at
everywhere). We know that if a continuous convex function g : E → R is Gâteaux
differentiable, then ∇g is norm-to-weak∗ continuous and ∂g = ∇g. We also know
that if g is Fréchet differentiable, then ∇g is norm-to-norm continuous.

Let E be a Banach space and let g : E → R be a convex and Gâteaux differentiable
function. Then the Bregman distance [2, 4] corresponding to g is defined by

D(x, y) = g(x)− g(y)− ⟨x− y,∇g(y)⟩
for all x, y ∈ E. It is obvious that D(x, y) ≥ 0 for all x, y ∈ E. We also know that
D(·, y) is convex for all y ∈ E. The following definition is in the sense of Kohsaka
and Takahashi [15] (see also [3]).

Definition 3.1. Let E be a Banach space. Then a function g : E → R is said to
be a Bregman function if the following conditions are satisfied:
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(1) g is continuous, strictly convex and Gâteaux differentiable;
(2) the set {y ∈ E : D(x, y) ≤ r} is bounded for all x ∈ E and r > 0.

We know the following Lemma (see [3, 26] for more details).

Lemma 3.2. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Then

(1) ∇g : E → E∗ is one-to-one, onto, norm-to-weak∗ continuous and monotone;
(2) ⟨x− y,∇g(x)−∇g(y)⟩ = 0 if and only if x = y;
(3) the set {x ∈ E : D(x, y) ≤ r} is bounded for all y ∈ E and r > 0;

(4) D(g∗) = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)−1.

We also know the following result (see [3, 14,15,17] for more details).

Theorem 3.3. Let C be a nonempty closed convex subset of a reflexive Banach
space E and let g : E → R be a strongly coercive Bregman function. Then, for each
x ∈ E, there exists a unique x0 ∈ C such that

D(x0, x) = min
y∈C

D(y, x).

Moreover, for the mapping PC defined by PCx = x0 for all x ∈ E, the following
conditions hold: For x ∈ E,

(1) x0 = PCx if and only if ⟨y − x0,∇g(x0)−∇g(x)⟩ ≥ 0 for all y ∈ C;
(2) D(PCx, x) +D(y, PCx) ≤ D(y, x) for all y ∈ C.

The mapping PC from E onto C is called the Bregman projection of E onto C.

Let E be a Banach space. The closed unit ball and the unit sphere of E are
denoted by B and S, respectively. We also denote rB the set {z ∈ E : ∥z∥ ≤ r} for
all r > 0. Then a function g : E → R is said to be uniformly convex on bounded
sets [26] if ρr(t) > 0 for all r, t > 0, where ρr : [0,∞) → [0,∞] is defined by

(3.1) ρr(t) = inf
x,y∈rB,∥x−y∥=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(αx+ (1− α)y)

α(1− α)

for all t ≥ 0. It is known that ρr is a nondecreasing function. The function g is also
said to be uniformly smooth on bounded sets [26] if limt↓0 σr(t)/t = 0 for all r > 0,
where σr : [0,∞) → [0,∞] is defined by

σr(t) = inf
x∈rB,y∈S,α∈(0,1)

αg(αx+ (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)

for all t ≥ 0. We know the following results (see [8, 15,20,26] for more details).

Theorem 3.4. Let E be a reflexive Banach space and let g : E → R be a continuous
convex function which is strongly coercive. Then the following are equivalent:

(1) g is bounded on bounded sets and uniformly smooth on bounded sets;
(2) g is Fréchet differentiable and ∇g is uniformly norm-to-norm continuous on

bounded sets;
(3) D(g∗) = E∗, g∗ is strongly coercive and uniformly convex on bounded sets.

Theorem 3.5. Let E be a Banach space, let p ∈ (1,∞) and let g = ∥ · ∥p/p. Then

(1) E is uniformly convex iff g is uniformly convex on bounded sets;
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(2) E is uniformly smooth iff g is uniformly smooth on bounded sets.

Lemma 3.6. Let E be a Banach space and let g : E → R be a Gâteaux differentiable
function which is uniformly convex on bounded sets. Let r > 0 and let ρr be defined
as in (3.1). Then the following hold:

(1) ρr (∥x− y∥) ≤ D(x, y) for each x, y ∈ rB;
(2) if {xn} and {yn} are sequences in rB such that limnD(xn, yn) = 0, then

limn ∥xn − yn∥ = 0;
(3) for any ε > 0 there exists δ > 0 such that if x, y ∈ rB and ρr(∥x− y∥) < δ

then ∥x− y∥ < ε.

4. Bregman firmly generalized nonexpansive mappings

Let C be a nonempty subset of a Banach space E and let g : E → R be a convex
and Gâteaux differentiable function. A mapping T : C → C is said to be Bregman
firmly generalized nonexpansive type [11,17] if

(4.1) D(x, Tx) +D(y, Ty) +D(Tx, Ty) +D(Ty, Tx) ≤ D(x, Ty) +D(y, Tx)

for each x, y ∈ C. A mapping T : C → C is said to be Bregman generalized
nonexpansive type [11,17] if

D(Tx, Ty) +D(Ty, Tx) ≤ D(x, Ty) +D(y, Tx)

for each x, y ∈ C. A mapping T : C → C is said to be Bregman firmly generalized
nonexpansive [12,17] if F (T ) ̸= ∅ and

D(x, Tx) +D(Tx, p) ≤ D(x, p)

for each x ∈ C and p ∈ F (T ). A mapping T : C → C is said to be Bregman
generalized nonexpansive [10,17] if F (T ) ̸= ∅ and

D(Tx, p) ≤ D(x, p)

for each x ∈ C and p ∈ F (T ). It is clear that Bregman firmly generalized nonexpan-
sive type (resp. a Bregman firmly generalized nonexpansive) is Bregman generalized
nonexpansive type (resp. a Bregman generalized nonexpansive) in a Banach space
(see also [11,12,17]).

A point z in C is said to be Bregman generalized asymptotic fixed point of

T [13, 17] if C contains a sequence {xn} such that ∇g(xn)
∗
⇀ ∇g(z) and ∇g(xn)−

∇g(Txn) → 0. The set of all Bregman generalized asymptotic fixed points of T is
denoted by F̌ (T ).

Let C0 be a subset of C. A mapping R : C → C0 is said to be sunny if R(Rx+
t(x − Rx)) = Rx whenever Rx + t(x − Rx) ∈ C for x ∈ C and t ≥ 0. A mapping
R : C → C0 is said to be a retraction if R2 = R. The following results were proved
in [17] (see also [16]).

Lemma 4.1. Let E be a Banach space and let g : E → R be a convex and Gâteaux
differentiable function. Let C be a nonempty closed subset of E. If T : C → C is a
Bregman firmly generalized nonexpansive type mapping (resp. a Bregman generalized
nonexpansive type mapping) with F (T ) ̸= ∅, then T is Bregman firmly generalized
nonexpansive (resp. a Bregman generalized nonexpansive).
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Lemma 4.2. Let E be a Banach space and let g : E → R be a convex and Gâteaux
differentiable function. Let C be a nonempty closed subset of E. Then, a mapping
T : C → C is of Bregman firmly generalized nonexpansive type if and only if

⟨(x− Tx)− (y − Ty),∇g(Tx)−∇g(Ty)⟩ ≥ 0.

for each x, y ∈ C.

Lemma 4.3. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of E and let R be a
retraction of E onto C. Then the following are equivalent:

(1) R is sunny and Bregman generalized nonexpansive;
(2) ⟨x−Rx,∇g(Rx)−∇g(y)⟩ ≥ 0 for each x ∈ E and y ∈ C.

Furthermore, a sunny Bregman generalized nonexpansive retraction of E onto C is
uniquely determined.

Lemma 4.4. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of E and let R be
a sunny Bregman generalized nonexpansive retraction of E onto C. Let x ∈ E and
z ∈ C. Then the following hold:

(1) z = Rx if and only if ⟨x− z,∇g(z)−∇g(y)⟩ ≥ 0 for all y ∈ C;
(2) D(x,Rx) +D(Rx, z) ≤ D(x, z).

Let E be a reflexive Banach space and let g : E → R be a strongly coercive Breg-
man function. If a sunny Bregman generalized nonexpansive retraction of E onto C
exists then it is uniquely determined (see Lemma 4.3). A nonempty subset C of E
is said to be a sunny Bregman generalized nonexpansive retract (resp. a Bregman
generalized nonexpansive retract) of E if there exists a sunny Bregman generalized
nonexpansive retraction (resp. a Bregman generalized nonexpansive retraction) of
E onto C. The set of all fixed points of such a sunny Bregman generalized nonex-
pansive retraction of E onto C is, of course, C (see [9,10,17] for more details). The
following results have been proved in [17] (see also [16]).

Theorem 4.5. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function which is bounded on bounded sets, and uniformly convex
and uniformly smooth on bounded sets. Let C be a nonempty closed subset of E.
Then, the following conditions are equivalent:

(1) C is a sunny Bregman generalized nonexpansive retract of E;
(2) C is a Bregman generalized nonexpansive retract of E;
(3) ∇gC is closed and convex.

In this case, the unique sunny Bregman generalized nonexpansive retraction of E
onto C is given by (∇g)−1 PC∗∇g, where PC∗ is the Bregman projection of E∗ onto
C∗ = ∇gC.

Lemma 4.6. Let E be a reflexive Banach space, let g : E → R be a strongly
coercive Bregman function which is bounded on bounded sets, and uniformly convex
and uniformly smooth on bounded sets and let C be a nonempty closed subset of E
such that ∇gC is closed and convex. Let T be a mapping from C into itself. Then
the following hold:
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(1) if T is a Bregman generalized nonexpansive mapping, then F (T ) is closed
and ∇gF (T ) is closed and convex. Moreover, F (T ) is sunny Bregman gen-
eralized nonexpansive retract of E;

(2) if T is a Bregman generalized nonexpansive type mapping with F (T ) ̸= ∅,
then F (T ) = F̌ (T ).

5. Weak convergence theorem of Pazy’s type

In this section, we prove a weak convergence theorem of Pazy’s type for Bregman
firmly generalized nonexpansive type mappings in a Banach space. We first recall
the following result for Bregman firmly generalized nonexpansive type mappings in
a Banach space (see [17] for more details).

Theorem 5.1. Let E be a reflexive Banach space and let g : E → R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C be a nonempty
closed subset of E such that ∇gC is closed and convex and let T : C → C be
a Bregman firmly generalized nonexpansive type mapping. If the mapping ∇g is
weakly sequentially continuous, then the following are equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} is bounded for some x ∈ C.

In this case, {Tnx} is converges weakly to an element of F (T ) for each x ∈ C.

To prove our result, we need the following lemmas.

Lemma 5.2. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of E such that
∇gC is closed and convex and let RC be a sunny Bregman generalized nonexpansive
retraction of E onto C. Then RC is of Bregman firmly generalized nonexpansive
type.

Proof. Let x, y ∈ C. Then, by Lemma 4.4, we obtain that

⟨x−RCx,∇g(RCx)−∇g(RCy)⟩ ≥ 0

and
⟨y −RCy,∇g(RCy)−∇g(RCx)⟩ ≥ 0.

From these inequalities, we have

⟨x−RCx,∇g(RCx)−∇g(RCy)⟩+ ⟨y −RCy,∇g(RCy)−∇g(RCx)⟩ ≥ 0 + 0.

and hence
⟨(x−RCx)− (y −RCy),∇g(RCx)−∇g(RCy)⟩ ≥ 0

for each x, y ∈ C. Therefore, by Lemma 4.2, we obtain that RC is of Bregman
firmly generalized nonexpansive type. □
Lemma 5.3. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function which is bounded on bounded sets, and uniformly convex
and uniformly smooth on bounded sets. Let C be a nonempty closed subset of E
such that ∇gC is closed and convex. Let T : C → C be a Bregman generalized
nonexpansive mapping. Then {RTnx} converges strongly to some element of F (T )
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for each x ∈ C, where R is the sunny Bregman generalized nonexpansive retraction
of E onto F (T ).

Proof. Let x ∈ C. Then we have from Lemma 4.4 that

D(Tn+1x,RTn+1x)

≤ D(Tn+1x,RTn+1x) +D(RTn+1x,RTnx)

≤ D(Tn+1x,RTnx)

≤ D(Tnx,RTnx)

for each n ∈ N. Hence, limn→∞D(Tnx,RTnx) exists. It follows from Lemma 4.4
that, for each k ∈ N,

D(Tn+kx,RTn+kx) +D(RTn+kx,RTnx) ≤ D(Tn+kx,RTnx)

and hence

D(RTmx,RTnx) ≤ D(Tmx,RTnx)−D(Tmx,RTmx)

≤ D(Tnx,RTnx)−D(Tmx,RTmx)(5.1)

for each m,n ∈ N (m > n). Then we show that {RTnx} is a Cauchy sequence. In
fact, since F (T ) ̸= ∅, we also obtain

D(RTnx, p) ≤ D(x, p)

for each p ∈ F (T ) and hence, by Lemma 3.2 (3), {RTnx} is bounded. Let r =
supn∈N{∥RTnx∥}. Using Lemma 3.6 (1), we obtain that

ρr(∥RTmx−RTnx∥) ≤ D(RTmx,RTnx)

for each m,n ∈ N (m > n). By (5.1), the existence of limn→∞D(Tnx,RTnx) and
Lemma 3.6 (3), {RTnx} is a Cauchy sequence. Since E is complete and F (T ) is
closed, {RTnx} converges strongly to some point u in F (T ). □

Now, we can prove the following weak convergence theorem of Pazy’s type for
Bregman firmly generalized nonexpansive type mappings in a Banach space.

Theorem 5.4. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function which is bounded on bounded sets, uniformly convex and
uniformly smooth on bounded sets. Let C be a nonempty closed subset of E such
that ∇gC is closed and convex. Let T : C → C be a Bregman firmly generalized
nonexpansive type mapping. If the mapping ∇g is weakly sequentially continuous,
then the following are equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} is bounded for some x ∈ C.

In this case, {Tnx} converges weakly to p ∈ F (T ) for each x ∈ C, where p =
limn→∞RTnx and R is a sunny generalized nonexpansive retraction of E onto
F (T ).

Proof. From Theorem 5.1, we know that the conditions (1) and (2) are equivalent.
Moreover, in this case, we also know that, for each x ∈ C, {Tnx} converges weakly
to an element p ∈ F (T ). Since Lemma 4.3, we have that

(5.2) ⟨Tnx−RTnx,∇g(RTnx)−∇g(p)⟩ ≥ 0
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for each n ∈ N. From Lemma 5.3, we have that {RTnx} converges strongly to
some point u in F (T ). By Theorem 3.4, the mapping ∇g is (uniformly) norm to
norm continuous. Therefore, letting n → ∞ in (5.2), we obtain from Tnx ⇀ p and
RTnx → u that

⟨p− u,∇g(u)−∇g(p)⟩ ≥ 0.

By Lemma 3.2 (1) and (2), we obtain that u = p. Therefore, {Tnx} converges
weakly to p = limn→∞RTnx. This completes the proof. □

6. Weak convergence theorems of Baillon’s type

In this section, we prove weak convergence theorems of Baillon’s type in a Banach
space. To obtain our result, we need the following lemma.

Lemma 6.1. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function which is Fréchet differentiable. Let C be a nonempty
closed subset of E such that ∇gC is closed and convex and let R be a sunny Bregman
generalized nonexpansive mapping of E onto C. Then R is demiclosed, i.e., xn ⇀ x0
and Rxn → y0 imply Rx0 = y0.

Proof. Let {xn} be a sequence of E such that xn ⇀ x0 and Rxn → y0. Since g is
Fréchet differentiable function, then the mapping ∇g is norm to norm continuous
and hence ∇g(Rxn) → ∇g(y0). Using Lemma 4.4, we have that

(6.1) ⟨x0 −Rx0,∇g(Rx0)−∇g(u)⟩ ≥ 0

and
⟨xn −Rxn,∇g(Rxn)−∇g(u)⟩ ≥ 0

for each u ∈ C. Letting n → ∞, we get

(6.2) ⟨x0 − y0,∇g(y0)−∇g(u)⟩ ≥ 0

for each u ∈ C. Since {Rxn} ⊂ C and Rxn → y0, from closedness of C we have
y0 ∈ C. By (6.1) and (6.2), we have

⟨x0 −Rx0,∇g(Rx0)−∇(y0)⟩ ≥ 0 and ⟨x0 − y0,∇g(y0)−∇g(Rx0)⟩ ≥ 0

and hence
⟨y0 −Rx0,∇g(Rx0)−∇g(y0)⟩ ≥ 0.

From Lemma 3.2 (1) and (2), we obtain that y0 = Rx0. This implies that R is
demiclosed. □

Finally, we can prove the following weak convergence theorems of Baillon’s type
in a Banach space.

Theorem 6.2. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function which is bounded on bounded sets, uniformly convex and
uniformly smooth on bounded sets. Let C be a nonempty closed subset of E such that
∇gC is closed and convex. Let T : C → C be a Bregman firmly generalized nonex-
pansive mapping such that F̌ (T ) = F (T ). If the mapping ∇g is weakly sequentially
continuous, then {Tnx} converges weakly to some u ∈ F (T ) for each x ∈ C, where
u = limn→∞RTnx and R is a sunny Bregman generalized nonexpansive retraction
of E onto F (T ).
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Further, if R0x = w-limn→∞ Tnx for each x ∈ C, then R0 is a Bregman gener-
alized nonexpansive retraction of C onto F (T ) such that R0T

n = TnR0 = R0 for
each n ∈ N and

R0x ∈ co{Tnx : n ∈ N}
for each x ∈ C.

Proof. Let x ∈ C and p ∈ F (T ). From the definition of T , we have that

(6.3) D(Tn+1x, p) ≤ D(Tnx, Tn+1x) +D(Tn+1x, p) ≤ D(Tnx, p)

for each n ∈ N and hence limn→∞D(Tnx, p) exists. From (6.3), we obtain that

D(Tnx, Tn+1x) ≤ D(Tnx, p)−D(Tn+1x, p)

for each n ∈ N. Since {D(Tnx, p)} converges, it follows that

(6.4) lim
n→∞

D(Tnx, Tn+1x) = 0.

Since limn→∞D(Tnx, p) exists, by Lemma 3.2 (3) {Tnx} is bounded. Let r =
supn∈N{∥Tnx∥}. From Lemma 3.6 (2) and (6.4), we obtain that

(6.5) lim
n→∞

∥Tnx− Tn+1x∥ = 0.

From Theorem 3.4, ∇g is uniformly norm to norm continuous, we have that

(6.6) lim
n→∞

(
∇g(Tnx)−∇g(Tn+1x)

)
= 0.

For a subsequence {Tnix} of {Tnx} such that Tnix ⇀ p for some p ∈ E, we
have from weakly sequentially continuity of ∇g that ∇g(Tnix) ⇀ ∇g(p). Since
{∇g(Tnix)} ⊂ ∇gC and ∇gC is closed and convex, ∇gC is weakly closed and
hence we have that ∇g(p) ∈ ∇gC. This implies that p ∈ C. Since F̌ (T ) = F (T ), p
is a fixed point of T .

On the other hand, from Lemma 5.3, {RTnx} converges strongly to some u ∈
F (T ). Since Tnix ⇀ p, from Lemma 6.1 we have Rp = u. It follows from p ∈
F (T ) = F (R) that u = p. This implies that Tnx ⇀ u = limn→∞RTnx.

Defining a mapping R0 from C to itself by

R0x := w-lim
n→∞

Tnx

for each x ∈ C. It is obvious that R(R0) ⊂ F (T ), which R(R0) is the range of R0.
Conversely, let z ∈ F (T ). Then we have

R0z = w-lim
n→∞

Tnz = w-lim
n→∞

z = z.

So, we have z ∈ R(R0) and hence

R(R0) ⊂ F (T ) ⊂ F (R0) ⊂ R(R0).

Therefore, we get F (T ) = F (R0) = R(R0). This implies that R0 is a retraction of
C onto F (T ). Let x ∈ C and p ∈ F (R0) = F (T ). Since the function g is weakly
lower semicontinuous, we have

D(R0x, p) ≤ lim inf
n→∞

D(Tnx, p) ≤ lim inf
n→∞

D(x, p) = D(x, p).
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This implies that R0 is Bregman generalized nonexpansive. It is obvious from
F (T ) = R(R0) that TR0 = R0. Moreover, we have that for any x ∈ C,

R0x = w-lim
n→∞

Tnx = w-lim
n→∞

Tn+1x = w-lim
n→∞

Tn(Tx) = R0Tx

and hence R0x = R0Tx. So, we have TR0 = R0T = R0. This implies that
TnR0 = R0T

n = R0 for each n ∈ N. Finally, we show that

R0x ∈ co{Tnx : n ∈ N}(=: D)

for each x ∈ C. Suppose that R0z /∈ D for some z ∈ C. From the separation
theorem, there exists z∗ ∈ E∗ such that ⟨R0z, z

∗⟩ > supy∈D⟨y, z∗⟩. So, we have
that

⟨R0z, z
∗⟩ > sup

y∈D
⟨y, z∗⟩

≥ sup
n∈N

⟨Tnz, z∗⟩

≥ lim
n→∞

⟨Tnz, z∗⟩ = ⟨R0z, z
∗⟩.

This is a contradiction. So, we have R0x ∈ co{Tnx : n ∈ N} for each x ∈ C. This
completes the proof. □

As a direct direct consequence of Theorem 6.2, we obtain following result.

Theorem 6.3. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function which is bounded on bounded sets, uniformly convex and
uniformly smooth on bounded sets. Let C be a nonempty closed subset of E such that
∇gC is closed and convex. Let T : C → C be a Bregman firmly generalized nonex-
pansive type mapping such that F (T ) ̸= ∅. If the mapping ∇g is weakly sequentially
continuous, then {Tnx} converges weakly to some u ∈ F (T ) for each x ∈ C, where
u = limn→∞RTnx and R is a sunny Bregman generalized nonexpansive retraction
of E onto F (T ).

Further, if R0x = w-limn→∞ Tnx for each x ∈ C, then R0 is a Bregman gener-
alized nonexpansive retraction of C onto F (T ) such that R0T

n = TnR0 = R0 for
each n ∈ N and

R0x ∈ co{Tnx : n ∈ N}
for each x ∈ C.

Proof. From Lemmas 4.1 and 4.6 we have that T is a Bregman firmly generalized
nonexpansive mapping and F̌ (T ) = F (T ). As a direct consequence of Theorem
6.2, □
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