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ABSTRACT. In this paper, we study some properties of firmly generalized non-
expansive mappings with respect to a Bargeman distance in a Banach space.
Next, we prove weak convergence theorems of Pazy’s type [18] and Baillon’s
type [1] for finding a fixed point of such a mapping in a Banach space.

1. INTRODUCTION

Let C be a nonempty subset of a smooth Banach space F and let J be the
normalized duality mapping on F. A mapping T : C — C is said to be firmly
generalized nonexpansive type [11] if

V(z,Tx) +V(y, Ty) +V(Tx,Ty) + V(Ty,Tz) < V(z,Ty) + V(y, Tx)

for all z,y € C, where V(x,y) = ||z||> — 2(x, Jy) + ||ly||? for all z, € E. In 2009,
Ibaraki and Takahashi [11] proved the following weak convergence theorem of Pazy’s
type for firmly generalized nonexpansive type mappings in a Banach space:

Theorem 1.1. Let E be a uniformly convex Banach space with uniformly Gateauz
differentiable norm and let T be a firmly generalized nonexpansive type mapping
from E into itself. If the duality mapping J is weakly sequentially continuous, then
the following are equivalent:

(1) The set F(T) of fized points of T is nonempty;

(2) {T"x} is bounded for some x € E.

In this case, {T™x} converges weakly to an element of F(T') for each x € E.

They also characterized the convergent point by using nonlinear projections un-
der suitable conditions. In 2010, Honda, Ibaraki and Takahashi [7] prove a weak
convergence theorem of Baillon’s type [1] (see also [6,23]) for finding a fixed point
of firmly generalized nonexpansive mappings in a Banach space.

On the other hand, using Bregman distances, Naraghirad, Takahashi and Yao [17]
introduced a Bregman firmly generalized nonexpansive type mapping in a reflex-
ive Banach space. They generalize Theorem 1.1 for Bregman firmly generalized
nonexpansive type mappings under suitable conditions.
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In this paper, we first study Bregman firmly generalized nonexpansive type map-
pings [17] in a reflexive Banach space. Next, we prove a weak convergence theorem
of Pazy’s type [11] for Bregman firmly generalized nonexpansive type mappings in a
reflexive Banach space. This result characterized the convergent point by using non-
linear projections. Finally, we also obtain weak convergence theorems of Baillon’s
type [7] in a reflexive Banach space.

2. PRELIMINARIES

Let E be a real Banach space with its dual £*. We denote the strong convergence
and the weak convergence of a sequence {x,} to z in E by x,, — x and z,, — z,
respectively. We also denote the weak® convergence of a sequence {z}} to z* in E*
by x = z*. For p € (1,00), the duality mapping Jp from E into E* corresponding
to the weight function w(t) = tP~! is defined by

Jpr = {a" € BY iz, 2%) = |[f|[|«”]], |7 = w((lz[)}

for each x € E. The mapping Js is called the normalized duality mapping from F
into E* and it is denoted by J (see [5,24] for details). A Banach space E is said
to be strictly convex if ||(z +y)/2|| < 1 whenever z,y € S :={z € E: |z] = 1}
and x # y. Also, F is said to be uniformly convex if for each ¢ € (0, 2], there exists
§ > 0 such that 2,y € S and ||z — y| > ¢ imply |(z +y)/2|| < 1—4J. A Banach
space E is said to be smooth if
o) ety = o]
t—0 t

exists for each x,y € S. In this case, the norm of FE is said to be Gateaux differen-
tiable. The space FE is said to have a uniformly Gateaux differentiable norm if for
each y € S, the limit (2.1) is attained uniformly for z € S. The norm of E is said
to be Fréchet differentiable if for each « € S, the limit (2.1) is attained uniformly
for y € S. The norm of E is said to be uniformly Fréchet differentiable (and E' is
said to be uniformly smooth) if the limit (2.1) is attained uniformly for z,y € S.

An operator A C E x E* with domain D(A) = {x € E : Az # (} and range
R(A) = U{Ax : © € D(A)} is said to be monotone if (x — y,2* — y*) > 0 for any
(x,2%), (y,y*) € A. An operator A is said to be strictly monotone if (z — y,2* —
y*) > 0 for any (x,2*), (y,y*) € A (r # y). A monotone operator A is said to be
maximal if its graph G(A) = {(z,2*) : 2* € Ax} is not properly contained in the
graph of any other monotone operator. If A is maximal monotone, then the set
A710 = {u € E : 0 € Au} is closed and convex (see [5,25] for more details). A
mapping A : F — E* is said to be weakly sequentially continuous if z,, — z implies
Az, = Az

A function f : E — (—o00,00] is said to be proper if the domain D(f) ={z € E:
f(z) < oo} is nonempty. It is also called lower semicontinuous if {z € E : f(z) < r}
is closed for all » € R. The function f is also said to be convex if

(2.2) flaz+ (1= a)y) < af(z)+(1—a)f(y)

for all x,y € E and o € (0,1). It is also said to be strictly convex if the strict
inequality holds in (2.2) for all z,y € D(f) with  # y and « € (0,1). For a proper
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lower semicontinuous convex function f : E — (—o00, o], the subdifferential df of
f is defined by

Of(x) ={z" € E*: f(x) + {y —=,2") < f(y), Vy € E}
for all x € E. It is well known that 0f C E x E* is maximal monotone (see
[21,22] for more details). A mapping g : E — R is said to be strongly coercive if
9(zn)/||zn|l = oo whenever {z,} is a sequence of E such that ||z,| — oco. It is also
said to be bounded on bounded sets if g(U) is bounded for each bounded subset U
of E. If p € (1,00) and g is defined by g(z) = ||z||?/p for all x € E, then 0g = J),.
For a proper lower semicontinuous convex function f : E — (—o0, oo], the conjugate
function f* of f is defined by
fr(@") = sup{(z,2") — f(z)}

z€E
for all z* € E*. It is well known that f(z)+ f*(2*) > (z,2*) for all (z,z2*) € E'x E*.
It is also known that (z,z*) € df is equivalent to

f@) + [ (&%) = (@, 27).
We also know that if f : B — (—o0,00] is a proper lower semicontinuous convex
function, then f*: E* — (—o0,00] is a proper weak* lower semicontinuous convex
function (see [19,25] for more details on convex analysis).

3. BREGMAN DISTANCE

Let E be a Banach space and let ¢ : £ — R be a convex function. Then the
directional derivative d*g(z)(y) of g at z € E with the direction y € E is defined
by

N o gl@+ty) — g(x)
T g(a)(y) = lim : .
The function g is said to be Gateaux differentiable at = € F if dtg(x) € E*. In
this case, we denote d™g(x) by Vg(z). The function g is also said to be Fréchet
differentiable at = € E if for € > 0, there exists 6 > 0 such that ||z — y|| < ¢ implies
that

l9(y) — g(x) = (y — 2, Vg(@))| <elly — ||

A function g : E — R is said to be Gateaux differentiable (resp. Fréchet differen-
tiable) if it is Gateaux differentiable at everywhere (resp. Fréchet differentiable at
everywhere). We know that if a continuous convex function g : £ — R is Gateaux
differentiable, then Vg is norm-to-weak® continuous and dg = Vg. We also know
that if g is Fréchet differentiable, then Vg is norm-to-norm continuous.

Let E be a Banach space and let g : E© — R be a convex and Gateaux differentiable
function. Then the Bregman distance [2,4] corresponding to g is defined by

D(z,y) = g(x) — g(y) — {x =y, Vg(y))
for all z,y € E. It is obvious that D(z,y) > 0 for all z,y € E. We also know that
D(-,y) is convex for all y € E. The following definition is in the sense of Kohsaka
and Takahashi [15] (see also [3]).

Definition 3.1. Let E be a Banach space. Then a function g : £ — R is said to
be a Bregman function if the following conditions are satisfied:
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(1) g is continuous, strictly convex and Gateaux differentiable;
(2) the set {y € E: D(z,y) < r} is bounded for all x € F and r > 0.

We know the following Lemma (see [3,26] for more details).

Lemma 3.2. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function. Then

(1) Vg : E — E* is one-to-one, onto, norm-to-weak® continuous and monotone;
(2) {z— 9, V() — Vg(y)) = 0 if and only if = = y;

(3) the set {x € E: D(z,y) < r} is bounded for ally € E and r > 0;

(4) D(g*) = E*, g* is Giteauz differentiable and Vg* = (Vg) ™'

We also know the following result (see [3,14,15,17] for more details).

Theorem 3.3. Let C' be a nonempty closed convex subset of a reflexive Banach
space B and let g : E — R be a strongly coercive Bregman function. Then, for each
x € E, there exists a unique xo € C such that

D = min D .
($07$) 228 (y7$)

Moreover, for the mapping Po defined by Pox = o for oll x € E, the following
conditions hold: For x € F,

(1) =g = Pex if and only if (y — xo, Vg(zo) — Vg(z)) >0 for all y € C;

(2) D(Pcz,z)+ D(y, Pcx) < D(y,z) for ally € C.
The mapping Po from E onto C' is called the Bregman projection of E onto C.

Let E be a Banach space. The closed unit ball and the unit sphere of E are
denoted by B and S, respectively. We also denote rB the set {z € E : ||z|]| < r} for
all r > 0. Then a function g : £ — R is said to be uniformly convex on bounded
sets [26] if p,(t) > 0 for all r,¢ > 0, where p, : [0, 00) — [0, 00| is defined by

_ ag(z) + (1 —a)gy) — glaz + (1 — a)y)
(3.1) prt) = zyerB,|z—y|=t,ac(0,1) a(l —a)

for all t > 0. It is known that p, is a nondecreasing function. The function g is also
said to be uniformly smooth on bounded sets [26] if lim; o o (t)/t = 0 for all > 0,
where o, : [0,00) — [0, 00] is defined by
o (t) = f ag(ax + (1 —a)ty) + (1 — a)g(z — aty) — g(x)
z€rB,yeS,ac(0,1) a(l —a)
for all t > 0. We know the following results (see [8,15,20,26] for more details).

Theorem 3.4. Let E be a reflexive Banach space and let g : E — R be a continuous
convez function which is strongly coercive. Then the following are equivalent:

(1) g is bounded on bounded sets and uniformly smooth on bounded sets;

(2) g is Fréchet differentiable and Vg is uniformly norm-to-norm continuous on
bounded sets;

(3) D(g*) = E* g* is strongly coercive and uniformly conver on bounded sets.

Theorem 3.5. Let E be a Banach space, let p € (1,00) and let g = || - ||?/p. Then
(1) E is uniformly convex iff g is uniformly convex on bounded sets;
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(2) E is uniformly smooth iff g is uniformly smooth on bounded sets.

Lemma 3.6. Let E be a Banach space and let g : EE — R be a Gateauz differentiable
function which is uniformly convex on bounded sets. Let r > 0 and let p, be defined
as in (3.1). Then the following hold:

(1) pr (llz = yll) < D(x,y) for each x,y € rB;

(2) if {xn} and {yn} are sequences in rB such that limy, D(x,,y,) = 0, then
limy, ||zn — ynl| = 0;

(3) for any € > 0 there exists § > 0 such that if x,y € rB and p,(||lx —y|) <9
then ||z —y|| <e.

4. BREGMAN FIRMLY GENERALIZED NONEXPANSIVE MAPPINGS

Let C be a nonempty subset of a Banach space F and let g : E — R be a convex
and Géateaux differentiable function. A mapping 7' : C' — C is said to be Bregman
firmly generalized nonexpansive type [11,17] if

(4.1)  D(z,Tz)+ D(y,Ty) + D(Tx,Ty) + D(Ty,Tz) < D(x,Ty) + D(y, Tx)

for each z,y € C. A mapping T : C — C is said to be Bregman generalized
nonexpansive type [11,17] if

D(Tz,Ty) + D(Ty,Tz) < D(x,Ty) + D(y, Tx)

for each z,y € C. A mapping T : C' — C is said to be Bregman firmly generalized
nonexpansive [12,17] if F(T') # () and

D(z,Tz)+ D(Tz,p) < D(z,p)

for each x € C and p € F(T). A mapping T : C — C is said to be Bregman
generalized nonexpansive [10,17] if F(T) # () and

D(Tz,p) < D(z,p)

for each z € C' and p € F(T). It is clear that Bregman firmly generalized nonexpan-
sive type (resp. a Bregman firmly generalized nonexpansive) is Bregman generalized
nonexpansive type (resp. a Bregman generalized nonexpansive) in a Banach space
(see also [11,12,17]).

A point z in C is said to be Bregman generalized asymptotic fixed point of
T [13,17] if C contains a sequence {z,,} such that Vg(z,) = Vg(z) and Vg(z,) —
Vg(Txz,) — 0. The set of all Bregman generalized asymptotic fixed points of T is
denoted by F(T).

Let Cy be a subset of C. A mapping R : C' — Cj is said to be sunny if R(Rz +
t(x — Rz)) = Rx whenever Rx + t(z — Rx) € C for z € C and t > 0. A mapping
R:C — ( is said to be a retraction if R?> = R. The following results were proved
in [17] (see also [16]).

Lemma 4.1. Let E be a Banach space and let g : E — R be a convexr and Gateaux
differentiable function. Let C' be a nonempty closed subset of E. If T : C — C' is a
Bregman firmly generalized nonexpansive type mapping (resp. a Bregman generalized
nonexpansive type mapping) with F(T) # 0, then T is Bregman firmly generalized
nonexpansive (resp. a Bregman generalized nonexpansive).



2212 TAKANORI IBARAKI

Lemma 4.2. Let E be a Banach space and let g : E — R be a convexr and Gateaux
differentiable function. Let C' be a nonempty closed subset of E. Then, a mapping
T :C — C is of Bregman firmly generalized nonexpansive type if and only if

((=Tx) = (y —Ty),Vg(Tz) = Vg(Ty)) = 0.
for each x,y € C.

Lemma 4.3. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function. Let C be a nonempty closed subset of & and let R be a
retraction of B onto C. Then the following are equivalent:

(1) R is sunny and Bregman generalized nonexpansive;
(2) (x — Rz,Vg(Rz) —Vg(y)) >0 for each x € E and y € C.

Furthermore, a sunny Bregman generalized nonexpansive retraction of E onto C' s
uniquely determined.

Lemma 4.4. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function. Let C' be a nonempty closed subset of E and let R be
a sunny Bregman generalized nonexpansive retraction of E onto C. Let x € E and

z € C. Then the following hold:
(1) z = Rx if and only if (x — 2,Vg(z) — Vg(y)) >0 for ally € C;
(2) D(z,Rzx) + D(Rz,z) < D(x, z).

Let F be a reflexive Banach space and let g : E — R be a strongly coercive Breg-
man function. If a sunny Bregman generalized nonexpansive retraction of E onto C'
exists then it is uniquely determined (see Lemma 4.3). A nonempty subset C' of E
is said to be a sunny Bregman generalized nonexpansive retract (resp. a Bregman
generalized nonexpansive retract) of F if there exists a sunny Bregman generalized
nonexpansive retraction (resp. a Bregman generalized nonexpansive retraction) of
E onto C'. The set of all fixed points of such a sunny Bregman generalized nonex-
pansive retraction of E onto C'is, of course, C (see [9,10,17] for more details). The
following results have been proved in [17] (see also [16]).

Theorem 4.5. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function which is bounded on bounded sets, and uniformly convex
and uniformly smooth on bounded sets. Let C' be a monempty closed subset of E.
Then, the following conditions are equivalent:

(1) C is a sunny Bregman generalized nonexpansive retract of E;
(2) C is a Bregman generalized nonexpansive retract of E;
(3) VgC is closed and convex.

In this case, the unique sunny Bregman generalized nonexpansive retraction of E
onto C' is given by (Vg)_1 Po, Vg, where Pg, is the Bregman projection of E* onto
Cy=VgC.

Lemma 4.6. Let E be a reflexive Banach space, let g : E — R be a strongly
coercive Bregman function which is bounded on bounded sets, and uniformly convex
and uniformly smooth on bounded sets and let C' be a nonempty closed subset of E
such that VgC' is closed and convex. Let T be a mapping from C into itself. Then
the following hold:
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(1) if T is a Bregman generalized nonexpansive mapping, then F(T) is closed
and VgF(T) is closed and convex. Moreover, F(T) is sunny Bregman gen-
eralized nonexpansive retract of E;

(2) if T is a Bregman generalized nonexpansive type mapping with F(T) # 0,
then F(T) = F(T).

5. WEAK CONVERGENCE THEOREM OF PAZY’S TYPE

In this section, we prove a weak convergence theorem of Pazy’s type for Bregman
firmly generalized nonexpansive type mappings in a Banach space. We first recall
the following result for Bregman firmly generalized nonexpansive type mappings in
a Banach space (see [17] for more details).

Theorem 5.1. Let E be a reflexive Banach space and let g : E — R be a convex,
continuous and strongly coercive function which is bounded on bounded sets, and
uniformly convex and uniformly smooth on bounded sets. Let C' be a nonempty
closed subset of E such that VgC' is closed and convexr and let T : C — C' be
a Bregman firmly generalized nonexpansive type mapping. If the mapping Vg is
weakly sequentially continuous, then the following are equivalent:

(1) F(T) is nonempty;

(2) {T™z} is bounded for some x € C.
In this case, {T"x} is converges weakly to an element of F(T') for each x € C.

To prove our result, we need the following lemmas.

Lemma 5.2. Let E be a reflerive Banach space and let g : E — R be a strongly
coercive Bregman function. Let C' be a nonempty closed subset of E such that
VgC' is closed and convex and let Ro be a sunny Bregman generalized nonexpansive
retraction of E onto C. Then R¢ is of Bregman firmly generalized nonexpansive

type.
Proof. Let x,y € C. Then, by Lemma 4.4, we obtain that

(x — Rex, Vg(Rox) — Vg(Rey)) > 0
and

(y — Rey, Vg(Rey) — Vg(Rew)) > 0.
From these inequalities, we have

(x — Rex, Vg(Rez) — Vg(Rey)) + (y — Rey, Vg(Rey) — Vg(Rex)) > 0+ 0.
and hence
((z = Rex) — (y — Rey), Vg(Rex) — Vg(Rey)) =2 0

for each z,y € C. Therefore, by Lemma 4.2, we obtain that R¢ is of Bregman

firmly generalized nonexpansive type. g

Lemma 5.3. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function which is bounded on bounded sets, and uniformly convex
and uniformly smooth on bounded sets. Let C be a nonempty closed subset of E
such that VgC' is closed and convexr. Let T : C — C be a Bregman generalized
nonezpansive mapping. Then {RT"x} converges strongly to some element of F(T')
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for each x € C, where R is the sunny Bregman generalized nonexpansive retraction
of E onto F(T).
Proof. Let x € C. Then we have from Lemma 4.4 that

D(T™ g, RT" y)

< D(T"'z, RT"'2) + D(RT" 'z, RT"x)

D(T™ "z, RT"x)
D(T"z, RT"z)
for each n € N. Hence, lim,,_,oo D(T"x, RT"x) exists. It follows from Lemma 4.4

that, for each k € N,
D(T"* gz RT"k2) + D(RT" %z, RT"z) < D(T"*z, RT"x)

<
<

and hence
D(RT™z,RT"z) < D(T™z,RT"x)— D(T™z,RT™x)
(5.1) < D(T"z,RT"x) — D(T"z,RT™x)

for each m,n € N (m > n). Then we show that {RT"z} is a Cauchy sequence. In
fact, since F(T') # 0, we also obtain

D(RT"z,p) < D(x,p)

for each p € F(T') and hence, by Lemma 3.2 (3), {RT"z} is bounded. Let r =
sup,en{||RT"z| }. Using Lemma 3.6 (1), we obtain that

pr(IRT™2 — RT"z|)) < D(RT™x, RT"x)

for each m,n € N (m > n). By (5.1), the existence of lim,,_,oo D(T"x, RT™z) and
Lemma 3.6 (3), {RT™z} is a Cauchy sequence. Since E is complete and F(T) is
closed, {RT"x} converges strongly to some point u in F(T). O

Now, we can prove the following weak convergence theorem of Pazy’s type for
Bregman firmly generalized nonexpansive type mappings in a Banach space.

Theorem 5.4. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function which is bounded on bounded sets, uniformly convexr and
uniformly smooth on bounded sets. Let C' be a nonempty closed subset of E such
that VgC' is closed and convex. Let T : C — C be a Bregman firmly generalized
nonezrpansive type mapping. If the mapping Vg is weakly sequentially continuous,
then the following are equivalent:

(1) F(T) is nonempty;

(2) {T"z} is bounded for some x € C.
In this case, {T"x} converges weakly to p € F(T) for each x € C, where p =
lim, oo RT™x and R is a sunny generalized nonexpansive retraction of E onto

F(T).

Proof. From Theorem 5.1, we know that the conditions (1) and (2) are equivalent.
Moreover, in this case, we also know that, for each = € C, {T"z} converges weakly
to an element p € F(T). Since Lemma 4.3, we have that

(5.2) (I'"x — RT"x,Vg(RT"z) — Vg(p)) >0
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for each n € N. From Lemma 5.3, we have that {RT"x} converges strongly to
some point u in F(T). By Theorem 3.4, the mapping Vg is (uniformly) norm to
norm continuous. Therefore, letting n — oo in (5.2), we obtain from 7"z — p and
RT™x — u that

(p —u,Vg(u) = Vg(p)) = 0.
By Lemma 3.2 (1) and (2), we obtain that v = p. Therefore, {T"x} converges
weakly to p = limy, oo RT"x. This completes the proof. O

6. WEAK CONVERGENCE THEOREMS OF BAILLON’S TYPE

In this section, we prove weak convergence theorems of Baillon’s type in a Banach
space. To obtain our result, we need the following lemma.

Lemma 6.1. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function which is Fréchet differentiable. Let C' be a nonempty
closed subset of E such that VgC' is closed and convex and let R be a sunny Bregman
generalized nonexpansive mapping of E onto C. Then R is demiclosed, i.e., T, — g
and Rx,, — yo imply Rxy = yg.

Proof. Let {x,} be a sequence of E such that z, — z¢ and Rx,, — yo. Since g is
Fréchet differentiable function, then the mapping Vg is norm to norm continuous
and hence Vg(Rz,) — Vg(yo). Using Lemma 4.4, we have that

(6.1) (xo — Rxo, Vg(Rxo) — Vg(u)) >0
and

(Tn — Ran, Vg(Rrn) — Vg(u)) >0
for each u € C. Letting n — oo, we get

(6.2) (zo —yo, Vg(yo) — Vg(u)) > 0

for each v € C. Since {Rz,} C C and Rz, — yo, from closedness of C' we have
yo € C. By (6.1) and (6.2), we have

(o — Rxo, Vg(Rxo) — V(yo0)) > 0 and (zo — yo, Vg(yo) — Vg(Rxo)) > 0

and hence

(yo — Rxo, Vg(Rxo) — Vg(yo)) = 0.
From Lemma 3.2 (1) and (2), we obtain that yo = Rxzo. This implies that R is
demiclosed. O

Finally, we can prove the following weak convergence theorems of Baillon’s type
in a Banach space.

Theorem 6.2. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function which is bounded on bounded sets, uniformly convex and
uniformly smooth on bounded sets. Let C' be a nonempty closed subset of E such that
VgC' is closed and conver. Let T : C'— C be a Bregman firmly generalized nonez-
pansive mapping such that F(T) = F(T). If the mapping Vg is weakly sequentially
continuous, then {T"x} converges weakly to some uw € F(T) for each x € C, where
u = lim, oo RT™x and R is a sunny Bregman generalized nonexpansive retraction
of E onto F(T).
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Further, if Rox = w-lim, oo T for each x € C, then Ry is a Bregman gener-
alized nonexpansive retraction of C onto F(T) such that RyT™ = T"Ry = Rq for
each n € N and

Rox € co{T"x : n € N}
for each x € C.
Proof. Let x € C and p € F(T'). From the definition of 7', we have that
(6.3) D(T" 'z, p) < D(T"2, T"x) + D(T" M, p) < D(T"x, p)
for each n € N and hence lim,,_,oc D(T"z, p) exists. From (6.3), we obtain that
D(T"z, T""z) < D(T"z,p) — D(T" "z, p)
for each n € N. Since {D(T"x,p)} converges, it follows that
(6.4) lim D(T"z, T""'z) = 0.

n—oo

Since limy, oo D(T"x,p) exists, by Lemma 3.2 (3) {T"z} is bounded. Let r =
sup,en{||T"z||}. From Lemma 3.6 (2) and (6.4), we obtain that

(6.5) lim |[T"z — T z| = 0.
n—oo
From Theorem 3.4, Vg is uniformly norm to norm continuous, we have that
(6.6) lim (Vg(T”a:) - Vg(T”H:z:)> = 0.
n—oo

For a subsequence {T™ix} of {T"x} such that T™xz — p for some p € E, we
have from weakly sequentially continuity of Vg that Vg(T"x) — Vg(p). Since
{Vyg(T™z)} € VgC and VgC is closed and convex, VgC' is weakly closed and
hence we have that Vg(p) € VgC. This implies that p € C. Since F(T) = F(T), p
is a fixed point of T

On the other hand, from Lemma 5.3, {RT"x} converges strongly to some u €
F(T). Since T™z — p, from Lemma 6.1 we have Rp = u. It follows from p €
F(T) = F(R) that u = p. This implies that 7"z — u = lim,,_,oc RT"x.

Defining a mapping Ry from C to itself by

Ror == w-lim T"z
n—oo

for each x € C. It is obvious that R(Ry) C F(T), which R(Ry) is the range of Ry.
Conversely, let z € F(T). Then we have

Roz= w-lim T"z = w-lim z = 2.
n—oo n—oo

So, we have z € R(Rp) and hence
R(Ry) C F(T) C F(Ro) C R(Ro).

Therefore, we get F'(T) = F(Ry) = R(Rp). This implies that Ry is a retraction of
C onto F(T). Let x € C and p € F(Ry) = F(T). Since the function g is weakly
lower semicontinuous, we have

D(Roz,p) < lilginfD(T"x,p) < hII_l}iIlfD({L‘,p) = D(z,p).
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This implies that Ry is Bregman generalized nonexpansive. It is obvious from
F(T) = R(Ry) that TRy = Ry. Moreover, we have that for any =z € C,

Roz = w-lim T"z = w-lim 7"z = w-lim T"(Tx) = RoTx
n—00 n—00 n—o0

and hence Ryr = RoTx. So, we have TRy = RoT = Ry. This implies that
T"Rg = RyT™ = Ry for each n € N. Finally, we show that

Rox € co{T"xz : n € N}(=: D)

for each x € C. Suppose that Rpz ¢ D for some z € C. From the separation
theorem, there exists z* € E* such that (Roz,2") > sup,ep(y,z*). So, we have
that

(Roz,z") > sup(y,z¥)

yeD

> sup(T"z,z")
neN

> lim (T"z,2") = (Roz, 27).
n— o0

This is a contradiction. So, we have Rox € co{T"x : n € N} for each x € C. This
completes the proof. O

As a direct direct consequence of Theorem 6.2, we obtain following result.

Theorem 6.3. Let E be a reflexive Banach space and let g : E — R be a strongly
coercive Bregman function which is bounded on bounded sets, uniformly convexr and
uniformly smooth on bounded sets. Let C be a nonempty closed subset of E such that
VgC' is closed and convex. Let T : C — C be a Bregman firmly generalized nonex-
pansive type mapping such that F(T) # (0. If the mapping Vg is weakly sequentially
continuous, then {T™x} converges weakly to some u € F(T) for each x € C, where
u = lim, oo RT™x and R is a sunny Bregman generalized nonexpansive retraction
of E onto F(T).

Further, if Rox = w-limy, oo T for each x € C, then Ry is a Bregman gener-
alized nonexpansive retraction of C onto F(T) such that RyT™ = T"Ry = Ry for
each n € N and

Rox € co{T"x : n € N}
for each x € C.

Proof. From Lemmas 4.1 and 4.6 we have that T" is a Bregman firmly generalized
nonexpansive mapping and F(T) = F(T'). As a direct consequence of Theorem
6.2, O
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