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large number of constraints, relative to the number of variables. However, the
sequence generated by the method of alternating projections may suffer from slow
convergence (for example, consider the case where two sets are hyperplanes with
small angles between them) and oscillate for many iterations between the two sets
before it converges to a solution (see [10,17,20] for related results). This motivates
the development of practically efficient methods for solving (1.1).

From a computational point of view, several methods have been proposed to
accelerate the convergence of the method of alternating projections [1–4,8,10,13–15].
Bauschke and Kruk [4] investigated a reflection projection method when C is an
obtuse cone (i.e., C is cone and includes the positive polar cone of C). Cegielski [8]
investigated a method which is based on the reflection projection method, and, to be
distinguishable, called it a projection reflection method. The projection reflection
method in [8] has the following form:

(1.4) xn = RCP
µ
D(xn−1) (n = 1, 2, . . . ),

where x0 ∈ H, RC = 2PC − I, Pµ
D = (1−µ)I +µPC , µ ∈ (0, 2) and I is the identity

mapping on H. The sequence generated by (1.4) converges weakly to some point
in C ∩D [8, Corollary 5.5.2]. However, the projection reflection method can not be
applied directly to solve (1.1) because the projection of the set intC does not exist
for points exterior to C.

The main purpose of this paper is to investigate the finite convergence of a vari-
ant of (1.4). We propose a variant of (1.4) that can be applied to solve (1.1), and
establish the finite convergence of the sequence generated by the proposed vari-
ant. Moreover, we establish an explicit upper bound for the required number of
iterations.

The paper is organized as follows. Section 2 introduces the main definitions
and some necessary preliminaries. Section 3 presents a variant of the projection
reflection method and proves that the sequence generated by the proposed variant
has the finite convergence property. The conclusion will be shown in Section 4.

2. Basic definitions and preliminaries

The following notations will be used in this paper: H denotes a real Hilbert
space; for any x, y ∈ H, ⟨x, y⟩ denotes the inner product; for any z ∈ H, ∥z∥
denotes the norm of z, i.e., ∥z∥ =

√
⟨z, z⟩; intA denotes the interior of set A; Ac

denotes the complement of A; for any w ∈ H and B ⊂ H, w + B is a parallel
translation, i.e., w+B = {w+ b : b ∈ B}; for any C ⊂ H and mapping U : C → C,
Fix(U) denotes the fixed point set of U , i.e., Fix(U) = {x ∈ C : U(x) = x}; for
any E,F ⊂ H, dist(E,F ) denotes the distance between two sets E and F , i.e.,
dist(E,F ) = inf{∥x− y∥ : x ∈ E, y ∈ F}.

Let C be a closed and convex subset of H. A mapping U : C → C is said to be
firmly nonexpansive if

∥U(x)− U(y)∥ ≤ ⟨x− y, U(x)− U(y)⟩ (x, y ∈ C),

and is said to be nonexpansive if

∥U(x)− U(y)∥ ≤ ∥x− y∥ (x, y ∈ C).
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Then, by Lemma 1.1 in [11] (see also [2, Proposition 4.2]), U is firmly nonexpansive
if and only if 2U − I is nonexpansive.

The metric projection of a point x ∈ H onto C, denoted by PC(x), is defined as
a unique solution of the problem

minimize ∥x− y∥ subject to y ∈ C.

RC denotes the reflector with respect to C, i.e., RC = 2PC − I [4]. We list the
following useful properties of the metric projection.

(i) PC is firmly nonexpansive;
(ii) RC is nonexpansive;
(iii) P λ

C = (1− λ)I + λPC is nonexpansive for all λ ∈ [0, 2].

The proofs of these results can be found in [2, 8, 9, 20,21].
The positive polar cone K∗ of a closed convex cone K in H is defined by

K∗ = {y ∈ H : ⟨y, x⟩ ≥ 0, for all x ∈ K}.

K is said to be obtuse if K∗ ⊂ K [4]. The following result can be found in [15,
Lemma 3.1].

Lemma 2.1. Let C be a closed convex and obtuse cone in H, let λ ∈ [1, 2] and let
e ∈ H. Then, for all x ∈ H, P λ

e+C(x) ∈ e+ C.

3. Finite convergence of a variant of projection reflection method

In this section, we consider the finite convergence of a variant of the projection
reflection method. We consider the following iterative method:

(3.1)

{
yn−1 = PD(xn−1)
xn = P λ

e+CP
µ
D(xn−1) (n = 1, 2, . . . ),

where x0 ∈ H, µ ∈ (0, 2) and λ ∈ [1, 2]. Note that if e = 0 and λ = 2, then {xn} in
(3.1) is equivalent to (1.4), and thus {xn} can be viewed as a more general modified
version of the one of (1.4).

To establish the finite convergence of (3.1), we need the following assumption.

(3.2) intC ̸= ∅, e ∈ intC and (e+ C) ∩D ̸= ∅.

The following results are useful for establishing the finite convergence of (3.1).

Proposition 3.1 ([18, Lemma 2.3]). Let C be a closed convex and cone in H such
that intC ̸= ∅. For any element e ∈ intC we have that

dist(e+ C, (intC)c) > 0.

Proposition 3.2 ([8, Theorem 2.1.51]). Let C and D be closed convex sets in H,
S : H → C be nonexpansive, and µ ∈ (0, 2). If Fix(S) ∩D ̸= ∅, then,

∥SPµ
D(x)− z∥2 ≤ ∥x− z∥2 − µ(2− µ)∥PD(x)− x∥2,

for all x ∈ Fix(S) and z ∈ Fix(S) ∩D,

We next prove the following result.
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Lemma 3.3. Let {yn} be a sequence generated by (3.1). Then, for any m ∈ N, we
have

(3.3) dist(x0, (e+ C) ∩D)2 ≥ µ(2− µ)

m∑
k=1

∥yk − xk−1∥2.

Proof. Let u ∈ (e+ C) ∩D. Since the assumptions of Proposition 3.2 are satisfied
at this theorem by taking S = P λ

e+C , we have that

∥xn − u∥2 = ∥P λ
e+CP

µ
D(xn−1)− u∥2

≤ ∥xn−1 − u∥2 − µ(2− µ)∥PD(xn−1)− xn−1∥2

≤ ∥xn−1 − u∥2 − µ(2− µ)∥yn − xn−1∥2.
(3.4)

From (3.4), we get

∥x0 − u∥2 ≥ ∥x1 − u∥2 + µ(2− µ)∥y1 − x0∥2

≥ ∥x2 − u∥2 + µ(2− µ)∥y1 − x0∥2 + µ(2− µ)∥y2 − x1∥2

≥ · · ·

≥ ∥xm − u∥2 + µ(2− µ)
m∑
k=1

∥yk − xk−1∥2.

Since u ∈ (e+ C) ∩D is arbitrary, we get

dist(x0, (e+ C) ∩D)2 = inf
u∈(e+C)∩D

∥x0 − u∥2 ≥ µ(2− µ)
m∑
k=1

∥yk − xk−1∥2.

□

The main theorem can now be given as follows.

Theorem 3.4. Let C be a closed convex and obtuse cone in H, let D be a closed
convex set in H such that (3.2) holds. Then, the sequence {yn} generated by (3.1)
converges at a point in intC ∩D at most l iterations with

(3.5) l ≤ dist(x0, (e+ C) ∩D)2

µ(2− µ)γ(e)2
+ 1,

where γ(e) = dist(e+ C,D ∩ (intC)c).

Proof. Proposition 3.1 guarantees that γ(e) > 0. By Lemma 3.3, we have lim
n→∞

∥yn−
xn−1∥ = 0. In this case, there exists the smallest integer l such that ∥yl − xl−1∥ <
γ(e). We consider two cases: yl ∈ intC and yl /∈ intC. In the case of yl ∈ intC,
using Lemma 3.3, dist(x0, (e + C) ∩ D)2 ≥ (l − 1)µ(2 − µ)γ(e)2 and we found a
solution in at most l iterations. This implies that inequality (3.5) holds. In the case
of yl /∈ intC, we have

∥yl − xl−1∥ ≥ dist(e+ C,D ∩ (intC)c) = γ(e),

which is a contradiction. □



ON PROJECTION REFLECTION METHOD IN HILBERT SPACES 2225

4. Conclusion

In this paper we have presented the iterative method (3.1) for solving (1.1).
We proved that (3.1) has the finite convergence property under the assumption of
(3.2). Our method is closely related to the reflection projection method investigated
in [4, 8]. Related results for the LMI problems can be found in [15,17,18].
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