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for n ∈ N. Then, {xn} converges strongly to PFx ∈ C, where F =
∩

λ∈Λ F (Tλ) and
PK is the metric projection of H onto a nonempty closed convex subset K of H.

After this theorem was released, a number of generalized results have been pro-
posed; for instance, see Takahashi and Zembayashi [15], Plubtieng and Ungchit-
trakool [11], Inoue, Takahashi, and Zembayashi [3], Qin, Cho, and Kang [12], Wat-
tanawitoon and Kumam [16, 17], Kimura, Nakajo, and Takahashi [7], Kimura and
Takahashi [10], and others. These results considered the case where the underlying
space is a Banach space having certain additional properties.

On the other hand, fixed point theory on a complete metric space with convexity
structures was firstly studied by Takahashi [13] and has been investigated from
various aspects; see also [1, 2]. The shrinking projection method on a geodesic
space was firstly considered by Kimura [5] for the case of a real Hilbert ball. The
following result is for the case of a subset of the unit sphere of a Hilbert space
proved by Kimura and Satô [9].

Theorem 1.2 (Kimura and Satô [9]). Let SH be the unit sphere of a real Hilbert
space H with the metric d defined by a length of minimal great arc, and C a closed
convex subset of SH such that d(u, v) < π/2 for every u, v ∈ C. Let T : C → C be
a nonexpansive mapping such that the set of fixed points F = {z ∈ C : Tz = z} is
nonempty. For a given initial point x0 ∈ C and C0 = C, generate a sequence {xn}
as follows:

Cn+1 = {z ∈ C : d(Txn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 = PCn+1x0,

for each n ∈ N. Then {xn} is well defined and converges to PFx0 ∈ C, where
PK : C → K is the metric projection of C onto a nonempty closed convex subset K
of C.

In this paper, we deal with an approximation of common fixed points of a finite
family of nonexpansive mappings defined on a complete CAT(1) space with calcula-
tion errors. The main result shows that, even if the sequence of errors for obtaining
the value of metric projections has a positive upper limit, the generated sequence
still has a nice property for approximating a common fixed point of the mappings.
To prove the results, we employ the technique used in [4, 6].

2. Preliminaries

Let X be a π-geodesic metric space, that is, for every two points in X having
the metric between them less than π, there exists a geodesic connecting them.
Suppose that X is π-uniquely geodesic, that is, each geodesic connecting u and v
with d(u, v) < π is uniquely determined. Then, for every u, v ∈ X with d(u, v) < π
and for t ∈ [0, 1], a point w ∈ X such that d(w, v) = td(u, v) and d(u,w) =
(1− t)d(u, v) is also unique. We denote this point w by tu⊕ (1− t)v. In a geodesic
space, we can define the convexity of subsets of X in a natural way. For the detail,
see [1].

We say X is a CAT(1) space if for each geodesic triangle on X is as thin as
its comparison triangle on the 2-dimensional unit sphere S2. To be precise, every
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p, q ∈ △ ⊂ X and their comparison points p, q ∈ △ ⊂ S2 satisfy the CAT(1)
inequality

d(p, q) ≤ dS2(p, q),

where dS2 is the spherical metric defined on S2. We know that if X is a CAT(1)
space, then for x, y, z ∈ X such that d(y, z) + d(z, x) + d(x, y) < 2π and t ∈ [0, 1],
the following holds [8]:

sin d(x, y) cos d(tx⊕ (1− t)y, z)

≥ sin(td(x, y)) cos d(x, z) + sin((1− t)d(x, y)) cos d(y, z).

This inequality plays an important role in our result.
LetX be a complete CAT(1) space such that d(u, v) < π/2 for every u, v ∈ X, and

C a nonempty closed convex subset C of X. We know that for every x ∈ X, there
exists a unique yx ∈ C such that d(x, yx) = d(x,C), where d(x,C) = infy∈C d(x, y).
We define a mapping PC : X → C by PCx = yx for x ∈ X and we call it the metric
projection of X onto C.

The following lemma is also obtained from the result in [8].

Lemma 2.1 (Kimura and Satô [8]). Let X be a complete CAT(1) space such that
d(u, v) < π/2 for every u, v ∈ X. Let {Cn} be a sequence of nonempty closed convex
subsets of X such that Cn+1 ⊂ Cn for every n ∈ N and C0 =

∩∞
n=1Cn ̸= ∅. Let

{PCn} be a sequence of metric projections corresponding to {Cn}. Then, for u ∈ X,
a sequence {PCnu} converges to PC0u ∈ X, where PC0 is a metric projection of X
onto C0.

Amapping T of a metric spaceX to itself is said to be nonexpansive if d(Tx, Ty) ≤
d(x, y) for every x, y ∈ X. The set of all fixed points of T is denoted by F (T ). We
know that if X is CAT(1) space with d(u, v) < π for every u, v ∈ X, then F (T ) is
closed and convex.

3. Shrinking projection method with errors

In this section, we show that the iterative sequence generated by the shrinking
projection method with calculation errors has a certain appropriate property for
approximating a solution to the common fixed point problem even if the upper
limit of the error sequence is a positive value.

Theorem 3.1. Let X be a complete CAT(1) space such that d(u, v) < π/2 for every
u, v ∈ X and that a subset {z ∈ X : d(v, z) ≤ d(u, z)} is convex for every u, v ∈ X.
Let {Tj : j = 0, 1, . . . , k−1} be a family of nonexpansive mappings such that the set

of their common fixed point F =
∩k−1

j=0 F (Tj) is nonempty. Let {ϵn} be a sequence

in [0,∞[ and let ϵ0 = lim supn→∞ ϵn. For a given point u ∈ X, generate a sequence
{xn} as follows: x1 = u, C1 = X, and

Cn+1 = {z ∈ X : d(T(n mod k)xn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 ∈ Cn+1 such that cos d(u, xn+1) ≥ cos d(u,Cn+1) cos ϵn+1,

for each n ∈ N. Then
lim sup
n→∞

d(xn, Tjxn) ≤ 4ϵ0
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for every j ∈ {0, 1, . . . , k − 1}. Moreover, if ϵ0 = 0, then {xn} converges to PFx0,
where PF is the metric projection of X onto F .

Proof. First we prove that Cn ̸= ∅ for every n ∈ N, which implies that {xn} is
well defined. Since each Tj is nonexpansive, we have that d(Tjx, z) ≤ d(x, z) for
every x ∈ X, z ∈ F , and j = 0, 1, . . . , k − 1. It follows that F ⊂ Cn for all n ∈ N
and by assumption, F is nonempty and so is Cn. Hence the sequence {xn} is well
defined. We also know that Cn is closed and convex for every n ∈ N. Indeed, it is
trivial that Cn being closed. The convexity of Cn is obtained from the assumption
of the space. Therefore, we can define the metric projection PCn of X onto Cn. Let
pn = PCnu for all n ∈ N. Then, by Lemma 2.1, {pn} converges to p0 = PC0u, where
C0 =

∩∞
n=1Cn. Since xn ∈ Cn and d(u,Cn) = d(u, pn), we have that

cos d(u, xn+1) ≥ cos d(u,Cn+1) cos ϵn+1

for every n ∈ N. Then we have that

sin d(pn, xn) cos d(pn, u)

≥ sin d(pn, xn) cos d(αpn ⊕ (1− α)xn, u)

≥ sin(αd(pn, xn)) cos d(pn, u) + sin((1− α)d(pn, xn)) cos d(xn, u)

for α ∈ ]0, 1[, and hence

sin d(pn, xn)− sin(αd(pnxn)) ≥ sin((1− α)d(pnxn))
cos d(xn, u)

cos d(pn, u)
.

If pn ̸= xn, then dividing by 2 sin(1−α
2 d(pn, xn)), we have that

cos

(
1 + α

2
d(pn, xn)

)
≥ cos

(
1− α

2
d(pn, xn)

)
cos d(xn, u)

cos d(pn, u)
.

Notice that this inequality also holds even if pn = xn. Tending α → 1, we have that

cos d(pn, xn) ≥
cos d(xn, u)

cos d(pn, u)
=

cos d(xn, u)

cos d(u,Cn)
≥ cos ϵn,

that is,
d(pn, xn) ≤ ϵn

for every n ∈ N. Since pn ∈ Cn, we also get that

d(T(n mod k)xn, pn) ≤ d(xn, pn) ≤ ϵn

for every n ∈ N.
Fix j ∈ {0, 1, . . . , k − 1}. For each n ∈ N, there exists in ∈ {0, 1, . . . , k − 1} such

that
(n+ in) mod k = j.

Then we have that

d(xn, Tjxn) ≤ d(xn, pn+in) + d(pn+in , Tjxn+in) + d(Tjxn+in , Tjxn)

≤ d(xn, pn+in) + d(pn+in , Tjxn+in) + d(xn+in , xn)

≤ d(xn, pn+in) + d(pn+in , T((n+in) mod k)xn+in) + d(xn+in , xn)

≤ d(xn, pn+in) + d(pn+in , xn+in) + d(xn+in , xn)

≤ d(xn, pn+in) + ϵn+in + d(xn+in , xn).



APPROXIMATION OF A COMMON FIXED POINT 2231

We also have that

d(xn, pn+in) ≤ d(xn, pn) + d(pn, pn+in) ≤ ϵn + d(pn, pn+in)

and

d(xn+in , xn) ≤ d(xn+in , pn+in) + d(pn+in , pn) + d(pn, xn)

≤ ϵn+in + ϵn + d(pn+in , pn).

Thus it follows that

d(xn, Tjxn) ≤ 2(ϵn + ϵn+in + d(pn+in , pn))

for every n ∈ N. Since

lim sup
n→∞

ϵn+in ≤ lim sup
n→∞

ϵn = ϵ0

and lim supn→∞ d(pn+in , pn) = 0, we obtain that

lim sup
n→∞

d(xn, Tjxn) ≤ 4ϵ0,

the desired result.
For the latter part of the theorem, suppose that ϵ0 = 0. Then we have that

lim sup
n→∞

d(xn, pn) ≤ lim sup
n→∞

ϵn = 0.

It implies that limn→∞ d(xn, pn) = 0 and thus {xn} converges to p0 = PC0u. Since

0 ≤ lim inf
n→∞

d(xn, Tjxn) ≤ lim sup
n→∞

d(xn, Tjxn) ≤ 4ϵ0 = 0,

we also have that {Tjxn} converges to p0 for each j ∈ {0, 1, . . . , k − 1}. By the
continuity of the nonexpansive mapping Tj , we have that

Tjp0 = Tj

(
lim
n→∞

xn

)
= lim

n→∞
Tjxn = p0,

that is, p0 ∈ F =
∩k−1

j=0 F (Tj). Since F ⊂ C0, we get that

p0 = PC0u = PFu,

which completes the proof. □

We can also prove the following result, which shows that each point of the iterative
sequence can be obtained by the direct calculation of the distance among the set
and the points if the diameter of the space is less than π/2.

Theorem 3.2. Let X be a complete CAT(1) space such that D = diamX < π/2
and that a subset {z ∈ X : d(v, z) ≤ d(u, z)} is convex for every u, v ∈ X. Let
{Tj : j = 0, 1, . . . , k − 1} be a family of nonexpansive mappings such that the set of

their common fixed point F =
∩k−1

j=0 F (Tj) is nonempty. Let {δn} be a sequence in

[0,∞[ and let δ0 = lim supn→∞ δn. For a given point u ∈ X, generate a sequence
{xn} as follows: x1 = u, C1 = X, and

Cn+1 = {z ∈ X : d(T(n mod k)xn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 ∈ Cn+1 such that d(u, xn+1) ≤ d(u,Cn+1) + δn+1,
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for each n ∈ N. Then

lim sup
n→∞

d(xn, Tjxn) ≤ 4 arccos(e−δ0 tanD)

for every j ∈ {0, 1, . . . , k − 1}. Moreover, if δ0 = 0, then {xn} converges to PFx0,
where PF is the metric projection of X onto F .

Proof. For n ∈ N, let
ϵn = arccos(e−δn tanD),

which is equivalent to that

δn = − log cos ϵn
tanD

.

Since it holds that d(u,Cn) ≤ d(u, xn) ≤ d(u,Cn) + δn, by applying the mean
value theorem with the function g(t) = − log cos t, we can find t0 ∈ R such that
d(u,Cn) ≤ t0 ≤ d(u, xn) and

g(d(u, xn))− g(d(u,Cn)) = g′(t0)(d(u, xn)− d(u,Cn)) ≤ g′(t0)δn.

We also have that

g′(t0) = tan t0 ≤ tan d(u, xn) ≤ tanD,

which implies that

g(d(u, xn))− g(d(u,Cn)) ≤ δn tanD = g(ϵn).

It follows that

log cos(d(u, xn)) ≥ log cos d(u,Cn) + log cos ϵn

= log(cos d(u,Cn) cos ϵn).

Thus we obtain that cos d(u, xn) ≥ cos d(u,Cn) cos ϵn. This inequality shows that
the previous theorem is applicable for this sequence and consequently we get that

lim sup
n→∞

d(xn, Tjxn) ≤ 4 lim sup
n→∞

ϵn

= 4 lim sup
n→∞

arccos(e−δn tanD)

= 4 arccos(e−δ0 tanD)

for each j ∈ {0, 1, . . . , k − 1}. The remainder part of the theorem is also obtained
from the previous theorem. □

In the end of this section, we remark several things about our main result. For
known iterative schemes such as the Halpern type method and the Mann type
method, the norms of error terms must be summable because the effect of error
terms will accumulate as the iteration progresses. The main result shows that, in
the proposed iterative scheme, we do not need to suppose the summability of error
terms. This will be useful for practical calculation for computer simulations.

Our result shows that the inequality

max
j∈{0,1,2,...,k−1}

d(xn, Tjxn) < ϵ

is available for the terminating condition for sufficiently small ϵ > 0. This condition
is simple and often used in the computer simiulations. However, we note that this
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condition does not guarantee that the iterative sequence {xn} certainly approaches
to a common fixed point of {Tj} in general. Consider the following mapping: Let

X = S2∩{x = (x1, x2, x3) ∈ R3 : x3 ≥
√
3/2}. Then, by using the polar coordinates,

we can write

X = {x = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ R3 : 0 ≤ θ ≤ π/6, 0 ≤ ϕ < 2π}.
For a small ϵ > 0, define T : X → X by

Tx = T (sin θ cosϕ, sin θ sinϕ, cos θ)

=

{
(sin(θ − ϵ/2) cosϕ, sin(θ − ϵ/2) sinϕ, cos(θ − ϵ/2)) (θ > ϵ/2)

(0, 0, 1) (θ ≤ ϵ/2)

for x ∈ X. Then d(x, Tx) ≤ ϵ/2 < ϵ for all x ∈ X, whereas F (T ) = {(0, 0, 1)} ⊂ X.
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